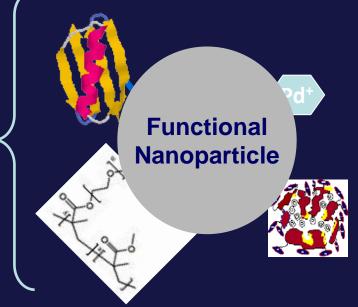
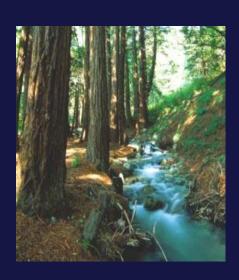

The GoodNanoGuide A new tool for collaboration on workplace safety

Kristen M. Kulinowski, PhD | kk@rice.edu

Center for Biological & Environmental Nanotechnology


Research

Education


Outreach

Theme 1:
Nanoscience at the
Wet/Dry Interface

Theme 3: Nanoparticles & Environmental Engineering

International Council on Nanotechnology

INCLUSIVE

GLOBAL

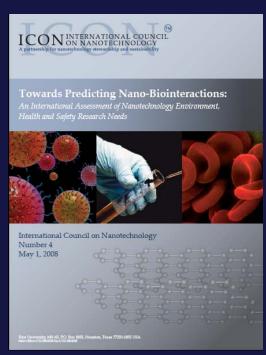
Multistakeholder cooperation

International perspective

TECHNICAL

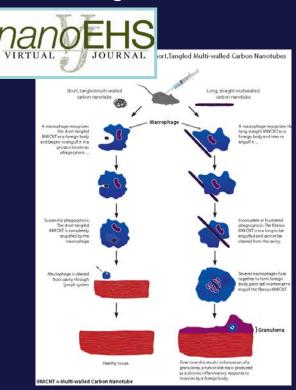
PROACTIVE

Grounded in science


Stewards for sustainability

Developing and communicating information regarding potential environmental and health risks of nanotechnology to foster risk reduction and maximize societal benefit.

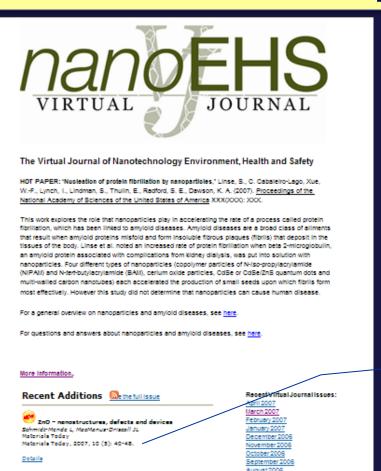
ICON is Information...



Survey

Reports

Knowledge Base



Backgrounders

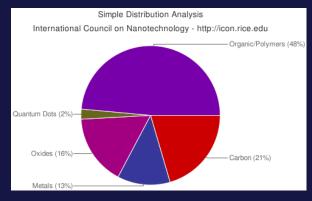
Virtual Journal of NanoEHS

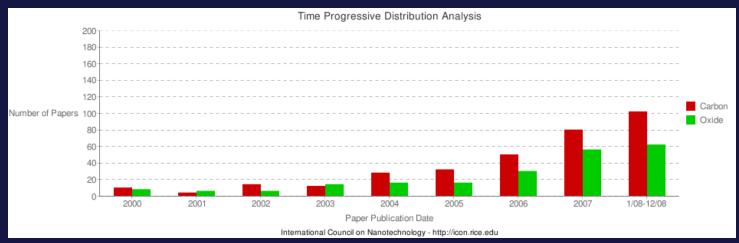
Database of citations to peer-reviewed nanoEHS papers

Other Issue:

