
THE GAUSSIAN INTEGERS

KEITH CONRAD

Since the work of Gauss, number theorists have been interested in analogues of Z where
concepts from arithmetic can also be developed. The example we will look at in this handout
is the Gaussian integers:

Z[i] = {a+ bi : a, b ∈ Z}.

Excluding the last two sections of the handout, the topics we will study are extensions
of common properties of the integers. Here is what we will cover in each section:

(1) the norm on Z[i]
(2) divisibility in Z[i]
(3) the division theorem in Z[i]
(4) the Euclidean algorithm Z[i]
(5) Bezout’s theorem in Z[i]
(6) unique factorization in Z[i]
(7) modular arithmetic in Z[i]
(8) applications of Z[i] to the arithmetic of Z
(9) primes in Z[i]

1. The Norm

In Z, size is measured by the absolute value. In Z[i], we use the norm.

Definition 1.1. For α = a+ bi ∈ Z[i], its norm is the product

N(α) = αα = (a+ bi)(a− bi) = a2 + b2.

For example, N(2 + 7i) = 22 + 72 = 53. For m ∈ Z, N(m) = m2. In particular, N(1) = 1.
Thinking about a + bi as a complex number, its norm is the square of its usual absolute
value:

|a+ bi| =
√
a2 + b2, N(a+ bi) = a2 + b2 = |a+ bi|2.

The reason we prefer to deal with norms on Z[i] instead of absolute values on Z[i] is that
norms are integers (rather than square roots), and the divisibility properties of norms in Z
will provide important information about divisibility properties in Z[i]. This is based on
the following algebraic property of the norm.

Theorem 1.2. The norm is multiplicative: for α and β in Z[i], N(αβ) = N(α) N(β).

Proof. Write α = a+ bi and β = c+di. Then αβ = (ac− bd) + (ad+ bc)i. We now compute
N(α) N(β) and N(αβ):

N(α) N(β) = (a2 + b2)(c2 + d2) = (ac)2 + (ad)2 + (bc)2 + (bd)2
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and

N(αβ) = (ac− bd)2 + (ad+ bc)2

= (ac)2 − 2abcd+ (bd)2 + (ad)2 + 2abcd+ (bc)2

= (ac)2 + (bd)2 + (ad)2 + (bc)2.

The two results agree, so N(αβ) = N(α) N(β). �

Remark 1.3. The calculations above work when the integer coefficients are rational or
even real. If for a complex number z = x+ yi with x, y ∈ R we define N(z) = x2 + y2 then
N(zw) = N(z) N(w) for all z and w in C. This will be used in the proof of Theorem 3.1.

As a first application of Theorem 1.2, we determine the Gaussian integers with a multi-
plicative inverse in Z[i]. The idea is to apply norms to reduce the question to invertibility
in Z.

Corollary 1.4. The only Gaussian integers which are invertible in Z[i] are ±1 and ±i.

Proof. It is easy to see ±1 and ±i have inverses in Z[i]: 1 and −1 are their own inverse and
i and −i are inverses of each other.

For the converse direction, suppose α ∈ Z[i] is invertible, say αβ = 1 for some β ∈ Z[i].
We want to show α ∈ {±1,±i}. Taking the norm of both sides of the equation αβ = 1,
we find N(α) N(β) = 1. This is an equation in Z, so we know N(α) = ±1. Since the norm
doesn’t take negative values, N(α) = 1. Writing α = a + bi, we have a2 + b2 = 1, and the
integral solutions to this give us the four values α = ±1,±i. �

Invertible elements are called units. The units of Z are ±1. The units of Z[i] are ±1 and
±i. Knowing a Gaussian integer up to multiplication by a unit is analogous to knowing an
integer up to its sign.

While there is no such thing as inequalities on Gaussian integers, we can talk about
inequalities on their norms. In particular, induction on the norm (not on the Gaussian
integer itself) is a technique to bear in mind if you want to prove something by induction
in Z[i]. We will use induction on the norm to prove unique factorization (Theorems 6.4 and
6.6).

The norm of every Gaussian integer is a non-negative integer, but it is not true that every
non-negative integer is a norm. Indeed, the norms are the integers of the form a2 + b2, and
not every positive integer is a sum of two squares. Examples include 3, 7, 11, 15, 19, and
21. No Gaussian integer has norm equal to these values.

2. Divisibility

Divisibility in Z[i] is defined in the natural way: we say β divides α (and write β | α) if
α = βγ for some γ ∈ Z[i]. In this case, we call β a divisor or a factor of α.

Example 2.1. Since 14− 3i = (4 + 5i)(1− 2i), 4 + 5i divides 14− 3i.

Example 2.2. Does (4 + 5i) | (14 + 3i)? We can do the division by taking a ratio and
rationalizing the denominator:

14 + 3i

4 + 5i
=

(14 + 3i)(4− 5i)

(4 + 5i)(4− 5i)
=

71− 58i

41
=

71

41
− 58

41
i.

This is not in Z[i]: the real and imaginary parts are 71/41 and −58/41, which are not
integers. Therefore 4 + 5i does not divide 14 + 3i in Z[i].
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Theorem 2.3. A Gaussian integer α = a + bi is divisible by an ordinary integer c if and
only if c | a and c | b in Z.

Proof. To say c | (a+ bi) in Z[i] is the same as a+ bi = c(m+ ni) for some m,n ∈ Z, and
that is equivalent to a = cm and b = cn, or c | a and c | b. �

Taking b = 0 in Theorem 2.3 tells us divisibility between ordinary integers does not
change when working in Z[i]: for a, c ∈ Z, c | a in Z[i] if and only if c | a in Z. However,
this does not mean other aspects in Z stay the same. For instance, we will see later that
some primes in Z factor in Z[i].

The multiplicativity of the norm turns divisibility relations in Z[i] into divisibility rela-
tions in the more familiar setting of Z, as follows.

Theorem 2.4. For α, β in Z[i], if β | α in Z[i] then N(β) | N(α) in Z.

Proof. Write α = βγ for γ ∈ Z[i]. Taking the norm of both sides, we have N(α) =
N(β) N(γ). This equation is in Z, so it shows N(β) | N(α) in Z. �

Corollary 2.5. A Gaussian integer has even norm if and only if it is a multiple of 1 + i.

Proof. Since N(1 + i) = 2, any multiple of 1 + i has even norm. Conversely, suppose m+ni
has even norm. Then m2 + n2 ≡ 0 mod 2. By taking cases, we see this means m and n are
both even or both odd. In short, m ≡ n mod 2.

We want to write m+ ni = (1 + i)(u+ vi) for some u, v ∈ Z. This is the same as

m+ ni = (u− v) + (u+ v)i.

The solution here is u = (n+m)/2 and v = (n−m)/2. These are integers sincem ≡ n mod 2.
Thus (1 + i) | (m+ ni). �

Example 2.6. The norm of 1 + 3i is 10, and 1 + 3i = (1 + i)(2 + i).

Example 2.7. Since 1 − i has norm 2, it must be a multiple of 1 + i. Indeed, 1 − i =
(−i)(1 + i).

Theorem 2.4 is useful as a quick way of showing one Gaussian integer does not divide
another: check the corresponding norm divisibility is not true in Z. For example, if (3+7i) |
(10 + 3i) in Z[i], then (taking norms), 58 | 109 in Z, but that isn’t true. Therefore 3 + 7i
does not divide 10 + 3i in Z[i]. Turning a divisibility problem in Z[i] into one in Z has an
obvious appeal, since we are more comfortable with divisibility in Z.

However, Theorem 2.4 only says norm-divisibility in Z follows from divisibility in Z[i].
The converse is usually false. Consider α = 14 + 3i and β = 4 + 5i. While N(β) = 41 and
N(α) = 205 = 41 ·5, so N(β) | N(α) in Z, we saw in Example 2.2 that 4 + 5i does not divide
14 + 3i.

The foolproof method of verifying divisibility in Z[i] is testing if the ratio is in Z[i] after
rationalizing the denominator, as we did in Example 2.2. The norm-divisibility check in Z
is a necessary condition for divisibility in Z[i] (when it fails, so does divisibility in Z[i]), but
it is not sufficient.

In Z, if |m| = |n| then m = ±n, so m and n are unit multiples of each other. The
corresponding statement in Z[i] is false: if N(α) = N(β) it is not generally true that α and
β are unit multiples of each other. Consider 4 + 5i and 4− 5i. Both have norm 41, but the
unit multiples of 4 + 5i are

4 + 5i, −4− 5i, −5 + 4i, 5− 4i.
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The number 4 − 5i is not on this list, so 4 + 5i and 4 − 5i are not unit multiples. We will
see later (Example 4.5) that 4 + 5i and 4 − 5i are even relatively prime in Z[i]. In short,
taking the norm in Z[i] is a more drastic step than removing a sign on an integer.

3. The Division Theorem

One reason we will be able to transfer a lot of results from Z to Z[i] is the following
analogue of division-with-remainder in Z.

Theorem 3.1 (Division Theorem). For α, β ∈ Z[i] with β 6= 0, there are γ, ρ ∈ Z[i] such
that α = βγ + ρ and N(ρ) < N(β). In fact, we can choose ρ so N(ρ) ≤ (1/2) N(β).

The numbers γ and ρ are the quotient and remainder, and the remainder is bounded in
size (according to its norm) by the size of the divisor β.

Before we prove Theorem 3.1 we note there is a subtlety in trying to calculate γ and ρ.
This is best understood by working through an example.

Example 3.2. Let α = 27 − 23i and β = 8 + i. The norm of β is 65. We want to write
α = βγ + ρ where N(ρ) < 65. The idea is to consider the ratio α/β and rationalize the
denominator:

(3.1)
α

β
=
αβ

ββ
=

(27− 23i)(8− i)
65

=
193− 211i

65
.

Since 193/65 = 2.969 . . . and −211/65 = −3.246 . . . , we replace each fraction with its
greatest integer and try γ = 2− 4i. However,

α− β(2− 4i) = 7 + 7i,

and using ρ = 7 + 7i is a bad idea: N(7 + 7i) = 98 is larger than N(β) = 65. The usefulness
of a division theorem is the smaller remainder. Therefore our choice of γ and ρ is not
desirable. This is the subtlety referred to before we started our example.

To correct our approach, we have to think more carefully about the way we replace
193/65 = 2.969 . . . and −211/65 = −3.246 . . . with nearby integers. Notice that 193/65
and −211/65 are each closer to the integer to their right rather than to their left. That
is, 193/65 is closer to 3 than to 2, and −211/65 is closer to −3 than to −4. Let’s use the
closest integer rather than the greatest integer: try γ = 3− 3i. Then

α− β(3− 3i) = −2i,

and −2i has norm less than N(β) = 65. So we use γ = 3− 3i and ρ = −2i.

Choosing the nearest integer rather than the greatest integer could also be done in Z.
For instance, 34/9 = 3.77 . . . is closer to 4 than to 3. In terms of a division-with-remainder
equation, this corresponds to preferring

34 = 9 · 4− 2

over
34 = 9 · 3 + 7.

The remainder in the first equation is negative, but it is smaller in absolute value.
What we have found here is a modified division theorem in Z. Usually, for integers a and

b with b 6= 0, the division theorem in Z says: take bq to be the multiple of b which is nearest
to a from the left: bq ≤ a < b(q + 1). Then set r = a − bq, so r ≥ 0 (since bq ≤ a) and
r < |b| (since bq and b(q + 1) are |b| integers apart and a will be closer to bq than b(q + 1)
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is). In the modified division theorem, take for bq the multiple of b which is closest to a,
rather than just closest to a from the left. (Computationally, the q in the modified division
theorem is the closest integer to a/b, which may lie to the right of a/b rather than to its
left.) An integer is no more than (1/2)|b| away from a multiple of b in either direction, so
|a− bq| ≤ (1/2)|b|. Write r = a− bq, so a = bq+ r with |r| ≤ (1/2)|b|. In the usual division
theorem, the remainder is nonnegative and bounded above by |b|. We have shrunken the
upper bound at the cost of possibly making the remainder negative.

