
The Impact of Virtualization on 
Computer Architecture and 

Operating Systems

Mendel Rosenblum



Talk Outline

• Virtualization
– What is virtualization? Why is it so compelling?

• Implications for computer architecture
– Known techniques and current challenges

• Implications for system software
– Implications for operating systems & OS researchers

• Conclusions



App

Operating System

What is Virtualization?

• A level of indirection between hardware and 
software. 

Hardware

App App App

App AppOperating System
Virtualization Layer 

App App App

Operating System OS

• Virtual Machine abstraction
– Run all software written for physical machine. 

VM-1 VM-2



Virtualization Layer - Optimize HW utilization, power, etc.

User’s view of virtualization

MAIL SERVICE WEB STORE

COMPUTE STORAGE INTERCONNECT

SANs/NAS

CRM

VM VM

PH
YS

IC
A

L 
VI

EW
LO

G
IC

A
L 

VI
EW



Virtualization Layer - Optimize HW utilization, power, etc.

User’s view of virtualization

MAIL SERVICE WEB STORE

COMPUTE STORAGE INTERCONNECT

SANs/NAS

CRM

VM VM

PH
YS

IC
A

L 
VI

EW
LO

G
IC

A
L 

VI
EW

VM - Exchange Server

CPU 2x1 GHZ
Memory 2 GB
Disk 100 GB
Network 1 GB
Fault tolerance
Disaster recovery
Security

VM - Exchange Server

CPU 2x1 GHZ
Memory 2 GB
Disk 100 GB
Network 1 GB
Fault tolerance
Disaster recovery
Security



Key low-level VMM operations

Hardware

VMM

App

OS

Hardware

VMM

App

OS

Storage

•Multiplex



Key low-level VMM operations

Hardware

VMM

App

OS

Hardware

VMM

App

OS

Storage
App

OS

•Suspend

•Multiplex



App

OS

Key low-level VMM operations

Hardware

VMM

App

OS

Hardware

VMM

App

OS

Storage
App

OS

•Suspend

•Resume (Provision)

•Multiplex



App

OS

Key low-level VMM operations

Hardware

VMM

App

OS

Hardware

VMM

App

OS

App

OS

Storage

•Suspend

•Resume (Provision)

•Migration

•Multiplex



VMM Implementation

• Safely and efficiently multiplex the virtual 
hardware on the physical hardware
– Virtual CPUs on Physical CPUs
– VM’s Physical Memory on Machine’s Memory
– VM’s I/O Devices on Real I/O Devices

• Norm is time sharing rather than space 
sharing.



Hardware support for virtualization

• Goals:
– Reduce virtualization overheads

• Goal: Run software same speed as without VMM.
– Reduce the complexity of VMM software

• Goal: Trusted code base small ~ 10K lines

• Old hat in mainframe world.
• Current status in the x86 world:

– CPU -> First generation shipping now. 
– Mem -> First generation shipping soon.
– I/O -> Still a work in progress. Big challenges.



CPU Virtualization Today

• Classic VMM trick: Directly execute VM in 
less privileged mode on real CPU.
– Trap and emulate privileged instructions.

• Popular x86 VMMs use binary translation 
to detect and emulate privileged inst.
– Works well because of high trap overheads.



Virtual CPU architecture support

• From Mainframes: Microcode assist
– Fewer traps

• x86 support: Intel’s VT, AMD-V
– New mode for running VMs 

• Trap and emulate style. 
– Fewer and faster traps

• Right direction but challenges remain
– See next talk for details. 



Virtual Physical Memory

• Virtual Memory like features:
– Non-contiguous layout
– COW sharing of identical pages
– Demand paging allowing memory over-commit. 

• Classic VMM: Shadow Page Tables
– VMM uses page table with VA->MA

VM1 VM2

Machine
Memory 0



Memory Architecture Support

• Cost of shadow page tables can be high
– Workloads with many start/exit process 
– OSes that “flip pages” to avoid copies & COW.

