The Growing Demand for High Vis PAO within Asia

Tony Qian Customer Technical Service and Market Development Scientist INEOS Singapore

> INEOS Oligomers

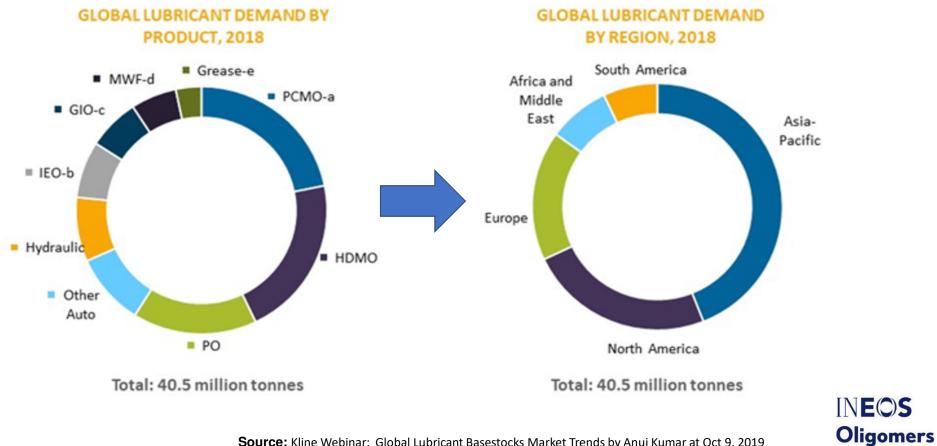
The Growing Demand for High Vis PAO Synthetics within Asia