Sometimes a might land right in the middle between two multiples of b, in which case
the quotient and remainder are not unique, e.g., if a = 27 and b = 6 then a is right in the
middle between 4b and 5b:

27 = 6 · 4 + 3, 27 = 6 · 5− 3.

Thus we get two choices of r, either 3 or −3. The usual division theorem in Z has a unique
quotient and remainder, but the modified version gives up on uniqueness. This might seem
like a calamity, but it’s exactly what we need to prove the division theorem in Z[i] (Theorem
3.1), which is what we turn to next. The proof is mostly a translation of the correct part
of Example 3.2 into general algebraic terms. After the proof we will give further examples.

Proof. (of Theorem 3.1) We have α, β ∈ Z[i] with β 6= 0 and we want to construct γ, ρ ∈ Z[i]
such that α = βγ + ρ where N(ρ) ≤ (1/2) N(β).

Write
α

β
=
αβ

ββ
=

αβ

N(β)
=
m+ ni

N(β)
,

where we set αβ = m + ni. Divide m and n by N(β) using the modified division theorem
in Z:

m = N(β)q1 + r1, n = N(β)q2 + r2,

where q1 and q2 are in Z and 0 ≤ |r1|, |r2| ≤ (1/2) N(β). Then

α

β
=

N(β)q1 + r1 + (N(β)q2 + r2)i

N(β)

= q1 + q2i+
r1 + r2i

N(β)
.

Set γ = q1 + q2i (this will be our desired quotient), so after a little algebra the above
equation becomes

(3.2) α− βγ =
r1 + r2i

β
.

We will show N(α − βγ) ≤ (1/2) N(β), so using ρ = α − βγ will settle the division
theorem. Take norms of both sides of (3.2), where on the right side we use the norm
on complex numbers and its multiplicativity (Remark 1.3). Letting z = (r1 + r2i)/β, so
zβ = r1 + r2i, N(z) N(β) = N(r1 + r2i) = r21 + r22. Since N(β) = N(β),

N(α− βγ) =
r21 + r22
N(β)

.

Feeding the estimates 0 ≤ |r1|, |r2| ≤ (1/2) N(β) into the right side,

N(α− βγ) ≤ (1/4) N(β)2 + (1/4) N(β)2

N(β)
=

1

2
N(β). �
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Example 3.3. Let α = 11 + 10i and β = 4 + i. Then N(β) = 17. We compute

α

β
=

αβ

N(β)
=

54 + 29i

17
.

Since 54/17 = 3.17 . . . and 29/17 = 1.70 . . . , we use γ = 3+2i (why?). Then α−βγ = 1−i,
so we set ρ = 1− i. Note N(ρ) = 2 ≤ (1/2) N(β).

Example 3.4. Let α = 41 + 24i and β = 11− 2i. Then N(β) = 125 and

α

β
=
αβ

125
=

403 + 346i

125

Since 403/125 = 3.224 . . . and 346/125 = 2.768 . . . , we use γ = 3 + 3i (why?) and find
α− βγ = 2− 3i. Set ρ = 2− 3i and compare N(ρ) with N(β).

There is one interesting difference between the division theorem in Z[i] and the (usual)
division theorem in Z: the quotient and remainder are not unique in Z[i].

Example 3.5. Let α = 37 + 2i and β = 11 + 2i, so N(β) = 125. If you carry out the
algorithm for division in Z[i] as it was developed above, you will be led to

α = β · 3 + (4− 4i).

However, it is also true that

α = β(3− i) + (2 + 7i).

The remainder in both cases has norm less than 125 (in fact, less than 125/2).

Example 3.6. The reader may not be impressed by the previous example, since only the
first outcome would actually come out of our division algorithm in Z[i]. We now give an
example where the division algorithm itself allows for two different outcomes. Let α = 1+8i
and β = 2− 4i. Then

α

β
=

αβ

N(β)
=
−30 + 20i

20
= −3

2
+ i.

Since −3/2 lies right in the middle between −2 and −1, we can use γ = −1+i or γ = −2+i.
Using the first choice, we obtain

α = β(−1 + i)− 1 + 2i.

Using the second choice,

α = β(−2 + i) + 1− 2i.

That division in Z[i] lacks uniqueness in the quotient and remainder does not seriously
limit the usefulness of division. Indeed, back in Z, the uniqueness of the quotient and
remainder for the usual division theorem is irrelevant for many important applications
(such as Euclid’s algorithm). All those applications will carry over to Z[i], with essentially
the same proofs.

4. The Euclidean Algorithm

We begin by defining greatest common divisors in Z[i].

Definition 4.1. For non-zero α and β in Z[i], a greatest common divisor of α and β is a
common divisor with maximal norm.



THE GAUSSIAN INTEGERS 7

This is analogous to the usual definition of greatest common divisor in Z, except the
concept is not pinned down as a specific number. If δ is a greatest common divisor of α
and β, so are (at least) its unit multiples −δ, iδ, and −iδ. Perhaps there are other greatest
common divisors; we just don’t know yet. (We will find out in Corollary 4.7.) We can
speak about a greatest common divisor, but not the greatest common divisor. A similar
technicality would occur in Z if we defined the greatest common divisor as a common divisor
with largest absolute value, rather than the largest positive common divisor. There is no
analogue of positivity in Z[i] (at least not in this course), so we are stuck with the concept
of greatest common divisor always ambiguous at least by a unit multiple.

Definition 4.2. When α and β only have unit factors in common, we call them relatively
prime.

Theorem 4.3 (Euclid’s algorithm). Let α, β ∈ Z[i] be non-zero. Recursively apply the
division theorem, starting with this pair, and make the divisor and remainder in one equation
the new dividend and divisor in the next, provided the remainder is not zero:

α = βγ1 + ρ1, N(ρ1) < N(β)

β = ρ1γ2 + ρ2, N(ρ2) < N(ρ1)

ρ1 = ρ2γ3 + ρ3, N(ρ3) < N(ρ2)

...

The last non-zero remainder is divisible by all common divisors of α and β, and is itself a
common divisor, so it is a greatest common divisor of α and β.

Proof. The proof is identical to the usual proof that Euclid’s algorithm works in Z. We
briefly summarize the argument. Reasoning from the first equation down shows every
common divisor of α and β divides the last non-zero remainder. Conversely, reasoning
from the final equation up shows the last non-zero remainder (which is in the second-to-
last equation) is a common divisor of α and β. Therefore this last non-zero remainder is
a common divisor which is divisible by all the others. Thus it must have maximal norm
among the common divisors, so it is a greatest common divisor. �

Example 4.4. We compute a greatest common divisor of α = 32 + 9i and β = 4 + 11i.
Details involved in carrying out the division theorem in each step of Euclid’s algorithm are
omitted. The reader could work them out as more practice with the division theorem. We
find

32 + 9i = (4 + 11i)(2− 2i) + 2− 5i,

4 + 11i = (2− 5i)(−2 + i) + 3− i,
2− 5i = (3− i)(1− i)− i,
3− i = (−i)(1 + 3i) + 0.

The last non-zero remainder is −i, so α and β only have unit factors in common. They are
relatively prime. Notice that, unlike in Z+, when two Gaussian integers are relatively prime
we do not necessarily obtain 1 as the last non-zero remainder. Rather, we just obtain some
unit as the last non-zero remainder.
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Example 4.5. We show 4 + 5i and 4 − 5i, which are conjugates, are relatively prime in
Z[i]:

4 + 5i = (4− 5i)i− (1− i)
4− 5i = −(1− i)(−4)− i

−(1− i) = −i(1 + i) + 0.

The last non-zero remainder is a unit, so we are done.

Example 4.6. Here’s an example where the greatest common divisor is not a unit. Let
α = 11 + 3i and β = 1 + 8i. Then

11 + 3i = (1 + 8i)(1− i) + 2− 4i

1 + 8i = (2− 4i)(−1 + i)− 1 + 2i

2− 4i = (−1 + 2i)(−2) + 0,

so a greatest common divisor of α and β is −1 + 2i.
We could proceed in a different way in the second equation (which we already met in

Example 3.6), and get a different last non-zero remainder:

11 + 3i = (1 + 8i)(1− i) + 2− 4i

1 + 8i = (2− 4i)(−2 + i) + 1− 2i

2− 4i = (1− 2i)(2) + 0.

Therefore 1 − 2i is also a greatest common divisor. Our two different answers are not
inconsistent: a greatest common divisor is defined at best only up to a unit multiple anyway,
and −1 + 2i and 1− 2i are unit multiples of each other: −1 + 2i = (−1)(1− 2i).

If δ is a greatest common divisor of α and β, then N(δ) divides N(α) and N(β), so N(δ)
divides (N(α),N(β)). However, it can happen that N(δ) < (N(α),N(β)). In Example 4.5,
α and β are relatively prime and hence their greatest common divisor has norm 1, but
N(α) = N(β) = 41. In Example 4.6, N(α) = 130 and N(β) = 65, which have greatest
common divisor 65, while α and β have a greatest common divisor −1+2i, which has norm
5.

Suppose (N(α),N(β)) = 1. Then any common divisor of α and β has norm dividing
1, so its norm must be 1, and thus the common divisor is a unit. We see that Gaussian
integers with relatively prime norm have to be relatively prime themselves. (Again, the
converse is false, as 4 ± 5i shows.) For instance, returning to Example 4.4, we compute
N(32 + 9i) = 1105 = 5 · 13 · 17 and N(4 + 11i) = 137 (a prime), which are relatively prime.
Since the norms are relatively prime in Z, 32+9i and 4+11i are relatively prime in Z[i]. We
could have avoided Euclid’s algorithm in Z[i] in this case, by using it in Z (on the norms)
first. But in general one needs Euclid’s algorithm in Z[i] in order to compute greatest
common divisors in Z[i].

The following corollary of Euclid’s algorithm in Z[i] shows that a greatest common divisor
in Z[i] is ambiguous only by a unit multiple. That is, the built-in unit ambiguity is the only
one that actually occurs.

Corollary 4.7. For non-zero α and β in Z[i], let δ be a greatest common divisor produced
by Euclid’s algorithm. Any greatest common divisor of α and β is a unit multiple of δ.
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Proof. Let δ′ be a greatest common divisor of α and β. From the proof of Euclid’s algorithm,
δ′ | δ (because δ′ is a common divisor). Write δ = δ′γ, so

N(δ) = N(δ′) N(γ) ≥ N(δ′).

Since δ′ is a greatest common divisor, its norm is maximal among the norms of common
divisors, so the inequality N(δ) ≥ N(δ′) has to be an equality. That implies N(γ) = 1, so
γ = ±1 or ±i. Thus δ and δ′ are unit multiples of each other. �

5. Bezout’s Theorem

In Z, Bezout’s theorem says for any non-zero a and b in Z that (a, b) = ax+ by for some
x and y in Z found by back-substitution in Euclid’s algorithm. The same idea works in Z[i]
and gives us Bezout’s theorem there.

Theorem 5.1 (Bezout’s theorem). Let δ be any greatest common divisor of two non-zero
Gaussian integers α and β. Then δ = αx+ βy for some x, y ∈ Z[i].

Proof. Being able to write δ as a Z[i]-combination of α and β is unaffected by replacing δ
with a unit multiple. (For instance, if we can do this for iδ, then we multiply through by
−i to do it for δ.) Thus, by Corollary 4.7, we only need to give a proof for δ a greatest
common divisor coming from Euclid’s algorithm. For such δ, back-substitution in Euclid’s
algorithm shows δ is a Z[i]-combination of α and β. Further details here are identical to
the integer case, and are left to the reader. �

Corollary 5.2. The non-zero Gaussian integers α and β are relatively prime if and only
if we can write

1 = αx+ βy

for some x, y ∈ Z[i].