• Classic mainframe:
– Hardware support for the PA->MA map

• x86 Support: AMD’s NPT, Intel’s EPT
– Another “page table” for mapping



Modern I/O different from 1970’s I/O

• Can’t just read old papers to get solutions
• Large device diversity 

– Not everything is a channel architecture
• High performance I/O devices

– 10Gig ethernet
– 3D graphics



Current virtual I/O devices
• Guest device driver
• Virtual device
• Virtualization layer 

– emulates the virtual device
– remaps guest and real I/O addresses
– multiplexes and drives the physical device
– I/O features, e.g., COW disks, 

• Real device
– may be different from virtual device

Device Driver

Device Driver

I/O Stack

Device
Emulation

Guest OS

V
ir

tu
a
li

za
ti

o
n

 L
a
y
e
r



Much functionality in I/O stack

– De-multiplexing I/Os 
– Converting formats (e.g. SCSI disk -> SAN)
– Resource management (e.g. traffic shaping)
– Fault tolerance
– Enforce security policy
... and much more.

• Difficult for hardware to accelerate and 
maintain rich functionality



Passthrough I/O - Fast but inflexible

I/O MMU

Device
Manager

VF VF VF

PFI/O Device

Guest OS

Device Driver

Guest OS

Device Driver

Guest OS

Device Driver

Virtualization
Layer

I/O devices with:
•Multiple personalities

Interface per VM 

•I/O MMU for DMA

Remap PA to MA

Validate addresses

•Manageable by VMM



Passthrough I/O Challenges

• DMA - Can the I/O MMU handle: 
– Discontinuous physical memory?
– Read-only physical memory (COW)? (Disable?)
– Paged out physical memory? (Disable?)

• VM Mobility
– Can I migrate a VM? 
– Can I migrate to a system with a different I/O device?

• Interrupt routing
– How does the interrupts get to the right VM?



Virtualization of 3D graphics

• UI devices such as GPUs are challenging.
– Time sensitive and high performance 

• How to multiplex screen?
– Windows vs. full screen

• Virtualization leading to interest in remote 
display technology
– Host many PCs on a server



Arch Support for Virtual I/O

• Challenge: Get acceleration and flexibility
– Most hardware all or nothing. 
– Designers need to understand VMM 

functionality.
• Mobility support:

– Standardized virtual interfaces for devices
– Ability to load and store virtual device state



Summary of Hardware Support

• Current CPU trends are positive
– Multicore, etc.

• Virtualization support should give:
– Lower virtualization overheads
– Simplify VMM implementation
– Ubiquitous deployment

• Support should accelerate not replace 
– Give software the ability to use VMM layer.



Operating Systems & Virtualization

Traditional major roles for an OS: 
1. Manage hardware resources of machine.
2. Export abstractions and functionality to 

support application programs.
Virtualization influences:

VM-optimized operating systems (today)
Operating systems for virtual appliances (future)



Paravirtualization

• Old idea, new term: 
– Modify OS to run better inside a virtual machine.

• Examples likely obsoleted by hardware support:
– Remove trapping instructions from OS
– Reduce shadow page table overheads
– Reduce I/O device emulation overheads

• Resource management seems key:
– GuestOS <-> VMM about resource management
– CPU and memory resources 
– Get good inter-VM resource managment 



More Interesting: Virtual Appliances

• Trend to use virtual machine as software 
distribution mechanism.
– Applications and OS bundled together.
– Like Appliance Computing without hardware

• Many benefits for software vendor and customer:
– Choose OS based on application needs, not what 

customer has. 
• Functionality, performance, reliability, security, manageability.

– Simplify testing and support. 
– Offload much from customer. 

• Example: CRM system



Application-selected operating systems

For Virtual Appliances:
• Don’t need hardware management in OS.

– Current OSes manage hardware.
• Only services for one application needed

– Current OSes try to support broad range of 
applications. 

• Look at hardware appliance operating 
systems for examples



Desirable properties for VA OSes

• Highly customizable
– Include only what application needs.

• Supports common VA functionality
– “Firmware” update
– Browser-based interfaces

• Interfaces to VMM and IT infrastructure
– Authentication, policies, etc.



Implications for operating systems

For Modern Operating Systems:
• Address the needs of applications or fade away
For Operating System Researchers:
• Now a much lower bar for OS adoption

– In past need both drivers and application support.
• Opportunity for new OSes 

– Target the needs of particular application area
– Be better in an important area: 

• Security, reliability, performance, manageability



Conclusions

• Virtualization is here and will be 
everywhere in near future.
– Cannot handle future multicore without it. 

• Large impact on how computing is now
– Opportunities for architecture help.
– Opportunities for new system software stacks.