PAO General information

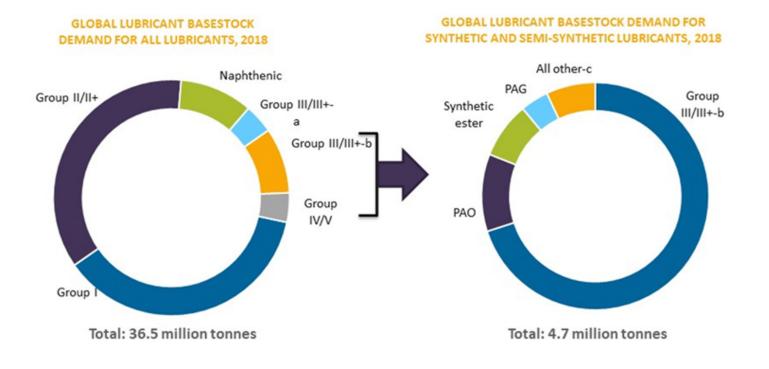
High Vis PAO Applications

Compressor Oil

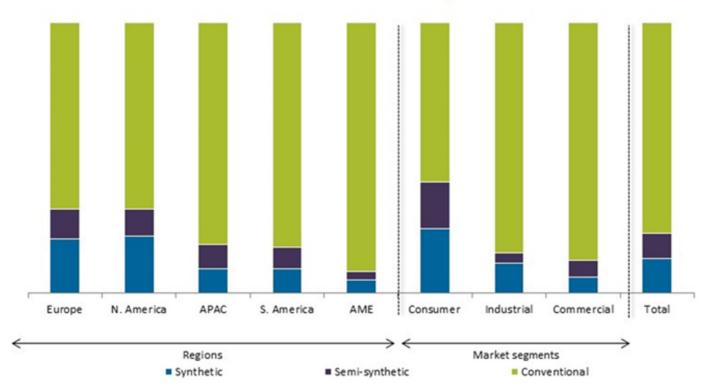
Industrial Gear Oil & Wind Turbine Oil


Ineos New PAO Project

INEOS Oligomers



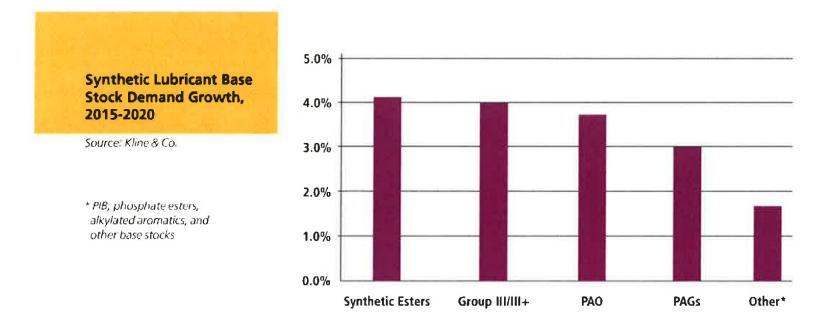
Kline estimates that global finished lubricant demand at 40.5 million tons in 2018


Source: Kline Webinar: Global Lubricant Basestocks Market Trends by Anuj Kumar at Oct 9, 2019

Kline estimates global base stock demand at 36.5 million tons in 2018; Synthetic and semi-synthetics represent 13% of this total.

Source: Kline Webinar: Global Lubricant Basestocks Market Trends by Anuj Kumar at Oct 9, 2019

PENETRATION OF SYNTHETIC AND SEMI-SYNTHETIC LUBRICANTS BY REGION AND PRODUCTS, 2018


INEOS Oligomers

Source: Kline Webinar: Global Lubricant Basestocks Market Trends by Anuj Kumar at Oct 9, 2019

Synthetic Lube Market Edges Up- George Gill

Lubes 'N Greases MENA, February 2017

The main PAO drivers are OEM technical demand, emission and fuel economy regulations, extended oil drain intervals, and so on.

<u>Hi Vis PAO Segments</u>

High Vis PAOs represent a small part of the total PAO market, and it work as viscosity builders for finished lubricants in the ISO 22 to ISO 460 range.

Before High Vis PAOs were only available in two viscosity grades, 40 cSt and 100 cSt.

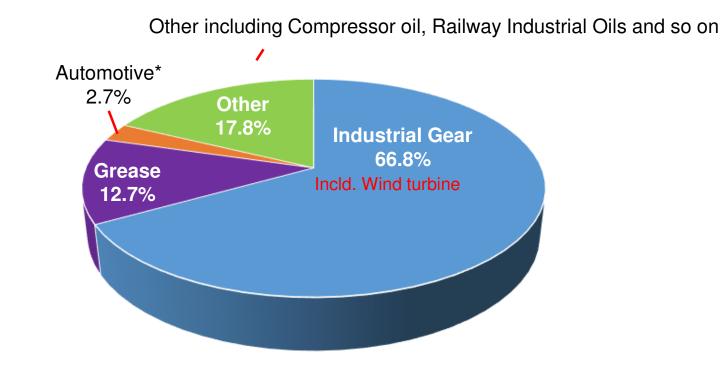
However, with the new metallocene catalyst technology, it is now feasible to manufacture 1,000 cSt and above.

The key market for High Vis PAOs is industrial lubricants.

High Vis PAO Market Segments

Lubricants

- -Industrial Gear, Grease, Compressor
- -Transportation Gear, Manual transmission
- -Wind Turbine Gear, Grease


