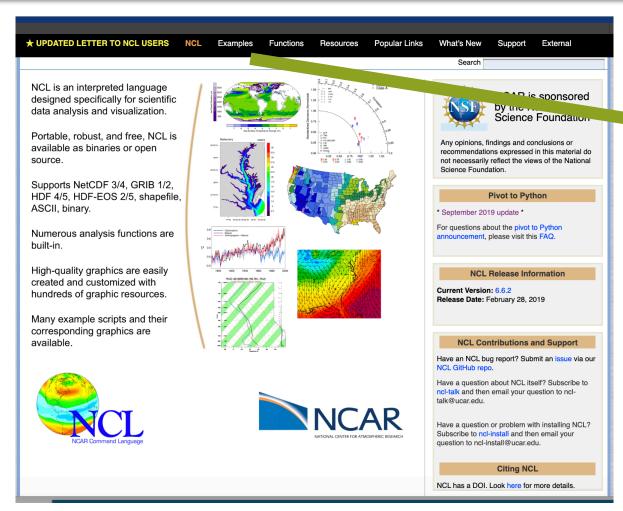
The Future of the AMWG diagnostics package?

Cécile Hannay, Brian Medeiros, Jesse Nusbaumer with contributions of Dani Coleman, Matt Long, and AMP/CGD.

Motivation and Outline

Motivation

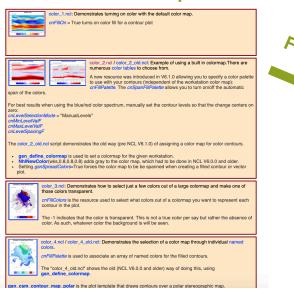

- NCL is going away
- NCAR is transitioning to Python for diagnostics
- How is going to affect the AMWG diagnostics?

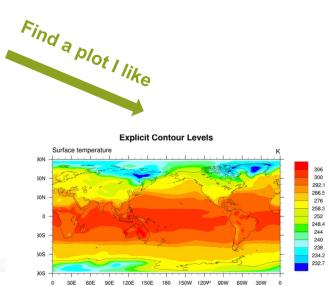
Outline

- What are we using now?
- What are our needs for the future ?
- How does it fit in the NCAR vision for diagnostics?
 (Other packages in development)

What are we using now?

The NCAR Command Language (NCL)




https://www.ncl.ucar.edu/

GeoCAT (https://geocat.ucar.edu/)
python tools related to NCL

NCL is retiring

Look at the examples

The AMWG Diagnostics package

Read files Compute Climos Regrid Climos

cshell script calling

ImageMagic

Monthly means

Plots

AMWG Diagnostics Package

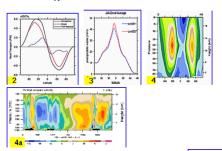
f.e13.FC5.f09 f09.beta06 mods.control.001

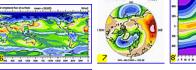
Plots Created Wed Sep 30 16:47:32 MDT 2015

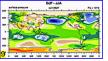
Set Description

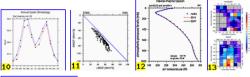
- 1 Tables of ANN, DJF, JJA, global and regional means and RMSE.
- 2 Line plots of annual implied northward transports.
- 3 Line plots of DJF, JJA and ANN zonal means
- 4 Vertical contour plots of DJF, JJA and ANN zonal means
- 4a Vertical (XZ) <u>contour plots</u> of DJF, JJA and ANN meridional means
- 5 Horizontal contour plots of DJF, JJA and ANN means
- 6 Horizontal vector plots of DJF, JJA and ANN means
- 7 Polar contour and vector plots of DJF, JJA and ANN means
- 8 Annual cycle contour plots of zonal means
- 9 Horizontal contour plots of DJF-JJA differences
- 10 Annual cycle line plots of global means
- 11 Pacific annual cycle, Scatter plot plots
- 12 Vertical profile plots from 17 selected stations
- 13 Cloud simulators plots
- 14 Taylor Diagram plots
- 15 Annual Cycle at Select Stations plots
- 16 Budget Terms at Select Stations plots

