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The classical harmonic oscillator is a rich and interesting dynamical system. It is one of
those few problems that are important to all branches of physics. It allows us to under-
stand many kinds of oscillations in complex systems. The harmonic oscillator provides a
useful model for a variety of vibrational phenomena that are encountered, for instance, in
classical mechanics, electrodynamics, statistical mechanics, solid state, atomic, nuclear,
and particle physics. In quantum mechanics, it serves as an invaluable tool to illustrate
the basic concepts and the formalism.
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1 The Hamiltonian

The total energy E of a particle of mass m moving in one dimension under the action of
a restoring force F = −kx (k > 0) is usually written as

E =
1

2
mv2 +

1

2
kx2 =

p2

2m
+

1

2
mω2x2. (1)

Here ω =
√
k/m is angular frequency of the oscillation. The Hamiltonian of the one-

dimensional harmonic potential is therefore given by

Ĥ =
p̂2

2m
+

1

2
mω2x̂2. (2)

The harmonic oscillator potential in here is

V (x̂) =
1

2
mω2x̂2. (3)

The problem is how to find the energy eigenvalues and eigenstates of this Hamiltonian.
This problem can be studied by means of two separate methods. The first method, called
the analytic method, consists in solving the time-independent Schrödinger equation for
the Hamiltonian (2). The second method, called the ladder or algebraic method, does
not deal with solving the Schrödinger equation, but deals instead with operator algebra
involving operators known as the creation and annihilation or ladder operators. We shall
discuss the second method, for it is more straightforward, more elegant and much simpler
than solving the Schrdinger equation.

2 Factorizing the Hamiltonian

To proceed we rewrite the Hamiltonian (2) as

Ĥ =
1

2
mω2

(
x̂2 +

p̂2

m2ω2

)
. (4)

The expression in the parenthesis is the sum of two squares. Motivated by the identity
a2 + b2 = (a− ib)(a + ib), holding for numbers a and b, we examine if the expression in
the parenthesis can be written as a product(

x̂− ip̂

mω

)(
x̂+

ip̂

mω

)
= x̂2 +

p̂2

m2ω2
+

i

mω
(x̂p̂− p̂x̂)

= x̂2 +
p̂2

m2ω2
+

i

mω
[x̂, p̂]

= x̂2 +
p̂2

m2ω2
− }
mω

, (5)

where the extra terms arise because x̂ and p̂ do not commute, opposite to numbers. We
now define the right-most factor in the above product to be Â:

Â = x̂+
ip̂

mω
. (6)
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Since x̂ and p̂ are Hermitian operators, we have the Hermitian conjugate of Â as

Â† = x̂− ip̂

mω
, (7)

and this is the left-most factor in the product! We can therefore rewrite (5) as

x̂2 +
p̂2

m2ω2
= Â†Â+

}
mω

, (8)

Therefore, in terms of Â†Â we rewrite the Hamiltonian (2) as

Ĥ =
1

2
mω2Â†Â+

1

2
}ω. (9)

This is a factorized form of the Hamiltonian: up to an additive constant E0, Ĥ is the
product of a positive constant times the operator product Â†Â. We note that the com-
mutator of Â and Â† is

[Â, Â†] =

[
x̂+

ip̂

mω
, x̂− ip̂

mω

]
= − i

mω
[x̂, p̂] +

i

mω
[p̂, x̂] =

2}
mω

(10)

This implies that [√
mω

2}
Â,

√
mω

2}
Â†
]

= 1 (11)

suggesting the definition of unit-free operators â and â†:

â ≡
√
mω

2}
Â,

â† ≡
√
mω

2}
Â†.

(12)

Therefore, due to the scaling we have

[â, â†] = 1. (13)

The operator â is called annihilation operator and â† is called a creation operator. The
justification for these names will be seen soon. From the above definitions we read the
relations of â and â† with x̂ and p̂:

â =

√
mω

2}

(
x̂+

ip̂

mω

)
,

â† =

√
mω

2}

(
x̂− ip̂

mω

)
.

(14)
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The inverse relations are useful as well:

x̂ =

√
}

2mω

(
â+ â†

)
,

p̂ =
1

i

√
mω}

2

(
â− â†

)
.