Cable Compound Fiber optic compounds

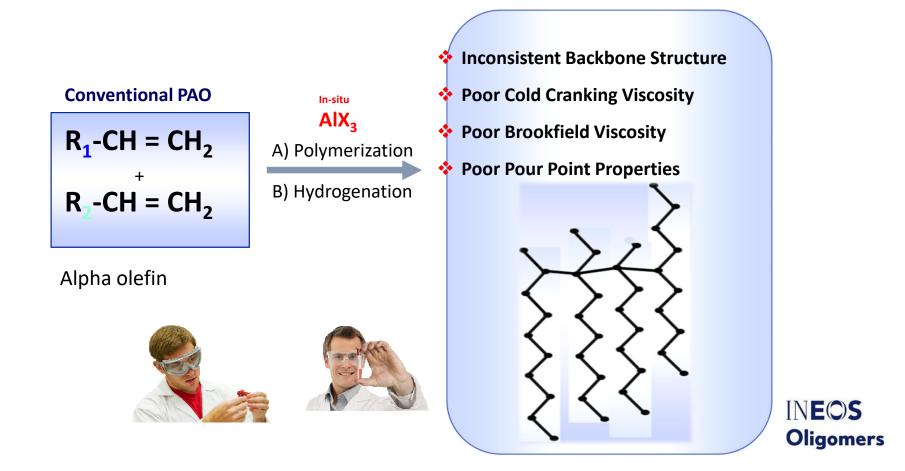
Other

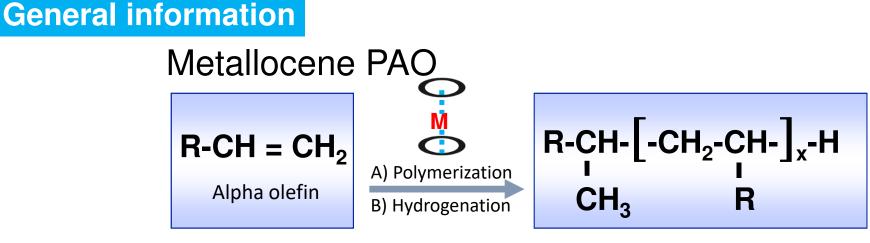
Cosmetics, polymer modification

INEOS Oligomers **High Vis PAO Applications**

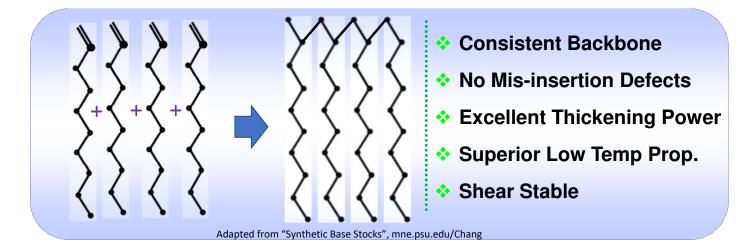
Asian High Vis PAO Segmentation by Application

*Automotive includes Continuous Variable Transmission Oils


Advanced mPAO 10 Base Fluid


Metallocene technology can be used to produce decene-based 10 mm²/s PAOs with excellent low temperature performance

	Conventional PAO10 Typical Properties	New Metallocene Decene-based PAO 10
K. Viscosity @ 100°C	9.6	10.6
K. Viscosity @ 40°C	62.9	64.6
K. Viscosity @ -40°C	32,650	21,870
Viscosity Index	132	155
Pour Point, °C	-45	-63
Noack Volatility	3.5	3.3
Flash Point, °C	250	263