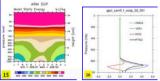
WACCM Set Description

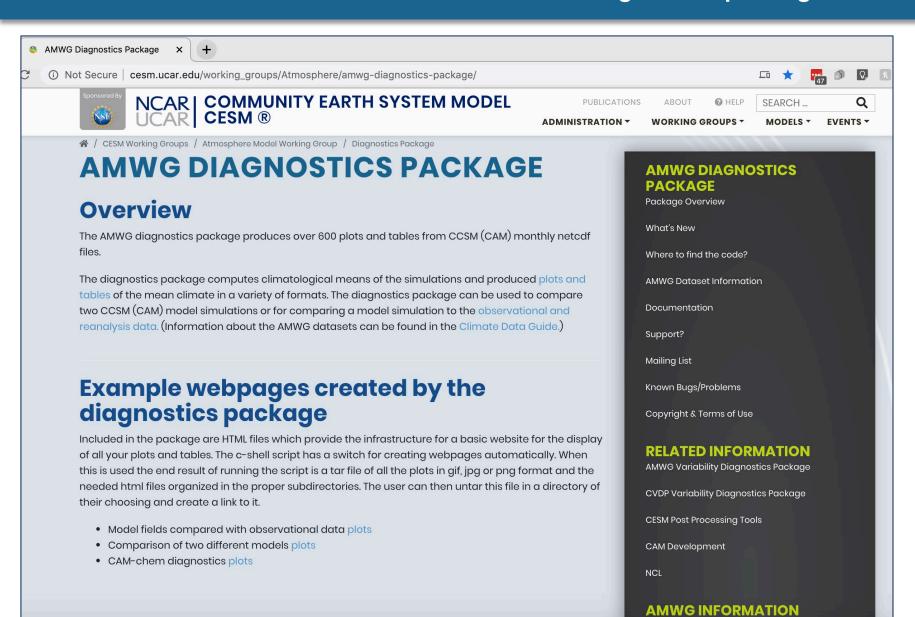

1 Vertical <u>contour plots</u> of DJF, MAM, JJA, SON and ANN zonal means (vertical log scale)


Chemistry Set Description

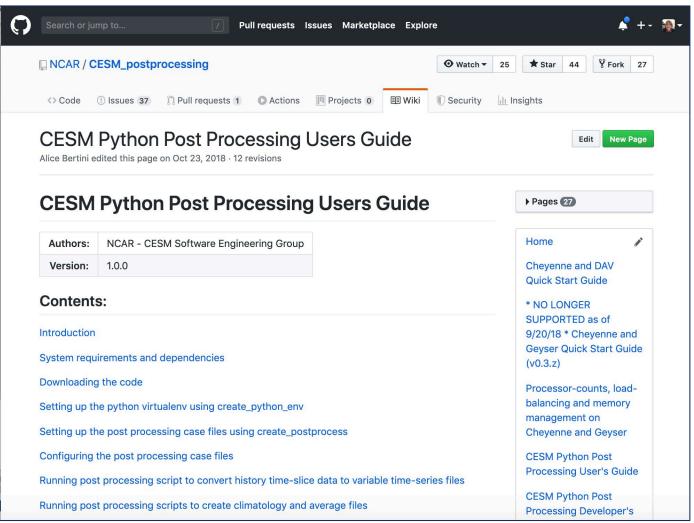

- 1 Tables / Chemistry of ANN global budgets
- 2 Vertical Contour Plots contour plots of DJF, MAM, JJA, SON and
- ANN zonal means
- **3** Ozone Climatology <u>Comparisons</u> Profiles, Seasonal Cycle and Taylor Diagram
- 4 Column O3 and CO lon/lat Comparisons to satellite data
- 5 Vertical Profile Profiles Comparisons to NOAA Aircraft observations
- 6 Vertical Profile Profiles Comparisons to Emmons Aircraft climatology
- 7 Surface observation Scatter Plot Comparisons to IMROVE