(15)

While neither â nor â† is hermitian (they are hermitian conjugates of each other), the
above equations are consistent with the hermiticity of x̂ and p̂. We can now write the
Hamiltonian in terms of the â and â† operators. Using (12) we have

ÂÂ† =
2}
mω

ââ†, (16)

and therefore from (9) we get

Ĥ = }ω
(
â†â+

1

2

)
= }ω

(
N̂ +

1

2

)
, N̂ ≡ â†â. (17)

The above form of the Hamiltonian is factorized: up to an additive constant Ĥ is the
product of a positive constant times the operator product â†â. In here we have dropped
the identity operator, which is usually understood. We have also introduced the number
operator N̂ . This is, by construction, a hermitian operator and it is, up to a scale and
an additive constant, equal to the Hamiltonian. An eigenstate of Ĥ is also an eigenstate
of N̂ and it follows from the above relation that the respective eigenvalues E and N are
related by

E = }ω
(
N +

1

2

)
. (18)

3 The ground state

On any state ψ that is normalized we have

〈Ĥ〉ψ = (ψ, Ĥψ) = }ω(ψ, â†âψ) +
1

2
}ω(ψ, ψ), (19)

and moving the â† to the first ψ, we get

〈Ĥ〉ψ = }ω(âψ, âψ) +
1

2
}ω ≥ 1

2
}ω. (20)

The inequality follows because any expression of the form (ψ, ψ) is greater than or equal
to zero. This shows that for any energy eigenstate with energy E such that Ĥψ = Eψ,
we have

E ≥ 1

2
}ω. (21)
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This important result about the spectrum followed directly from the factorization of the
Hamiltonian. But we also get the information required to find the ground state wave
function. The minimum energy 1

2
}ω will be realized for a state ψ if the term (âψ, âψ)

in (20) vanishes. For this to vanish âψ must vanish. Therefore, the ground state wave
function ψ0 must satisfy

âψ0 = 0. (22)

The operator â annihilates the ground state and this why â is called the annihilation
operator. Using the definition of â in (14) and the position space representation of p̂,
this becomes (

x̂+
i

mω

}
i

d

dx

)
ψ0(x) = 0

or, (
x̂+

}
mω

d

dx

)
ψ0(x) = 0. (23)

Remarkably, this is a first order differential equation for the ground state. Not a second
order equation, like the Schrödinger equation that determines the general energy eigen-
states. This is a dramatic simplification afforded by the factorization of the Hamiltonian
into a product of first-order differential operators. The above equation is rearranged as

dψ0

dx
= −mω

}
xψ0. (24)

Solving the differential equation yields

ψ0(x) =
(mω
π}

) 1
4
e−

mω
2} x2 , (25)

where we included a normalization constant to guarantee that (ψ0, ψ0) = 1. Note that
ψ0 is indeed an energy eigenstate with energy E0:

Ĥψ0 = }ω
(
â†â+

1

2

)
ψ0 =

1

2
}ωψ0 → E0 =

1

2
}ω. (26)

4 Operator manipulation

We have seen that all energy eigenstates are eigenstates of the Hermitian number operator
N̂ = â†â. This is because Ĥ = }ω(N̂ + 1

2
). Note that since âψ0 = 0 we also have

N̂ψ0 = â†âψ0 = 0. (27)

Thus ψ0 is an eigenstate of the operator N̂ with an eigenvalue N = 0. Therefore ψ0 is
an energy eigenstate with energy E0 given by

E0 = }ω
(

0 +
1

2

)
=

1

2
}ω, (28)
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which we have already shown in (26).

We can quickly check that

[N̂ , â] = [â†â, â] = [â†, â]â = −â,

[N̂ , â†] = [â†â, â†] = â†[â, â†] = â†.

(29)

Similarly we can show

[N̂ , â2] = [N̂ , ââ] = [N̂ , â]â+ â[N̂ , â] = −ââ+ â(−â) = −2â2,

[N̂ , (â†)2] = [N̂ , â†â†] = [N̂ , â†]â† + â†[N̂ , â†] = â†â† + â†â† = 2(â†)2.

(30)

and also

[N̂ , (â)3] = −3(â)3,

[N̂ , (â†)3] = 3(â†)3.

(31)

Using these identities and induction you should be able to show that:

[N̂ , (â)k] = −k(â)k,

[N̂ , (â†)k] = k(â†)k.

(32)

These relations suggest why N̂ is called the number operator. Acting on powers of
creation or annihilation operators by commutation it gives the same object multiplied by
(plus or minus) the number of creation or annihilation operators, k in the above. Closely
related commutators are also useful:

[â†, (â)k] = −k(â)k−1,

[â, (â†)k] = k(â†)k−1.
(33)

These commutators are analogous to [p̂, (x̂)k] and [x̂, (p̂)k]. We will also make use of the
following Lemma which helps in evaluations where we have an operator Â that kills a
state ψ and we aim to simplify the action of âB̂, where B̂ is another operator, acting on
ψ.