INEOS Oligomers

Conventional High Vis PAOs

Hydrogenated oligomers

Wind Turbine On Car Wetal 1 1 1 1 1 **High Vis PAO Applications**

Where & Why are synthetic High Vis PAO used

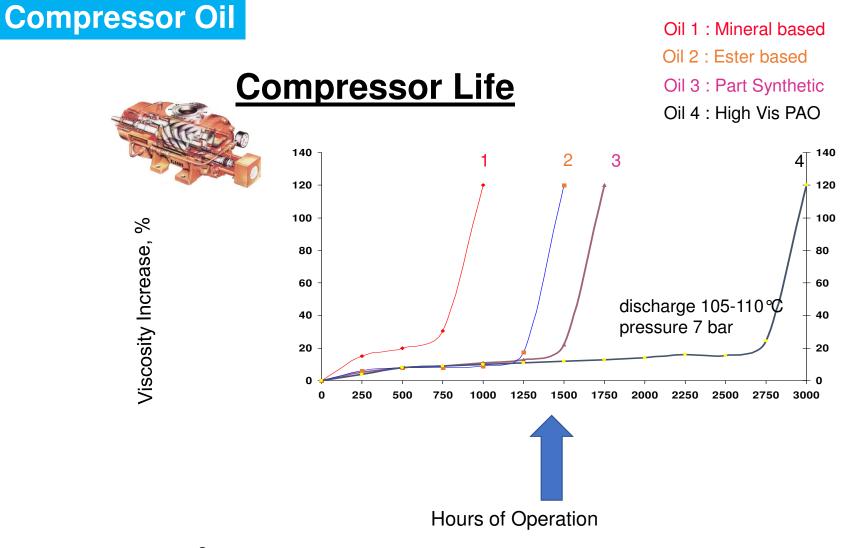
Convevo

- Higher load/Pressure
- Longer shelf life
- Better demulsification
- Better anti-oxidant performance
- Better lower temperature fluidity
- Better high temperature lubrication_

High Vis PAO Applications

Mining Industry

Heavy...... Hot...... Cold...... Dust...... Rain...... Snow......Less maintenance......Long shelf life......



 As a general rule, mineral-based compressor lubricants require oil changes after 500-1,000 hours of service, while synthetic lubricants can be used in continuous operation in excess of 8,000 – 10,000 hours of service

Source: International Lubricants Week Moscow 11 – 14 Nov 2014

Synthetic Compressor Oils

10,000-Hour Cost Comparison of PAO vs Mineral Rotary Screw Compressor Lubricants

Advantages of PAO Synthetic Compressor Oils

- 1) Longer oil life (8,000 10,000 hours)
- 2) Low rates of deposit formation
- 3) Wide operating temperature range
- 4) Improved chemical resistance
- 5) Excellent Viscosity Index properties
- 6) Higher flash and fire point (higher auto-ignition temp

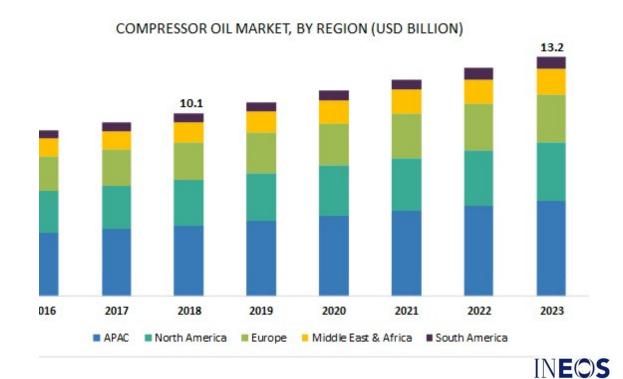
INEOS

Oligomers

	PAO-Based Fluid	Mineral Oil
Initial Fill (gal)	60	60
Fluid or Oil Makeup (gal)	15	85
Mineral Oil Changes (9), (gal)		540
PAO Fluid Changes (0), (gal)		
Total (gal)	75	625
Cost per (gal), \$	\$20/gal	\$4/gal
Total Cost of Lubricant. \$	1,500.00	2,500.00
Replacement Filters	2	10
Cost of (1) Replacement Filter	\$30.00	\$30.00
Total Filter Cost, \$	\$60.00	\$300.00
Oil Change Labor Cost	\$40.00	\$400.00
TOTAL COST	\$3,200.00	\$6,400.00
Savings from PAO Fluid, \$	\$3,200	
% Savings with PAO Fluid	50%	

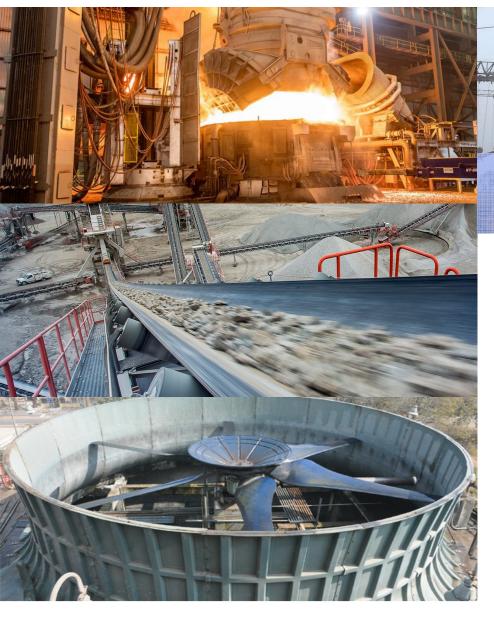
<u>Savings</u>

- ✓ Improve overall efficiency
- ✓ Increased stability @ low/high temperature
- ✓ Decreased operating temperature
- ✓ Decreased foaming tendency
- ✓ Decreased lubricant consumption
- ✓ Better wear control
- \checkmark Decreased working hours on equipment
- ✓ Decreased global maintenance costs
- ✓ Improved reliability