♥ Go

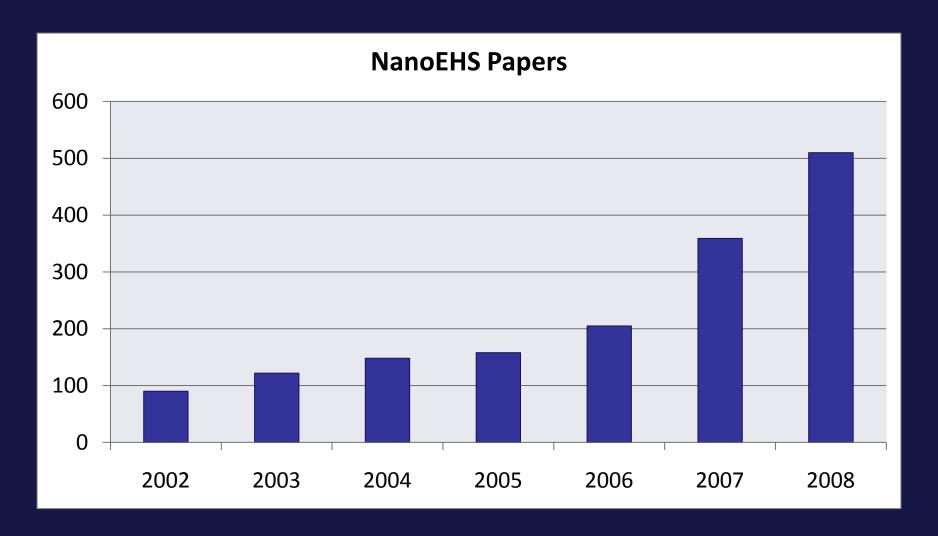
- Monthly updates
- Over 3500 records
- Backgrounders on key literature

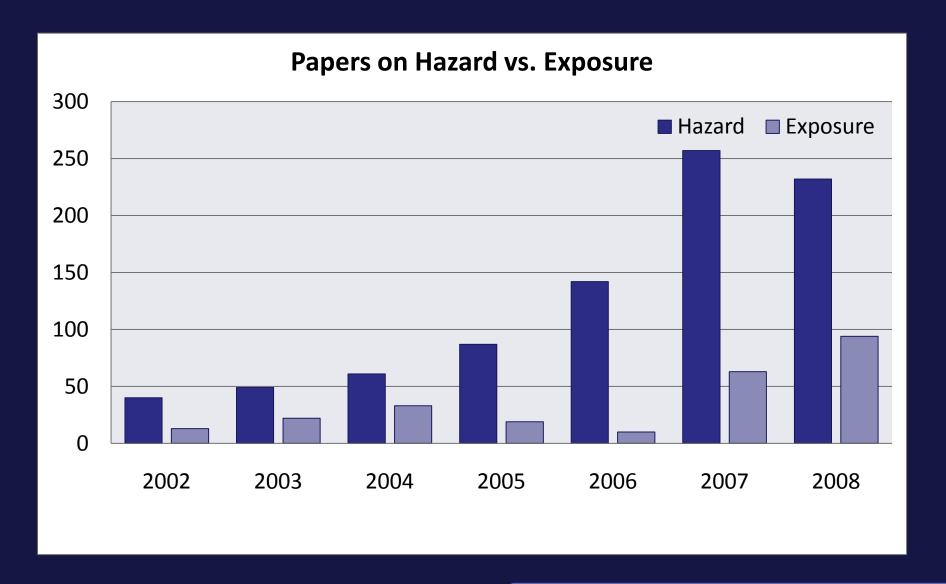

★★★★ [out of five]
"This paper makes a major contribution to the literature ..."

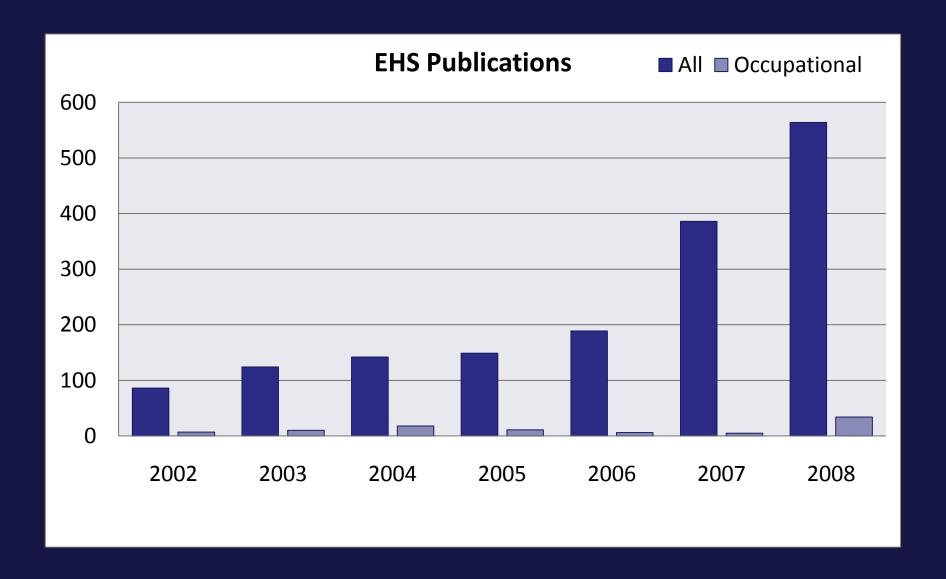

http://icon.rice.edu/virtualjournal.cfm

Analyze the NanoEHS Research

Enabling real-time analyses of the NanoEHS literature


- Track trends
- Generate custom reports
- Hyperlinked publication list
- Flash animation tutorial

