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This guide contains basic information that is useful when doing your first
166 family design.  There are many simple facts which if  they are known
at the outset can save a lot of time and money.  Overall, it is intended as
a complement to the user manuals by putting things into a practical con-
text.

Some of the material can be found in the 166 family databooks but most of it is simply the result of our practical
experience and so is only to be found here.  Topics covered are those that are not obvious or are often missed.
Where the user manuals provide a satisfactory explanation, you will be referred to it rather than duplicating infor-
mation here.  This is by no means a complete reference work and you are directed to the excellent work by one of
the architecture’s original designers  Karl-Heinz Mattheis, available in the German language.

Note: While every effort has been made to ensure the accuracy of the information contained within this guide, Hitex
cannot be held responsible for the consequences of any errors contained therein.  Any subjective or anecdotal
information presented is not necessarily the official view of either Hitex (UK) Ltd. or Siemens Plc..

Prepared By:
Michael Beach
Stuart Kirkbride
John Barstow

Additional Material From:
Geoff Lees

Mark De Sousa
Ulrich Beier
Olaf Pfeiffer
Peter Mariutti

Hitex (UK) Ltd.
University Of Warwick Science Park

Sir William Lyons Road
Coventry, CV4 7EZ

Tel: 01203 692066     Fax: 01203 692066
Email: 166@hitex.co.uk     Compuserve: 100646,1526

Hitex produces the largest range of 166 family emula-
tion and simulation tools available from any manufac-
turer.  By using both standard part and bondout-based
technology, Hitex can uniquely provide the optimal
emulation method for all 166 variants, whatever the
application.  Besides supplying the development tools,
Hitex is also pleased to help and advise new and

prospective 166 users in all aspects of hardware and software design, as this guide
demonstrates - we are at your service!
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RISC Architectures For Embedded Applications

Introduction

The 166 CPU core makes extensive use of reduced instruction set computer (RISC) concepts to acheive its blend of
very high performance at modest cost.  To understand why RISC techniques are especially suited to high-speed real
time embedded systems, it might be useful to examine in detail how it grew out of the traditional complex instruction
set computers (CISC) that reached their peak in the late 1980’s to early 1990’s.

Behind The 166�s Near-RISC Core

The reasons behind the abandonment of traditional Complex Instruction Set Computers (CISC) has been the quest
for ever greater throughput.  The demands of workstations involved in CAD tasks and latterly advanced video
games, have been the real driving force behind this.  Traditionally, microprocessors have been designed with
assembler instruction sets that have been geared towards making the assembler programmer’s life easier through the
extensive use of microcode to produce ever more powerful instructions`.  By providing single assembler instruc-
tions that perform, for instance, three operand multiplication, the assembler programmer (and HLL compiler writer)
has been relieved of the job of achieving the same result with simpler instructions.

The need for the CPU to be able to recognise and act on (decode) many hundreds of different instructions, requires
complex silicon and many clock cycles.  The greater the silicon area, the greater the  cost of the device and power
consumed.  With physical limitations acting to restrict achievable clock speeds on silicon devices, the number of
cycles per instruction is obviously very significant in gaining higher performance..

RISCs tend to shift the burden of programming from the microcoder to the assembler programmers and compiler
writers.  Work both within academia and commercial manufacturers has proved that a suitably programmed RISC
machine can achieve a far higher throughput than a CISC for a given clock speed.

Strangley, the embedded world has been slow to question the suitability of the CISC-based microcontroller.  Whilst
at the very top end, devices such as the i80960 have enjoyed some success, for more commonplace embedded tasks,
RISC is almost unknown.  With the increasing complexity of modern control algorithms, the need for greater
processing power is set to become an issue in anything but the simplest applications.  In addition, here more than in
the workstation world, the worst-case response time to non-deterministic events is crucial, an area where CISCs are
especially poor.

Many current high-end microcontrollers are based on existing CISC architectures such as the 8086, 68000 etc., who
in common with 8-bit devices such as the 8051, have an internal structure that dates back up to 19 years.  With the
silicon vendor’s need to give existing users an upgrade path, apparently new designs are often based closely on the
existing architecture/instruction set, so protecting the user’s investment in expensive assembler-code.

Like workstations, microcontrollers are tending to be programmed in a high level language (HLL) to reduce coding
times and enhance maintainability.  Inevitably, even with the best compilers, some loss of performance is encoun-
tered, emphasising again the need for improved CPU performance.

In addition to straight forward data processing, microcontrollers must also handle real-world peripherals such as A/
D converters, PWM’s, timers, Ports, PLL’s etc., all of which require real time processing.

Conventional CISC Bottle-necks

1.  Long And Unpredictable Interrupt Latencies

Complicated “labour-saving” instructions must hold CPU’s entire attention during execution, thus preventing real-
world generated interrupts from being serviced.  Unpredictable latency times result which can cause serious prob-
lems in hard real-time systems.  One approach to overcoming the CISC’s poor real-time response has been to bolt a
secondary “time processor” onto the core to try and off-load the time-critical portions.  However, this results in an
awkward design and the need to use a very terse microcode to program it, in addition to the more usual C and
assembler for the CISC core itself.
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2.  Vast Instruction Sets Give Slow Decoding

Loaded instruction must be recognised from potentially many hundreds or even thousands of possibilities.  Decod-
ing is thus complicated and lengthy.

3.  Frequent Accesses To Slow Memory Devices

Data is typically fetched from off-chip memory and placed in accumlator-type registers.  Mathematical or logical
operations are performed and then result written back to memory.  Value is likely to be required again in course of
procedure, thus requiring further movements to and from off-chip memory.

4. Slow Procedure Calling

When calling subroutines with parameters (essential in good HLL programming), parameters must be individually
pushed on to stack.  They must then be moved through accumulator register(s) for processing before being returned
via stack to caller.

5. Strictly One Job At  A time

Each peripheral device or interrupt source must have dedicated service routine which at the least will require the
PSW, PC to be stacked and restored and data removed from or fed to peripheral device.

6. Software Has To Be Structured To Suit Architecture.

Embedded systems frequently contain many separate real time tasks which together form a complete system.
Conventional CPU’s make switching between task slow.  Often, many registers have to be stacked to free them up
for the incoming task.  This problem is aggravated by the use of HLL compilers  which tend to use a large number
of local variables in library functions which must be preserved.

7. Redundant Instructions And Addressing Modes

With the move to HLLs, compilers are tending to dictate what instructions should be provided in silicon.

In practice, compilers tend to only make use of a small number of addressing modes.  This results in a large number
of unused addressing modes which serve only to complicate the opcode decoding process.

8. Inconsistent Instruction Sets

Instruction sets that have evolved tend to be difficult to use due to large number of different basic types and the
inconsistent addressing modes allowed.

9. Bus Not Fully Utilised

Whilst complex instructions are being executed, bus is idle.

The RISC Architecture For Embedded Control

To show how RISC design is used to improve microcontroller throughput, the 166 is used as an example.

Basic Definitions:

1 state time = 2 x 1/oscillator frequency

- fundamental unit of time recognised within processor system.

1 machine cycle = 2 * state time

- minimum time required to perform the simplest meaningful task within cpu.
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The unit of state times is used when making comparisons between RISCs and CISCs as this removes any depend-
ency on clock frequency.

- All state time counts are given in single chip operation mode for both 80C196 and 166.

Bus Interface

To maximise the rate at which instructions are executed, RISC CPU’s are very heavily pipelined.  Here, on any
given machine cycle, up to 4 instructions may be processed by overlapping the various steps thus:

FETCH: - get opcode from program store
DECODE: - identify opcode from a small list and fetch operands
EXECUTE: - perform operation denoted by opcode
WRITE-BACK: - result returned to specified location

Thus although the instruction takes four machine cycles, it is apparently executed in just one (2 state times).
Pipelining has considerable benefits for speeding sequential code execution as the bus is guarantied to be fully
occupied.

RISC Interrupt Response

In the 166, branches to interrupts make use of the injected instruction technique and so vectoring to a service routine
is achieved in only 4 machine cycles (400ns).  The effect of complex but necessary instructions such as MUL and
DIV (5 and 10 cycles respectively) stretch this but it is interesting to note that the 80C166 does provide these as
interruptable instructions.

Very fast interrupt service is crucial in high-end applications such as engine management systems, servo drives and
radar systems where real-world timings are is used in DSP-style calculations.  As these normally form part of a
larger closed control loop, erratic latency times manifest themselves as an undesirable jitter in the controlled
variable.

Registers And Multi-Tasking

Traditional microcontrollers have one or more special registers which can be used for mathematical, logical or
Boolean operations.  In the 8051, there is a single “accumulator” with 8 other registers which may be used for
handling local variables or intermediate results in complex calculations.  These additional registers are also used to
access memory locations via indirect and/or indexed addressing.

As pointed out in section 3 and 4 above, conventional CPU’s spend much time moving data from slow memory
areas into active registers.  The RISC offers a very large number of general purpose registers which may be used for
locals, parameters and intermediates.  The 166 provides 16 word wide general purpose registers (GPRs), each of
which is effectively an accumulator, indirect pointer and index.  With such a large number of GPR’s available, it
becomes realistic to keep all locals and intermediates within the CPU throughout quite large procedures.  This can
yield a great increase in speed.

Further significant benefits are derived from the RISC technique of register windowing.  As has been said, up to 16
registers are available for use by the program.  However, by making the active register bank movable within a larger
on-chip RAM, the job of real time multi-tasking is considerably eased.

Central to this is the concept of a “Context Pointer” (CP), which defines the current absolute base address of the
active bank.  Thus a reference to “R0” means the register at the address indicated by the CP.  Thereafter, the 16
registers originating from CP are accessed by a fast 4-bit offset.

The best example of how the CP is exploited is perhaps a background task and a real-time interrupt co-existing.
When the interrupt occurs, rather than pushing all GPR’s onto the stack, the CP of the current register bank is
stacked and simply switched to a new value, determined at link time, to yield a fresh register bank.  This results in a
complete context switch in just one machine cycle but does rule out the use of recursion.

A hybrid method, which permits re-entrancy, uses the stack pointer to calculate the new CP dynamically.
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Here, on entering the interrupt, the number of registers now required is subtracted from the current SP and the result
placed in CP, with the old CP stacked.  Thus the new register bank is located at the top of the old stack, with the old
CP and then the new stack following on immediately afterwards.  On exiting the interrupt routine, the original
registerbank is restored by POPping the old CP from the stack.  The SP is reinstated by adding the size of the new
register bank onto the current SP.