Proof. If α and β are relatively prime, then 1 is a greatest common divisor of α and β, so
1 = αx + βy for some x, y ∈ Z[i] by Theorem 5.1. Conversely, if 1 = αx + βy for some
x, y ∈ Z[i], then any common divisor of α and β is a divisor of 1, and thus is a unit. That
says α and β are relatively prime. �

Example 5.3. We saw in Example 4.4 that α = 32 + 9i and β = 4 + 11i are relatively
prime, since the last non-zero remainder in Euclid’s algorithm is −i. We can reverse the
calculations in Example 4.4 to express −i as a Z[i]-combination of α and β:

−i = 2− 5i− (3− i)(1− i)
= 2− 5i− (β − (2− 5i)(−2 + i))(1− i)
= (2− 5i)(1 + (−2 + i)(1− i))− β(1− i)
= (2− 5i)(3i)− β(1− i)
= (α− β(2− 2i))(3i)− β(1− i)
= α(3i)− β(7 + 5i).

To write 1, rather than −i, as a combination of α and β, multiply by i:

(5.1) 1 = α(−3) + β(5− 7i).
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Example 5.4. In Example 4.5, we checked that 4 + 5i and 4 − 5i are relatively prime.
Using back-substitution in Example 4.5, we obtain

−i = 4− 5i− (−(1− i))(−4)

= 4− 5i− (4 + 5i− (4− 5i)i)(−4)

= (4 + 5i)(4) + (4− 5i)(1− 4i),

and multiplying through by i gives

1 = (4 + 5i)(4i) + (4− 5i)(4 + i).

Example 5.5. In Example 4.6, we saw −1 + 2i is a greatest common divisor of α = 11 + 3i
and β = 1 + 8i. Reversing the steps of Euclid’s algorithm,

−1 + 2i = 1 + 8i− (2− 4i)(−1 + i)

= 1 + 8i− (11 + 3i− (1 + 8i)(1− i))(−1 + i)

= (11 + 3i)(1− i) + (1 + 8i)(1 + (1− i)(−1 + i))

= (11 + 3i)(1− i) + (1 + 8i)(1 + 2i)

= α(1− i) + β(1 + 2i).

Example 5.6. Let α = 10 + 91i and β = 7 + 3i. By Euclid’s algorithm,

α = β(6 + 11i) + 1− 4i,

β = (1− 4i)(2i) +−1 + i,

1− 4i = (−1 + i)(−3 + i)− 1,

−1 + i = −1(1− i) + 0,

so the last non-zero remainder is −1. That tells us α and β are relatively prime. Using
back-substitution,

−1 = 1− 4i− (−1 + i)(−3 + i)

= 1− 4i− (β − (1− 4i)(2i))(−3 + i)

= (1− 4i)(1 + (2i)(−3 + i))− β(−3 + i)

= (1− 4i)(−1− 6i) + β(3− i)
= (α− β(6 + 11i))(−1− 6i) + β(3− i)
= α(−1− 6i) + β(−(6 + 11i)(−1− 6i) + 3− i)
= α(−1− 6i) + β(−57 + 46i).

We can negate to write 1 as a Z[i]-combination of α and β:

(5.2) 1 = α(1 + 6i) + β(57− 46i).

While the previous example shows 10 + 91i and 7 + 3i do not have a common factor in
Z[i], notice that their norms are

N(10 + 91i) = 8381 = 172 · 29, N(7 + 3i) = 58 = 2 · 29,

so the norms of 10+91i and 7+3i have a common factor in Z. We can understand how such
phenomena (relatively prime Gaussian integers have non-relatively prime norms) happen
by exhibiting the “prime factorizations” of 10+91i and 7+3i (without explaining how they
are found, however):

(5.3) 10 + 91i = (1− 4i)(4 + i)(5 + 2i), 7 + 3i = (1 + i)(5− 2i).
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Now we see why such examples are possible: the factors 5 + 2i and 5 − 2i have the same
norm (namely 29) but they are relatively prime to each other.

All the usual consequences of Bezout’s theorem over Z have analogues over Z[i]. Here
are some of them.

Corollary 5.7. Let α | βγ in Z[i] with α and β relatively prime. Then α | γ.

Proof. It’s just like the integer proof, but we write up the details anyway. Set βγ = ακ for
some κ in Z[i]. Since α and β are relatively prime, we can solve the equation

1 = αx+ βy

for some x, y ∈ Z[i]. Multiply both sides of the equation by γ:

γ = γαx+ γβy

= αγx+ ακy

= α(γx+ κy).

Thus α | γ. �

Corollary 5.8. If α | γ and β | γ in Z[i], with α and β relatively prime, then αβ | γ.

Proof. Left to the reader. It’s just like the integer case. �

Corollary 5.9. For non-zero α, β, γ in Z[i], α and β are each relatively prime to γ if and
only if αβ is relatively prime to γ.

Proof. Left to the reader. It’s just like the integer case. �

We close out this section with an extension to Z[i] of several different characterizations
of the greatest common divisor in Z. The greatest common divisor of non-zero integers a
and b can be described in several ways:

• the largest common divisor of a and b (definition)
• the positive common divisor which all other common divisors divide
• the smallest positive value of ax+ by (x, y ∈ Z)
• the positive value of ax + by (x, y ∈ Z) which divides all other values of ax + by

(x, y ∈ Z)

The corresponding characterizations of greatest common divisors of two non-zero Gauss-
ian integers α and β are these:

• a common divisor of α and β with maximal norm (definition)
• a common divisor which all other common divisors divide
• a non-zero value of αx+ βy (x, y ∈ Z[i]) with smallest norm
• a non-zero value of αx + βy (x, y ∈ Z[i]) which divides all other values of αx + βy

(x, y ∈ Z[i])

Verifying the equivalence of all four conditions is left to the interested reader. It is
completely analogous to the arguments used in the integer case. Notice the switch from
“the” to “a” when we pass from Z to Z[i]: there are always four greatest common divisors,
ambiguous up to multiplication by any of the four units.
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6. Unique Factorization

We will define composite and prime Gaussian integers, and then prove unique factoriza-
tion.

By Theorem 2.4, if β | α, then N(β) | N(α), so 1 ≤ N(β) ≤ N(α) when α 6= 0. Which
divisors of α have norm 1 or N(α)?

Lemma 6.1. For α 6= 0, any divisor of α whose norm is 1 or N(α) is a unit or is a unit
multiple of α.

Proof. If β | α and N(β) = 1, then β is ±1 or ±i. If β | α and N(β) = N(α), consider
the complementary divisor γ, where α = βγ. Taking norms of both sides and cancelling
the common value N(α), we see N(γ) = 1, so γ is ±1 or ±i. Therefore β has to be ±α or
±iα. �

Lemma 6.1 is not saying the only Gaussian integers whose norm is N(α) are ±α and ±iα.
For instance, 1 + 8i and 4 + 7i both have norm 65 and neither is a unit multiple of the
other. What Lemma 6.1 is saying is that the only Gaussian integers which divide α and
have norm equal to N(α) are ±α and ±iα.

When N(α) > 1, there are always eight obvious factors of α: ±1, ±i, ±α, and ±iα. We
call these the trivial factors of α. They are analogous to the four trivial factors ±1 and ±n
of any integer n with |n| > 1. Any other factor of α is called non-trivial. By Lemma 6.1,
the non-trivial factors of α are the factors with norm strictly between 1 and N(α).

Definition 6.2. Let α be a Gaussian integer with N(α) > 1. We call α composite if it has
a non-trivial factor. If α only has trivial factors, we call α prime.

Writing α = βγ, the condition 1 < N(β) < N(α) is equivalent to: N(β) > 1 and
N(γ) > 1. We refer to any such factorization of α, into a product of Gaussian integers with
norm greater than 1, as a non-trivial factorization. Thus, a composite Gaussian integer is
one which admits a non-trivial factorization.

For instance, a trivial factorization of 7+ i is i(1−7i). A non-trivial factorization of 7+ i
is (1 − 2i)(1 + 3i). A non-trivial factorization of 5 is (1 + 2i)(1 − 2i). How interesting: 5
is prime in Z but it is composite in Z[i]. Even 2 is composite in Z[i]: 2 = (1 + i)(1 − i).
However, 3 is prime in Z[i], so some primes in Z stay prime in Z[i] while others do not.

To show 3 is prime in Z[i], we argue by contradiction. Assume it is composite and let a
non-trivial factorization be 3 = αβ. Taking the norm of both sides, 9 = N(α) N(β). Since
the factorization is non-trivial, N(α) > 1 and N(β) > 1. Therefore N(α) = 3. Writing
α = a + bi, we get a2 + b2 = 3. There are no integers a and b satisfying that equation, so
we have a contradiction. Thus, 3 has only trivial factorizations in Z[i], so 3 is prime in Z[i].
(In Corollary 9.4, we will see any prime p in Z+ satisfying p ≡ 3 mod 4 is prime in Z[i].)

While we don’t really need to construct primes explicitly in Z[i] in order to prove unique
factorization in Z[i], it is good to have some method of generating Gaussian primes, if only
to get a feel for what they look like by comparison with prime numbers. The following test
for primality in Z[i], using the norm, provides a way to generate many Gaussian primes if
we can recognize primes in Z.

Theorem 6.3. If the norm of a Gaussian integer is prime in Z, then the Gaussian integer
is prime in Z[i].
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For example, since N(4 + 5i) = 41, 4 + 5i is prime in Z[i]. Similarly, 4 − 5i is prime, as
are 1± i, 1± 2i, 1± 3i, 1± 4i, 2± 3i, and 15± 22i. Compute each of their norms and check
the result is a prime number.

Proof. Let α ∈ Z[i] have prime norm, say p = N(α). We will show α only has trivial factors
(that is, its factors have norm 1 or N(α) only), so α is prime in Z[i].

Consider any factorization of α in Z[i], say α = βγ. Taking norms, p = N(β) N(γ).
This is an equation in positive integers, and p is prime in Z+, so either N(β) or N(γ) is 1.
Therefore β or γ is a unit, so α does not admit nontrivial factors. Thus α is prime. �

The converse of Theorem 6.3 is false: a Gaussian prime does not have to have prime
norm. For instance, 3 has norm 9, but we saw 3 is prime in Z[i].

We have said enough about concrete Gaussian primes for now, and turn our attention
to unique factorization. The existence of a prime factorization will be proved by a similar
argument to the proof of prime factorization in Z. First we will establish the existence of
a prime factorization, then we treat its uniqueness.

Theorem 6.4. Every α ∈ Z[i] with N(α) > 1 is a product of primes in Z[i].

Proof. We argue by induction on N(α) (not by induction on α). Suppose that N(α) = 2.
(In other words, α = 1± i or −1± i.) Then α is prime by Theorem 6.3.

Now assume n ≥ 3 and every Gaussian integer with norm greater than 1 and less than n
is a product of primes. We want to show every Gaussian integer with norm n is a product
of primes. If there are no Gaussian integers with norm n (recall the end of Section 1), then
there is nothing to prove. So we may assume there are Gaussian integers with norm n.
Those which are prime are a product of primes (in Z[i]). If we have a Gaussian integer
α with norm n which is composite, write a non-trivial factorization of α as βγ, where
N(β),N(γ) < N(α) = n. By the inductive hypothesis, β and γ are products of primes
in Z[i]. Therefore their product, which is α, is also a product of primes in Z[i]. We are
done. �

Having settled the existence of prime factorizations in Z[i], we aim for the uniqueness.
We start with a lemma, which generalizes a familiar result about prime numbers in Z.

Lemma 6.5. Let π be prime in Z[i]. For Gaussian integers α1, . . . , αr, if π | α1α2 · · ·αr
then π divides some αj.

Proof. We check the case r = 2. The proof for larger r is a straightforward induction.
Let π | α1α2. Suppose π does not divide α1. This implies π and α1 are relatively prime.

Indeed, otherwise π and α1 would have a non-unit greatest common divisor, which would
have to be a unit multiple of π (since π only has trivial factors, as it is prime). This would
imply π divides α1, which is not the case.

Now that we know π and α1 are relatively prime, π | α2 by Corollary 5.7. �

We’re now ready to prove unique factorization in Z[i]. However, it is not quite what you
may expect. That is, the following is false: when

π1π2 · · ·πr = π′1π
′
2 · · ·π′s

where the πi’s and πj ’s are all prime in Z[i], r = s and πi = π′i after a suitable relabelling.
Well, the r = s part is true. But there is no reason to expect we can match up the primes
term-by-term. Consider

5 = (1 + 2i)(1− 2i) = (2− i)(2 + i).
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The factors here are all prime in Z[i] (since their norms all equal the prime number 5), but
the two primes in one factorization do not appear in the other. Does this violate the idea
of unique factorization?

