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1 Introduction

The Rubik’s Cube is a familiar toy that has embedded itself into popular cul-
ture since its invention in 1974 by Ernő Rubik. It is especially popular among
mathematicians, for good reason. In this paper, we will investigate some of
the interesting mathematical structure underlying the Rubik’s Cube, which was
documented by David Joyner in his book, Adventures in Group Theory [Joy].

Let us consider a standard Rubik’s cube, unmarked, 3×3×3 Rubik’s Cube.
Furthermore, we will imagine that we fix the center facets of the cube, so that
we do not need to consider the three-dimensional rotational symmetry of the
Rubik’s Cube. We can then scramble and unscramble the cube in the traditional
sense through a sequence of cube moves.

Definition 1.1 A cube move is the rotation of a particular face in the clock-
wise direction by 90◦.

We will refer to these cube moves using the Singmaster notation. We write
the set of cube moves as {F,B,U,D,R,L}, where the cube move F rotates the
“front” face, B rotates the opposing “back” face, U rotates the “top” face, D
rotates the opposing “bottom” face, R rotates the “right” face, and L rotates
the opposing “left” face.

Figure 1: Applying the cube move F .
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Definition 1.2 A legal position of a standard Rubik’s Cube is any permu-
tation of the Rubik’s Cube that can be reached from the solved Rubik’s Cube
through a sequence of cube moves.

It follows from the definition that the set of legal positions is generated by
the six cube moves. Furthermore, it turns out that the set of legal positions of
a standard Rubik’s Cube forms a group. This is because we can identify a legal
position with a sequence of cube moves. However, since different sequences of
cube moves may result in the same legal position, we see that there will be many
group relations.

Theorem 1.3 The set of legal positions of a Rubik’s Cube forms a group G,
with the operation on legal positions being the concatenation of corresponding
sequences of cube moves. We will call this group G the Rubik’s Cube Group.

With this identification and the given group operation, it is simple to verify
that the axioms of closure and associativity are satisfied. The identity element
is the solved Rubik’s Cube, which corresponds to the empty sequence of cube
moves.

Furthermore, we expect that any legal position has an inverse, because there
are algorithms for solving a Rubik’s Cube. This is true, since each cube move
has an inverse. For every cube move C, we have that C4 = Id, hence C3 = C−1.
Therefore, every legal position has an inverse as well, since the cube moves gen-
erate the legal positions. If we have a sequence of cube moves C1C2 · · ·Cn−1Cn
corresponding to a legal position, the inverse of that legal position corresponds
to the sequence of cube moves C−1n C−1n−1 · · ·C

−1
2 C−11 .

We also note that G is not abelian, since FR 6= RF .

Figure 2: FR, left, versus RF , right.

2 The order of G

It is natural to ask how large the group G is, or equivalently, how many legal
positions there are. One would hope that G is finite, and we will see that it is.
In fact, its order can be calculated by purely combinatorial means.

To see that G is finite, we note that we can view G as a subgroup of the
permutations of the facets of the Rubik’s Cube. The Rubik’s Cube has 6 faces,
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with 9 facets each, for a total of 54 facets. Of these facets, because we have fixed
the 6 center facets, there are 48 facets that can be permuted. Therefore, we can
embed G as a subgroup of S48 by mapping the cube moves {F,B,U,D,R,L}
according to how they permute the facets.

However, it is clear that not all permutations of the facets are possible due
to the physical constraints of the cube. For example, we cannot swap a facet on
an edge block with a facet on a corner block. We also do not allow ourselves to
“swap the stickers” on the cube, so if a facet on a single block is permuted, the
other facets on the same block must also be permuted accordingly.

Furthermore, not all permutations that respect this physical constraint are
possible. If the Rubik’s Cube is disassembled and then reassembled, we will see
that the probability of obtaining a solvable Rubik’s Cube (in other words, an
element of G) is only 1 in 12. For example, if we take a solved Rubik’s Cube,
and we flip the orientation of a single edge block, it becomes impossible to solve
the cube through the cube moves.

Figure 3: Two Rubik’s Cubes that are not legal positions.

Before we calculate the order of the group G, let us simply consider how
large it is:

|G| = 8!12! ∗ 210 ∗ 37 = 227 ∗ 314 ∗ 53 ∗ 72 ∗ 11 = 43252003274489856000

There are over 43 quintillion legal positions of the cube. The original packaging
of the Rubik’s Cube stated that “there were more than three billion possible
states the cube could attain”. While they were technically correct, Douglas
Hofstadter compared this claim as being analagous to “McDonald’s proudly
announcing that they’ve sold more than 120 hamburgers” [Pa].