A further RISC refinement is register window overlapping whereby when a new procedure is called, part of the new
register bank defined by CP’ is coincident with the original at CP:

R3' ; Register for subroutine’s locals and intermediates
R2' ; Register for subroutine’s locals and intermediates

R7 R1' ; Common register, R7 == R1'
CP’ R6 R0' ; Common register, R6 == R0'

R5 ; Register for caller’s locals and intermediates
R4 ; Register for caller’s locals and intermediates
R3 ; Register for caller’s locals and intermediates
R2 ; Register for caller’s locals and intermediates
R1 ; Register for caller’s locals and intermediates

CP R0 ; Register for caller’s locals and intermediates

MODULE 1

; *** Assignment Of GPRs To Local Variables - Caller ***

x_var LIT ‘R0’ ; Local variable
y_var LIT ‘R1’ ; Local variable

parm1 LIT ‘R6’ ; Passed parameter 1
parm2 LIT ‘R7’ ; Passed parameter 2

result LIT ‘R6’ ; Value returned from sub routine
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

MODULE 2

; *** Assignment Of GPRs To Local Variables - Sub Routine ***

a_var LIT ‘R2’ ; Local variable
b_var LIT ‘R3’ ; Local variable

input1 LIT ‘R0’ ; Received parameter 1
input2 LIT ‘R1’ ; Received parameter 2
ret1 LIT ‘R0’ ; Final result returned in R0

Fig. xx - Giving GPR’s Meaningful Names

By using some forethought, the programmer should arrange for any value to be passed to the sub routine to be
located in the common area, so that all the normal loading and unloading of parameters is avoided.  This technique
can be used in either absolute or SP-relative registerbank modes.

To get the best from a RISC’s registers, the location of data needs close consideration:  although highly orthogonal,
the limited number of addressing modes provided for MUL and DIV for example, can appear somewhat restrictive.
Fortunately though, most operands involved will already be in registers, so eliminating the need for many address-
ing techniques.  As might be expected, the instructions with the widest range of addressing modes are the simple
data moves - the fact RISC’s are the result of very careful analysis of the requirements for fast execution becomes
obvious after a short acquaintance!
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Coping With RISC Instruction Set (Apparent) Omissions

With largely single machine cycle execution, some conventional “fast” instructions such as CLEAR, INC and DEC
become redundant.  Therefore, to keep the total number of instructions to a minimum, RISC’s simply omit them.
Examples are given below:

Instruction 80C196 States 80C166 States
-------------------------------------------------------------
Clear Word CLR 4 AND Rn,#0 2
Decrement Word DEC 4 SUB Rn,#01 2
Increment Word INC 4 ADD Rn,#01 2

- all direct addressing mode

Three operand instructions are also commonplace in CISCs but not present in RISCs.  Although additional instruc-
tions are required, the overall number of states is still less than the three operand CISC equivalent, plus the shorter
RISC instructions allow greater opportunity for interrupt servicing.

The following example illustrates this:

Perform: z = x + y

80C196 (CISC)

z,x and y are directly addressed memory locations

x DW 1
y DW 1
z DW 1

ADD z,x,y ; 5 states - no interrupt possible

166 (RISC)

z,x and y are memory locations, Rw is a GPR

x DW 1
y DW 1
z DW 1

MOV Rw,x ; 2 states
; * Interruptable here

ADD Rw,y ; 2 states
; * Interruptable here

MOV z,Rw ; 2 states
; ————
; 6 states

One extra state required when using CISC approach.  However, if the variables are assigned recognising that this is
a RISC:

x and y are memory locations, z is a GPR

x DW 1
y DW 1

z LIT ‘R0’ ; z is assigned to GPR R0 via a LITeral definition

MOV z,x ; 2 states
; * Interruptable here

ADD z,y ; 2 states
; ————
; 4 states

- 1 state saved over CISC.  The above was chosen as a worst case RISC, best case CISC example.
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For a normal 2 operand ADD, the RISC uses two states compared to the CISC’s 4, a 50% improvement.

- Assigning all variables to GPR’s would probably make sense in the context of a real program.
- This trivial example shows how familiarity with RISCs programming techniques improves performance.

RISC And Real World Peripherals

Within the workstation RISC, superscalar operation allows parallel execution of instructions, made possible by
having discrete addition, multiplication, shift and other dedicated units, each with their own pipelines.

No RISC microcontroller (yet) offers quite this but something similar is possible to service on-chip peripherals such
as an A/D converter.

A common situation occurs in conventional microcontrollers whereby some regular event requires attention from
the CPU to load or unload data.  Typically, an A/D converter will cyclically read a number of channels, causing an
interrupt when completed or simply waiting for the CPU to poll its status.  The net result is the valuable CPU time is
spent doing what even for a microcontroller is a simple, repetitive task.

The RISC 166 allows the interrupt service routine to be serviced and completed in a single machine cycle.  In the
case of a periodic A/D conversion, on each read the result is stored in a table where they may be retrieved by the
CPU when convenient.  This mechanism requires the CPU to perform only a single MOV  [table_addr+],ADDAT
after each conversion.  At the end of the table, an additional cycle is required to reset the table pointer.

Any real-world generated data can be handled in this way, leaving the CPU free for data processing rather than
simple data collection.

RISC Benefits In Embedded Applications

1.  Near-DSP throughput

For example, the 166 can acheive 10 million instructions per second (10MIPS) at 20MHz clock (100ns machine
cycle time).  At 25MHz this rises to 12.5MIPS with an 80ns cycle time.  This is a result of pipelining and the ability
to contain the active data for entire procedures within the CPU registers.

2.  Simpler Assembler Coding

Although instruction set is less diverse, the consistency of addressing modes makes assembler coding easier.

3.  Very Fast Response To Non-Deterministic Events

By eliminating instructions that take many cycles, interrupt response is improved.  Smaller instructions effectively
yield higher “sampling rate” for real world events.

4.  Single Machine Cycle Context Switching

By careful use of multiple register banks controlled by a base pointer, context switching in a multitasking system
can be performed in just one 100ns cycle (80ns at 25MHz).

In addition, parameter passing overhead to subroutines is eliminated by use of overlapping register windows, so that
parameters lie in the common area.
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1. Getting Started With The 166

1.1 Basic Considerations

1.1.1 Family Overview

The 166 family now includes the C161, 163, 165 and 167, which amounts to around 20 different microcontrollers
when all the variants are considered.  It is an original core design and so is not directly related to any previous
architecture.  The first family member was the 166, available in masked ROM, FLASH EPROM and ROMless
versions.   The second member was the 167 which had an expanded addressing capability, integral chip selects plus
many more peripherals and introduced some new assembler instructions.  In fact, all the subsequent versions have
been based on the 167 core.  This includes the C161, C164, 163 and 165.

In this guide, the original 166 cored-versions will be referred to as the “166” while the 167 and its derivatives that
share the enhanced core will be known as the “167”.  Unless specific peripherals are being referred to, what is
appropriate to the 167 will apply equally to its derivatives.

1.1.2 Fundamental Design Factors

When starting out on a 166 family design, there are a number of basic things you must decide.  Wrong decisions
here can have expensive consequences later in the project.  There are a good many features of the architecture
which can be a bit puzzling to those used to conventional devices.  What follows is a simple guide to what you
really need to know to get best from this ingenious and powerful microcontroller family!

* What clock speed is required to acheive the necessary CPU processing power?
* What sort of clock source is suitable?
* What sort of reset circuit should be used?
* What CPU sockets are available?
* How is the on-chip ROM or FLASH EPROM to be programmed?
* How is external FLASH EPROM to be programmed?
* Is a full 16 bit bus necessary or will an 8-bit bus be sufficient?
* Will there be some external peripheral chips that will require different bus modes?
* How much IO is required to implement the application?
* Should WRH/WRL be used?
* Should the chip selects be used?
* Which peripheral pins are best allocated to the various different signal processing or generation functions in

the application?
And others...

1.2.1 Setting The CPU Hardware Configuration Options (166)

While in reset, the 166 reads the EBC0, EBC1 and /BUSACT pins to determine which bus mode is to be used.  This
information is then written into the appropriate fields in the SYSCON special function register.

1.2.2 Setting The CPU Hardware Configuration Options (167)

In common with many modern microcontrollers, between the /RESIN pin going high and the rising edge of the first
ALE pulse, the 167 reads the bit pattern on Port 0 to determine the following fundamental settings:

* What the default bus mode is
* How many pins on port 6 should be used as chip selects
* How many address lines should be used
* Whether the on-circuit emulation mode is be entered
* Whether the WRITEHIGH/WRITELOW mode required
* Whether  the BOOTSTRAP mode is to be activated

The pattern is placed onto the port by the user attaching pull-down resistors to the appropriate P0 pins.  For exam-
ple, to set 16 bit non-multiplexed bus mode, a pull-down resistor is added to P0.7, while P0.6 floats high.   The
values of the pull-down resistors should be calculated with reference to the overall loading on Port 0, from external
memory devices etc., using the formulae given in section 1.3.  The value required for a typical 1 EPROM + 1 RAM
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system is 8K0, this representing the stated maximum value and covers 90% of all designs seen to date.  In extreme
cases, as little as 1K8 can be used but this is exceptional as the leakage currents from modern memory devices are
extremely small.  Overall, the user is simply advised to check the situation in the design and not to just to blindly
accept the usual 8K0 value!

Note: The databooks frequently refer to port 0 either as a 16-bit port or as two 8-bit ports, made up of P0L (LOW)
and P0H (HIGH).  Thus P0.15 is bit-16 on port 0 which is also P0H.7.  By the same  convention, P0.7 is also known
as P0L.7.

1.3 Calculating The Pull-Down Resistor Values

Finding the value of the pull-down resistors for your design is fairly straightforward.  You will need to know the
leakage current from the devices such as RAMs, ROMs etc that are attached to the bus.

167 System.

Port 0

input leakage current
input current

Vcc

RESET

V   = VIN ILMAX

RPDPDI

I IP0L >= 100uA SYSL

VILMAX = Highest voltage that will be accepted as a ‘0’
ISYSL  = Leakage current from RAMs, ROMs etc.
IP0L    = Current flow from 167’s Port 0 when pin is at VILMAX

RPD   = Pull down resistor on Port 0

From 167 Databook:
VILMAX  = (0.2 x Vcc) - 0,1V  => 0.8V <= VILMAX  =< 1.0V
Vcc    = 5V +/-10%      => 4.5V =< Vcc   =< 5.5V

Pull Down Resistor Calculation

RPD < VILMAX    =          VILMAX

           IPD             IP0L + ISYSL

Example Without System Leakage Current, ISYSL:

RPD < VILMAX    =     0.8V     = 8K0
           IP0L           100uA

Thus the maximum recommended value is RPD = 8K0.  In practice, 8K2 is almost always used.

