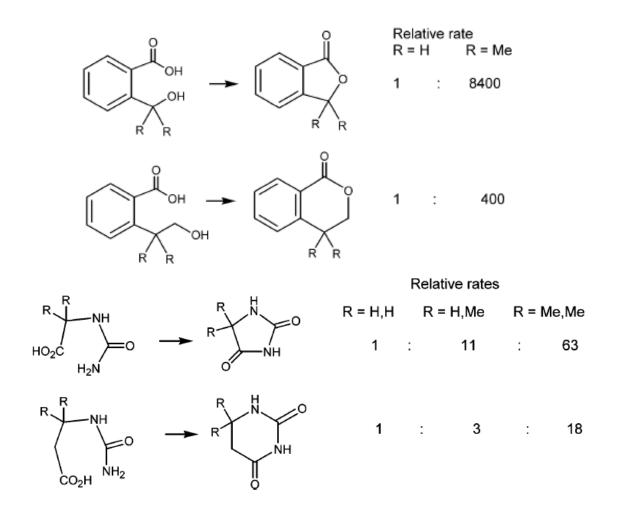

The Thorpe-Ingold Effect (*Gem*-dimethyl Effect)

Daniel Tao Overman Group Meeting 4/30/12

Question: What would be the major product in this cyclization?

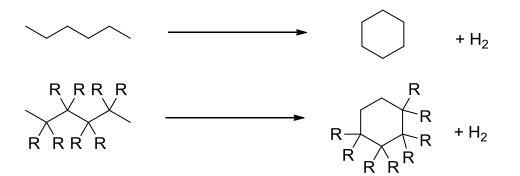
A Surprising Discovery in 1915



•Thorpe, Ingold, and Beesley noticed that cyclizations with quaternary carbons were faster than other substrates

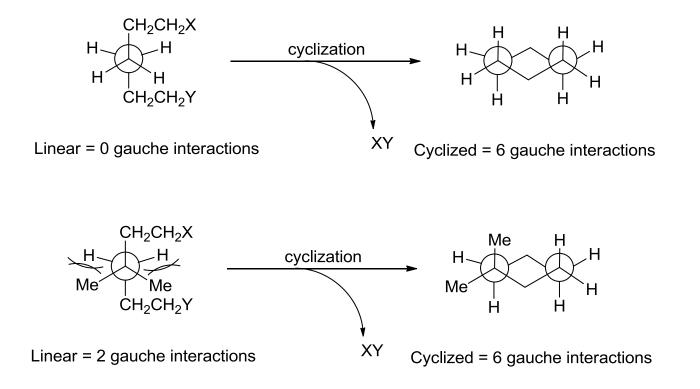
•Their calculations estimated that the bond angle at strained carbon atoms was 109.5° while methylene's was112.2 $^\circ$

•The paper concluded that this decreased bond angle forces a more suggestive positioning for ring formation

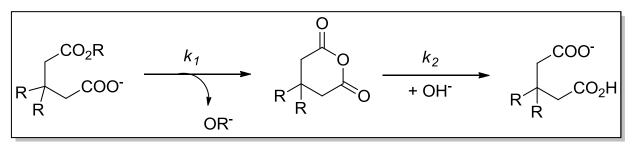

Examples of the Gem-Dimethyl Effect

Kaneti, J.; Kirby, A.J.; Koedjikov, A.H.; Pojarlieff, I.G. Org. Biomol. Chem., 2004, 2, 1098–1103.