Click on Plot Type



The AMWG Diagnostics package



Well documented
Easy to use
Portable
Easy to install anywhere

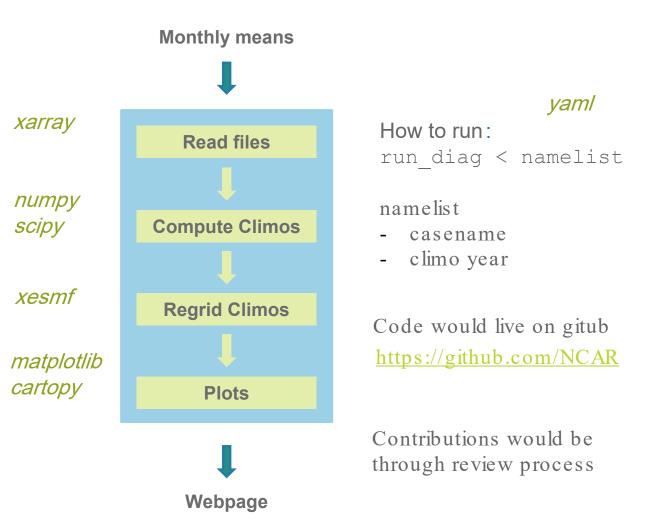
20-year old
Very 2000^{ish} code
Driver = cshell
No more supported
NCL is going away

The CESM postprocessing package

- Common framework that produces diags for all components
- Produced CMIP6 diags automatically
- Well documented

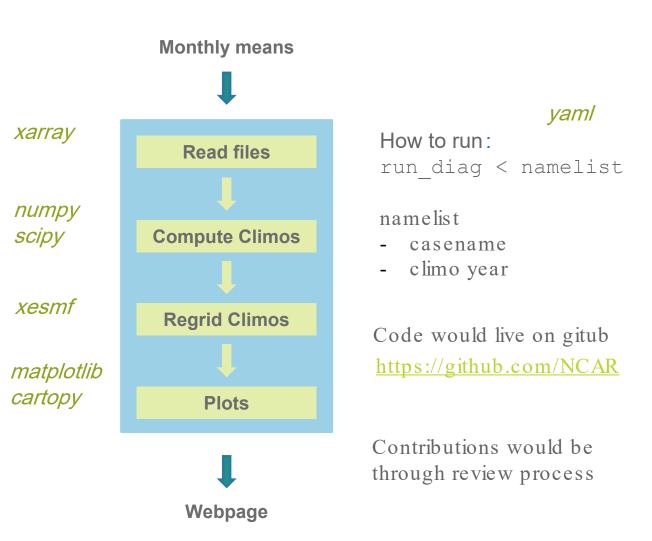
- Complex framework to ultimately run NCL scripts
- Very complex (for scientists)
- Not portable (only run on Cheyenne)
- Dependency on outdated packages (python2, basemap,,...)
- Not more support

What are our needs for the future?


Package to have a quick look at simulations

Bank of scripts to replace NCL examples

In absence of support + NCL going away:

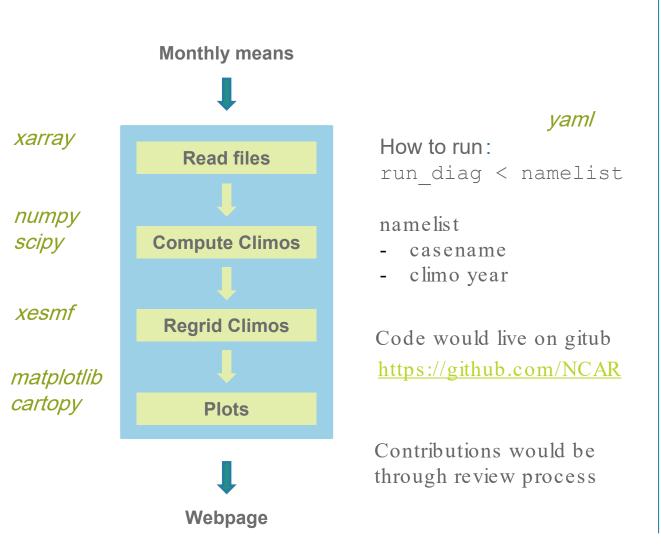

- Simple framework python based
- Scientists can understand and modify
- Portability (can run anywhere)
- Small numbers of python packages

Package to have a quick look at simulations

Bank of scripts to replace NCL examples

Package to have a quick look at simulations

Bank of scripts to replace NCL examples


- Collection of python scripts
- Jupyter Notebooks

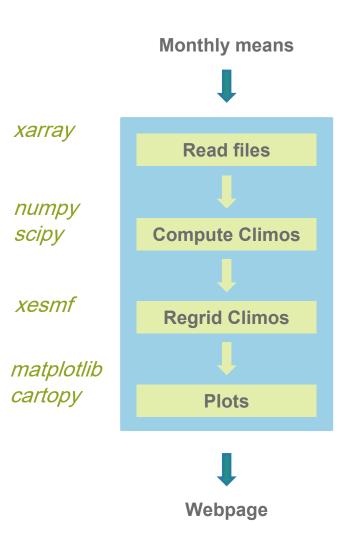
An example of what it could be

https://github.com/brianpm/hacknostics

- Some atmospheric diagnostics, focused on analysis of CESM.
- The repo is organized into Notebooks, utilities (util), and notes (docs).