1.4 Pull-Up Resistor Calculations

In some designs, the loading on the bus can be such that there is a net flow of current into the external devices to
ground, i.e. the bus sinks current.  In extreme cases, this can cause the port 0 pattern read by the 167 to be incorrect.
It must be stressed that this very rare but can easily be compensated for by using a high-value pull-up resistor.  Such
measures are only required if the current sunk into the external device  ISYSH, is greater or equal to 10uA.  Before
finalising any design the condition should be checked for and a pull-up resistor added if necessary.  The procedure
for calculating the pull-up resistor is as follows:

Pull-Down Resistor
Current Flow
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167 System.

Port 0

input leakage current
input current

Vcc

RESET

V   = VIN IHMIN

RPU
PUI

IIP0H <= 10uA SYSH

Vcc

VIHMIN  = Lowest voltage on pin that will be accepted as a ‘1’
ISYSH  = Current sunk into bus devices etc.
IP0H  = Current that can be drawn from 167’s Port 0 at VIHMIN

RPU  = Pull up resistor on P0

From 167 Databook:
VIHMIN  = 0.2 * Vcc + 0.9v - 0,1V  => 1.8V <= VIHMIN  =< 2.0V
Vcc    = 5V +/-10%      => 4.5V =< VCC   =< 5.5V

Pull Up Resistor Calculation

RPu      < VPU      =    VCCMIN - VIHMIN

            IPD               ISYSH - IP0H

Example: ISYSL = 50uA

RPU <   4.5v - 1.8v      = 67.6K
          50uA - 10uA

1.4 Setting The Configuration Without Pulldown Resistors

It is possible to use a simple analog-type switch to set the pattern on port 0 in external bus designs.  Here, the links
to ground are only applied to the port 0 pins when the /RESIN signal is low, i.e. the 166 is in reset.  The D-type
latch powers up with the Q output low so that the link pattern is applied to port 0.  When the RESET signal goes
high to release the CPU, the switch is kept active until the first rising edge of ALE at the start of the first bus cycle.
At this point the CLK signal forces the latch to set Q high so that the link pattern is removed and the bus operates
normally.

167

P0L.0

P0L.7

/RESIN

Bus Mode

Bootstrap Mode

/EN

Quick Switch

GND

RESET CIRCUIT

Links

ALE
74x74D

Q

/Q

S

/CLR CLK

Vcc

Pull-Up Resistors
On Port 0

Active Port 0
Configuration Scheme
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1.5 Port 0 Configuration Functions

This diagram gives the individual configuration functions of the port 0 pins when CPU is between the end of reset
and the rising edge of the first ALE:

 

CLKCFG SASEL CSSEL

W
R

C

BUSTYP R B
S

L

R R

A
D

P

E
M

U

P0.15 P0.7 P0.0

P0H.7 P0L.7 P0L.0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Clock 
Generator

Port 4
Logic

Port 6
Logic

R
P

0H

SYSCON BUSCON0
167 Special Function 
Registers

EMU - Emulation mode allows the XBUS peripherals to be accessed by an external 167 core.  This
is used on the AX166B bondout in-circuit emulator to allow the C167E-BA emulation chip to
access the CAN peripheral and XRAM on the slave 167 processor on the EP167-Y.

ADP - On-circuit emulation mode puts all the 167 pins into a high-impedance tristate condition so
that an emulator’s clip-over adaptor can be attached to a soldered-in device.  Note that if the
clock source is a crystal, pin XTAL2 must be disconnected from the processor so that the
emulator’s CPU can pick up the clock.

R - Reserved, do not use!

BSL - Enables the bootstrap loader mode for on- and off-chip FLASH-programming etc..
See section 9.3.

BUSTYP - The external bus type can be set as shown below.  These two pins form the BUSTYP field
in the BUSCON0 special function register, where it can be modified by software.

P0.7 P0.6 External Bus Mode
0 0 8-bit non-multiplexed
0 1 8-bit multiplexed
1 0 16-bit non-multiplexed
1 1 16-bit multiplexed (DEFAULT - no pull-down)

WRC - Cause the /WR pin to become /WRH (write high) and /BHE to become /WRL (write low) to make
the use of 8-bit RAMs in a 16-bit system easier.  See section 5.1.

CSSEL - The number of chip selects that are to be enabled on port 6 - see section 4.1.

CSSEL Chip Select Lines On Port 6
1 1 Five: /CS4, /CS3, /CS2, /CS1, /CS0 (DEFAULT - no pull-down)
1 0 None:
0 1 Two: /CS1, /CS0
0 0 Three: /CS2, /CS1, /CS0
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Simple Reset Scheme

SALSEL - Number of “segment address” lines, i.e. how many additional address lines above A15 will
be enabled.

SALSEL Segment Address Lines On Port 4
1 1 Two: A16, A17 (DEFAULT - no pull-down)
1 0 Eight: A16 - A23
0 1 None: (“NONSEGMENTED” or “TINY Model” - very rare!)
0 0 Four: A16 - A19

CLKCFG - Programming for processor clock input, with optional phase lock loop (PLL) clock multiplier.

   CLKCFG  . Clock Generator Frequency Multiplier Control
1 1 1 x4 (DEFAULT - no pull-down)
1 1 0 x3
1 0 1 x2
1 0 0 x5
0 X X Direct Drive

1.6 Reset Control

The 166 family has two reset pins, /RESIN and /RESOUT.  The former is a conventional active-low reset input
whilst /RESOUT is an output pin which stays low until the CPU executes the EINIT (end-of-initialisation) instruc-
tion.  /RESOUT is thus a means of keeping peripheral devices in a reset state until the CPU is fully initialised.

The /RESIN input must be kept low for the duration of the startup phase of the clock oscillator or crystal - the latter
requires up to 50ms.  Once stable, any low level on /RESIN of more than two state times (100ns @ 20MHz) will
reset the CPU.  Low times of less than this must be avoided.

The pin has an internal pull-up resistance of  between 50k and 150k, so the simplest reset circuit is just a capacitor
to ground.  The value must be chosen to give a time constant of at least equal to the clock stabilisation time. 22uF is
a common choice.

/RESIN

22uF

GND

50K - 150K

Vcc

166

RESET

However, such a simple arrangement is not suitable for use in those situations where the power supply could suffer
from instability or brown-outs.  In most commercial products, the use of a proper microprocessor power supply and
RESET manager such as the MAX691 is highly recommended.   This low-cost device will hold the CPU in RESET
if the power supply is less than 4.5v.
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2. Clock Speeds And Sources

2.1 166 Variants

The original 166 has a divide by two prescaler so that a 40MHz crystal or oscillator is required to yield the maxi-
mum possible 20MHz CPU clock.  The basic unit of time in the 166 core is a single state time, corresponding to
50ns at 20MHz.  Most 166 instructions execute in two state times, i.e. 100ns.

The ‘W’-suffixed 166 parts have no divide-by-two and thus can use a 20MHz clock source directly.  These parts
must be used with a crystal as they demand a 50% duty cycle clock, which cannot be guaranteed with an oscillator
module.  If an oscillator module is used, it must have a rise and fall time of <5ns.  Such devices are readily available
at a few pounds each.

2.2 165 And Basic 167 Variants

From stepping level BA, the 165 versions can run with either 40 or 20MHz clock sources.  The presence of a pull-
down resistor on P0.15 will cause the CPU to expect a 1:1 clock rather than a 2:1.

2.3 167SR & CR Variants

The 167CR and 167SR are all of the ‘W’ type in that they can use a 20MHz crystal.  They can also use a 5MHz
crystal and use the on-chip phase-lock loop (PLL) to perform a programmable frequency multiplication up to the
usual 20MHz or newer 25MHz.  The PLL is disabled by a pull-down resistor on Port P0.15.  From C167CR BA
step onwards, the PLL can provide frequency multipliers of x1, x2, x3, x4 and x5, so that in the latter case, a 5MHz
crystal will yield a 25MHz clock.  The exact multiplier is set via pull-down resistors on P0.14 & P0.13 (P0H.6 & 5).
The default multiplier is x4, corresponding to no pull-down resistors.

167xR

A0-A18..A23

(PLL Enable)GND

P06,7

P0.15

5MHz
R

XTAL2 XTAL1

X

167xR

A0-A18..A23

(PLL Enable)

GND
Rq

Iq From Current Probe
GND

P06,7

P0.15

5MHz
R

XTAL2 XTAL1

X

CX2 CX1

2.4 Generating The Clock

2.4.1 Designing Clock Circuits

There are two basic choices of clock source, the crystal or a self-contained oscillator module.  The design of a
traditional clock circuit is not a trivial task and requires some care to get reliable start-up when production toler-
ances and component ageing is taken into account.  The 166 is family is no more demanding in this area than any
other microcontroller so the hints given in the following section should be considered for any clock circuit design.

2.4.2 Oscillator Modules

Using an oscillator module is very simple as the operating point calculations will have been taken care of by the
manufacturer.  The EMC emissions are also less as the metal case is always grounded and there will be a shorter
signal path.  The only critical factor is that the rise and fall time should be less than 5ns.  There is a small price

Fundamental
Mode

Test
Configuration
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premium over the conventional crystal-plus-capacitors approach but this is not great.  Indeed, it is only if the
microcontroller is going to be used in a 25k+ per annum quantity that the extra cost of a module is going to become
significant.    The oscillator output should be connected to the 166’s XTAL1 pin.

2.4.3 Designing Crystal Oscillator Circuits

The traditional clock circuit usually comprises a parallel resonant fundamental crystal plus two capacitors and a
resistor, to limit the current through the resonant device.

The selection of the series resistor value Rx, must be made so that the oscillator is guaranteed to start within 0.1ms
to 5ms, even after mass production tolerances and ageing effects are taken into account.  It must also be chosen to
keep the power drive level of the crystal between typically 50uW to 800uW, although the device’s datasheet should
be consulted.