No. By allowing unit multiples, we can make a match between the two factorizations:

1 + 2i = (2− i)i, (1− 2i) = (2 + i)(−i).
In fact, the same phenomenon can happen in Z:

6 = 2 · 3 = (−2) · (−3).

This is not an example of non-unique factorization in Z, since we can match the factors up
to sign. Sign issues are avoided in Z by focusing attention on positive integers and positive
primes only. As there is no positivity in Z[i] (at least in this course), we are forced to allow
ambiguity up to unit multiples in our prime factorizations. This explains the role of units
in unique factorization for Z[i].

Theorem 6.6 (Unique Factorization). Any α ∈ Z[i] with N(α) > 1 has a unique factoriza-
tion into primes in the following sense: If

α = π1π2 · · ·πr = π′1π
′
2 · · ·π′s,

where the πi’s and π′j’s are prime in Z[i], then r = s and after a suitable renumbering each

πi is a unit multiple of π′i.

Proof. Theorem 6.4 shows each α ∈ Z[i] with N(α) > 1 has a prime factorization.
When α is prime, its prime factorization is obviously unique. Now we show uniqueness

in general by induction on N(α). The base case, N(α) = 2, has already been settled since
such α’s are prime.

Assume now that n ≥ 3 and every Gaussian integer with norm greater than 1 and less
than n has a unique prime factorization. We may assume there are Gaussian integers
with norm n (otherwise there is nothing to check), and we only have to focus attention on
composite α with norm n. Consider two prime factorizations of α as in the statement of
the theorem. Since π1 | α, we can write

π1 | π′1π′2 · · ·π′s.
By Lemma 6.5, π1 | π′j for some j. Relabelling, we may suppose j = 1, i.e., π1 | π′1. The

only non-unit factors of π′1 are unit multiples of π′1, so π1 = uπ′1 for some unit u ∈ {±1,±i}.
The two factorizations of α now look like this:

α = uπ′1π2 · · ·πr = π′1π
′
2 · · ·π′s,

We cancel π′1 on both sides and get

(6.1) uπ2 · · ·πr = π′2 · · ·π′s,
Call this common value β, so N(β) = N(α)/N(π′1) < N(α).

Although u is a unit, the product uπ2 on the left side of (6.1) is itself a prime, so (6.1)
gives two prime factorizations of β, with r − 1 primes on the left side and s− 1 primes on
the right side. Since N(β) < n, the inductive hypothesis tells us β has unique factorization,
so r − 1 = s − 1 (thus r = s) and, after suitable relabelling, we have uπ2 and π′2 are unit
multiples and πi, π

′
i are unit multiples for i > 2. Since uπ2 and π′2 are unit multiples,

π2 and π′2 are unit multiples, so we see every πi is a unit multiple of π′i and the proof is
complete. �
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Knowing there is a prime factorization in the abstract is different from being able to
exhibit one in practice. For instance, what is the prime factorization of 3+4i or 2319+1694i?
You have no experience factoring in Z[i], but you have factored in Z. Let’s use the norm
function to let your experience in Z be the first step in helping you factor in Z[i]. Our goal
is not to prove a theorem about practical factoring in Z[i], but to illustrate the method
through some examples. Then you can try it out your own.

The key idea is this: any factorization in Z[i] implies a factorization in norms. Indeed,

α = βγ =⇒ N(α) = N(β) N(γ).

We will try to use the conclusion to tell us something about the hypothesis: use integer
factorizations of the norm to suggest possible factors of the Gaussian integer.

For instance, take α = 3 + 4i. Its norm is 25 = 5 · 5. If 3 + 4i factors, a non-trivial factor
has to have norm 5. We know the Gaussian integers with norm 5: up to unit multiple they
are 1 + 2i and 1− 2i. So we try the various possibilities:

(1 + 2i)(1 + 2i) = −3 + 4i, (1 + 2i)(1− 2i) = 5, (1− 2i)(1− 2i) = −3− 4i.

We recognize the last product as −α, so

3 + 4i = −(1− 2i)(1− 2i) = −(1− 2i)2.

This is a prime factorization of 3 + 4i.
What about 2319 + 1694i? Its norm is 8247397, whose prime factorization in Z is

8247397 = 17 · 29 · 16729.

Let’s look for the Gaussian integers with norm 17, 29, and 16729. and then try multiplying
them together to get 2319 + 1694i. Gaussian factors of 17, 29, and 16729 come from
representations of each number as a sum of two squares:

17 = 12 + 42, 29 = 22 + 52, 16729 = 402 + 1232.

(Admittedly, that last equation was not found by hand.) These give us prime factorizations
in Z[i]:

17 = (1 + 4i)(1− 4i), 29 = (2 + 5i)(2− 5i), 16729 = (40 + 123i)(40− 123i)

(The Gaussian integers here are prime since their norms are prime in Z.) Let’s pick one
factor from each product and multiply them together. Happily, the first choice gives us
what we want:

(1 + 4i)(2 + 5i)(40 + 123i) = −2319− 1694i.

Therefore the prime factorization of 2319 + 1694i is

2319 + 1694i = −(1 + 4i)(2 + 5i)(40 + 123i).

Except for the overall sign, each factor on the right is prime in Z[i] since its norm is prime
in Z.

As an application of these ideas, try to discover the prime factorizations in (5.3) on your
own.
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7. Modular arithmetic in Z[i]

As in the integers, congruences are defined using divisibility.

Definition 7.1. For Gaussian integers α, β, and γ, we write α ≡ β mod γ when γ | (α−β).

Example 7.2. To check 1 + 12i ≡ 2− i mod 3 + i, we subtract and divide:

(1 + 12i)− (2− i)
3 + i

=
−1 + 13i

3 + i
= 1 + 4i.

The ratio is in Z[i], so the congruence holds.

Congruences in Z[i] behave well under both addition and multiplication:

α ≡ α′ mod γ, β ≡ β′ mod γ =⇒ α+ β ≡ α′ + β′ mod γ, αβ ≡ α′β′ mod γ.

The details behind this are just like in Z and are left to the reader to check.
Since congruence modulo 0 means equality, we usually assume the modulus is non-zero.
A Gaussian integer can be reduced modulo α, if α 6= 0, to get a congruent Gaussian

integer with small norm by dividing by α and using the remainder.

Example 7.3. Let’s compute (3 + 2i)2 mod 4 + i. Since (3 + 2i)2 = 5 + 12i and 5 + 12i =
(4 + i)(2 + 3i)− 2i, we have (3 + 2i)2 ≡ −2i mod 4 + i.

Example 7.4. To reduce 1 + 8i mod 2− 4i, we divide. This was already done in Example
3.6, where we found more than one possibility:

1 + 8i = (2− 4i)(−1 + i)− 1 + 2i, 1 + 8i = (2− 4i)(−1 + i) + 1− 2i.

Therefore 1 + 8i ≡ −1 + 2i mod 2− 4i and 1 + 8i ≡ 1− 2i mod 2− 4i. There is no reason
to think −1 + 2i or 1− 2i is the more correct reduction. Both work.

There is a way to picture what modular arithmetic in Z[i] means, by plotting the mul-
tiples of a Gaussian integer in Z[i]. For example, let’s look at the Z[i]-multiples of 1 + 2i.
Algebraically, a general Z[i]-multiple of 1 + 2i is

(1 + 2i)(m+ ni) = (1 + 2i)m+ (1 + 2i)ni = m(1 + 2i) + n(−2 + i),

where m and n are in Z. This is an integral combination of 1 + 2i and −2 + i = (1 + 2i)i.
In Figure 1 we plot 1 + 2i and −2 + i as the vectors (1, 2) and (−2, 1) in R2.

Figure 1. 1 + 2i and −2 + i
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The Z[i]-multiples of 1 + 2i are the integral combinations of the two vectors in Figure 1.
Forming all these combinations produces the picture in Figure 2, where the plane is tiled by
squares having the Gaussian multiples of 1 + 2i as the vertices. The significance of Figure
2 for modular arithmetic is that Gaussian integers are congruent modulo 1 + 2i precisely
when they are located in the same relative positions within different squares of Figure 2.
For example, 2 + 3i and 4 − 3i are in the same relative position within their squares, and
their difference is a Gaussian multiple of 1 + 2i:

(2 + 3i)− (4− 3i)

1 + 2i
=
−2 + 6i

1 + 2i
=

(−2 + 6i)(1− 2i)

(1 + 2i)(1− 2i)
=

10 + 10i

5
= 2 + 2i ∈ Z[i].

Why are congruent Gaussian integers mod 1+2i in the same position within their respective
squares? Because each square shares its sides with four other squares, and moving to these
squares corresponds to adding 1 + 2i, −(1 + 2i), −2 + i, or −(−2 + i). Moving from a
position in any square to the same relative position in any other square is translation by a
Gaussian multiple of 1 + 2i.

Figure 2. Z[i]-multiples of 1 + 2i

We can use Figure 2 to make a list of representatives for Z[i]/(1 + 2i): use the Gaussian
integers inside a square and one of its vertices. (All the vertices are Z[i]-multiples of 1 + 2i,
so we should use only one of them.) Choosing the square with edges 1 + 2i and −2 + i, we
get a list of 5 Gaussian integers:

0, i, 2i, −1 + i, −1 + 2i.

Every Gaussian integer is congruent modulo 1 + 2i to exactly one of these. For instance,
2 + 3i ≡ −1 + 2i mod 1 + 2i since 2 + 3i and −1 + 2i are in the same relative position in
their respective squares. Using instead the square with edges 1 + 2i and 2 − i, we get the
list

0, 1, 2, 1 + i, 2 + i,
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and with this list we have 2 + 3i ≡ 1 + i mod 1 + 2i. There is nothing special about using
the vertex 0 in our lists: we could use any of the other vertices of the square in place of 0
for our list of representatives modulo 1 + 2i. In fact, there is nothing special about using
points inside or on a single square. We just need to use a set of points which fills out each
relative position within all these squares. For instance, the numbers

0, 1, 2, 3, 4

could be used, and with this list we have 2 + 3i ≡ 3 mod 1 + 2i.
Let’s look at the picture for modulus 2 + 2i. In Figure 3 we plot the Z[i]-multiples of

2 + 2i as vertices of squares. Since

(2 + 2i)(m+ ni) = (2 + 2i)m+ (2 + 2i)ni = m(2 + 2i) + n(−2 + 2i),

the Z[i]-multiples of 2 + 2i are the integral combinations of 2 + 2i and −2 + 2i, which form
two edges of the shaded square in Figure 3.

Figure 3. Z[i]-multiples of 2 + 2i

What is a set of representatives for Z[i]/(2 + 2i)? Translating from one square to the
same relative position in another square is the same as adding a Gaussian multiple of 2+2i,
so every Gaussian integer is congruent modulo 2 + 2i to a Gaussian integer inside or on
one of the squares. Points in the same relative position on opposite edges of a square are
congruent since adding 2 + 2i or −2 + 2i takes us from one edge to another. We didn’t
have to worry about this issue for modulus 1 + 2i because there were no Gaussian integers
on the edges of squares in Figure 2 except for vertices. Taking the edge identifications into
account, a set of representatives for Z[i]/(2 + 2i) is all the Gaussian integers inside a square
and on two adjacent edges of the square, with only one vertex counted. Using the square
with edges 2 + 2i and −2 + 2i, we get the 8 representatives

0, i, 2i, 3i, 1 + i, 1 + 2i, −1 + i, −1 + 2i.
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For example, 6+ i ≡ 3i mod 2+2i since 6+ i and 3i are in the same relative position within
their squares in Figure 3.

Unlike in Figure 2, where ordinary integers can be used as representatives, we can’t
represent Z[i]/(2 + 2i) only using ordinary integers, because Z only represents 4 of the 8
congruence classes mod 2 + 2i.