To calculate the order of G, we observe that if we disassemble and reassemble
the Rubik’s Cube, there are 8 corner blocks, and 12 edge blocks, and we can
permute them independently of each other. We can place each corner block
in 3 different orientations, and we can place each edge block in 2 different
orientations. So there are at most (8!) ∗ (12!) ∗ 38 ∗ 212 elements in G. But this
is an overestimate by a factor of twelve.

To observe this, we first note that the permutation of blocks after applying
a cube move has even parity. Since every legal position is generated by the cube
moves, every legal position corresponds to an even permutation of the blocks.
Therefore, only half of the full set of assemblies are valid. Physically, this shows
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that we cannot interchange a single pair of blocks. However, we can swap two
pairs of edge blocks, two pairs of corner blocks, a pair of corner blocks and
a pair of edge blocks, or cycle three blocks of the same kind. Note that these
interchanges are exactly those used in the PLL algorithm for solving the Rubik’s
Cube.

There are also restrictions on the orientations of the edge blocks and on the
orientation of the corner blocks. For each edge block position, we assign a vector
parallel or anti-parallel to the edge that borders no other blocks.

This collection of vectors determines the orientations of the edge blocks in
the following way. We assign this collection of vectors to the edge blocks in the
solved Rubik’s cube. Then, given a sequence of cube moves corresponding to a
legal position, we can track how the vectors are permuted by the sequence of
cube moves.

Definition 2.1 A given edge block has negative orientation if its correspond-
ing vector is anti-parallel to the vector assigned to the position occupied by the
given edge block. Otherwise, it has positive orientation.

Given a collection of vectors, for at least one cube move, the orientation
of edge blocks of the corresponding face is non-trivially permuted by the cube
move. In fact, given an orientation on the cube, each cube move flips the ori-
entation of exactly zero, two, or four edge blocks of the corresponding face.
As a corollary, it is impossible to flip the orientation of a single block. There-
fore, of the assemblies of even parity, only half will have the proper edge block
orientation.

In an analogous way, we can assign a collection of vectors to the corner
blocks, which determines the orientation of the corner blocks. It turns out that
a cube move twists the orientation of corner blocks so that only a third of the
remaining assemblies are valid [Che], [Da]. Therefore, out of the initial set of
assemblies of the Rubik’s Cube, only one in twelve are actually obtainable from
the cube moves. Therefore, we have determined the order of G by counting:
|G| = 8!12! ∗ 210 ∗ 37.

3 The Structure of G

It turns out that G has a special kind of group structure. It is an example of a
semi-direct product of groups, which is a generalization of the direct product of
groups.

Definition 3.1 We say a group H is an (inner) semi-direct product if it has
subgroups N,K such that the following conditions hold:

1. N E H

2. H = NK = {nk|n ∈ N, k ∈ K}

3. N ∩K = {IdH}
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Then we write H = N oK. Clearly, direct products are examples of inner
semi-direct products. However, unlike the direct product, the subgroups N,K
do not uniquely specify N oK.

Example 3.2 Both Z6 and S3 can be written as Z3 o Z2.
Since the direct product is an example of an inner semi-direct product, and

since gcd(2, 3) = 1, we have that

Z6
∼= Z3 × Z2 = Z3 o Z2

Now let us consider the following subgroups of S3, N = 〈(123)〉 ∼= Z3 and
K = 〈(12)〉 ∼= Z2. Since [S3 : N ] = 2, we have that N E S3. Furthermore, it is
easy to see that S3 = NK and N ∩K = {IdS3

}. Therefore,

S3 = N oK = Z3 o Z2

However, if we are given a map Φ : K → AutN sending k 7→ Φk, such that
(nk)(n′k′) = (nΦk(n′))(kk′), then N , K, and Φ define H up to isomorphism.
For our purposes, the map Φ : K → AutN is a conjugation action: Φk(n) =
knk−1.

To see that G has the semi-product structure, let us consider the following
subgroups of G. Let GO be the subgroup of legal positions that fix the blocks
but permute their orientations. And let GP be the subgroup of legal positions
that fix the orientations but permute the blocks. It is useful to construct these
subgroups explicitly in terms of sequences of cube moves, and we can do so in
the following way.

Definition 3.3 The normal closure of a subset A of a group H, NCl(A), is
the intersection of all normal subgroups in H that contain A.

NCl(A) =
⋂

A⊆N,NEH

N

It follows that NCl(A) is a normal subgroup of H.
We can write GO as the normal closure of the following two sequences of

cube moves, where the former flips the orientation of adjacent edge blocks, and
the latter twists the orientation of opposite corner blocks.

{BR−1D2RB−1U2BR−1D2RB−1U2, RUDB2U2B−1UBUB2D−1R−1U−1}

We can also write GP as the subgroup generated by the following sequences
of cube moves, where the last sequence of cube moves cyclically permutes three
edge blocks.