Source: International Lubricants Week Moscow 11 – 14 Nov 2014

Compressor Oil Market Trends


A&P is projected to be the largest market due to:

- High growth of the manufacturing industries
- High growth of the construction industries
- High demand from the countries such China and India.

Oligomers

Source: Markets and Markets, Compressor oil market by base oil-Global Forecast 2016 to 2023

bonence avage of

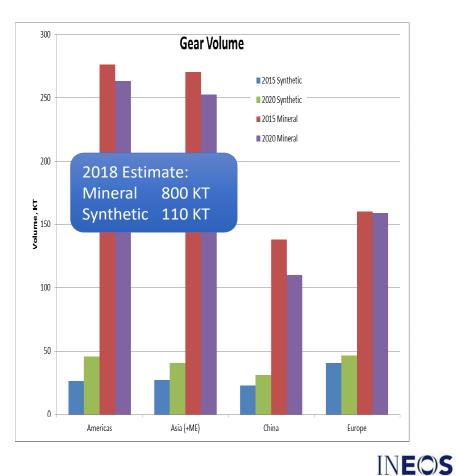
Applications include, but not limited to:

 Heavily loaded gear	 Power plant gear
boxes in steel mills	drives
 Conveyor drives 	 Rubber mill gear reducers
 Cooling tower fan	 Chemical plant
drives	reactor gear drives
 Hoist gear boxes 	 Cold ambient outdoor gear drives
 Paper mill gear	 Wire forming gear
drives	drives

Oligomers

Typical Industrial Gear Oil Formulations

	ISO VG 220	ISO VG 320
	PAO Formulation	PAO Formulation
Base Oil A	PAO40	PAO40
	>70%	60-80%
Base Oil B	PAO8	PAO100
	>10%	10-20%
Compatibilizer	Ester 10-20%	Ester 10-20%
Additives	2-5%	2-5%
KV40 (cSt)	223.4	321.0
KV100 (cSt)	26.1	34.8
Viscosity Index	149	153
Pour Point, °C	-39	-42
Brookfield -26°C	40,000	72,000
(mPa•s)		


Source: http://gearsolutions.com/features/a-new-class-of-industrial-gear-oil/

Gear fluid formulations categorized by application:

- Enclosed
- Open

Gear oils fluids find application across a wide range of industrial end-use sectors. These include:

% Gear in Market		Main Type	
Automotive	9	Enclosed	
Machinery Manufacturing	7	Enclosed	
Electrical/Power Gen	8	Enclosed	
Primary Metals	16	Enclosed / Open	
Mining	16	En des ed / Onen	
Mining	10	Enclosed / Open	
Fabricated metals	7	Enclosed / Open Enclosed	
U	7 4	, ,	
Fabricated metals	7	Enclosed	
Fabricated metals Oil & Gas	7 4	Enclosed Enclosed	

Oligomers

Source: Kline 2011

Industrial Gear Oil Future Challenges

- Smaller gearbox size
 - Higher efficiency and higher temperature
 - Smaller oil tank
- More cost concern
 - Longer oil drain interval
 - **Better** filtration requirement
 - Condition monitoring
- Gearbox supplier trend
 - More China gearbox suppliers
 - Industry integration (ZF and Bosch Rexroth)