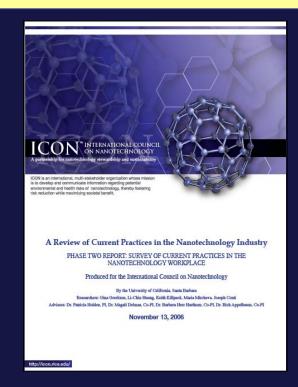



EHS Publication Pace is Increasing

Hazard Data Outstrip Exposure Data

Occupational Research Limited

Key Questions for People Working with Nanomaterials


- What are you doing now?
- What do you need to know to do the best job?
- Where are you going for information?

Workers: Survey of Current Handling Practices

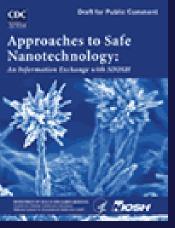
First comprehensive, international survey of handling practices in the nanotech workplace

Key findings

- Nano-specific EHS programs and training are widely reported
- Actual practices do not depart from conventional chemical safety practices
- Active interest in additional information
- Main impediment: Lack of information and guidance

http://tinyurl.com/ICONSurvey

Environ. Sci. Technol. 2008, 42, 3155-3162

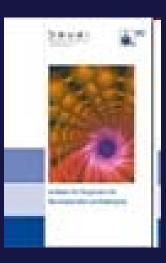

Some Resources for Handling Nano

US

DOE NSRC

NIOSH

Canada



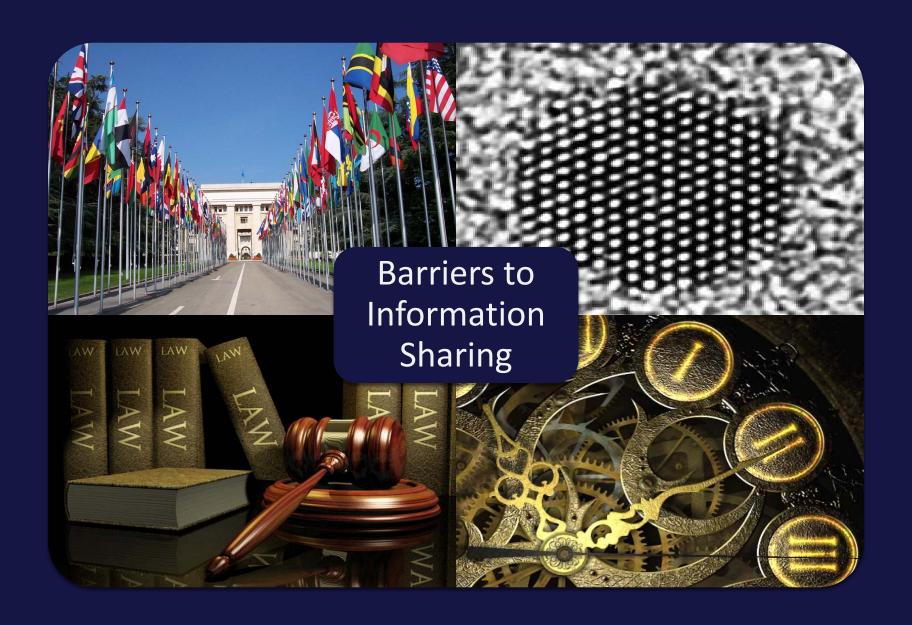
IRSST

Europe

NanoSafe2

BAUA

E2535-07


ISO/TR 12885

PD 6699-2:2007

Common Messages

- Nanomaterial behavior may differ from that of non-nanoscale analogs
- Some nanomaterials may pose health risks if exposure is present
- Hazard and exposure data do not yet provide a clear picture of risk

MINIMIZING EXPOSURE IS PRUDENT

How do we get

<u>Timely</u>

<u>Practical</u>

High-quality

information out

to ALL the target populations?