{U2, D2, F,B,R2, L2, R2U−1FB−1R2F−1BU−1R2}

It is clear that GO ∩ GP = IdG, since the only legal position resulting from a
sequence of cube moves that fixes both the blocks and their orientations is the
solved cube.
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Furthermore, GO is normal in G. This follows from the construction of GO
as the normal closure of a subset. However, we can also see that GO is normal
in G in the following way. If we have an element n ∈ GO, and an element g ∈ G,
then the sequence of cube moves gng−1 is in GO. This is because g will permute
the blocks, n will fix the blocks, and g−1 will undo the permutation of g, and
so gng−1 fixes the blocks.

To see that G = GOGP , which would therefore show that G = GO o GP ,
we look at the sizes and structures of the two subgroups.

We claim that GO = Z7
3×Z11

2 , where Znm is the direct product of n copies of
Zm. This follows from our earlier investigation: We can twist each corner block
independently in three ways, but because of the restriction on the orientation
of corner blocks, the orientation of the last corner is determined by the other
seven. Similarly, we can flip the edge blocks independently in two ways, but
again, the orientation of the last is determined by the first eleven. And because
the orientation of edges is independent of the orientation of corners, GO has the
above structure.

We claim that GP = (A8 × A12) o Z2. We note that the group of even
permutations of only edge blocks (A8) and of the group of even permutations of
only corner blocks (A12) are both normal in GP . Therefore, their (inner) direct
product, A8 ×A12, is also normal in GP .

We note that the subgroup generated by a single permutation that swaps a
pair of edge blocks and a pair of corner blocks is isomorphic to Z2. It acts on
A8 ×A12 by conjugation by the permutation.

The intersection of the subgroups of GP is again equivalent to the solved
cube. Furthermore, any permutation of blocks that fixes orientations can be
generated by conjugating a permutation in A8 × A12 by the permutation that
generates Z2. Therefore , GP has the above structure.

Examining the orders, |GO| = 37 ∗ 211, and |GP | = ( 8!
2 )( 12!

2 ) ∗ 2, so the
order of GOGP is 8!12! ∗ 210 ∗ 37 = |G|. So we see that G does indeed have the
semi-direct product structure:

G = (Z7
3 × Z11

2 ) o ((A8 ×A12) o Z2)

4 Generalizations

In our analysis of the Rubik’s Cube Group, we restricted our attention to a
standard, unmarked, 3 × 3 × 3 cube with fixed centers, and we looked only
at the legal positions of the Rubik’s Cube. However, we can generalize our
observations in a variety of ways.

What if we considered a Rubik’s Cube with markings, and without fixing
the centers? You may have noticed that unlike a standard Rubik’s Cube, a
specially made Rubik’s Cube with a picture or some other kind or marking is
more difficult to solve because the orientations of the center facet must now
be accounted for. A Rubik’s Cube with markings would then have the group
structure:

Z6
4 ×

(
(Z7

3 × Z11
2 ) o ((A8 ×A12) o Z2)

)
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What if, instead of considering the legal positions, we consider the possible
positions obtained from disassembling and reassembling the cube, or in other
words, permuting the blocks freely? We saw that the order of this set of positions
was 12 ∗ |G|, and it turns out that this set of positions has a group structure
as well, where the operation is the concatenation of the permutations of the
blocks. This group also has a special structure: namely, it is the direct product

Z6
4 × (Z3 o S8)× (Z2 o S12)

Where A o H is the unrestricted wreath product of A and H, which is a
special construction of a semi-direct product. In particular, the wreath product
Zm o Sn is known as the generalized symmetric group S(m,n). In this case, the
structure of Zm o Sn = Znm o Sn, and we have the action Φ : Sn → AutZnm that
sends σ 7→

(
(z1, z2, . . . zn) 7→ (zσ(1), zσ(2), . . . zσ(n))

)
[Joy].

In the case of the group of the free permutation of the blocks, we can view
Z6
4 as the permutations of the center facets, Z3 o S8 as the permutations of the

corner blocks, and Z2 o S12 as the permutations of the edge blocks, all three of
which are independent of each other.

Other interesting generalizations to consider are the n×n×n Rubik’s Cubes,
or other similar mechanical puzzles such as the Skewb, Magic Dodecahedron,
and even 4-D puzzles such as the Magic 120-Cell, or the Magic Cube 4D (a
4× 4× 4× 4 puzzle). Joyner’s book [Joy] has given some partial results on the
group structure of these puzzles. The underlying structure of 2D mechanical
puzzles, also known as sliding puzzles, have been studied as well. An example
is the well-known 15 puzzle, which has a groupoid structure [Jo].

These underlying structures provide interesting natural examples to investi-
gate, and can lead to developing efficient algorithms for solving these puzzles.
Furthermore, it seems possible to proceed in the reverse direction as well: given
a group G, one might try to construct a puzzle or toy that has G as its natural
underlying structure.
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