The process of defining RX and the “load capacitors”, CX1 and CX2,  is aimed making sure that there is sufficient
current flowing through crystal to drive the on-chip invertor that produces the oscillation.  The crystal has a charac-
teristic resistance known as the “equivalent series resistance” or “load resonant resistance”, which is a combination
of its typical resistance (R1typ) and residual capacitance (C0typ), as stated by the manufacturer, plus reactive effects
due to the oscillation and the load capacitors CX1 and CX2.  This equivalent resistance is given by:

RL = R1typ * (1 + (C0typ/CL)2)

Where:  CL = (CX1 * CX2)/(CX1 + CX2) + CS     (CS  = the stray capacitance of clock circuit)

During this Rx definition phase, a small value resistor, Rq, should be inserted in series with the crystal.  The tempo-
rary resistor, Rq, must be increased until the oscillator does not start automatically when the 166 is powered up for
different values of load capacitor. This value will be Rqmax.  For ease of adjustment, a RF potentiometer can be
used but you must bear in mind that this is RF engineering and the  value of Rq so arrived at must be verified by
replacing the potentiometer with an equivalent SMD or RF resistor and repeating the test.   The ratio of Rqmax to
the equivalent series resistance is the “Safety Factor” and is a measure of how much spare capacity there is in the
circuit to overcome tolerance and ageing effects:

Safety Factor (SF) = Rqmax/RL

A current probe should be used to measure the peak-to-peak current (Ipp), converted to drive power with:

Pw = (Ipp * Ipp * RL)/8

The resulting relationships between safety factor and power drive versus load capacitor value should be plotted on
graph paper.  From both curves, a value of load capacitors that gives the best combination of safety factor and
power consumption can be chosen.

2.4.4 Crystal Oscillator Components Test Procedure

1. Select a value for Rx
2. Fit load capacitors, CX1 and CX2 of the value given in the table
3. Adjust Rq until oscillation will not self-start in less than 5ms when the 166 is powered-on.  Record this resistance
in a table, similar to than given below:

Test Record For Rx =  680R
CX1 = CX2 Ipp Pw Rqmax
0.0pF 0.002075 25.27 150
2.2pF 0.002300 26.09 500
4.7pF 0.002550 27.48 750
10pF 0.003100 32.17 600
22pF 0.004550 51.59 250
47pF 0.008000 122.50 60

4. Select the next value of load capacitors and repeat steps 2 to 4

Now pick another value for Rx and repeat the procedure.
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After a number of Rx values have been tested in this way, the resulting curves should be examined for the resistor
and load capacitor values that give the best safety factor at a power level of 50uW-800uW.  Having selected the
values, the resistor Rq should be removed and the current and start-up times rechecked.

If an adequate safety factor cannot be acheived, particularly above 20MHz, it is possible to add a series 1-10M
resistor to increase the feedback to the XTAL1 input pin.  Otherwise, a third-overtone mode must be used.  Unfortu-
nately, the component selection process is more complex and when it is considered that an extra inductor and
capacitor will be required to damp-out the fundamental frequency, it might prove more cost-effective to use an
oscillator module!

To simplify the selection process, Hitex can provide an EXCEL spreadsheet template that automates the conversion
of test results and characteristic curve plotting, as illustrated below:

The clock circuit will in fact produce two drive currents: until the RESOUT pin goes high, (after the EINIT instruc-
tion is executed), the current drive of the clock will be greater to ensure that the CPU is less likely to be upset during
the potentially noisy initialisation phase.   It also helps to overcome the initial high resistance of the crystal during
the startup phase.

Typical load capacitor values are 22pF with Rx around 1K.  However, you should not rely on these and for any
serious project, the selection procedure given earlier should be followed.

2.4.5 Typical Component Values

The table gives typical values for a selection of commercially available crystals.  These must not be used as they
stand without testing - we deliberately have not given the brand names for this reason!  It is recommended that you
compare the characteristics C0typ, R1typ (in the shaded panels) and fundamental frequency of your device with the
examples in the table and pick the one which is closest.

Make up a clock circuit using the load capacitors CX1 and CX2 plus series resistor Rx and perform the check of
safety factor and drive power given in the previous section.  The chances are that the results will be within limits but
it would be very embarassing if reliability problems occur in production and you have to admit that you never
verified the component values in the clock circuit....

Region Of Acceptable
Safety Factor

Region Of Acceptable
Power Level

Excel Spreadsheet For Component Evaluation
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2.4.6 Laying Out Clock Circuits

The layout of the clock circuit can be critical in determining both the RF emissions and susceptability of a 166
design.  As with any high frequency system, the loop areas must but kept as small as possible, meaning in practice
that all components must be located as close as practicable to each other and the XTAL1/XTAL2 pins on the CPU.
With metal-canned crystals, the case should be soldered to a grounded area on the top surface plus be connected to
the main ground layer in a multi-layer board.  This will also improve the mechanical stability of the part.

166

CB

CX1

R
X

CX2

Crystal

Decoupling capacitor 
on reverse of board

= Connections to
   ground layer

Vcc Vss
XTAL1 XTAL2

Inductive and capacitive coupling can be reduced by eliminating parallel runs of tracks either on the same layer or
between layers.   The grounding of the load capacitors should have a generous track width and be connected directly
to the ground layer to avoid ground loops which are a major source of RF emissions.

2.4.7 Symptoms Of A Poor Clock

It must be emphasised that the series resistor value must be chosen with care.  An incorrect value is unlikely to
result in a total CPU failure, or even erratic operation of the core, timers or A/D convertor.  However, the first

Typical Crystal
Characteristics
And Component
Values

Sample Oscillator
Circuit Layout
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symptom of a poor choice is that an unexpectedly large number of bus errors on the CAN peripheral may be seen,
or the ALE timing is erratic for no readily apparent reason.  Such behaviour should never be ignored - try shorting
the resistor out to see if the problem goes away....

Note: For more information on oscillator design, please refer to the application note by Peter Mariutti.

3. Bus Modes

3.1 Flexible Bus Interface

The basic philosophy behind the 166 bus interface is simplicity; by providing 8- and 16-bit non-multiplexed modes,
it is possible to dispense with an address latch and provide just a ROM and RAM to make a working 166 system.
With the 167, the integral software-programmable chip selects can make most address decoder logic redundant.
Thus, despite its 20 fold improvement in performance, a 166 digital design can be simpler than an 8031!

One of the 166’s most useful features is its ability to support two different bus configurations in a single hardware
design.  Thus whilst the main code and data areas can be 16-bit non-multiplexed with zero waitstates for best speed,
slow (and low cost) peripherals such as RTCs can be addressed with, for example, an 8-bit bus with 3 waitstates.

This secondary bus mode is controlled by the BUSCON1 and ADDRESEL1 registers which set the mode and
address range base address respectively.  In the 167, a further 3 secondary bus regions can be defined, each with its
own BUSCON and ADDRSEL registers plus an external chip select (/CS) pin for direct connection to peripheral
devices’ chip enable inputs.  These pins can remove the need for any external address decoding GALs etc..

It is essential when setting up the ADDRSEL and BUSCON registers to make sure that you configure the
ADDRESELx before the corresponding BUSCONx.  If you do not, the CPU will enable the ADDRSEL for an
undefined bus configuration and a crash will ensue!  Also note that while you may initialise these registers from C,
any variables located in an region controlled by them will not be zeroed before main()  as the corresponding chip
select will not be active (low).  It is therefore better to put your BUSCON and ADDRSEL set ups just after the
SYSCON and BUSCON0 initialisations in the C compiler’s START167.A66 or CSTART.ASM.

3.2 Setting The Bus Mode

3.2.1 166 Variants

This uses two dedicated pins (EBC0/1) to determine the bus mode coming out of reset.  These two pins are effec-
tively written into the BTYP field in the SYSCON register.  This default bus mode can be overridden by the user
writing into the BTYP field but this is not recommended.

3.2.2 C165/7 Derivatives

When coming out of reset, the 167 reads the pattern of user-defined pull-down resistors on the P0.6 and P0.7 to set
the default bus mode.  In fact, the pull-down resistor pattern is placed into the BTYP field in the BUSCON0 register
where it can be changed by software, although it definitely not recommended to do this on external ROM designs.
The number of chip selects and the overall address range of the processor are also set via PORT0 pull-down resis-
tors, covered in section 4.1.

3.3 Setting The Overall Addressing Capabilities

The default memory space for the 167 is 256kb as port  0 provides 16 address lines and port 4 supplies A16 and
A17, which act as two “segment address lines”, just as with the 166 variants.   It is possible to enable four segment
address on port 4 lines to give A0-A19, i.e. 1MB.  Ultimately, all 8 segment address lines can be enabled to give
A0-A23 and thus a 16MB addressing range.

The number of segment address lines is determined by the presence of pull down resistors on P0.9 & P0.10.  No
resistors results in two segment address lines and a 256kb address space.

Somewhat confusingly, the 167CR has the CAN TX and RX on the P4.5 (A21) and P4.6 (A22) pins, apparently
limiting the memory space to 1MB.  In fact this is not the case as the 5 chip selects can be used to expand the space
back up 5MB, as is demonstrated in section 4.4.
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3.4 External Memory Access Times

As potentially a very fast CPU, the 166 can require fast memories to run at full speed, especially if the newer
25MHz versions are used.  The minimum access times for EPROMs and RAMs is easily found via the formula:

ROM Access Time (in ns) = 2/Fcpu - 25 (Fcpu = CPU frequency in MHz = 20MHz)

At 20MHz, the minimum access time is 2/20E6 -25 = 75ns.  This assumes that there are no external signal delays
through address decoders etc..  If  the 167’s own chip selects are being used to enable memory devices directly via
their /CE pins, the 20ns delay due to the internal address decoding logic must be subracted from the minimum
access time of 75ns.  This means that when used as address chip selects, the memory access time is 55ns at 20MHz.
If the integral chip selects are configured (by software) instead  as READ or WRITE chip selects, the 20ns chip
select delay does not influence the memory access time - see section 4.3 “Read/Write Chip Selects”

With common, low-cost FLASH EPROMs being 90ns, it can be seen that the maximum clock frequency is
17.4MHz.  With a typical external memory decoder propagation delay of 10ns, the maximum clock frequency is a
convenient 16MHz.

It is possible to make the 166 insert waitstates itself to allow slower memories to be used but this should generally
be avoided.  Tests have shown that it is more efficient to reduce the clock speed rather than insert waitstates.  In the
usual case of either 16MHz with no waitstates or 20MHz with a waitstate, there is a 3% processing performance
advantage from choosing the former.  Waitstates are the enemy of the 166!

If the PLL is being used to generate the CPU clock, the small jitter present in the frequency must be taken into
account as it will tend to decrease the required access time for the memory devices.  You are advised to refer to
page 44 of the 167 data sheet for more information on this subject.  If ALE lengthening, READ/WRITE delays or
memory tristate times are being used, you must account for these also.  However, in the majority of present-day
designs, they are not used.