The GoodNanoGuide

Start Here

Start Here

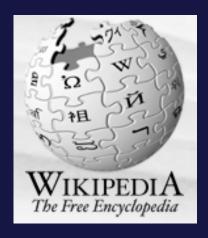
My Preferences

- Protected Internet site on occupational practices for the safe handling of nanomaterials
- Multiple stakeholders contribute, share and discuss information
- Modern, interactive, up-to-date
- Launched 1 June 2009

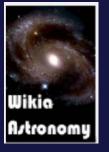
http://GoodNanoGuide.org

Start Here

What is a Wiki?


A Wiki is central, shared repository of online information

Anyone can edit the pages


Editing is easy and requires no special tools

Formatting is simple

Changes are easily tracked

Why a Wiki for Nano Handling Practices?

Features	Guidance Document	Research Paper	Wiki Entry
Describes a specific practice	No	Maybe	YES
Written by practitioners	Maybe	Maybe	YES
Written for practitioners	Maybe	No	YES
Engages global community	No	Maybe	YES
Provides a forum for dialog	No	No	YES
Easily accessed	YES	No	YES

Interacting with the GoodNanoGuide

No Registration Required

Register as a Community Member

Register as an Expert Provider

Implementation Committee

Mr. Bruce Stockmeier Argonne National Lab

Dr. Kristen Kulinowski Rice University

Gary Albach nanoAlberta

Dr. Paul-Émile Boileau IRSST

Mr. Steve Brown Intel

Ms. Ilise Feitshans International Labour Organization

Dr. Charles Geraci NIOSH

Dr. Steve Hankin SafeNano

Dr. Mark Hoover NIOSH

Mr. Matthew Jaffe Crowell & Moring

Mr. Victor Jones NanoTechBC

Contribute & Edit using Familiar Tools

Search

Go

My Tools

My Preferences

My Watches

Drafts Needing Approval

File Galleries

Statistics

General Statistics

Referer Statistics

Content

Current News

Nomenclature & Glossary

OHS Reference Manual

Recent Changes

Workspace

Access Workspace

Modify Workspace

ONIO Essentia

Edit: Ventilation Preferences

Use normal editor

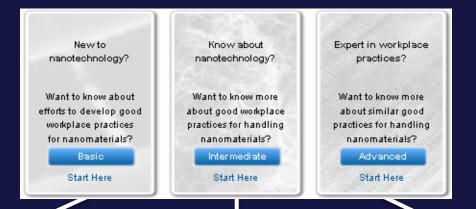
①You are editing the approved copy of this page. Are you sure you do not want to edit the staging copy instead?

Note: This edit session will expire in 24 minutes. **Preview** or **Save** your work to restart the edit session timer.

Format text

Symbols

Hyperlink _


Insert picture or flash

"Conduct any work that could generate engineered nanoparticles in an enclosure that operates at a negative pressure differential compared to the worker's breathing zone. Examples of such enclosure include gloveboxes, glove bags, and laboratory bench-top or floor-mounted chemical hoods. In som cases, the air reactivity of precursor materials may make it unsafe to perate in a negative pressure glovebox and a positive pressures box may be used if it has passed a helium leak test. If a process subset of a process) cannot be enclosed, then use other engineered systems to control fugitive emissions of nanomaterials or hazardous precursors that might be released. For example, use a local exhaust system like a "snorkel hood."

- Do not exhaust effluent air reasonably suspected to contain engineered nanoparticles whose hazards are not well understood. Whenever practical, filter it or otherwise clean (scrub) it befo release.
- HEPA filtration appears to effectively remove nanoparticles from air, at least to particles as

How Content is Organized

Basic

- Introduction to Nanotechnology
- Nomenclature and Glossary

Intermediate

 OHS Reference Manual

Expert

- Expert Matrix
- Specific Protocols

OHS Reference Manual

OHS Reference Manual

The GoodNanoGuide provides both environmental, health and safety ("EHS") Protocols and an EHS Reference Manual. The EHS Reference Manual outlines the approaches taken by professionals using research about nanomaterials and other precedents to develop appropriate protocols and guidelines. The Manual is open for edit and comment and is organized into six sections sequenced to conform with general industrial processes employed by professionals who investigate risks and develop protocols for mitigating risks:

<u>Section I - A Well-Defined Description of Work</u> - This is the important description of the specific work and EHS environment.