Figure 4 is a picture of Z[i]/(3). The squares have vertices that are Z[i]-multiples of 3,
which all look like 3(m+ni) = m ·3+n ·3i where m and n are in Z. A set of representatives
for Z[i]/(3) can be formed from the Gaussian integers inside and on the shaded square
with edges 3 and 3i. Using two adjacent edges (and just one of the vertices), we have 9
representatives

0, 1, 2, i, 1 + i, 2 + i, 2i, 1 + 2i, 2 + 2i.

Figure 4. Z[i]-multiples of 3

Finally, in Figure 5, we draw one square for modulus 3+ i. Its two edges with a vertex at
0 are the vectors 3+i = (3, 1) and (3+i)i = −1+3i = (−1, 3). There are 10 representatives:
9 in the square and one vertex.

Algebraic properties of modular arithmetic in Z carry over to Z[i] practically word-for-
word.

Theorem 7.5. If π is prime in Z[i], then αβ ≡ 0 mod π if and only if α ≡ 0 mod π or
β ≡ 0 mod π.

Proof. This is Lemma 6.5 with r = 2. �

Theorem 7.6. For α and β in Z[i] with β 6= 0, αx ≡ 1 mod β is solvable if and only
if α and β are relatively prime in Z[i]. If α and β are relatively prime then any linear
congruence αx ≡ γ mod β has a unique solution.

Proof. To solve αx ≡ 1 mod β with x ∈ Z[i] amounts to solving αx+ βy = 1 with x and y
in Z[i], which is equivalent to relative primality of α and β by Corollary 5.2.

Once we can invert α mod β, we can solve αx ≡ γ mod β by multiplying both sides by the
inverse of α mod β. If there is going to be a solution this must be it, and it does work. �
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Figure 5. Representatives for Z[i]/(3 + i)

Example 7.7. Can we solve (1 + 8i)x ≡ 1 mod 11 + 3i? No, since 1 + 8i and 11 + 3i have
a common factor of −1 + 2i by Example 4.6.

Example 7.8. Can we solve (7 + 3i)x ≡ 1 mod 10 + 91i? According to Example 5.6, 7 + 3i
and 10 + 91i are relatively prime (although their norms are not), so there is a solution.
Moreover, by using Euclid’s algorithm and back-substitution we found in (5.2) that

(7 + 3i)(57− 46i) + (10 + 91i)(1 + 6i) = 1,

so a solution is x = 57− 46i. (The norm of 57− 46i is less than the norm of the modulus
10 + 91i, so there is no great incentive to reduce our solution further mod10 + 91i.)

Corollary 7.9. Let π be a Gaussian prime. Every α 6≡ 0 mod π has a multiplicative inverse
modulo π and any polynomial congruence

cnx
n + cn−1x

n−1 + · · ·+ c1x+ c0 ≡ 0 mod π,

where ci ∈ Z[i] and cn 6≡ 0 mod π, has at most n solutions modulo π.

Proof. Since π is prime, any α 6≡ 0 mod π is relatively prime to π and therefore α mod π
has a multiplicative inverse by Theorem 7.6. Thus Z[i]/(π) is a field, so this corollary is a
special case of the fact that polynomials have no more roots in a field than their degree. �

When we allow Gaussian integers into our congruences, does it change the meaning of
congruences among ordinary integers? That is, if a, b, and c are in Z, does the meaning of
a ≡ b mod c change when we think in Z[i]? That is, could integers which are incongruent
modulo c in Z become congruent modulo c in Z[i]? No.

Theorem 7.10. For a, b, and c in Z, a ≡ b mod c in Z if and only if a ≡ b mod c in Z[i].

Proof. In terms of divisibility, this is saying

c | (a− b) in Z⇐⇒ c | (a− b) in Z[i],

which is something we already checked in the paragraph after the proof of Theorem 2.3:
divisibility between ordinary integers holds in Z if and only if it holds in Z[i]. �
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So far modular arithmetic in Z[i] behaves just like in Z. But things now will get tricky,
so pay attention!

One of the useful properties of modular arithmetic in Z is Fermat’s little theorem. For a
prime p in Z+, if a 6≡ 0 mod p then ap−1 ≡ 1 mod p. Naively translating this result into the
Gaussian integers, using a Gaussian prime π, we get something like this: if α 6≡ 0 mod π
then απ−1 ≡ 1 mod π. ???? If π is not a positive integer, then raising to the power π − 1
doesn’t mean anything in a congruence. (Well, if you have had complex analysis you may
know a way to do this, but then you would also know the result is almost certainly not
going to be in Z[i], so it’s the wrong idea for us.) Moreover, even when π is a positive
integer that is prime in Z[i] the congruence απ−1 ≡ 1 mod π is usually wrong.

Example 7.11. Let π = 3, which is prime in Z[i]. Take α = i. Then απ−1 = i2 = −1, but
−1 6≡ 1 mod 3, so απ−1 6≡ 1 mod π.

Despite this setback, there is a good Gaussian integer version of Fermat’s little theorem.
The way to find it is to go back to the proof of Fermat’s little theorem and remind ourselves
how ap−1 actually showed up in the proof. It came from comparing two different sets of
representatives for the non-zero integers modulo p: 1, 2, . . . , p − 1 and a, 2a, . . . , (p − 1)a.
The two products of all the numbers in both cases have to be congruent modulo p, and
cancelling common terms on both sides of the congruence (essentially a factor of (p − 1)!)
leaves behind 1 ≡ ap−1 mod p. So the source of ap−1 comes from the fact that there are p−1
non-zero numbers modulo p. It is the size of the set of non-zero numbers modulo p which
gave us the exponent in Fermat’s little theorem. There are p numbers in total modulo p,
and we take away 1 because we don’t count 0. With this insight, we get almost for free a
Z[i]-analogue.

Theorem 7.12. Let π be a Gaussian prime and denote the number of Gaussian integers
modulo π by n(π). If α 6≡ 0 mod π, then αn(π)−1 ≡ 1 mod π.

Proof. There is no natural complete set of representatives for Z[i]/(π), but we can use any
complete set of representatives at all. Denote it β1, β2, . . . , βn(π), where we take βn(π) = 0.

Since α is invertible modulo π, another complete set of representatives for Z[i]/(π) is
αβ1, αβ2, . . . , αβn(π). The last term here is 0. Multiplying congruent numbers retains the
congruence, so let’s multiply each set of non-zero representatives together and compare:

β1β2 · · ·βn(π)−1 ≡ (αβ1)(αβ2) · · · (αβn(π)−1) mod π

≡ αn(π)−1β1β2 · · ·βn(π)−1 mod π.

Since the βi’s here are non-zero modulo π (why?), we can cancel them on both sides and

we are left with 1 ≡ αn(π)−1 mod π. �

As soon as we try to test this result in an example, we run into a problem. We defined
n(π) to be the size of Z[i]/(π) but we never gave a working formula for this size. For
instance, what is n(3)? Or, to jazz things up, n(3 + 4i)?

Example 7.13. Let’s show there are 9 elements in Z[i]/3, so n(3) = 9. A Gaussian integer
is divisible by 3 exactly when its real and imaginary parts are divisible by 3 (Theorem 2.3).
Therefore

a+ bi ≡ c+ di mod 3⇐⇒ a ≡ b mod 3 and c ≡ d mod 3.
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The real and imaginary parts have 3 possibilities modulo 3, so there is a total of 3 ·3 = 9 in-
congruent Gaussian integers modulo 3. We can even write down a nice set of representatives:
a+ bi where 0 ≤ a, b ≤ 2.

Since n(3) = 9, Theorem 7.12 says that if α 6≡ 0 mod 3 then α8 ≡ 1 mod 3. This works
at α = i (unlike what we saw in Example 7.11). Using α = 1 + i shows the exponent 8 is
optimal: (1 + i)k 6≡ 1 mod 3 for 1 ≤ k < 8.

To make Theorem 7.12 really meaningful, we want a formula for n(π) in general. In fact,
there is a nice formula for n(α) = |(Z[i]/(α))| even when α is not prime.

Theorem 7.14. If α 6= 0 in Z[i], then n(α) = N(α). That is, the size of Z[i]/(α) is N(α).

There is an analogy with the absolute value on Z: |(Z/m)| = |m| when m 6= 0 and
now |(Z[i]/(α))| = N(α) when α 6= 0. Our earlier lists of representatives for Z[i]/(1 + 2i),
Z[i]/(2 + 2i), Z[i]/(3), and Z[i]/(3 + i) are all consistent with this norm formula.

Perhaps we should point out why n(α) is finite (when α 6= 0) before we prove the formula
for it. Using division by α, every Gaussian integer is congruent modulo α to some Gaussian
integer with norm less than N(α). There are only finitely many Gaussian integers with
norm below a given bound, so n(α) is finite.1

Before we prove Theorem 7.14 we establish a few lemmas about the n-function.

Lemma 7.15. If m 6= 0 in Z then n(m) = m2.

Proof. The argument is the same as the case m = 3 done in Example 7.13. �

Lemma 7.16. If α 6= 0 in Z[i] then n(α) = n(α).

Proof. Congruences modulo α and congruences modulo α can be converted into one another
by conjugating all terms:

x ≡ y mod α⇐⇒ x ≡ y mod α.

Therefore a complete set of representatives modulo α becomes a complete set of represen-
tatives modulo α by conjugating the representatives, so n(α) = n(α). �

The next lemma needs a bit more work.

Lemma 7.17. The function n is multiplicative: if α and β are non-zero in Z[i], then
n(αβ) = n(α)n(β).

Proof. Let a complete set of representatives for Z[i]/(α) be x1, x2, . . . , xr and a complete
set of representatives for Z[i]/(β) be y1, y2, . . . , ys. (That is, r = n(α) and s = n(β).)

Given any z ∈ Z[i], we have z ≡ xi mod α for some i. Then z−xi = αt for some Gaussian
integer t, and t ≡ yj mod β for some j. Writing t = yj + βw, we have

z = xi + αyj + αβw ≡ xi + αyj mod αβ.

Thus the rs numbers xi + αyj are a set of representatives for Z[i]/(αβ). To show they are
complete (that is, no repetitions), suppose

(7.1) xi + αyj ≡ xi′ + αyj′ mod αβ.

We want to show i = i′ and j = j′.

1This shows Gaussian integers with norm less than N(α) fill up all congruence classes modulo α, but there
could be different remainders which are congruent, unlike in Z, so n(α) is actually smaller than the number
of these remainders.
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Reducing both sides of (7.1) modulo α, xi ≡ xi′ mod α. Since the x’s are a complete set
of representatives modulo α, this congruence must be equality: xi = xi′ (that is, i = i′).
Then subtract the common xi on both sides of (7.1) and divide through the congruence
(including the modulus!) by α. We are left with yj ≡ yj′ mod β. Since the y’s are a
complete set of representatives modulo β, we have j = j′. �

We are ready to prove Theorem 7.14. All the real work has been put into the lemmas,
so the proof now will be a short and slick argument.

Proof. By Lemma 7.17, n(αα) = n(α)n(α). By Lemma 7.16, the right side is n(α)2. At
the same time, since αα = N(α) is an integer, Lemma 7.15 says n(αα) = N(α)2. Thus
N(α)2 = n(α)2. Take positive square roots. �

There are two points worth noting about this argument:

(1) While we proved n(α) is a totally multiplicative function of α as a lemma, we did
not use this to reduce the problem of calculating n(α) to the case of n(π) for prime
π. Usually when we know something is multiplicative, we take that as a clue to first
compute on primes, then prime powers, and then in general by prime factorization.
But the way multiplicativity of n got used in the proof of Theorem 7.14 completely
sidestepped the special case of prime α.

(2) Our derivation of the formula for n(α) lets us count the size of Z[i]/(α) without
giving a method of listing a complete set of representatives. For instance, n(2 +
2i) = N(2 + 2i) = 8, but this counting does not tell us a set of representatives for
Z[i]/(2 + 2i) (it is not 0, 1, 2, . . . , 7, e.g., 4 ≡ 0 mod 2 + 2i). So the situation is
unlike the integers, where we know |(Z/m)| = |m| because we actually made a list
of representatives: 0, 1, 2, . . . , |m| − 1.

