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Why Process Optimization?

* Equipment and Flowsheet Design
* Process Operations, Transients and Upsets
« Parameter Estimation and Model Discrimination

Optimization Optimization
i ) Min f(x)
Algorithms S

i ju(t) (D)AE Model
(D)AE Model c(x) =0

x={z,z , u, p, t}

c(z,z,upt) =0

» Optimization Gives Better Results than with “Experience”
 Consistent Results among all Practitioners

* Reduce Solution Time by Orders of Magnitude

« Support and Enhance Process Understanding



A Look Back in Optimization
Early Work (1975)

The Use of Hestenes’ Method of
Multipliers to Resolve Dual Gaps
in Engineering System Optimization?
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W Evolution of Gradient-Based (NLP)
Algorithms & Tasks

" 80s: Flowsheet optimization SQP
~ 100 variables and constraints l

" 90s: Static real-time optimization (RTO)
over 100 000 variables & constraints

rSQP

(IPOPT)

N o

The most efficient NLP tools now handle millions of
variables and constraints with modest computational effort




ﬁwﬁé Process Optimization
Environments and NLP Solvers
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ﬁﬂf Equation-Oriented Utopia for
Process Optimization

e Glass Box Models - Exact Jacobians/Hessians and sparse equation
structure

e Fast Newton-based NLP solvers

e NLP sensitivity (post-optimality and interpretation, multi-level
opt., ...)
e EO-Modeling Enables:
— Efficient MINLP Strategies
— Deterministic Global Optimization
— Robust and Stochastic Optimization for Uncertainty

e NLP Reformulation for MPECs/MPCCs (for nonsmooth models, bi-
level problems, phase changes,...)



Early Warning Detection System

Municipal Water Networks
(Laird, B., 2005, 2006)

Installed sensors provide an early warning of contamination

*System provides only a coarse measure of contamination time
and location

*Desired: Accurate and fast time & location information
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Water Quality Model

Pipes, Valves, Pumps

Collapsed Node Models
Plug Flow

Complete Mixing

No Reaction

Known Sources Contaminant Free

Time Dependent Mass Injections at All Nodes
(Negligible Flow rates)

Decoupled Hydraulics and Water Quality

Calculations j
, orage Tanks, Junctions



.« Eguation-Oriented Optimization Formulation

FRING Node Concentrations &
Injection Terms Only
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ﬁ% Pipeline Simulation Techniques

Eulerian Lagrangian
Discretize in time and space Discretize in time alone
Track concentration at fixed points or Track concentration of elements as
volumes they move
Local process for simulation, but global Algorithmic in nature
treatment needed for simultaneous
optimization

Review of methods by Rossman and Boulos, 1996.
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Origin Tracking Algorithm

origin node = A

timestep =1 — ~
=1 @A—— ® c(xz=Zi(t1),t1) = ca(t1)
' c(x=0;(t1),t1) = O
origin node = A
timestep = 1
1 ]
® — ®
origin node = A
timestep =1
! c(x=IZ,(t5),ts) = ca(ts)
— Al [ — i B _ 1 e -
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Known Hydraulics — Function of Time
Pipe Network PDEs Linear in Concentration
Pipe by Pipe PDEs
- Efficient for Large Networks
- Convert PDEs to DAEs with variable time delays
Removes Need to Discretize in Space

min  f(c,m)
c,c,m

Elow gﬁ;?:tlécr Formulation s.t. ¢— Pc=0,
< (EPANET) Tool Né+ Ne+ Mm =0,

demand
m >0




ﬁ”ﬁ Municipal Source Detection Example

njection Location B

How do we handle Uncertain Inputs? [
Robust Optimization .
Multi-Scenario Optimization B

Alg A C DOS | 18 2 28 3 28 & 48 5 S5 B £5 7 T8 @ '

networks Time Afer Infeciion (hrs)
Links to existing water flow network simulator = variable time delays

Solution time < 2 CPU minutes for ~ 250,000 variables, ~45,000 degrees of
freedom =>» Effective in a real time setting

Can impose unigue solutions through an extended MIQP formulation (post-
processing phase)
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Multi-scenario Optimization

Min fy(d) + %, f(d, x)
st.h(x,d=01i=1..N

gx,d)<0i=1. N

r(d) <0
Variables:

X: state (z) and decision (y) variables for each scenario
d: common variables (e. g. equipment parameters) used
d;: substitute for d in each period and add o, = d

Composite NLP

| Min 2 (f(0, x) + f,(0)/N)

s.t. hl(xl 5/ 0,i=1,.. N
g(x, 0)+ts;=0,i=1,..N

e 0<s,d-—06=01=1,... N

rd) <0




IPOPT Decomposition for Linear Algebra
i  Multi-scenario Implementation (Laird, B.)