3.5 Expanding The Basic 166�s Memory Space

The 256kb  addressing capability of the 166 derivatives can be easily expanded using “bank-switching” so that
1MB can easily be reached - the 16MB of the 167 cannot realistically be duplicated!   Here, some ordinary port
pins, such as P2.14 and 2.15 can be used as additional address lines A18 and A19.  The C compiler kits can be made
to automatically drive these pins so that virtual addresses can be assigned to code and data.  As far as the user is
concerned, this is totally transparent and the 166 can be treated as a 1MB address space processor.
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There are some side effects to this that must be taken into account: as 166 port pins are inputs after reset, the A18
and A19 “address” lines will be high, implying a virtual address of 0xC0000.  The user must therefore make sure
that there is a JMP vector to the program start at this address.

There is only a software overhead due to bank-switching when code or data is accessed in other than the current
bank.   This amounts to around 1us, every time a change is required.  Careful software design, particularly in the
linker input file, will make this a rare condition.

Bank-Switched 166
Memory Expansion
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4.  Interfacing To External Devices

4.1 The Integral Chip Selects (167/5/4/3/1)

The 167 derivatives have IO pins on port 6 that can be used as chip selects, each with software-programmable
registers that allow the user to set the address range over which the chip select will become active.  In addition, the
bus width, number of waitstates etc. can also be setup.  There are five BUSCON registers that control the latter
while there are four ADDRSEL registers that set the address range.   Chip select 0 (/CS0) is port 6.0, /CS1 is port
6.1 and so on.

Chip Select Pin Name Control Register Address Range Register

/CS0 P6.0 BUSCON0 Not Applicable
/CS1 P6.1 BUSCON1 ADDRSEL1
/CS2 P6.2 BUSCON2 ADDRSEL2
/CS3 P6.3 BUSCON3 ADDRSEL3
/CS4 P6.4 BUSCON4 ADDRSEL4

Immediately after RESET on an external memory system, only chip select 0 is active and until programmed other-
wise, will be active over the entire memory space of the processor.  The CPU will have read the pull-down resistors
on port 0 to determine how many further chip selects are required.  In most designs, /CS0 will be connected to the
chip enable of the EPROM.  The bus type for this initial configuration is read from the pull-down resistors on port
0, outlined in section 3.2.2 . Before starting the program proper, the corresponding ADDRSEL and BUSCON
registers for the chip select pin that is to be used must be set up.  /CS0 is active over any memory address ranges not
covered by chip selects 1-4 and thus sets the main bus mode.

The base address and range of a chip select are subject to the limitation that the base address must be an integer
multiple of the range.  For example, a chip select with a range of 128kb must start on a 128kb boundary and a chip
select of 1MB must start at 0x100000 and so-on.  The smallest range size is 4KB.

167 Integral Chip Selects
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From 167 stepping level “BA”, the chip selects may over lap, i.e. /CS2 may define a range within that already
allocated to /CS1.  The chip selects are internally prioritised so that the chip select with the highest number will
overrule any other chip select.  Only certain combinations of chip selects are permitted and it is important  that the
user only overlaps /CS4 and /CS3, and /CS2 with /CS1.  An overlap of /CS4 with /CS2, for example, will cause a
bus error and incorrect operation.  Section 8 in the 167 user manual gives further details on the chip selects.

4.2 Setting The Number Of Chip Selects

As with the number of segment address lines, the number of chip selects is set by the pull-down resistor pattern on
P0.10 & P0.9.  The user can select 5, 4, 3, 2 or none.  Chip selects not enabled by this are available for use as simple
port 6 IO pins.

4.3 READ/WRITE Chip Selects.

In cases where an external address decoder is being used in preference to the integral chips selects, that have been
disabled via the port 0 resistors, the ADDRSEL and BUSCON register associated with each chip select can still be
used to control the bus width, waitstates etc. for each memory region externally created.  Thus a 256kb block of 8-
bit RAM at address 0x80000 could still be described by, for example, ADDRSEL2 and  BUSCON2 but an external
address decoder would provide the chip select signal; the chip select pin /CS2 remains inactive though and carries
on as a simple IO pin.

The chip selects can save a lot of glue logic but there is an internal delay between the address valid and the falling
edge of  the chip selects of up to 20ns.  Thus if /CS0 is used to enable the EPROM via its /CE pin, an extra 20ns
must be allowed for when calculating the required access time.   This delay is relatively unimportant for RAMs as
they are generally faster for a given price than EPROMs.  The 90ns FLASH EPROM is cheap but 70ns are not so
the extra 20ns delay can increase cost.  Fortunately, there are  better ways of using the chip selects which do not
require faster memories and these will be covered in the next section.

The default mode for the chip selects is to become active when the address range given by sfr “ADDRSEL1/2/3/4”
is addressed.  However, it is possible to program them from software to beome active (low) when either a READ or
WRITE access is made in the defined address range.  As the /RD signal is much later in the bus cycle, the delay is
not important and does not influence the memory access time.  An example might be to connect the /CE for the
EPROM to ground so that it is permanently enabled and taking the /CS0 signal to the /OE pin, where the /RD might
usually be connected.  One of the first actions of the program within the EPROM is to configure  the BUSCON0
register to make /CS0 into a “READ” chip select.

Effectively, the chip select logic internally combines the address /CS signal with /RD so that the chip select  pin
only goes active when both address chip select and the /RD are asserted.  The base address and range over which the
READ chip select must be allowed to go active is still set by the ADDRSELx registers.  The benefit of doing this is
that as the /RD signal is later in the bus cycle, the calculated memory access time of 75ns at 20MHz need not
account for any chip select delay.

Address Valid To Chip Select Timing
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It is also possible to configure a chip select as a /WRITE chip select so that the chip select signal is internally gated
with the /WR signal.  In the example, /CS1 might be connected to the /WR pin on the FLASH EPROM and only be
enabled by software when the FLASH is to be reprogrammed.  This helps prevent inadvertent writes to the FLASH.
If the integral bootstrap loader is used to program external FLASH EPROM at the end of the production line, this
trick can be useful.

4.4 Replacing Address Lines With Chip Selects

As has already been mentioned, the chip selects can be used as address lines so that not all of  port 4 need be
dedicated to use as segment address lines.  This is particularly important for the 167CR where the CAN peripheral
occupies A21 and A22.
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The user need only provide enough segment address lines to allow the largest single memory device to be fully
addressed.  For example, in a system with a 256K  FLASH EPROM and a 128kb RAM, only address lines A0-A17

READ & WRITE Chip Selects

Using Chip Selects As
Extra Address Lines
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are required to access any address in the 256KB range of the device.  Here, lines above A17 are redundant and best
used as port 4 IO pins.  The 128KB RAM can be enabled by /CS1 which can be made to mimic A18, so mapping it
to a programmable address above 256k (0x40000).  In this case, ADDRSEL1 would be set to make /CS1 become
active when the C167 internally generates address 0x40000.  /CS2,3 & 4 can create further 256kb memory areas,
mapped to any address above 512k that the user chooses, provided it is a multiple of the active chip select size.

A common example of chip select usage is to allow multiple 1MB areas to be created, each attched to a different
chip select - hence the 5MB potential memory space of the 167CR when the CAN peripheral is used.

4.5 Generating Extra Chip Selects

A simple 74X138 can be used to give an extra 8 chip selects that are active over a 512kb range.  The 167’s /CS4 is
used to enable a further 8 chip selects by decoding A19, 20, 21.   The new selects are delayed by the propagation
delay of the ‘138.  They must all use the same bus mode, waitstates etc. as they are all controlled by BUSCON4.
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If the upper address lines are not available, then simple port pins can be used.  The user must then manually set the
port pattern to enable the appropriate chip select.  This type of IO-mapped chip select is best reserved for infre-
quently accessed devices.
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4.6 Confirming How The Pull-Down Resistors Are Configured

RP0 is a special read-only register at address 0xF108 contains an image of port 0 when coming out of reset.  In
effect, it allows the programmer to check whether the pull-down resistor settings are correct.  A simple bootstrap-
loaded diagnostics program available from Hitex makes use of this to verify that new boards are correctly
configured.

7 6 5 4 3 2 1 0

Clock Mode Segment 
Address Lines

Number Of
Chip Selects

/WR
Mode

RP0
(0xF108)

The fields have the following meanings:

Clock Mode Multiplier Comments
1  1  1 x4 Phase Lock Loop Multiplier
1  1  0 x3
1  0  1 x2
1  0  0 x5
0  X  X x1 Direct Drive

Segment Address Lines
1  1 Two A17 - A16
1  0 Eight A23 - A16
0  1 None
0  0 Four A19 - A16

Number Of Chip Selects
1  1 Five /CS4-/CS0
1  0 None
0  1 Two /CS1-/CS0
0  0 Three /CS2-/CS0

4.7 Generating Waitstates

In conventional processors, waitstates required for addressing external devices that cannot cope with the speed of
normal bus cycles were generated by a READY signal.  The CPU would effectively wait for the external device to
signal via the /READY pin, that it was ready to put data onto the bus.  This mechanism was and is a source of
complexity and hardware debugging problems.  To simplify system design, the 166 family can insert waitstates “at
source” so that it can extend its own bus cycles in multiples of one state time (50ns at 20MHz) without any /
READY.   The “MTTC” field in the SYSCON register allows the user to set the waitstates in the 166 while the
corresponding field in the BUSCONx registers on the 167 have the same effect.   Up to 15 waitstates can be in-
serted.

Each address region defined by the on-board chip selects can have a different number of waistates programmed
from software.   The 166 can still use a traditional /READY signal via the dedicated /READY pin.  In this case, the
any waitstates programmed from software will determine the point at which the 167 will start to check the hardware
/READY signal returned from the external device.   If the signal is /READY before the software waitstates are
completed, the bus cycle will terminate immediately.

It should be noted that if the CPU is executing from a memory region which has waitstates applied, the worst case
interrupt latency time will be extended by the number of waitstates inserted.

For older RAM devices, the data float time, i.e. the time for which the memory device drives the bus after the end of
a READ cycle, may be extended by 0.5 waitstate.  This will extend bus cycles, resulting the CPU losing around
10% of its performance.  It is very easy to miss this!  Modern RAMs are unlikely to require this and so this feature
is best disabled.
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5.  Addressing External Memory Devices

Despite the power of the 166 architecture, the additional hardware necessary to get a 166 up and running is very
small.  In many applications the large on-chip RAM is sufficient so that only an external EPROM needs to be added
to hold the program.  The following diagrams illustrate some simple examples.