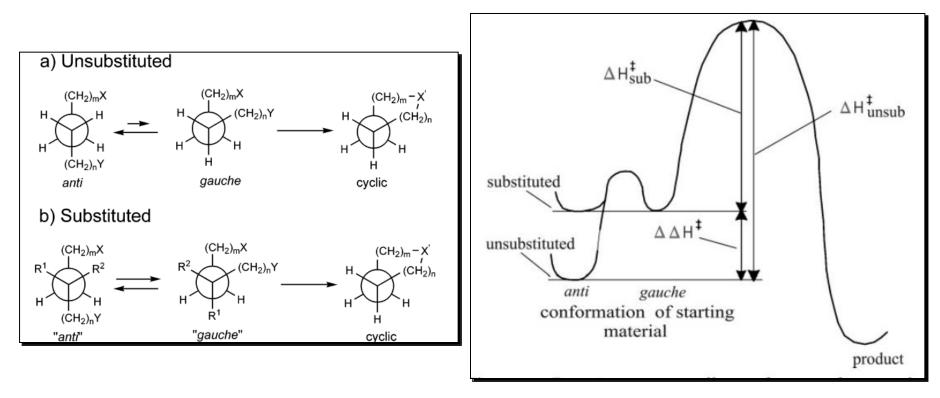
Looking for a Better Explanation


• "While the fact that alkyl substitution tends to promote the rate of formation of a cyclic system from its noncylic analog... has been recognized for nearly half a century, no convincing explanation has been forthcoming." -Norman Allinger, 1960

Hexane	$\sigma_{\rm H}$	σc	Optical Isomers H	Optical Isomers C	—∆H		ΔS		ΔF	
					Calcd.	Found	Calcd.	Found	Calcd.	Found
n	2	6	1	1	0.0	0.0	0.0	0.0	0.0	0.0
2-CH ₃	1	1	1	1	0.8	0.9	3.4	3.3	1.8	1.9
3-CH ₃	1	1	2	1	1,6	1.6	2.0	2.2	2.2	2.2
$2,2-(CH_3)_2$	3	1	1	1	0.0	0.1	6.8	5.7	2.0	1.8
$2,3-(CH_3)_2^a$	1	2	2	2	1.6	2.4	3.2	4.1	2.6	3.6
2,3-(CH ₃) ₂ ^b	1	1	2	2	0.0	0.6	4.6	5.0	1.4	2.0
$2,4-(CH_3)_2^a$	1	1	2	2	0.8	0.3	4.6	5.0	2.2	1.8
$2,4-(CH_3)_2^b$	1	1	2	1	2.4	2.3	3.2	3.6	3.4	3.3
$2,5-(CH_3)_2^a$	2	2	1	1	1.6	1.4	4.6	3.8	3.0	2.6
$2,5-(CH_3)_2^b$	2	1	1	1	0.0	-0.5	3.2	5.2	1.0	1.1
$3, 3 - (CH_3)_2$	1	1	1	1	1.6	1.2	4.6	4.1	3.0	2, 4
3,4-(CH ₃) ₂ ^{a,c}	2	2	2	2	3.2	2.6	4.6 ^c	3.0	4.2	3.6
3,4-(CH ₃)2 ^{b,c}	1	1	1	2	0.8	0.8	6.0°	3.9	2.2	2.0
$2-C_2H_3$	1	1	2	2	0.8	0.8	3.4	2.7	1.8	1.6
$3-C_2H_5$	1	1	1	2	1.6	1.2	4.8	3.5	3.0	2.2

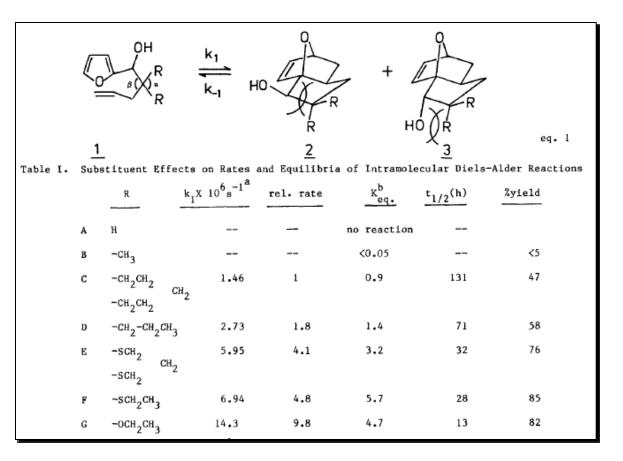

Looking for a Better Explanation

• This study concluded that gauche interactions play a key role in increasing rate of alkyl chain cyclization



Allinger, N.L.; Zalkow, V. J. Org. Chem., 1960, 25, 701-704.