NLP NLP Algorithm Linear Algebra
Interface Interface

I\/IuItI -scenario BIock-Bordered
NLP Linear Solver

1)2)(3)(4](5]

Composite NLPs

« Water Network Base Problem
D3 — 36,000 variables
— — 600 common variables
« Testing
— Vary # of scenarios (data sets)
— Vary # of common variables




Parallel Schur-Complement Scalability

*Multi-scenario Optimization

— Single Optimization over many
scenarios, performed on paralle'

cluster 1400 1.5e+06
_ 1200
Water Network Case Study 8
— 1 basic model g 1000 10406
* Nominal design optimization f—; 800
. . E
— 32 scenarios (operating data) = “00
« Form individual blocks ‘é
3 15e+05
- - - - - = 4GD
*Determine Injection time profiles as £ '
common variables 200)
*Characteristics 0 0

— 36,000 variables per scenario

— 600 common variables

— Solution with 1.2 x 108 variables
(20 CPU min)

Number of Variables



Exploit Structure of KKT Matrix — Nicholson, Wan, B. 2017
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Cyclic Reduction (CR) for Dynamic Optimization
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ﬁwﬁ Multi-core MATLAB Tests: State of Art
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Figure 8: CPU time versus variable ratio Figure 9: CPU time versus density

> vs. Backslash vs. Sparse HSL

» Amdahl’s Law Supersedes Moore's Law

» Multiple cores compensate for stagnant clock times
» NLP must embrace Parallel Decompositions
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2040: Giga-scale Process Optimization

Enabling Tools:
Structured NLPs with billions of variables
Friendly, Powerful and Intelligent Optimization Modeling
Environments
Distributed Optimization Solvers with Exploitable Large-
scale Structures
Integrated with Advanced Parallel Computation
Environments (Multi-core CPUs, GPUs...)

Applications:
Dynamic Global Network Models
Large, Smart Electric Grid Optimization
Gas and Oil Pipeline Optimization
Enterprise-Wide Dynamic, Real-time Optimization



Optimization Strategies and
Process Insight: Back to 1980

: Synthesis of Process Flowsheeté: : @
An Adventure in Heuristic Design or a

Utopia of Mathematical Programming? START

George Stephanopoulos ;
Umversity of Minnesota, Minneapolis, MN. 55455
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ABSTRACT .
ITIAL
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The problem of synthesizing a process flowsheet is.analyzed from
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the new, demanding analytical questions and in fur‘ther{ng the work on

the synthesis of process flowsheets. Examples of this?interp'l ay are

l
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|
different angles like: ways to fomulate it, methods t(; generate the ; = 4‘_) mrgﬁiim Pm*gs
structural alternatives, strategies to search for the oétimum, etc. | l | ane
Such a critical review will be concerned with all the méj;}r contri- I |[ HE
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be pointed cut, while the future trends wiil be placed 'rn perspective. | i E——r
Furthermore, several areas for future research will be éxamined and the | : ERTTERTON
potential benefits will be evaluated. The -interre]atiori;ship between I I
snythesis and analysis is recognized as the cornerstoneéin formulating { DETEETIVE
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discussed with respect to the synthesis of heat exchangé‘r networks,
heat integrated distillations, and the selection of the émost pramising
chemical reaction paths.

Figure 1. The structure of the design activities.



-rom Nested to Equation-Oriented Optimization?

onservation| o—
Laws e
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How to apply Equation-Oriented
Optimization Solvers and Environments
to Complex Simulation Models?
Reduced (Surrogate) Models?

F—  ___ _ rme = Y [T
EC (c CLALS PLANT BT T am

Model Hierarchies

Conservation Laws: Often linear, straightforward to satisfy
Physical properties: Ideal —> Specialized Nonideal
Separation Models: Shortcut - MESH, mass transfer
Reaction Elements: Stoichiometric > CFD, Multiphase



http://www.cheme.cmu.edu/
http://www.cheme.cmu.edu/
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Surrogate Models in Optimization?

Some Detailed models may be too expensive for EO.
— for routine simulation

— Integration with other subsystems (multi-scale)

— for design and control

— for optimization

Physics-based Model Reduction
— Limiting assumptions, spatial = lumped...