Section II - Identify Hazard - This requires use of the main concepts of nanomaterial physico-chemical characteristics, toxicology, ecotoxicology, and hazard classifications and EHS concepts to inform the consideration of the materials and factors that may constitute potential exposure and EHS risk from nanomaterials.

<u>Section III - Assess Potential Exposures</u> - This analysis of the range of locations, types of person(s) and exposure routes allows the professional to recommend practices for qualitative and quantitative exposure assessment.

<u>Section IV - Develop Risk Management Plan</u> - This deals with the elements of the Plan based on the principles of controlling and managing exposure and how to apply good EHS and control practices.

<u>Section V - Verify Control Measures</u> - Key to any EHS process is the need for the tools to evaluate the exposures, effectiveness of control measures and verification of procedures.

<u>Section VI - Periodically Re-Evaluate Good Practices</u> - Outlines the rationale for periodic reviews of the EHS protocols and exposure risks to allow for amendments and quality improvement over time.

II. Identify Hazard

- Physicochemical Characteristics
 - Particle Size and Size Distribution
 - Surface Area
 - Surface Chemistry or Activity.
 - Other Physicochemical Characteristics
- Toxicity Characteristics
- Ecotoxicity Characteristics
- Hazard Class Assignment
- Hazard Communication Plan

Intermediate

OHS Expert Matrix

Nanoparticles — Dry Powder Liquid Solid Polymer Nonpolymer in: Matrix Matrix

Assessment should

- Look at the form of the nanoparticle
- Consider the entire process

Nanoparticles in:	Dry Powder	Liquid Dispersion	Solid Polymer Matrix	Nonpolymer Matrix		
First Step: Identify	Potential Hazard	<u>Potential</u> <u>Hazard</u>	<u>Potential</u> <u>Hazard</u>	Potential Hazar		
Second and Third Steps: Risk Assessment and Management						
Material Unpacking	Exposure Potential	Exposure Potential	Exposure Potential	Exposure Potential		
	Controls	Controls	<u>Controls</u>	<u>Controls</u>		
Synthesis	Exposure Potential	Exposure Potential				
	Controls	Controls				
Weighing and Measuring	Exposure Potential	Exposure Potential	Exposure Potential	Exposure Potential		
	Controls	Controls	Controls	Controls		
Dispersing	Exposure Potential	Exposure Potential				
	Controls	Controls				
Mixing	Exposure Potential	Exposure Potential				
	Controls	Controls				
Spraying	Exposure Potential	Exposure Potential	Exposure Potential	Exposure Potential		
	Controls	Controls	Controls	Controls		
Machining	Exposure Potential	Exposure Potential	Exposure Potential	Exposure Potential		
	Controls	Controls	Controls	Controls		
Packing	Exposure Potential	Exposure Potential	Exposure Potential?	Exposure Potential <u>?</u>		
	Controls	Controls	Controls	Controls		
Process Equipment Cleaning	Exposure Potential?	Exposure Potential <u>?</u>	Exposure Potential <u>?</u>	Exposure Potential <u>?</u>		
	Controls	Controls	Controls	Controls		
Workspace Cleaning	Exposure Potential	Exposure Potential	Exposure Potential	Exposure Potential		
	Controls	Controls	Controls	Controls		
Spill Cleanup	Exposure Potential	Exposure Potential	Exposure Potential	Exposure Potential		
	Controls	Controls	Controls	Controls		
Waste Management	Exposure Potential?	Exposure Potential?	Exposure Potential?	Exposure Potential?		
	Controls	Controls	Controls	Controls		
	Environmental Procedures	Environmental Procedures	Environmental Procedures	Environmental Procedures		
Reasonably Foreseeable Emergencies	Exposure Potential	Exposure Potential	Exposure Potential	Exposure Potential		
	Controls	Controls	Controls	Controls		
	Environmental Procedures	Environmental Procedures	Environmental Procedures	Environmental Procedures		

Please click here to access the OHS Reference Manual

Expert

Conclusions

- Nanomaterials pose many complex challenges to the occupational safety professional
- There are good resources out there already
- New knowledge is evolving rapidly and from many corners of the globe

Let's pool our knowledge for the benefit of all

GoodNanoGuide Sponsors

Now available at http://goodnanoguide.org