The first scheme is still comparatively rare, probably due to previously high cost of true 16-bit memory devices.
However recent falls in cost are bound to make this high performance and very simple design much more common.
The second is an 8-bit non-multiplexed design using 8-bit ROMs and RAMs, favoured by ex-8051 users.
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5.1 Using Byte-Wide Memory Devices In 16-bit 167 Systems

To successfully use 8-bit RAMs the user must remember that the A0 pins on the RAMs go to A1 on the 167.  One
RAM has its data lines connected to the 167’s D0-D7 (LOW) and the other is wired to D8-D15.  A0 is effectively
redundant in such a configuration.   Failure to realise this before commiting to a PCB will result in a lot of track
cutting and hand-wiring.  When the CPU reads a word both RAMs are enabled simultaneously by /READ so that
the CPU can read D0-D15 in one access across the bus.  As the 166 is a 16-bit machine, all read accesses are word-
wide, even byte ones - the unwanted byte is simply discarded.

For writes to RAM some means of only enabling one of the RAMs is required, as a byte write to an even location
would corrupt the associated odd byte.  The traditional method of preventing this is to create individual /WRITE
signals for each RAM from /BHE and A0.  The 166 does it this way via an external PLD.  However the 167 has
special /WRITEHIGH (/WRH) and /WRITELOW (/WRL) pins, which are connected to the corresponding /WR pins
on the high and low RAMs.  To enable this feature, the user must either put a pull-down resistor on P0.8 or write a
‘1’ into the SYSCON, bit-8.
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5.2 Using The 166 With Byte-Wide Memories

The 166 has no WRITEHIGH (/WRH) or WRITELOW (/WRL) signal so a different approach is required to that
used on the 167/5.  If 8-bit memory devices are chosen that have two chip selects available, then the /BHE (BYTE
HIGH ENABLE) and A0 lines can be used to enable either the high or low bank of memories.

Here the A0 and /BHE signals are connected to the active low chip selects on both RAMs.  When an even byte is
addressed the A0 is low and /BHE is high, so that the low RAM is enabled.  On addressing an odd byte, A0 is high
and /BHE is low, so that the high RAM is enabled.
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A17 goes to the active high chip select so that the RAMs are enabled above 0x20000.  It also goes to the active low
ROM chip select, mapping it to address zero.

If the RAMs being used do not have two chip select inputs, the /WRL and /WRH can be derived from /WR, A0 and
/BHE via the following scheme:
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5.3 Using DRAM With The 166 Family

Despite the recent falls in the cost of large, fast static RAMs, the PC-style SIMM DRAM is still the cheapest means
of getting a very large RAM area in a 167 design.  In conventional CPU designs some method must be provided to
refresh the memory.  This is typically a bus request every few tens of microseconds and performing a RAS (Row
Address Strobe) cycle only.  A row address counter would then be incremented.  The hardware for this requires an
additional bus master with its own buffers and a counter.

Another commonplace refresh method is the CAS (Column Address Strobe) before RAS which uses an internal row
address refresh counter but still requires complex logic to ensure that precharge times are met.  The 166 family can
preform the refresh task with virtually no external logic - all that is needed is a GAL to implement the RAS and
CAS timing for accessing the DRAM.

The important peripheral is the PEC (Peripheral Event Controller), which is covered in detail in section 8.2.2.  In the
current context it is simply used (in conjunction with an on-chip timer) as a means of generating a read from each
row every 15.6us.  The PEC source pointer is used to make the row read and then automatically incremented to the
next row.  The destination simply thows away the read data by writing it to an unused location in the on-chip SFR
area.  The period is calculated as the refresh time divided by the number of rows  in the DRAM.  In a typical 256k x
4 HYB14256 DRAM this would be 8ms/512 rows = 15.6us.

As the PEC steals one 100ns cycle for every transfer, the % CPU overhead for the DRAM refresh is 100 x (0.1/
15.6),  which is negligible.
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6. Single Chip 166 Family Considerations

6.1 Single Chip Operation

In high volume applications the 166 family is often used in a masked ROM mode, where the user’s program is
supplied to the chip manufacturer who incorporates it into the silicon.  When fitted into the target system the /
BUSACT pin (/EA on 167/5/3/1) will be high, so that the CPU boots up into the program.   Execution from on-chip
ROM is made via 32-bit fetches, so that even 4-byte  instructions go through in 100ns.   The end result is that a
single-chip 166 will run approximately 20% faster than one operating in 16-bit non-multiplexed mode.  It is worth
noting that an expert 166 programmer will be able to reduce this differential by favouring 16-bit register-to-register
instructions when coding.  This applies equally well to C and assembler programs.

6.2 In-Circuit Reprogrammability Of FLASH EPROM

For prototyping masked ROM applications and medium volume production, the 166 has been available with on-
chip FLASH for some time.  The 32k FLASH area can be programmed using a 12v Vpp and uses the Presto F
algorithm.  Typically the FLASH is programmed by the processor itself, even when soldered down, with the
program received via the serial port’s bootstrap loader mode.  To put the 166 into bootstrap mode, the ALE must be
pulled high and then a negative edge must be applied to the NMI pin after the CPU comes out of reset.  Be aware
that some databooks omit to mention that the NMI must be pulled low!  For the 167 a pull-down resistor on P0.4
will put the CPU into this mode out of RESET.  The user’s software can then receive the program as a HEX file and
program it into the FLASH.  It is important to note that many competitive CPUs which appear to offer the conven-
ience of in-circuit reprogrammabilty in actual fact do not!

The 166’s 32k FLASH is divided into blocks of 12k, 12k, 6k and 2k, which can be individually programmed.
However a FLASH block cannot be erased or programmed while code is being fetched from any of the 4 areas.  It is
therefore necessary to perform these operations while executing from either the on-chip IDATA RAM or an exter-
nal memory device.

This self-programming ability can be very useful in cases where the FLASH 166 is to be used in mass-production,
as the final program need only be put into the device at the end of the line.  It also makes field software updates very
straightforward.  Hitex can supply simple programming routines written in C that the user can adapt freely.  For
further information on using the bootstrap loader, please refer to section 9.3.

The 167 has a 128K on-chip ROM area and hence a 128kb FLASH part.  The ROM is divided into 32kb blocks
which are physically separated by 32k gaps.  Like the 166 it is thus block programmable; useful in those situations
where adaptive data may need to be periodically programmed into constant tables in FLASH ROM.

6.3 Total Security For Proprietary Software

Once programmed it is possible to protect the FLASH area from reprogramming or any sort of access at all.  The
contents can thus be made totally secure, so that no unauthorised reading of  what could be commercially sensitive
software is possible.  This total security can be important in rapidly advancing fields such as motor drives or engine
controls, where many innovative (and secret!) techniques are used.

6.4 Keeping An External Bus

Even though you may be working on a genuinely single-chip design, it is always a good idea to leave port 0 avail-
able for use as an external bus.  During the development phase, running in a true single-chip mode will mean that
you will have to use a bondout-type emulator.  The low cost monitor debuggers will be of no use as they all require
an external bus.
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6.5 Accommodating In-Circuit FLASH Programming

The capability of programming FLASH EPROM (external and on-chip) after the 166 has been soldered into the
PCB is extremely useful.  To program the device access to the serial port is required, plus a means of pulling the
ALE to 5v and putting a negative edge on the /NMI pin whilst coming out of reset.  The following example shows
one means of doing this.

The example hardware in the left hand diagram uses an RS485 link which connects the RX and TX of serial port 0
together.  The 166’s bootstrap mode is entered by sending a null byte with one start and stop bit until the device
replies with 0x55 (0xA5 for the 167 and 0xC5 for the 165).  The user must send a 32-byte loader program which
then receives  a FLASH programming program.   The diode on S0TX prevents the transmitted data from reaching
the RS485 driver while the Vpp is enabled to stop the 0x55 acknowledge byte being loaded as part of the first 32-
byte program.  The application of the 12v Vpp is via a small add-on which connects to the 166 board via a five-way
pin header, through which it connects to the ALE, ECB1 and NMI on the 166.  The forcing of the CPU into
bootstrap mode is taken care of by the press-button switch A applying the Vpp.  Once the 166 starts up the first
falling edge on the ALE drags the NMI low, thus completing the switch into bootstrap mode.
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Note: From the BA-step 167 the bootstrap loader has been modified to disable the receive side until the acknowl-
edge byte has been completely transmitted, so that it will not be confused with the first byte of the initial 32-byte
program.  This makes it easier to use RS485 or ISO-K physical layers in bootstrap mode.

In the left hand diagram, the 4K7 resistor and diode on the S0TX line to block the acknowledge byte would not be
necessary on the 167.

6.6 Hitex�s Free In-Circuit FLASH Programming Utilities

Hitex can provide two free software kits which will allow programs to be downloaded directly into the FLASH
EPROM on the 166 and 167 FLASH versions.  These require just a HEX file version of the program plus a PC.
Please contact us if you want them - they will save you a lot of fiddling around!

In-Circuit Flash
Programming
With RS485

In-Circuit Flash
Programming
With RS232
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7. The Basic Memory Map

7.1 On-Chip RAM Regions

All 166 family members have RAM located on-chip.  These areas are of varying sizes and are of two basic types:

“IDATA” RAM is very closely coupled into the 166 CPU core and is strictly-speaking dual-ported, although this
attribute is only utilised by the Peripheral Event Controller (PEC), covered elsewhere.

XRAM is effectively off-chip RAM that just happens to be on the same silicon as the core.  It is on the CPU’s
XBUS, along with the CAN peripheral.

7.1.1  166 Variants

The basic 166 has a single on-chip RAM area, known as “IDATA”, located at 0xFA00.   It is available as general
purpose RAM.  It also is used for the “registerbanks” and “SYSTEM” stack.  Most C compilers allow the user to put
specific data objects in this region through the use of the “idata ” storage class qualifier.

Being truly on-chip, no external bus cycles are emitted when this area is accessed.   An interesting feature of the
IDATA RAM is that it always appears to be a 16-bit non-multiplexed RAM running with zero waitstates, regardless
of what the actual external bus mode is.  It is thus always guaranteed to provide very fast data access.  Curiously, it
is very slow when used to hold program code, as in bootstrap loader utilities. Any EPROM also at the address of the
IDATA will be ignored as it is effectively “behind” the on-chip RAM.  Your linker file should be designed to make
sure that code or data does not fall into this black hole.