Looking for a Better Explanation



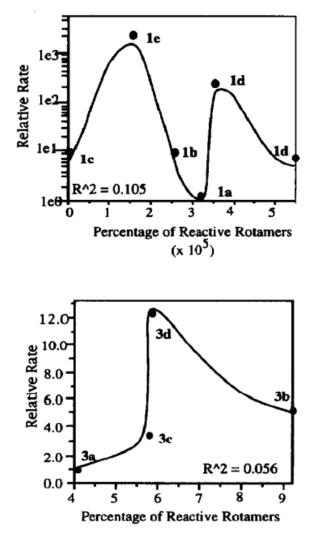
• In the same year, Bruce and Pandit founded the "reactive rotamer" hypothesis. When R = Me, k_1 for ring-closing increased while k_2 for hydrolytic ring-opening decreased,

Bruice, T. C.; Pandit, U. K. *J. Am. Chem. Soc.* **1960**, *8*2, 5858. Jung, M.E.; Piizzi, G. *Chem. Rev.* **2005**, *105*, 1735–1766.

Disproving Thorpe-Ingold Angle Effect

• Sternbach and Rosanna looked a variety of substituents to increase the rate of an intramolecular Diels-Alder

• Thioacetal 1E characterized by crystallography to show bond angle at 111.7°

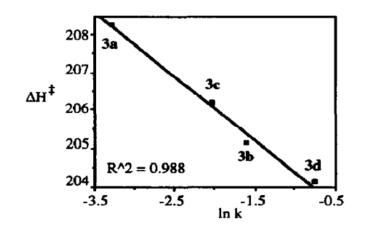

• First data correlating a larger bond angle with increased reactivity in *gem*dimethyl system, disproving the initial Thorpe-Ingold hypothesis

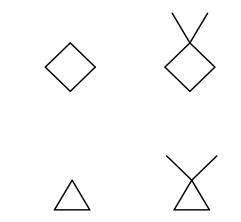
Disproving Reactive Rotamer Hypothesis

• Parrill and Dolata took a detailed look at these intramolecular Diels-Alder studies with a conformational search program, WIZARD

• The program calculated the percentages of reactive rotamers based on the energies from the substituents

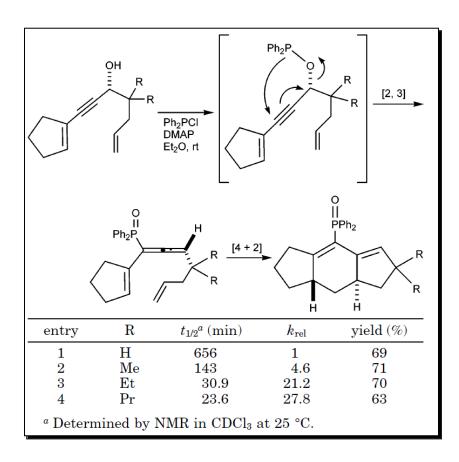
• They found no consistent correlation between the reactive rotamer population and rate

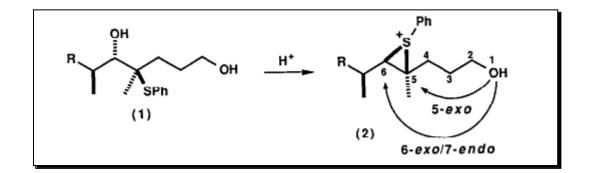

What explanation is left to believe in?