If Âψ = 0, then ÂB̂ψ = [Â, B̂]ψ (34)

This is easily proved. First note that

ÂB̂ = [Â, B̂] + B̂Â, (35)

as can be quickly checked expanding the right-hand side. It then follows that

ÂB̂ψ = ([Â, B̂] + B̂Â)ψ = [Â, B̂]ψ, (36)

because B̂Âψ = B̂(Âψ) = 0. This is what we wanted to show. This is all we need to
know about commutators and we can now proceed to construct the states of the harmonic
oscillator.
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5 Excited states

Since â annihilates ψ0 consider acting on the ground state with â†. It is clear that â†

cannot also annihilate ψ0. If that would happen then acting with both sides of the
commutator identity [â, â†] = 1 on ψ0 would lead to a contradiction: the left-hand side
would vanish but the right-hand side would not. Thus consider the wave function

ψ1 ≡ â†ψ0. (37)

We are going to show that this is an energy eigenstate. For this purpose we act on it
with the number operator:

N̂ψ1 = N̂ â†ψ0 = [N̂ , â†]ψ0, (38)

where we used the fact that N̂ψ0 = 0 and Lemma (34). Given that [N̂ , â†] = â†, we get

N̂ψ1 = â†ψ0 = ψ1. (39)

Thus ψ1 is an eigenstate of the operator N̂ with eigenvalue N = 1. Since the eigenvalue
of the operator N̂ for the state ψ0 is zero, the effect of acting â† on ψ0 was to increase
the eigenvalue of the number operator by one unit. The operator â† is called the creation
operator because it creates a state out of the ground state. Alternatively, it is called the
raising operator, because it raises (by one unit) the eigenvalue of N̂ . Since N = 1 for ψ1

it follows that ψ1 is an energy eigenstate with energy E1 given by

E1 = }ω
(

1 +
1

2

)
=

3

2
}ω. (40)

It also turns out that ψ1 is properly normalized:

(ψ1, ψ1) = (â†ψ0, â
†ψ0) = (ψ0, ââ

†ψ0), (41)

where we used the Hermitian conjugation property to move the â† acting on the left
input into the right input, where it goes as (â†)† = â. We then have

(ψ1, ψ1) = (ψ0, ââ
†ψ0) = (ψ0, [â, â†]ψ0) = (ψ0, ψ0) = 1, (42)

where we used (34) in the evaluation of ââ†ψ0. Indeed the state ψ1 is correctly normalized.

Next consider the state

ψ′2 ≡ â†â†ψ0. (43)

This has

N̂ψ′2 = N̂ â†â†ψ0 = [N̂ , â†â†]ψ0 = 2â†â†ψ0 = 2ψ′2, (44)

so ψ′2 is a state with number N = 2 and energy E2 = 5
2
}ω. Now we check weather ψ′2 is

properly normalized or not. We find

(ψ′2, ψ
′
2) = (â†â†ψ0, â

†â†ψ0) = (ψ0, âââ
†â†ψ0) = (ψ0, â[â, â†â†]ψ0)

= (ψ0, 2ââ†ψ0) = 2(ψ0, ψ0) = 2. (45)
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The properly normalized wave function is therefore

ψ2 ≡
1√
2
â†â†ψ0. (46)

Similarly we can show that the properly normalized third exited state would be

ψ3 ≡
1√
2

1√
3
â†â†â†ψ0

=
1√
3!

(â†)3ψ0 (47)

We now claim that the properly normalized n-th excited state of the simple harmonic
oscillator is (you may find it is interesting to prove the claim as an exercise)

ψn ≡
1√
n!
â† · · · â†︸ ︷︷ ︸ψ0 =

1√
n!

(â†)nψ0. (48)

Figure 1: Shapes of the first three wave functions of the harmonic oscillator [1].

We also show that the eigenvalue of ψn for the operator N̂ is n:

N̂ψn =
1√
n!
N̂(â†)nψ0

=
1√
n!
â†â (â†)nψ0

=
1√
n!
â†[â, (â†)n]ψ0

=
1√
n!
â† n(â†)n−1ψ0

=
n√
n!