7.1.2  167CR/SR, 164, Some 161 Variants

These devices have an enlarged IDATA RAM area, located at 0xF600.  They also have a second 1kb RAM located
at 0xE000, known as the “XRAM”.  This RAM must be enabled by the user in software by setting bit-2 in the
SYSCON register.  As the XRAM is really external to the core, its READ and WRITE cycles can be made visible
(bit-1 in the SYSCON) so that they can be traced by a dual-ported in-circuit emulator.   This visibility also means
that it can be made available to other processors via the HOLD, HOLDA and BREQ pins.  Thus in some applica-
tions a low cost derivative such as the 165 can be used as a co-processor for a 167, exchanging data via the XRAM.

7.1.3 165 Variants

The 165 has an enlarged on-chip IDATA RAM area, as per the 167.  It does not have any XRAM however.

7.2 Planning The Memory Map

All 166 derivatives come out of reset at address zero.  In the case of the 167 devices, the chip select 0 (/CS0) line
goes low, to enable the program store (usually EPROM) before the first address is emitted.

In the majority of 166 systems, the CPU uses the bus mode set either by the EBC pins or the data bus pull-down
resistors and execution begins from an EPROM.  Due to the internal architecture of the 166, the area from 0xC000
to 0xF9FF (0x0000-0xDFFF on the 167) is best used for memory-mapped IO devices.  This is because the CPU
always sets DPP3 to point at 0xC000 and, by using the “SDATA” data type in C, a very fast access can be made to
this region.  The area from 0xFA00 to 0xFFFF  (0xF600 - 0xFFFF on 167) is occupied by the on-chip RAM and
SFR block and hence any memory devices placed here will be ignored.  A typical memory map might be:

EPROM:  0x0000-0x7FFF, 16-bit non-multiplexed
RAM:    0x8000-0xBFFF, 16-bit non-multiplexed
IO:     0xC000-0xF9FF,(0xF5FF) 8-bit muliplexed
RAM:    0x10000-0x3FFFF, 16-bit non-multiplexed

Of course such a complicated map is not strictly necessary and is only given as an example!

In some systems the CPU can have RAM at zero: all variants have a bootstrap loader built-in which can receive an
application program via the serial port.  This is often used to program FLASH EPROM during field program
updates.
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The bus interface supports hardware waitstates via asynchronous and synchronous READY signals - in the latter
case the CLKOUT pin can provide the synchronisation.  In addition HOLD is provided for use with external DMA
controllers.

In cases where waitstates are required, the SYSCON (BUSCONx on the 167) register can be programmed to make
the CPU automatically insert the required number of waitstates without an external READY signal.  Thus unlike the
80C186, for example, no external hardware is required to generate waitstates.

It should be noted that as the PEC pointers can only operate in the bottom 64K of the address space, it might be a
good idea to place some RAM at 0x8000 in case any sizeable arrays are to be accessed via the PEC.

It is not obvious from the databooks that any EPROM in the address ranges of the on-chip RAM, SFRs, XRAM and
CAN peripheral is effectively hidden behind them.  It is therefore important to prevent any useful software or
constant data ending up in these address ranges.

7.3 A Typical 167 System Memory Map

Below is a typical memory map for a 167 design.  Where applicable, a sample line of C is given on the left hand
side to show how data can be directed to the appropriate memory region or type.  A point which is often missed is
that any EPROM lying at the same address as the on-chip areas will be hidden, and thus inaccessible.
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0x0EF00
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0x0F600
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0x10000
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LINKER CLASS NAME

IDATA

Ext SFRs
CAN

XRAM

SDATA

NCONST

sfr T2 = 0xFE50 ;

unsigned short huge big_array[0x8000] ;

unsigned short near medium_to_fast_var ;

unsigned short xhuge vbig_array[0x10000] ;

Typical C Language Data Declaration

bit flag ;unsigned char bdata flag_byte ;

unsigned short idata on_chip ;

unsigned short const sdata extra_const = 1 ;

unsigned short const near fast_const = 1 ;

unsigned short sdata xram_var ;

*(unsigned short sdata *) 0xEF00 ;

EPROM

RAM

EPROM

Hidden
EPROM

Hidden EPROM

Interrupt Vectors

Summmary Of Memory Areas In A Typical 167 Design
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7.4 How CPU Throughput Is Related To The Bus Mode

The overall throughput of the 166 family is highly dependent on the bus mode used.   As a 16-bit machine, the 16-
bit modes are obviously the most efficient: most instructions are 2-byte and so a complete instruction can be fetched
with just one access across the bus.  With the non-multiplexed mode no latching of the address is required and so
the CPU can run to best effect.  Branch instructions are 4-byte and so these require two accesses to fetch.

The FLASH 166 has 32-bit internal bus so that even branches can be fetched in a single access.  This configuration
consequently has the highest throughput of all.

In the 8-bit mode a minimum of two bus accesses are required to fetch any instruction.  Thus CPU performance is
considerably reduced.  However the fundamentally efficient design of the 166 core means that, even in 8-bit modes,
the CPU throughput is still considerably higher than comparable CPUs such as the 68000 and 80C186.

With such a high clockspeed the access time of memory devices is crucial.  At a 40MHz clock (20MHz CPU) 70ns
devices are required for zero waitstate operation.  A single waitstate reduces the access time to 120ns but can reduce
CPU performance by 30%.  To allow the use of low cost 100ns EPROMS however, it is best to reduce the clock
speed to 16MHz and lose 20% performance rather than run with a single waitstate at 20MHz.

The change in CPU performance with bus mode, as observed on an embedded C test program, is summarised
below:

Bus Mode Run Time (ms) Normalised
———————————————————————————————————————————
Internal ROM 15.90 0.82
16-bit nonmux 19.355 1.00
16-bit mux 24.424 1.26
8-bit nonmux 37.328 1.92
8-bit mux 46.545 2.40
80C52 12MHz 350.000 18.00

Notes: Taken at 20MHz, 0 wait states on a CB-step 166.  The test program did not include any long operations so
the performance advantage over the 8052 was reduced.  If you use int or long maths, expect > 20 times advantage.

7.5 Implications Of Bus Mode/Trading Port Pins For IO

16-bit non-multiplexed, the fastest bus mode, is also the greediest in terms of processor pins.  In this configuration
both port 0 and 1 are solely concerned with the data and address bus, in that order.  This allows a very simple
memory system as the address pins of the EPROM are wired to P1 and the data pins to P0.  As this is not
multiplexed no 74x573 latch is required, although the ALE pin will continue to operate.

If the number of IO pins is critical, it is possible to free up the 16 pins of P1 by going to a multiplexed bus.  The 16-
bit variant is to be preferred for the reasons given above.  Now P0 will emit the address followed by ALE going low
to latch it into the 74x73.  The data is then emitted to complete the access.  This will slow the CPU down somewhat
but by careful software design the effects can be minimised.  Steps to take might be to place all frequently accessed
data into the on-chip (“idata”) RAM where the multiplexing will have no effect.  The 16-bit modes do, of course,
require 16-bit memory devices or at least HIGH and LOW 8-bit memories.  In the latter case the BHE (byte-high
enable) and A0 pins can be used to select between high and low devices, as in section 5.2.

If cost is important, the 8-bit non-multiplexed mode allows simple (and single) 8-bit devices to be used without an
address latch.  This mode is very popular - remember, the basic CPU throughput is so high on 166 family devices
that some performance can be sacrificed to reduce cost.

Finally, the 8-bit multiplexed mode is really only provided for accessing 8051-type peripheral devices.  Although
the performance loss is around 200%, a 166 running at 12MHz will still outperform an 8031 device by a factor of
10-15, especially if 16- and 32-bit operations are frequent.

It should be noted that, even if an 8-bit bus is being used on the 166 variant, the upper half of port 0 cannot be used
as general-purpose IO.  The 167/5/1/3 have port 0 split into high  (P0H) and low (P0L) sections which will permit
this trick.
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8. System Programming Issues

8.1 Serial Port Baud Rates

8.1.1 166 Variants

While a 20MHz CPU clock will give maximum performance, it can be tricky to get “normal” baudrates from the
serial ports.

Here are the approximations to the required baudrate at 20MHz and 16MHz:

Baudrates for 20 MHz
SxBR = 0x003F =>  9600 Baud (9765.625 actual)
SxBR = 0x001F => 19200 Baud (19531.25 actual)
SxBR = 0x000F => 38400 Baud (39062.5 actual)

Baudrates for 16 MHz
SxBR = 0x0033 =>  9600 Baud (9615.38 actual)
SxBR = 0x0019 => 19200 Baud (19230.77 actual)
SxBR = 0x000C => 38400 Baud (38461 actual)

SxBRG is the baudrate counter register of the 166.

At 16MHz the realisable baudrates are significantly closer to the target figures.  The ideal solution is to use a special
oscillator of, for example, 9.8304MHz to get exactly 9600 baud.  However such devices can be expensive and in
most cases the loss of performance in going to 16MHz can be tolerated, especially when the possibility of using
cheap 90ns EPROMs is opened up.

8.1.2 Enhanced Baudrate Generator On 167 Variants

The 167 has an enhanced baudrate generator that allows the error resulting from 20MHz clocks to be virtually
eliminated.  The deviation increases with the baudrate and above 9600 can be quite significant.  The S0BRS bit in
S0CON enables this feature by applying a further 2/3 multiplier to the CPU clock frequency before it is fed into the
baudrate generator, so that a closer approximation to the baudrate can be achieved.

8.1.3 The Synchronous Port On The 167

The 167 only has a single asynchronous serial port, with the 166’s second port becoming a master/slave synchro-
nous port.  Unlike the synchronous modes in the 166’s ports, the C165/7 can be both bus Master and Slave.  This is
intended as a means of allowing the CPU to make use of many industrial serial communication standards.  These
include Philips I2C, Motorola SPI, Profibus and others.  Some software is required to configure the port to achieve
this however.  Detailed application notes  cover these possibilities.

Note:  If a second asynchronous port is essential for your application, Hitex can supply a simple software-driven
UART routine on request.  This is entirely adequate for user interfaces and other undemanding tasks up to 9600
baud.  A two channel version is also available for the C161.

8.2 Interrupt Performance

The 166 family has two methods for servicing interrupt requests.  The first is a conventional, albeit very fast,
vectoring to a service routine for every request.  The alternative mode is to just make a single-cycle data transfer
from the peripheral requesting the interrupt, with a “normal” service routine only being called once every 255 (or
fewer) requests.

8.2.1 Conventional Interrupt Servicing Factors

The 166-core’s suitability for very high performance control applications derives from its combination of short
instruction times and very fast interrupt response.  The basic aim of the interrupt system is to get the program to the
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first useful instruction of the interrupt routine as quickly as possible - all stacking of current working registers (the
“context switch”) is assumed to have been done before this point.