Package to have a quick look at simulations

Bank of scripts to replace NCL examples


- Collection of python scripts
- Jupyter Notebooks

Code would live on gitub https://github.com/NCAR

Contributions from the community welcome

Could be reorganized (like NCL Webpage)

Package to have a quick look at simulations

yaml

How to run:

run_diag < namelist</pre>

namelist

- casename
- climo year

Code would live on gitub https://github.com/NCAR

Contributions would be through review process

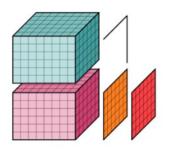
Bank of scripts to replace NCL examples

- Collection of python scripts
- Jupyter Notebooks

Code would live on gitub https://github.com/NCAR

Contributions from the community welcome

Could be reorganized (like NCL Webpage)


Deadline for first implementation: April 15, 2020

How does this fit in the bigger picture?

Pangeo: Core tools

xarray

A thin client

Interactive computing in the universal app: a browser; produce and publish "computational narratives."

Python netCDF data
model Multi-dimensional
datasets w/ coordinates;
coordinate-aware
selection and dimreduction methods.

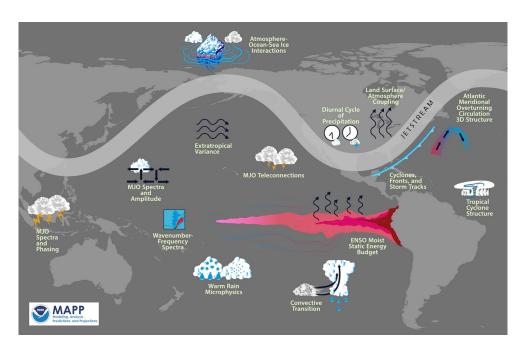
Parallel & "out -of-core"

computation Data bigger than memory; parallelized execution on a distributed resource "under the hood"!

Vision: An interactive numerical laboratory for Earth system science

- Seamless integration of routine model evaluation and cutting -edge research
- Enable reproducible science
- Enable novel means of data interactivity and visualization
- Component models are not necessarily a natural organizing principle
 - Be as model agnostic as much as possible
- Scalable
 - Big Data
 - New applications, communities, etc.
- Fluid integration of observations and models
- Community-developed and open-source

Vision: An interactive numerical laboratory for Earth system science


- Analysis elements: modular scripts or Notebooks that perform computation and support visualization
- Data APIs: abstract data access through APIs
- Operators: perform dimensions reductions, compute derived quantities, etc.
- Visualization : static plots, web apps
- Workflow : Automate, schedule, interact
- Build library of analysis_element prototypes
 - Aim for best practices (modularity!), but focus on scientific objectives and achieving basic function first
 - o Coordinate sharing and standardization
 - Communicate!
- Reassess and coalesce as library grows

Model Diagnostics Task Force framework

An open framework to run process-oriented diagnostics from research teams to inform model development.

- Focused on specific phenomena and process -level understanding
- Available for anyone to use the software package (python and ncl) to apply to a model simulation (cmip6 variables).
 Currently 7 packages. More coming including multi -model capability.

Diagnostics include:

- -Cloud microphysical processes
- -Tropical & extratropical cyclones
- -ENSO teleconnections
- -MJO moisture, convection, & radiative processes
- -Precipitation diurnal cycle
- -AMOC, Pacific sea level variability
- -Arctic sea ice
- -Lake effect processes
- -North American Monsoon
- -Radiative forcing & cloud-circulation feedbacks
- -Temperature & precip. extremes more!...

www.cesm.ucar.edu/working groups/Atmosphere/mdtf-diagnostics-package/

Maloney et al. (2019, BAMS)

Summary

- Package to have a quick look at diagnostics
 - simple, portable, small number of python packages
- Bank of python scripts and Jupyter Notebooks
 - Community contributions encouraged
- Code would live on gitub
 - https://github.com/NCAR
- Timeline
 - First implementation: April 15, 2020
- Inline with the NCAR vision for future diagnostics