Spectral Model Reduction
— POD, SVD, Singular Perturbation

Data-Driven Model Reduction
— PCA, PLS, Neural Networks, Kriging, ...

Best model reduction strategies?
How can they be used for optimization?


http://www.cheme.cmu.edu/
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ﬁﬂw Surrogates for Optimization?

Consistency

« ODM and L
must have differential input-output L7 TN

maps ( \

- ODM and
must match (be feasible) \ /W

* ODM and must recognize L@
same optimum point J

=> satisfy same KKT conditions
(gradient-based)

Stability

« Sequence of objective functions
remains bounded

* Provide sufficient improvement
toward ODM optimum



http://www.cheme.cmu.edu/
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ﬁﬁ Reduced Model Optimization Strategy

RM depends on ODM information at current parameter values
ODM gradients - often not available

Trust region based optimization

\\KL\U\J ‘ < I RM shows
} error
e = j ’ |
‘ < \% | Accurate RM




Toy Example for ROM-based Optimization
Failure to Detect Solution (B., Grossmann, Westerberg, 1985)

(ODM) Min y? + x2
s.t.y—(x3+x2+1) =0

(ROM) Min y? + x?
st.y—-(x+b)=0

Two Local Minima:

X =0, y =1, O*=1
X =-1.2785,y =0.5448, ®* = 1.9313

ROM-based optimum converges
to local maximum!
X=-1, y =1, O* =2
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= Toy Problem with Trust Region Strategy
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(ODM) Min y? + x?
st.y—(x3+x2+1)=0

(RM) Miny? + x?
sty—-(@ax+b)=




ﬁﬁ Future Generation Power Plants:
CO, Capture and Sequestration

Oxycombustion

Steam Cycle
Turbine —>
Generator | Electricity
Steam$ WaterT
Fuel Fuel H,0/CO
— =% 2 2
Combustion Separation
Oxygen Kt
CO,
Air
it < Separation Feed: Lignite; Bituminous Coal
rogen Unit Brandenburg, Germany
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Advanced Energy Systems

Integrated Combustion Models for
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ﬁ‘ﬁ Oxycombustion Optimization

(Dowling et al., 2015)

Max Thermal Efficiency

s.t.  Steam cycle connectivity
Heat exchanger model
Pump model

Heat integration model

Standard supercritical
steam cycle, double
reheat

~ixed isentropic efficiency turbine model

Correlation models for ASU and CPU

3D Combustion PDE Model
Steam thermodynamics

Solved in GAMS 24.2.1 with CONOPT 3
Trust region algorithm in MATLAB R2013a

Using reduced models
with trust region method
=>» rigorous optimum
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ﬁ”ﬁ Effect of IRRCs on Power Plants

Air-fired
Flue gas temperature (K) 1600
Steam exit temperature (K) 835
Steam exit pressure (bar) 223
Fuel rate, HHV (MW) 1325.5
ASU + CPU Power (MW) N/A
Net Power (MWe) 515.5
Efficiency (HHV) 38.9%

5.7% penalty for oxy-fired configuration with CPU
4.4% penalty for oxy-fired with IRRCs with pumped CO,



. 2040: Multi-scale Optimization

Enabling Tools

Leverage potential of Glass Box Optimization / Parallel
Decompositions / Tailored Reduced Models

Globally convergent trust region algorithms

Large-scale, Tailored Reduced Modeling Platforms

Globally Integrated Multi-scale Optimization
Applications

Heterogeneous models (PDAE/DAE/AE) — CFD + Process
Flowsheets, Molecular Dynamics...

Integrate process design / control / scheduling hierarchies

Integrated optimal material, device, system and network
design over orders of magnitude of time, length scales.



Toward George’s Multi-scale
Vision

Desired
cost &
performance

RM
RM
Continuum l
Molecular
Atomistic Specifications
Structure evice
Catalytic & Specifications

transport

properties
Structural,
electronic,
magnetic, optical
properties

Smooth Reduced Models are “glue” between scales

Enable fast large-scale, convergent optimization strategies
Some Recent Applications

« Head-Disk Interfaces (Smith, Chung, Jhon, B., 2012)

« Periodic Adsorption Processes (Agarwal, B., 2013)

« Polymer Processing (Lang, Lin, B., 2014)

« Oxycombustion Power Plants (Eason, B., 2016)

* Integrated Power Plants (Zhu, Eason, B., 2017)