Types of Gears

Spur Gear

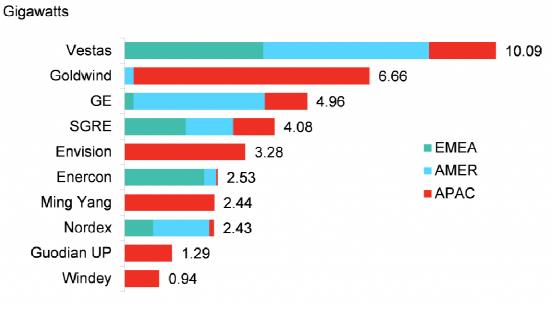
Spiral Bevel Gear

Miter Gear Straight Bevel Gear

Rack and Pinion

2

Wind Turbine


Typical PAO Containing ISO 320 Wind

Turbine Oil

PAO 100	65
PAO 8	25
Ester	10
Additive Package	Not specified
Kinematic Viscosity @ 40°C	318.3
Kinematic Viscosity @ 100 ℃	35.91
Kinematic Viscosity @ -10 °C	10,947
Viscosity Index	160
Pour Point	-48 ℃
Brookfield Viscosity @-26°C	64,000
KRL Shear Stability 100 Hr	0.7%
FZG 192 HR	1.5

Source: Michael Müller, Evonik Industries analysis

The Top 10 Global Onshore Wind Turbine Makers of 2018

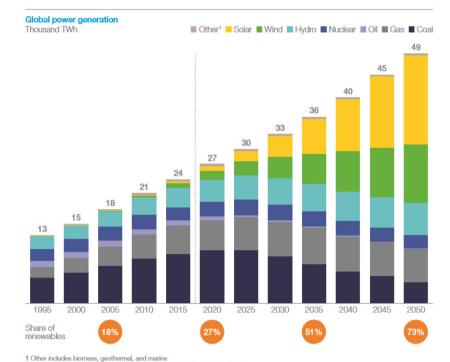
Source: BloombergNEF (BNEF)

PAOs Save Money in Wind Turbines

Typical 1.5 MW Wind turbine operating 7,000 hrs/yr for 20 years; Oil Volume = 400L (Larger turbines require more oil)

	Mineral	PAO
Oil Change Interval	14,000 hr	28,000 hr
Oil changes in 20 years	9	4
Oil Consumed	3,600 L	1,600 L
Total Oil Cost	14,000€	13,600€
	4 € /L	8.5 € /L
Power Loss Cost	189,000€	170,000€
Oil Change Cost (300 € /per)	2,700€	1,200€
Total (with Oil Cost)	206,100€	184,900€
Relative Savin <u>gs</u>		- <u>21,200</u> €

Oligomers


Source: Wilfred Bartz, www.swisstribology.ch/documents/bartz.pdf

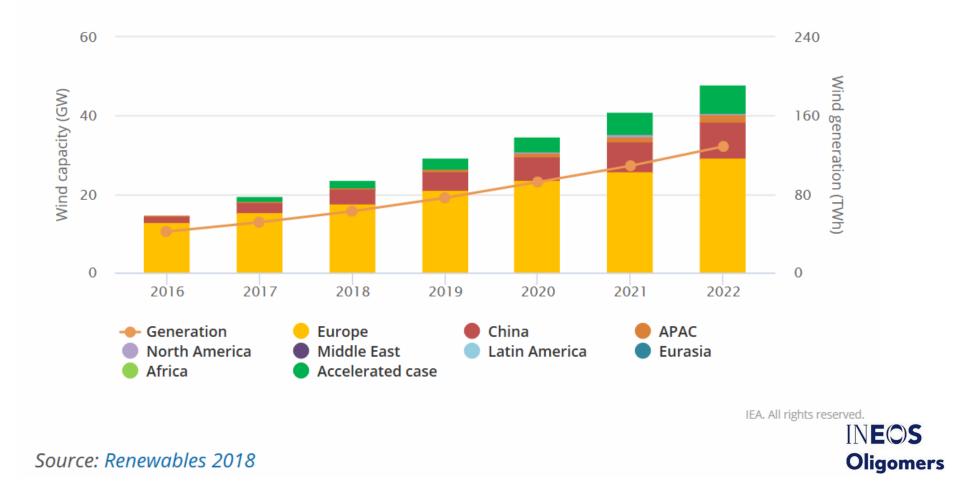
Wind Turbine Capacity Trends

China accounted for 45% of global growth and its consumption has increased 20-fold in the last 10 years. Wind has accounted for around 50% of renewables generation in the last few years.