With an exact formula for |(Z[i]/(π))| in hand let’s reformulate Theorem 7.12 as a more
honest analogue of Fermat’s little theorem:

(7.2) α 6≡ 0 mod π =⇒ αN(π)−1 ≡ 1 mod π.

Comparing this to ap−1 ≡ 1 mod p, we see more clearly from the Gaussian case that p was
really playing two different roles in the integer case: the modulus is p and the number of
incongruent integers for that modulus is p. The distinction between the modulus and the
number of incongruent numbers in that modulus is more vivid in (7.2), where we see π in
one place and N(π) in the other.

To formulate Euler’s congruence in Z[i], we need the analogue of the ϕ-function. If you
think about ϕ(m) as the number of positive integers between 1 and m which are relatively
prime to m, the correct generalization to Z[i] is not apparent. But if you think about ϕ(m)
as the number of invertible integers modulo m, then the generalization to Z[i] is (or should
be) immediate.

Definition 7.18. For non-zero α in Z[i], set ϕ(α) = |(Z[i]/(α))×|.

Example 7.19. When α = π is prime, every non-zero Gaussian integer modulo π is in-
vertible, so ϕ(π) = N(π)− 1. Notice the analogy to ϕ(p) = p− 1.

When we work with this ϕ-function on Z[i], we need to be careful when the argument
is in Z, because the Gaussian ϕ-function may not agree with the integral ϕ-function. For
instance in Z we have ϕ(3) = 2, but in Z[i] we have ϕ(3) = 8. That is, (Z/3)× has 2 elements
but (Z[i]/3)× has 8 elements. This might seem strange: didn’t Theorem 7.10 tell us that
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congruences with a modulus in Z are the same in Z[i] as in Z? No. Theorem 7.10 was
about congruences in Z[i] among ordinary integers to an ordinary integer modulus, which
leaves out a lot of congruences among all the Gaussian integers to that ordinary integer
modulus. Perhaps we should write ϕZ[i] to distinguish the Gaussian ϕ-function from the
usual ϕ-function (which is now ϕZ?), but nobody does this.

Euler’s congruence for Z[i] looks like its counterpart over Z, using the Gaussian ϕ-
function:

Theorem 7.20. If (α, µ) = 1 in Z[i], then αϕ(µ) ≡ 1 mod µ.

Proof. This is left as an exercise in translating the proof over Z into this new setting. �

How do we compute ϕ(µ)? Let’s recall the ϕ-formulas in Z:

ϕ(pk) = pk−1(p− 1), ϕ(ab) = ϕ(a)ϕ(b) if (a, b) = 1.

With these formulas, ϕ(m) can be computed from the prime factorization of m. The
analogous formulas for the Gaussian ϕ-function use norms in certain places, but otherwise
are identical to the counterpart in Z:

ϕ(πk) = N(π)k−1(N(π)− 1), ϕ(αβ) = ϕ(α)ϕ(β) if (α, β) = 1.

Example 7.21. What is ϕ(3 + 4i)? The Gaussian prime factorization is 3 + 4i = (2 + i)2.
Therefore ϕ(3 + 4i) = N(2 + i)(N(2 + i)− 1) = 5 · 4 = 20.

Example 7.22. What is ϕ(5)? The Gaussian prime factorization is 5 = (1 + 2i)(1 − 2i),
where 1 + 2i and 1 − 2i are relatively prime. Therefore ϕ(5) = ϕ(1 + 2i)ϕ(1 − 2i) =
(N(1 + 2i)− 1)(N(1− 2i)− 1) = 16.

8. Applications of Z[i] to the arithmetic of Z

We are ready to give applications of the arithmetic of Z[i] to properties of Z. All these
applications are connected with sums of two squares. It is precisely the formula

a2 + b2 = (a+ bi)(a− bi),
where a sum of two squares is on the left and a (special type of) factorization in Z[i] is on
the right that explains why Z[i] is relevant to questions about sums of two squares in Z.

Our applications will address the following issues:

• a prime number that is a sum of two squares is so in essentially just one way,
• classification of (primitive) Pythagorean triples,
• classification of (primitive) solutions to a2 + b2 = c3.
• the only integer solution to y2 = x3 − 1 is (x, y) = (1, 0),
• systematically finding integers which are sums of two squares in more than one way.

Theorem 8.1. If a prime number p is a sum of two squares then it is so in essentially just
one way: writing p = a2 + b2, the integers a and b are unique up to order and sign. (In
particular, the squares a2 and b2 are unique up to order.)

Notice the theorem says nothing explicitly about Z[i]. It is a theorem about Z alone. We
will find it very useful to use Z[i] in the proof, however.

Proof. Let p = a2 + b2, with a, b ∈ Z. Then, in Z[i], p factors as

p = (a+ bi)(a− bi).
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Since a + bi and a − bi both have norm p, which is prime in Z, they are prime in Z[i]
(Theorem 6.3). If there is a second representation p = c2 + d2, then

p = (c+ di)(c− di),

and c± di are prime in Z[i]. By unique factorization in Z[i], we must have

a+ bi = u(c+ di) or a+ bi = u(c− di)

for some unit u. The only difference between c+ di and c− di is the sign of the coefficient
of i, and we are aiming to show that a and b are determined up to order and sign, so there
is no harm in treating only the case

a+ bi = u(c+ di).

If u = 1, then c = a and d = b. If u = −1, then c = −a and d = −b. If u = i, then c = b
and d = −a. If u = −i, then c = −b and d = a. Thus c and d equal a and b up to order
and sign. �

Theorem 8.1 is not saying that any integer which is a sum of two squares has only one
representation in that form. It is only referring to primes which are sums of two squares.
Two non-primes which are a sum of two squares in more than one way are 50 = 52 + 52 =
12 + 72 and 65 = 12 + 82 = 42 + 72. (We will find more examples at the end of this section.)
Some primes which can be written as sums of two squares (necessarily uniquely) are

2 = 12 + 12, 5 = 12 + 22, 13 = 22 + 32, 17 = 12 + 42, 29 = 22 + 52.

Example 8.2. The fifth Fermat number 22
5

+ 1 = 4294967297 is easily a sum of two

squares: 22
5

+ 1 = (216)2 + 12. Euler found it can be written as a sum of two squares in a
different way:

(216)2 + 12 = 622642 + 204492.

This actually has an interesting consequence. Fermat guessed that the fifth Fermat number
was a prime, but the fact that it can be written as a sum of two squares in two different
ways proves it is not prime without telling us what a nontrivial factor might be! (Euler did

find a nontrivial factor, 641: 22
5

+ 1 = 641 · 6700417.)

Our next application of Z[i] to ordinary arithmetic is the classification of Pythagorean
triples, which are integral solutions to the equation

a2 + b2 = c2.

If any two of a, b, and c have a common prime factor, it is also a factor of the third
number (why?), so its square appears in all terms. Conversely, multiplying both sides by
a square rescales a, b, and c by the same amount. Therefore, we focus our attention on
the Pythagorean triples (a, b, c) where they share no common factor (equivalently, a and b
alone share no common factor). Such triples are called primitive. Examples of primitive
Pythagorean triples include (3, 4, 5), (5, 12, 13), and (8, 15, 17), but not (6, 8, 10). We will
use unique factorization in Z[i] to obtain a formula for the primitive Pythagorean triples.

Before we give the formula, let’s make a few observations about primitive triples (a, b, c).
Since there is no common factor among the three numbers, at most one of them can be even
(why?). Could c be even? If so, then a and b are odd, so a2 ≡ 1 mod 4 and b2 ≡ 1 mod 4.
Then c2 = a2 +b2 ≡ 2 mod 4. But no number squares to 2 mod 4. Therefore c is odd. Since



26 KEITH CONRAD

a2 + b2 is now known to be odd, a and b do not have the same parity. That is, one of them
is odd and the other is even. Relabelling if necessary, we may assume that

a is odd and b is even.

With these preliminary observations out of the way, we are ready for the main result.

Theorem 8.3. Every primitive Pythagorean triple (a, b, c) with a odd has the form

a = m2 − n2, b = 2mn, c = m2 + n2,

where m > n > 0, (m,n) = 1, and m 6≡ n mod 2. Conversely, for any such choice of m
and n, the above formula is a primitive Pythagorean triple. Different choices of m and n
give different primitive triples.

The table below gives some primitive Pythagorean triples from choices of m and n.

m 2 3 4 5 4
n 1 2 1 2 3

a = m2 − n2 3 5 15 21 7
b = 2mn 4 12 8 20 24
c = m2 + n2 5 13 17 29 25

Proof. We write the equation a2 + b2 = c2 in the form

(8.1) (a+ bi)(a− bi) = c · c.

Our proof will have three steps:

• use the primitivity of the triple to show a+ bi and a− bi are relatively prime in Z[i],
• use unique factorization in Z[i] to show a+ bi is a square or i times a square in Z[i],
• use the evenness of b to show a + bi is a square in Z[i], and then read off the

consequences.

First we show a+bi and a−bi are relatively prime. This is going to follow from (a, b) = 1
and c being odd. Let δ be a common divisor of a + bi and a − bi in Z[i]. It divides their
sum and their difference:

(8.2) δ | 2a, δ | 2b.

(Strictly, δ dividing the difference means δ | 2bi, but i is a unit so we can remove it.) Now
we show δ is relatively prime to 2 in Z[i]. Since 2 = −i(1 + i)2 and 1 + i is prime, this is
equivalent to showing δ is not divisible by 1 + i. By Corollary 2.5, (1 + i) | δ if and only if
N(δ) is even. Because δ2 | c2, by (8.1), which implies N(δ)2 | c4, and c4 is odd, we see N(δ)
is odd. That tells us 1 + i does not divide δ.

Now that we know δ is relatively prime to 2 in Z[i], (8.2) simplifies to

δ | a, δ | b.

Because a and b are relatively prime in Z, they are also relatively prime in Z[i] (just solve
ax+ by = 1 in Z and then view the equation in Z[i]). Thus, their only common divisors in
Z[i] are units, so at last we see δ is a unit.

In (8.1), we have a product of relatively prime Gaussian integers on the left and a perfect
square on the right. If you think about it, the only way two relatively prime Gaussian
integers can multiply to a square is if they are each squares. After all, think about how
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their prime factors can combine to give a square, given that they are relatively prime and
that Z[i] has unique factorization. Thus, from (8.1) we must have

a+ bi = (m+ ni)2

for some Gaussian integer m+ ni.
Alas, this reasoning is wrong! Two relatively prime Gaussian integers can multiply to a

square without either factor being a square. In fact, this possibility already can happen in
Z:

36 = (−4)(−9).

Neither −4 nor −9 is a square in Z, but their product is and they are relativey prime. Ah,
the only sneaky thing here are the units. Remember, unique factorization always has an
ambiguity due to units. (We tend to forget this in Z since we focus on factoring positive
integers into positive factors, and the only positive unit is 1.) We can’t forget about units!

Very well, we keep in mind the units in Z[i] when looking at (8.1). Since the two factors
on the left are relatively prime and their product is a square, unique factorization in Z[i]
tells us each factor is itself a square up to unit multiple. The units in Z[i] are ±1 and ±i.
Since −1 is a perfect square, it can be absorbed into any square factor by writing it as i2.
Therefore, we can say

a+ bi = (m+ ni)2 or a+ bi = i(m+ ni)2

for some m + ni ∈ Z[i]. Expanding these out and collecting real and imaginary parts, we
have

a+ bi = (m2 − n2) + (2mn)i or a+ bi = (−2mn) + (m2 − n2)i.
Now we appeal to our convention that a is odd (and b is even). The second choice makes

a even, so it is not correct. We thus must have

(8.3) a+ bi = (m+ ni)2,

so a+ bi is a perfect square after all. (The point is that we have now argued this correctly,
rather than incorrectly as before.) The derivation of (8.3) from unique factorization in Z[i]
is really the key step in this proof. The remainder of the proof will be just a matter of
careful bookkeeping.