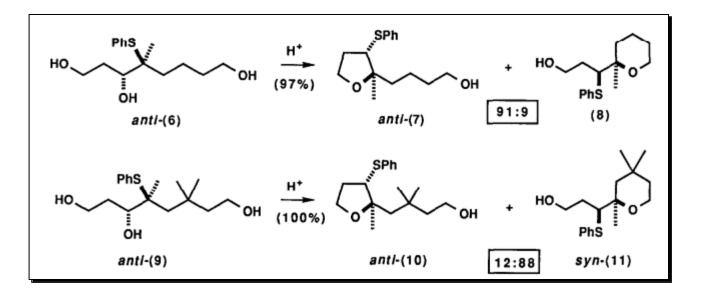

• The same group plotted the ΔH^{\ddagger} as a function of rate, finding a very consistent pattern

• In 2005, calculations run by Ringer and Mager suggested that dimethyl-substituted cyclobutane has 8 kcal/mol less ring strain than cyclobutane

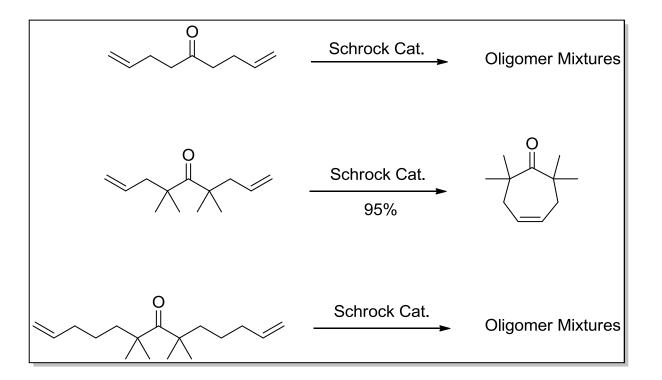
• In response to this publication, Bachrach commented, "There is no enthalpic stabilization, by this we mean no reduction in ring strain energy, afforded to rings by *gem*-substitution."

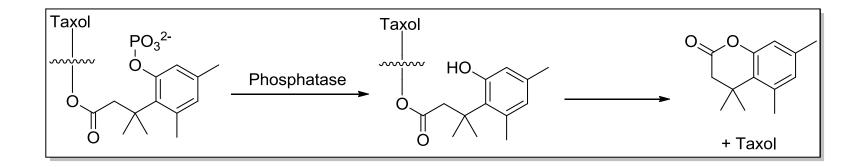

Parrill, A.L.; Dolata, D.P.*Tetrahedron Lett.* **1994**, *35*, 7319–7322. Ringer, A.L.; Magers, D.H. *J. Org. Chem.* **2007**, *72*, 2533–2537. Bachrach, S.M. *J. Org. Chem.* **2008**, *73*, 2466–2468


Applications in Synthesis


gem-substituted substrate	ring size	kgem kintra/ ^k intra	
$\mathbf{Br(CH}_{2})_{2} \mathbf{CH}_{2} \mathbf{CO}_{2}^{-} \mathbf{CH}_{3}$ \mathbf{CH}_{3}	6	38.5	
$ Br(CH_2)_5 CCH_2 CO_2^{-1} CH_3 $	9	6.62	
$\operatorname{Br}(\operatorname{CH}_2)_{4} \operatorname{CH}_{2} \operatorname{CO}_{2}^{-} \operatorname{CH}_{3}$	10	1.13	
$ Br(CH_2), CCH_2CO_2^{-1} CH_3 CH_3 $	11	0.61	
$ Br(CH_2)_{\bullet} C(CH_2)_{7} CO_{2} CO_{2} CH_{3} $	16	1.22	

Illuminati, G.; Mandolini, L. *Acc. Chem. Res.* **1980**, *14*, 102–109. Curtin, M.L.; Okamura, W.H. *J. Org. Chem.* **1990**, *55*, 5278–5287.


Applications in Synthesis


McIntyre, S.; Sansbury, F.H.; Warren, S. Tetrahedron Lett. 1991, 32, 5409–5412

Applications in Ring-Closing Metathesis

Forbes, M.D. et al. J. Am. Chem. Soc. 1992, 114, 10978–10980.

Applications in Medicinal Chemistry

• "Pro drugs" which deliver hydrophobic molecules into the system with hydrophilic linkers which can be leaved

• Improved pharmacokinetic or biological activity in certain cases

Ueda, Y. *et al. Bioorg.Med. Chem. Lett.* **1995**, *5*, 247–252. Jung, M.E.; Piizzi, G. *Chem. Rev.* **2005**, *105*, 1735–1766.