Renewable generation accounts for more than 50% of power supply post-2035, a clear trend break from historical fossil fuel-based generation


- The role of renewable resources in power generation grows at an accelerated pace. From around 25% today, renewables will grow their share of global generation to around 50% by 2035 and to close to 75% by mid-century
- Coal and oil generation decrease rapidly, partially substituted by renewables, partially by gas-based alternatives with lower cost or lower carbon emissions
- Gas generation often remains to act as a stable baseload and dispatchable capacity provider in a renewable-heavy system but does see a peak around 2035

Source: McKinsey Energy Insights' Global Energy Perspective, January 2019

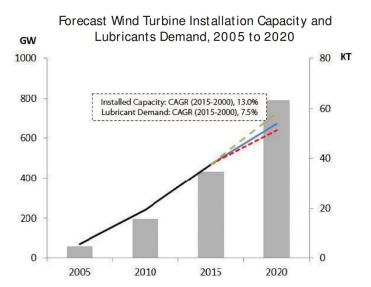

Onshore wind generation and cumulative capacity by region, 2016-2022

Oligomers

Source: Renewables 2018

Offshore wind generation and cumulative capacity by region, 2016-2022

Wind Turbine Oil Future Trends


In 2015, between 35 and 40 KT of various lubricants were used in wind turbines. Gear lubricants accounted for 70% of the total and those contained about 65% HiVis PAO. Therefore the estimated HiVis PAO requirement in Wind Turbine was 15.9 to 18.2 KT in 2015.

The 2020 Wind Turbine lubricant demand is estimated to be between 51 and 65 KT, requiring about 23.2 to 42.2 KT of HiVis PAO.

2015			
	GEAR	PAO	HiVis PAO
MT	at 70%	at 80%	at 65%
35,000	24500	19600	15925
40,000	28000	22400	18200

2020			
	GEAR	PAO	HiVis PAO
MT	at 70%	at 80%	at 65%
51,000	35700	28560	23205
65,000	45500	52000	42250

Source: "Positive outlook for wind turbine lubricants", Sushmita Dutta, Kline Consulting as reported in Tribology & Lubrication technology, February 2017

INE(C)S

Oligomers

Future Challenge-WT Gearbox Lubrication Challenges

		Key Lubricant Formulation		
Industry/ OEM Challenge	Impact to Lubricant	Parameter	PAO Advantage	
Weight restrictions on gear box:				
•	Creates environment			
	susceptible to micro-pitting	Micro pitting protection: Gear and	Better lubrication and	
• case hardening of gears	and wear	bearing protection	lower friction factor	
Demand for extended oil drain intervals:	· Demands oil performance	Oxidative stability/Viscos Foam and		
	·		Better oxidative stability	
		Filterability		
	Creates environment for water		Better	
	-		demulsification/foaming	
Off-shore wind turbines	degradeability	and corrosion protection	and biodegradeability	
	Requires stable operation of			
		Viscos/Low Temperature	Lower pour point and	
00		•	High Vis index INE)
Source: ExxonMobile Wind Turbine Gea			Oligo	

Ineos New PAO Project

INEOS PRESS RELEASE 03 June 2019

This June, INEOS Group announced an agreement to build its first ever petrochemicals complex in the Middle East. The complex will be built in Jubail, Kingdom of Saudi Arabia (KSA) and include world scale plants for: **Linear Alpha Olefin (LAO)** and **Polyalphaolefin (PAO)**. This complex will be located adjacent to a new world-scale cracker, to be constructed by Saudi ARAMCO and TOTAL, which will supply olefin feedstock to the INEOS units.

> INEOS Oligomers