Identifying real and imaginary parts in (8.3) gives us

a = m2 − n2, b = 2mn.

Therefore c2 = a2 + b2 = (m2−n2)2 + 4m2n2 = m4 + 2m2n2 +n4 = (m2 +n2)2. Since c > 0
we see that

c = m2 + n2.

Since b > 0, the formula for b shows m and n have the same sign: they are both positive
or both negative. We can negate them both if necessary to assume m and n are positive
without changing the values of a, b, or c. Since a > 0 we have m2 > n2, so m > n. Because
a is odd, m and n have different parities. If m and n have a common factor, then we get
a common factor in a, b, and c. Therefore primitivity of the triple (a, b, c) makes m and n
relatively prime.

Now we show any triple (m2−n2, 2mn,m2 +n2) with m and n positive, relatively prime,
of opposite parity, and m > n, is a primitive Pythagorean triple. Easily it is a Pythagorean
triple: (m2 − n2)2 + (2mn)2 = (m2 + n2)2. Suppose this triple is not primitive. Then some
prime p divides each of m2 − n2, 2mn, and m2 + n2. Since the first term is odd, p 6= 2.
Then from p | 2mn we have either p | m or p | n. If p | m, then the relation m2 ≡ n2 mod p
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implies n2 ≡ 0 mod p, so p | n. Similarly, if p | n then p | m. We are supposing (m,n) = 1,
so we have a contradiction either way, and thus the triple is primitive.

As for the triple being uniquely determined by m and n, (8.3) tells us that the parameters
m and n that describe the triple (a, b, c) are the coordinates of a square root of a+ bi. As
there are only two square roots, which just differ by a sign, the uniqueness falls out (since
we take m > 0 and n > 0). �

This proof tells us how to produce Pythagorean triples on demand: take any Gaussian
integer α (with non-zero real and imaginary parts) and square it, say α2 = a + bi. Then
(|a|, |b|,N(α)) is a Pythagorean triple. For example, (17+12i)2 = 145+408i and 172+122 =
433. Therefore (145, 408, 433) is a Pythagorean triple (check it!). Moreover, since 17 and
12 are relatively prime, this triple is primitive.

To better appreciate this approach to a2 + b2 = c2, let’s apply it to a2 + b2 = c3.

Theorem 8.4. The integral solutions to a2 + b2 = c3 with (a, b) = 1 are described by the
parametric formula

a = m3 − 3mn2, b = 3m2n− n3, c = m2 + n2,

where (m,n) = 1 and m 6≡ n mod 2. Different choices of m and n give different solutions
(a, b, c).

Proof. Since (a, b) = 1, a and b are not both even. If they were both odd then c3 ≡ 1 + 1 ≡
2 mod 8, but 2 is not a cube mod 8. Therefore one of a or b is even and the other is odd:
a 6≡ b mod 2 and c is odd.

In Z[i], we can rewrite a2 + b2 = c3 as

(a+ bi)(a− bi) = c3.

Let’s show a+ bi and a− bi are relatively prime. If δ is a common divisor then δ | 2a, δ | 2b,
and δ | c3. Taking norms, N(δ) is a factor of 4a2, 4b2, and c6. Since c is odd, N(δ) is odd,
so N(δ) divides a2 and b2. The numbers a and b are relatively prime, so N(δ) = 1, and thus
δ is ±1 or ±i. This proves a+ bi and a− bi are relatively prime.

Because the product of a+ bi and a− bi is a perfect cube in Z[i], and these numbers are
relatively prime, unique factorization in Z[i] implies a + bi and a − bi are each cubes up
to multiplication by a unit. Say a + bi = uα3 where u ∈ {±1,±i}. However, every unit is
itself a cube: 1 = 13, −1 = (−1)3, i = (−i)3, and −i = i3. Therefore we can absorb the
unit factor into α3, so a + bi is in fact a perfect cube. Write a + bi = (m + ni)3 for some
integers m and n. Expanding the cube and equating real and imaginary parts, we get

(8.4) a = m3 − 3mn2, b = 3m2n− n3.

Any common factor of m and n would arise from these formulas as a common factor of a and
b, so (m,n) = 1. If m ≡ n mod 2 then the parametric formulas would imply a ≡ −2m3 ≡
0 mod 2 and b ≡ 2m3 ≡ 0 mod 2, but a and b are not both even. Thus m 6≡ n mod 2.
Moreover, c3 = (a+ bi)(a− bi) = (m+ ni)3(m− ni)3 = (m2 + n2)3, so c = m2 + n2.

Conversely, if (m,n) = 1 and m 6≡ n mod 2, then defining a and b by (8.4), and c =
m2 + n2, makes them satisfy a2 + b2 = c3 and a + bi = (m + ni)3. It is left as an exercise
for the reader to check (a, b) = 1.

That the choice of m and n is unique for a and b follows from a + bi = (m + ni)3: the
only cube root of unity in Z[i] is 1, so if m′, n′ work in (8.4) for the same a and b then
(m+ ni)3 = (m′ + n′i)3, which implies m+ ni = m′ + n′i, so m = m′ and n = n′. �
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The table below gives some solutions to a2 + b2 = c3 with (a, b) = 1.

m 1 2 4 7 9
n 0 1 3 2 5

a = m3 − 2mn2 1 2 −44 259 54
b = 3m2n− n3 0 11 117 286 1090
c = m2 + n2 1 5 25 53 106

Unlike a2 + b2 = c2, where every solution in integers is a multiple of a relatively prime
(primitive) solution of the same equation, integral solutions of a2 + b2 = c3 where (a, b) > 1
do not come from relatively prime solutions of the same equation because the exponents are
not all equal. For example, three solutions of a2 + b2 = c3 with (a, b) > 1 are (18, 26, 10),
(5, 10, 5), and (30, 10, 10). Divide through each triple by their greatest common divisor to
get (9, 13, 5), (1,2,1), and (3,1,1), and none of these satisfy a2 + b2 = c3. They satisfy new
equations: a2 + b2 = 2c3, a2 + b2 = 5c3, and a2 + b2 = 10c3, respectively.

The next application uses Z[i] to show a perfect square in Z never comes right before a
perfect cube, except for the pair 0 and 1.

Theorem 8.5. The only x, y ∈ Z satisfying y2 = x3 − 1 is (x, y) = (1, 0).

Although the cubes are spread out more thinly than the squares in Z, it is not obvious
why they couldn’t come within one of each other many times.

By the way, we know three examples where a cube precedes a square: −1 and 0, 0 and
1, and 8 and 9. However, this corresponds to the equation x3 = y2 − 1, which is not the
one we are studying.

Proof. The integer pair (x, y) = (1, 0) obviously fits the equation y2 = x3−1. We now show
it is the only integral solution.

Write the equation in the form
x3 = y2 + 1,

which has the factored form

(8.5) x3 = (y + i)(y − i).
The same idea as in the proof of Theorem 8.3 suggests itself: if the two factors on the right
side are relatively prime in Z[i], then since their product is a cube, each factor must be a
cube up to unit multiple, by unique factorization in Z[i]. Moreover, since every unit is a
cube (1 = 13, −1 = (−1)3, i = (−i)3, −i = i3), it can be absorbed into the cube. Thus,
provided we show y + i and y − i are relatively prime, (8.5) tells us y + i and y − i are
themselves cubes.

To see that y+ i and y− i are relatively prime, let δ be a common divisor. Then δ divides
their difference, so δ | 2i. As 2i = (1 + i)2, unique factorization in Z[i] tells us that δ is 1,
1 + i, or (1 + i)2 up to units.

If δ is not a unit, it is divisible by 1 + i, so (1 + i) | x3. Taking norms, 2 | x6, so x is even.
Then y2 + 1 = x3 ≡ 0 mod 4, so y2 ≡ −1 mod 4. But −1 mod 4 is not a square. We have a
contradiction, so δ is a unit.

Now that we know y+ i and y− i are relatively prime, we must have (as argued already)

y + i = (m+ ni)3

for some m,n ∈ Z. Expanding the cube and equating real and imaginary parts,

y = m3 − 3mn2 = m(m2 − 3n2), 1 = 3m2n− n3 = n(3m2 − n2).
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The equation on the right tells us n = ±1. If n = 1, then 1 = 3m2 − 1, so 3m2 = 2, which
has no integer solution. If n = −1, then 1 = −(3m2 − 1), so m = 0. Therefore y = 0, so
x3 = y2 + 1 = 1. Thus x = 1. �

Remark 8.6. Using Z[i], in 1850 V. A. Lebesgue showed for all d ≥ 2 that the equation
y2 = xd − 1 has no solution in nonzero integers x and y.

We end this section by returning to the theme connected to our first application: sums
of two squares. We saw that a prime is a sum of two squares in just one way. But other
numbers can be sums of two squares in more than one way, such as 50 and 65. We now use
arithmetic in Z[i] to systematically construct integers that are sums of two squares in more
than one way. Consider the factorizations of 5 and 13:

5 = (1 + 2i)(1− 2i), 13 = (2 + 3i)(2− 3i).

We can combine these factors in two ways:

5 · 13 = ((1 + 2i)(2 + 3i))((1− 2i)(2− 3i)) = ((1 + 2i)(2− 3i))((1− 2i)(2 + 3i)).

After some algebra, this becomes

65 = (−4 + 7i)(−4− 7i) = (8 + i)(8− i).

Thus

65 = 42 + 72 = 82 + 12.

Different representations of an integer as a sums of two squares in Z correspond to rear-
ranging prime factors in Z[i]!

As another example, using 5 = (1 + 2i)(1 − 2i) and 10 = (1 + 3i)(1 − 3i), we can write
down two different Gaussian integers with norm 50:

(1 + 2i)(1 + 3i) = −5 + 5i, (1 + 2i)(1− 3i) = 7− i.

Taking the norm, we find 50 = 52 + 52 = 12 + 72.
Let’s find an integer which is a sum of two squares in three different ways. We use the

primes 5, 13, and 17. In Z[i],

5 = (1 + 2i)(1− 2i), 13 = (2 + 3i)(2− 3i), 17 = (1 + 4i)(1− 4i).

Consider the following products:

(1 + 2i)(2 + 3i)(1 + 4i) = −32− 9i,

(1− 2i)(2 + 3i)(1 + 4i) = 12 + 31i,

(1 + 2i)(2− 3i)(1 + 4i) = 4 + 33i.

Their common norm is 5 · 13 · 17 = 1105, so

1105 = 92 + 322 = 122 + 312 = 42 + 332.

Pursuing this theme further, you can try your hand at systematically (i.e., without having
to guess) constructing integers which are a sum of two squares in four, five, or more different
ways.
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9. Primes in Z[i]

Theorem 6.3 gave a sufficient condition for a Gaussian integer to be prime: it has prime
norm. We saw also that this condition was not necessary: 3 is prime but its norm is 9,
which is not prime.

Our goal in this section is to classify the primes in Z[i]. We don’t mean this in an absolute
sense, but rather in terms of the primes in Z.

Lemma 9.1. Let π be a prime in Z[i]. For some prime p in Z+, π | p.

The point of this lemma is that it tells us we can get a handle on all Gaussian primes by
factoring every prime in Z+ in the Gaussian integers: each Gaussian prime is a factor of an
ordinary prime.

Proof. It is always the case that π divides some positive integer, namely its norm: N(π) =
ππ, so π | N(π) in Z. Since N(π) > 1, we write N(π) as a product of primes in Z+:

N(π) = p1p2 · · · pr.

Since π | N(π) in Z[i], and π is prime in Z[i], we must have π | pj for some j by Lemma
6.5. �

As noted already, this lemma tells us the prime factors in Z[i] of the primes in Z+ will
give us all Gaussian primes. Here are Gaussian prime factorizations of the first three prime
numbers:

2 = (1 + i)(1− i), 3 = 3, 5 = (1 + 2i)(1− 2i).

For instance, by unique factorization, any other Gaussian prime factor of 5 is a unit multiple
of 1 + 2i or 1− 2i, which gives one of the following numbers:

1 + 2i, −1− 2i, −2 + i, 2− i, 1− 2i, −1 + 2i, −2− i, 2 + i.