(â†)nψ0

= nψn (49)

Since for the operator N̂ the eigenvalue of ψn is n, the energy eigenvalue En is given be

En = }ω
(
n+

1

2

)
. (50)
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Also as the various states ψn are eigenstates of a Hermitian operator Ĥ with different
eigenvalues, they are orthonormal

(ψm, ψn) = δmn. (51)

We now note that ψn is the state with n operators â† acting on ψ0 and âψ0 is the state
with n−1 operators â† acting on ψ0 because the â eliminates one of the creation operator
in ψn. Thus we expect âψn ∼ φn−1. We can make this precise

âψn = â
1√
n!

(â†)nψ0 =
1√
n!

[â, (â†)n]ψ0 =
n√
n!

(â†)n−1ψ0. (52)

At this point we use (48) with n set equal to n− 1 and thus we get

âψn =
n√
n!

√
(n− 1)!ψn−1 =

√
nψn−1. (53)

By the action of â† on ψn we get

â†ψn = â†
1√
n!

(â†)nψ0 =
1√
n!

(â†)n+1ψ0

=
1√
n!

√
(n+ 1)!ψn+1 =

√
(n+ 1)ψn+1 (54)

Collecting the results we have

âψn =
√
nψn−1,

â†ψn =
√

(n+ 1)ψn+1.
(55)

These relations make it clear that â lowers the number of any energy eigenstate by one
unit, except for the vacuum ψ0 which it kills. The raising operator â† increases the
number of any eigenstate by one unit. one unit.

6 Expectation values of operators

The expectation value 〈x̂〉ψn vanishes for any energy eigenstate since we are integrating
x, which is odd, against |ψn(x)|2, which is always even. Still, it is instructive to see how
this happens explicitly:

〈x̂〉ψn = (ψn, x̂ψn) =

√
}

2mω
(ψn, (â+ â†)ψn)

=

√
}

2mω
(ψn, âψn + â†ψn)

=

√
}

2mω
(ψn, âψn) +

√
}

2mω
(ψn, â

†ψn)

=

√
}

2mω
(ψn,

√
nψn−1) +

√
}

2mω
(ψn,

√
(n+ 1)ψn+1)

=

√
}

2mω

√
n(ψn, ψn−1) +

√
}

2mω

√
(n+ 1)(ψn, ψn+1)

= 0. (56)
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Since both ψn−1 and ψn+1 are orthonormal to ψn. Now we compute the expectation value
of â2:

〈x̂2〉ψn = (ψn, x̂
2ψn) =

}
2mω

(ψn, (â+ â†)2ψn)

=
}

2mω
(ψn, (â+ â†)(â+ â†)ψn)

=
}

2mω
(ψn, (ââ+ ââ† + â†â+ â†â†)ψn)

=
}

2mω
(ψn, (ââ† + â†â)ψn). (57)

Since ââψn ∼ ψn−2 and â†â†ψn ∼ ψn+2 and ψn−2 and ψn+2 are orthonormal to ψn, the
ââ and â†â† terms do not contribute. At this point we recognize that â†â = N̂ and

ââ† = [â, â†] + â†â = 1 + N̂ . (58)

As a result

〈x̂2〉ψn =
}

2mω
(ψn, (1 + 2N̂)ψn)

=
}

2mω
(1 + 2n). (59)

Similarly it can also be shown that 〈p̂〉ψn = 0 and

〈p̂2〉ψn =
m}ω

2
(1 + 2n). (60)

Comparing (59) and (60) we see that the expectation values of the potential and kinetic
energies are equal and are also equal to half the total energy:

mω2

2
〈x̂2〉ψn =

1

2m
〈p̂2〉ψn =

1

2
〈Ĥ〉ψn . (61)

This result is known as the Virial theorem.

We can now easily calculate the product ∆x∆p and show that

∆x∆p =

(
n+

1

2

)
} =⇒ ∆x∆p ≥ }

2
, (62)

since n ≥ 0; this is the Heisenberg uncertainty principle.

7 Harmonic oscillator in 3D

The time-independent Schrödinger equation for a spin-less particle of mass m moving
under the influence of a three-dimensional potential is[

− }2

2m
∇2 + V (x, y, z)

]
ψ(x, y, z) = Eψ(x, y, z), (63)
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where ∇2 is the Laplacian operator

∇2 ≡ ∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
. (64)

This partial differential equation is generally difficult to solve. But, for those cases where
the potential V (x, y, z) separates into the sum of three independent, one-dimensional
terms (which should not be confused with a vector)

V (x, y, z) = Vx(x) + Vy(y) + Vz(z), (65)

we can solve (63) by means of the technique of separation of variables. This technique
consists of separating the three-dimensional Schrödinger equation (63) into three inde-
pendent one-dimensional Schrödinger equations. Let us examine how to achieve this.
Note that (63), in conjunction with (65), can be written as[

Ĥx + Ĥy + Ĥz

]
ψ(x, y, z) = Eψ(x, y, z), (66)

where

Ĥx = − }2

2m

∂2

∂x2
+ Vx(x),

Ĥy = − }2

2m

∂2

∂y2
+ Vy(y),

Ĥz = − }2

2m

∂2

∂z2
+ Vz(z).