Up to unit multiple, these eight numbers are really just two numbers: 1 + 2i and 1− 2i.

Theorem 9.2. A prime p in Z+ is composite in Z[i] if and only if it is a sum of two
squares.

Thus, any prime p in Z+ which is not a sum of two squares is not composite in Z[i], so
it stays prime in Z[i]. Examples include 3, 7, 11, and 19.

Proof. If the prime p in Z+ is composite in Z[i], let a non-trivial factorization be p = αβ.
Then, taking norms, p2 = N(α) N(β). Since the factorization of p was nontrivial, and p > 0,
we must have N(α) = p. Then, writing α = a+ bi, the norm equation tells us p = a2 + b2.

Conversely, suppose a prime p in Z+ is a sum of two squares, say p = a2 + b2. Then in
Z[i] we get the non-trivial factorization

p = (a+ bi)(a− bi),

so p is composite in Z[i]. �

The first primes in Z+ which are sums of two squares are 2, 5, 13, 17, and 29:

2 = 12 + 12, 5 = 12 + 22, 13 = 22 + 32, 17 = 12 + 42, 29 = 22 + 52.

Therefore each of these prime numbers is composite in Z[i], e.g. 29 = (2 + 5i)(2 − 5i).
This is a Gaussian prime factorization, since the factors have prime norm (and thus are
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themselves prime in Z[i]). The factorization of 2 is special, since its prime factors are unit
multiples of each other: 1− i = −i(1 + i). In other words,

2 = −i(1 + i)2.

Corollary 9.3. If a prime p in Z+ is composite, and p 6= 2, then up to unit multiple p has
exactly two Gaussian prime factors, which are conjugate and have norm p.

Proof. By Theorem 9.2, when p is composite we have

p = a2 + b2 = (a+ bi)(a− bi)
for some a, b ∈ Z. Since a+ bi and a− bi have prime norm p, they are prime in Z[i]. Could
they be unit multiples? We consider all four ways this could happen and show each one
leads to a contradiction.

If a+bi = a−bi, then b = 0 and p = a2, which is a contradiction. If a+bi = −(a−bi), then
a = 0 and we get a contradiction again. If a+bi = i(a−bi), then b = a and p = a2+a2 = 2a2,
but p 6= 2. We have a contradiction. The final case, when a+ bi = −i(a− bi), again implies
the contradiction p = 2a2. �

Corollary 9.4. If a prime p in Z+ satisfies p ≡ 3 mod 4, then it is not a sum of two
squares in Z and it stays prime in Z[i].

Proof. Once we show p is not a sum of two squares in Z, it is prime in Z[i] by Theorem 9.2.
We consider the squares modulo 4: the only squares are 0 and 1. Adding them together

modulo 4 gives us 0 (= 0 + 0), 1(= 1 + 0 or 0 + 1), and 2(= 1 + 1). We can’t get 3, so any
number which is ≡ 3 mod 4 is not a sum of two squares in Z. �

We now know how 2 factors into Gaussian primes and how any prime p in Z+ with
p ≡ 3 mod 4 factors in Z[i] (it doesn’t factor). What about the primes p ≡ 1 mod 4?
The first such primes are 5, 13, 17, and 29. These are primes we saw earlier among the
sums of two squares, so they are all composite in Z[i] by Theorem 9.2 and they factor into
conjugate Gaussian primes by Theorem 9.3. Is every prime p ≡ 1 mod 4 a sum of two
squares? Numerical evidence suggests it is true, so we make the

Conjecture 9.5. For a prime p in Z+, the following conditions are equivalent:

(1) p = 2 or p ≡ 1 mod 4,
(2) p = a2 + b2 for some a, b ∈ Z.

The easier condition to check in practice is (1). The more interesting condition, at least
from the viewpoint of ordinary arithmetic, is (2). It is easy to see that (2) implies (1): if
p = a2 + b2 for some a and b, then p mod 4 is a sum of two squares. The squares mod 4 are
0 and 1, so a sum of two squares mod 4 could be 0, 1, or 2. Therefore p ≡ 0, 1, 2 mod 4.
The first choice is impossible (since p is prime) and the third only happens for p = 2. (This
argument may look familiar. You already met it in the proof of Corollary 9.4.)

What about the proof that (1) implies (2) (which is the more interesting direction any-
way)? It turns out to be convenient to insert an additional property in between them,
involving a polynomial modulo p.

Theorem 9.6. Let p be a prime in Z+. The following conditions are equivalent:

(1) p = 2 or p ≡ 1 mod 4,
(2) the congruence x2 ≡ −1 mod p has a solution.
(3) p = a2 + b2 for some a, b ∈ Z.
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Proof. We have already shown (3) implies (1).
To show (1) implies (2), we may take p 6= 2. Consider the polynomial factorization

(9.1) T p−1 − 1 = (T (p−1)/2 − 1)(T (p−1)/2 + 1)

with mod p coefficients. We are going to count roots of these polynomials modulo p. Recall
that a polynomial of degree d has no more than d roots modulo p.

By Fermat’s little theorem, the left side of (9.1) has p−1 different roots modulo p, namely
the non-zero integers modulo p. The first polynomial on the right side of (9.1) has degree
(p − 1)/2, so it has at most (p − 1)/2 roots modulo p. Therefore the second polynomial

T (p−1)/2 + 1 must have roots modulo p: some integer c satisfies c(p−1)/2 ≡ −1 mod p. Since
p ≡ 1 mod 4, (p − 1)/2 is an even integer: if p = 4k + 1 then (p − 1)/2 = 2k. Therefore
(ck)2 ≡ −1 mod p, which proves (2).

To show (2) implies (3), we are going to show (2) implies p is composite in Z[i]. Then
Theorem 9.2 says p is a sum of two squares.

View the congruence in (2) as a divisibility relation in Z. When x2 ≡ −1 mod p for some
x ∈ Z, p | (x2 + 1) in Z. Now consider this divisibility in Z[i], where we can factor x2 + 1:

(9.2) p | (x+ i)(x− i).

To show p is composite in Z[i], we argue by contradiction. If p is a Gaussian prime, then
by (9.2) p | (x + i) or p | (x − i) in Z[i]. Therefore some Gaussian integer m + ni satisfies
p(m+ni) = x± i, but look at the imaginary part: pn = ±1. This is impossible! We have a
contradiction, which proves p is composite in Z[i], so p is a sum of two squares by Theorem
9.2. �

Be sure you make note of the way we used the condition p ≡ 1 mod 4 in the proof that
(1) implies (2).

We can now summarize the factorization of primes in Z+ into Gaussian prime factors.

Theorem 9.7. Let p be a prime in Z+. The factorization of p in Z[i] is determined by
p mod 4 :

i) 2 = (1 + i)(1− i) = −i(1 + i)2.
ii) If p ≡ 1 mod 4 then p = ππ is a product of two conjugate primes π, π which are not

unit multiples.
iii) If p ≡ 3 mod 4 then p stays prime in Z[i].

Proof. Part i is a numerical check. Part ii is a consequence of Corollary 9.3 and Theorem
9.6. Part iii is Corollary 9.4. �

Example 9.8. The prime 61 satisfies 61 ≡ 1 mod 4, so 61 has two conjugate Gaussian
prime factors, coming from an expression of 61 as a sum of two squares. Since 61 = 52 + 62,
61 = (5 + 6i)(5− 6i).

Combining the factorizations in Theorem 9.7 with Lemma 9.1, we now have a description
of all the Gaussian primes in terms of the primes in Z+.

Theorem 9.9. Every prime in Z[i] is a unit multiple of the following primes:
i) 1 + i
ii) π or π, where N(π) = p is a prime in Z+ which is ≡ 1 mod 4.
iii) p, where p is a prime in Z+ with p ≡ 3 mod 4.
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Proof. Lemma 9.1 tells us any Gaussian prime is a factor of a prime in Z+. Theorem 9.7
and unique factorization in Z[i] tell us how the primes in Z+ factor in Z[i] up to unit
multiple. �

The Gaussian primes in parts i and ii of Theorem 9.9 have prime norm in Z, while
the primes occurring in part iii have norm p2, where p ≡ 3 mod 4. Moreover, when p ≡
3 mod 4, its unit multiples in Z[i] are ±p and ±ip, which have real or imaginary part 0.
Thus, although the converse to Theorem 6.3 is not strictly true, we see it is true for the
“interesting” Gaussian integers, namely the ones with non-zero real and imaginary part:
write α = a + bi and suppose a and b are both non-zero in Z. Then α is prime in Z[i] if
and only if N(α) is prime in Z!

Our classification of Gaussian primes tells us that a Gaussian prime has norm either p
or p2, where p is the prime in Z+ which the Gaussian prime divides. In particular, any
Gaussian prime other than 1+i (and its unit multiples) has an odd norm. Thus, a Gaussian
integer which is not divisible by 1+i must have a norm which is odd, so any Gaussian integer
with an even norm must be divisible by 1 + i. This is something we already checked, using
simple algebra, back in Corollary 2.5. But now we understand why it is true from a higher
point of view, in connection with unique factorization in Z[i]: Corollary 2.5 is true because
every Gaussian integer with norm greater than 1 is a product of Gaussian primes and 1 + i
is the only Gaussian prime up to unit multiple with even norm.

As an application of Theorem 9.7, we now classify all the positive integers which are sums
of two squares.

Theorem 9.10. An integer greater than 1 is a sum of two squares exactly when any prime
factor which is ≡ 3 mod 4 occurs with even multiplicity.

Proof. First we show any integer having even multiplicity at its prime factors which are
≡ 3 mod 4 can be written as a sum of two squares.

We know sums of two squares are closed under multiplication (view them as norms of
Gaussian integers and use multiplicativity of the norm). Any prime p ≡ 1 mod 4 is a sum
of two squares by Theorem 9.6, as is 2. While a prime p ≡ 3 mod 4 is not a sum of two
squares, any even power of it is (since an even power is itself a square). Therefore a product
of 2, primes ≡ 1 mod 4, and even powers of primes ≡ 3 mod 4 is a sum of two squares.

Now we treat the converse direction: any n > 1 which is a sum of two squares has even
multiplicity at any prime factor which is ≡ 3 mod 4. We argue by induction on n. The
result is true when n = 2, as 2 is a sum of two squares and it has no prime factors that are
≡ 3 mod 4.

Assume n ≥ 3, n is a sum of two squares, and the theorem has been checked for sums of
two squares greater than 1 and less than n. If n has no prime factors which are ≡ 3 mod 4,
then there is nothing to prove. Thus, we may assume n has a prime factor p with p ≡
3 mod 4. Write n = a2 + b2, so p | (a2 + b2) in Z. In Z[i], we write this as

(9.3) p | (a+ bi)(a− bi).
Since p ≡ 3 mod 4, it is prime in Z[i]. Therefore from (9.3) we know p | (a+bi) or p | (a−bi)
in Z[i]. Both cases imply p | a and p | b in Z. (Why?) Write a = pa′ and b = pb′ for integers
a′ and b′. Then

n = p2(a′2 + b′2).

If n = p2 we are done, so we may suppose n > p2. The integer n′ = n/p2 = a′2 + b′2 is a
sum of two squares and it is greater than 1 and less than n. By our inductive hypothesis,
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every prime factor of n′ which is ≡ 3 mod 4 has even multiplicity. Since the only difference
between n and n′ is the even power p2, we conclude that every prime factor of n which is
≡ 3 mod 4 has even multiplicity. That ends the inductive step. �

Example 9.11. The number 35 = 5 · 7 has a prime factor which is ≡ 3 mod 4, namely 7.
This factor appears with multiplicity 1, so 35 is not a sum of two squares. Neither is 5k · 7`
for any odd exponent ` > 0. But 5 · 72 = 245 is a sum of two squares: 245 = 72 + 142.

Theorem 9.10 describes the sums of two squares in terms of a condition on the prime
factors which are ≡ 3 mod 4. In particular, applying the condition in the theorem to decide
whether n is a sum of two squares requires that we factor n.
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