(67)

As V (x, y, z) separates into three independent terms, we can also write ψ(x, y, z) as a
product of three functions of a single variable each:

ψ(x, y, z) = X(x)Y (y)Z(z). (68)

Substituting (68) into (66) and dividing by X(x)Y (y)Z(z), we obtain[
− }2

2m

1

X

d2X

dx2
+ Vx(x)

]
+

[
− }2

2m

1

Y

d2Y

dy2
+ Vy(y)

]
+

[
− }2

2m

1

Z

d2Z

dz2
+ Vz(z)

]
= E. (69)

Since each expression in the square brackets depends on only one of the variables x, y,
z, and since the sum of these three expressions is equal to a constant, E, each separate
expression must then be equal to a constant such that the sum of these three constants
is equal to E. For instance, the x-dependent expression is given by[

− }2

2m

d2

dx2
+ Vx(x)

]
X(x) = ExX(x). (70)

Similar equations hold for the y and z coordinates, with

Ex + Ey + Ez = E. (71)

The separation of variables technique consists in essence of reducing the three-dimensional
Schrödinger equation (63) into three separate one-dimensional equations (70).

Now, for the harmonic oscillator in three-dimension, we begin with the anisotropic oscil-
lator, which displays no symmetry, and then consider the isotropic oscillator where the
x, y and z axes are all equivalent.
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7.1 Anisotropic harmonic oscillator

Consider a particle is moving in a three-dimensional anisotropic oscillator potential

V (x, y, z) =
1

2
mω2

x x̂
2 +

1

2
mω2

x ŷ
2 +

1

2
mω2

x ẑ
2. (72)

Its Schrödinger equation separates into three equations similar to (70):

− }2

2m

d2X(x)

dx2
+

1

2
mω2

x x̂
2X(x) = ExX(x),

− }2

2m

d2Y (y)

dy2
+

1

2
mω2

y ŷ
2 Y (y) = EyY (y),

− }2

2m

d2Z(z)

dz2
+

1

2
mω2

z ẑ
2 Z(z) = EzZ(z).

(73)

The energy eigenvalues corresponding to the potential (72) can be expressed as

Enx ny nz = Enx + Eny + Enz =

(
nx +

1

2

)
}ωx +

(
ny +

1

2

)
}ωy +

(
nz +

1

2

)
}ωz, (74)

with nx, ny, nz = 0, 1, 2, 3, . . . . The corresponding stationary state wave functions are

ψnx ny nz(x, y, z) = Xnx(x)Yny(y)Znz(z), (75)

where Xnx(x), Yny(y), and Znz(z) are one-dimensional harmonic oscillator wave func-
tions. These states are not degenerate, because the potential (72) has no symmetry (it
is anisotropic).

7.2 Isotropic harmonic oscillator

Consider now an isotropic harmonic oscillator potential. Its energy eigenvalues can be
inferred from (74) by substituting ωx = ωy = ωz = ω,

Enx ny nz =

(
nx + ny + nz +

3

2

)
}ω. (76)

Since the energy depends on the sum of nx, ny, nz, any set of quantum numbers having
the same sum will represent states of equal energy.

The ground state, whose energy is E000 = 3}ω/2, is not degenerate. The first excited
state is threefold degenerate, since there are three different states, ψ100, ψ010, ψ001 that
correspond to the same energy 5}ω/2. The second excited state is sixfold degenerate; its
energy is 7}ω/2.

Table 1 displays the first few energy levels along with their degeneracies, where gn rep-
resents the number of degeneracy of the nth excited state.
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Table 1: Energy levels and their degeneracies for an isotropic harmonic oscillator.

n 2En/(}ω) (nxnynz) gn
0 3 (000) 1
1 5 (100), (010), (001) 3
1 7 (200), (020), (002) 6

(110), (101), (001)
3 9 (300), (030), (003) 10

(210), (201), (021)
(120), (102), (012)
(111)

Note: Most of the materials in this lecture note are taken from the lecture on Quantum
Physics by Prof. Barton Zwiebach for the course 8.04 in the year of 2016 at MIT, USA.
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