In a conventional processor, the speed of this response is normally limited by the slowest/longest instruction in the
opcode set plus the time to stack the current working registers.  In the case of the 166 this might be expected to be
the DIV instruction, which takes 800ns (25MHz).  However this instruction is interruptible, so if an interrupt
becomes pending during the execution of the DIV, the  calculation is suspended so that the interrupt can be proc-
essed.  Once completed, the DIV resumes.  Thus the worst case interrupt latency time is not significantly influenced
by the instructions in the pipeline when the interrupt is requested.  The best case response time is 400ns when
running from external ROM and the worst case is 900ns.  In both cases a 16-bit non-multiplexed bus is assumed.
For the FLASH device, the range is reduced to 250ns to 400ns. See section 9.3.1 for more information on interrupt
pin scan rates, which can affect interrupt latencies.

By virtue of the “SCXT” context switch instruction effectively stacking the processor state in a single cycle, having
got to the interrupt routine, the first useful instruction can be executed 100ns later.  Thus it takes around 1us for a
166 to be in a position to execute the first useful line of C in an interrupt service routine.   The availability of
potentially one register bank per interrupt service routine means that each interrupt source can be considered to have
its own “virtual” CPU.  Provided service routine run times are kept reasonbly short, this analogy is valid and can
simplify the design of real time software.

To put these latencies in context, an 8031 takes about 10us to get to the service routine plus another 12us to stack
the current register set.  The 80C196 takes around 5us to get to the service routine.

The 80C186 gets to the interrupt routine in about 5us and then takes another 4us to switch context.  The 68000 takes
about 18us plus 8us to stack everything.  This is one reason why the 68000 core is fundamentally unsuited to
interrupt-driven real-time control applications.

Note: The 68332’s fix for this poor real-time response is to bolt-on the dedicated time-processor unit (TPU).  This
uses a micro-coded co-processor to achieve what the 166 does using assembler or C.  Users therefore have to learn
not only the 68K instruction set but also send engineers on a TPU microcode course!

8.2.2 Event-Driven Data Transfers Via The PEC System

In addition to the normal event-interrupt routine mechanism, the 166 also supports a special data transfer only
interrupt response mechanism.  This allows a single byte or word data transfer between any two locations in the first
64k in just a single CPU cycle (100ns).  It is very similar to DMA except that it is event-driven by interrupt sources.
Typical applications would be to transfer A/D convertor readings from the A/D results register to a buffer without
CPU intervention.  This PEC system thus allows simple, repetitive data transfers to be performed with virtually no
CPU overhead.

The source and destination addresses are determined by source and destination pointers in the on-chip RAM and
must be initialised by the user in C.  The source pointer might be the AD result register and the destination pointer
an array in RAM.  If the source and destination pointers are fixed, there is no need to ever call a normal interrupt
service routine and the data transfer will continue ad-infinitum.  The source and destination for PEC-transferred data
must be in the bottom 64K, although this can be extended to any address by adding some external hardware.

PEC Usage Examples

(i) If the A/D convertor result is to be transferred into a RAM array for later processing, the destination pointer must
be incremented.  Up to 255 transfers can be made before a conventional interrupt service is required;  however all
that has to be done at this point is to reset the PEC transfer counters to zero and set the destination pointer to the
original values.

(ii) A table of values representing a sine wave are held in table.  At the end of every carrier period, the associated
interrupt request causes the value in the table indicated by the PEC’s source pointer to be transferred to the duty
ratio register of PWM module channel 0.  The source pointer is then incremented by the PEC hardware to point to
the next table entry.  Every 128 carrier periods, the interrupt request is accompanied by a normal interrupt service
routine, which sets the table pointer back to the start of the table.   As a result of the foregoing, a sine-modulated
pulse train appears on P7.0, with virtually zero CPU intervention.  By careful software design, it is possible to
completely automate the performance of complex tasks, so that the CPU is freed up for more demanding processing.
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8.2.3 Extending The PEC Address Ranges And Sizes Above 64K

In some applications, is it desirable to transfer very large arrays of data to a peripheral via the PEC.  Such a situation
can occur in inkjet printing systems whereby a 256kb bitmap image has to be moved byte-by-byte to a print-head
attached to the 5MB/s synchronous port.  The software generates the bit map image of an ASCII text string in a two-
dimensional 256kb array through a low-priority routine.  The first “row” in the array is filled and then transferred to
the synchronous port with the PEC.  During transmission, the second row of the array is filled and then it is trans-
ferred.  Thus the processes of generating the bitmap and transmitting it occurs in parallel, with just a single 100ns
cycle stolen by the PEC on each transfer.

The basic scheme creates two images of the RAM that will be PECed to the synchronous port  - one that appears as
a single 512kb area at 0x80000 and the other as an 8K “window” at 0xC000 but still into the same area.  The large
region is created by mapping chip select /CS4 to 0x80000, length 512K, via ADDRSEL4.   When the image genera-
tion software addresses the RAM, data is moved though the top HC244 bidirectional bus transceiver that is also
enabled by /CS4.   For the PEC transfer, /CS3 is mapped to 0xC000, length 8K.  The 8-bit port effectively sets the
offset of the 8K window into the RAM.   The PEC’s source pointer is set to 0xC000 also so that READs from the
RAM causes the lower HC244 to pass the data.

The net result of this is that the job of driving the print-head is entirely automatic!
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8.2.4 Software Interrupts

In addition to the event and peripheral-driven interrupts, a large number of software interrupts are possible.  These
are a means of causing the program to vector to a specific routine very quickly.  The priority of the service routine is
the same as prevailed when the trap was triggered. They are extremely useful for writing real time operating sys-
tems.

In the 167, software traps can be assigned different priorities so that their service routines cannot be interrupted by
less important events.

8.2.5 Hardware Traps

These are provided to allow programs to recover gracefully from major disturbances that may have caused branch-
ing to, or a word data access to, an odd address.  Once in the appropriate service routine the user can decide how to
deal with the upset.  Of course, during program development, these traps can be a major aid to debugging - most
apparent CPU oddities can be traced to the user having broken word alignment rules or misuse of the stack!

8.2.6 Interrupt Vectors And Booting Up The 166

After reset the 166 starts to execute code from address 0, just like an 8051.  The reset vector at zero is just one of a
series of interrupt vectors that run up to 0x1ff on the 166 and 0x3ff on the 167.  This appears to conflict with the
need for the PEC system to use a RAM in the first 64k segment.  If the PEC absolutely has to be used to address a

Extending The
Addressing
Capabilities Of The PEC
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large memory area then some sort of memory map swapping will be required.  In practice though, this limitation is
rarely a problem for several reasons:

(i)  The PEC source and destination addresses are often placed in the internal RAM area at 0xF600 for a 167 or
0xFA00 for the 166.

(ii) The RESET OUT pin can be used to cause a memory-map switch.  In the 166, the RESETOUT pin is often used
to move the boot EPROM device up to 0x10000 after the EINIT instruction.  Typically, the program comes off the
reset vector, performs the basic SYSCON and BUSCON0 setup and then executes the EINIT instruction

(iii) Many 166 designs are based on a boot EPROM + FLASH EPROM that holds the application code.  The boot
EPROM might be only 16 or 32k whilst the FLASH EPROM might be 128kb and sit at 0x10000.  The boot
EPROM has to contain a table at 0x00000 to redirect the interrupt vectors up to 0x100000-0x101ff for example.
This type of address translation is fully supported by the C compilers.

The boot EPROM also usually contains the FLASH programming routines and remains fixed during the life of the
product.  It is quite common to use the boot EPROM as a sort of PC-style BIOS where the application program can
make calls into the “BIOS” to get low-level information.  Again, this type of split memory map programming is
supported in C.

A low cost 8-bit EPROM in an 8-bit non-multiplexed bus mode can be used to boot up the CPU, while the
BUSCON1 and ADDRSEL1 registers define the FLASH area as 16-bit non-multiplexed so that full performance
can be achieved.  Note though that having the interrupt vectors in an 8-bit non-multiplexed region will increase the
latency time by 200ns but, in view of the CPU’s outstandingly short times, this is unlikely to prove a problem!

8.2.7 Interrupt Structure

To allow truly event-driven software, 14 different interrupt priorities are provided.  Thus the response to any real
time event need not be dependant on what the CPU is currently doing.  In some CPUs different interrupt sources are
grouped together so that they must have the same interrupt priority.  For example, the 80C537’s serial port interrupt
is tied to the compare register 0 interrupt.  Thus a real time interrupt on CC0 cannot interrupt a serial interrupt
service routine, with the result that events may be lost or delayed.  The user therefore cannot use an interrupt-driven
serial port due to a CPU limitation.

In the 166, no such restriction is  present so that system response and performance is improved, along with an
easing of program planning.  As a further refinement, if two interrupts of the same priority occur simultaneously,
the user can tell the CPU to which interrupt source priority can be given.  Thus  166 interrupt structure is vastly
superior to that found on similar processors and allows it to cope with a very large number of asynchronous events.

8.3 The Bootstrap Loader

8.3.1 On-Chip Bootstrap Booted Systems

It is possible to have a totally FLASH EPROM-driven system which receives updated programs via the bootstrap
loader.  This can be achieved as follows:

(i)  Force the CPU into bootstrap mode via the methods given in the processor’s databook.
(ii) Initialise the bootstrap loader with the appropriate character via serial port 0.
(iii)  Send a 32-byte simple loader program to address 0xFA40 and then perform a jump to 0xFA40 (automatic!).
This program should itself be able to receive a fixed number of bytes which are best loaded into the internal RAM.
(iv) A further loading program should be sent to the first program.  This program should be a more sophisticated
affair, able to receive an Intel hex file, perhaps, and able to program the FLASH EPROM.  It should also set up the
DPP registers and configure the external bus accordingly - as the CPU has not yet come out of a normal RESET,
these normally automatic actions must be performed by the user.
(v) The application program as a hex file should be sent to the second program which blows it into FLASH
EPROM.
(vi)  The process should be completed by executing a SRST (software reset) instruction to start the newly-
downloaded application program.
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8.3.2 Freeware Bootstrap Utilities For 167

One simple problem facing anybody writing the primary and secondary boostrap loader programs is how to actually
get them into the processor.  The 166 compilers and assemblers produce either object or HEX files, neither of which
can be sent directly to a processor in bootstrap mode.  The problem is that first loader program expects to receive a
binary stream, based at 0xFA40.  In the example the first program also expects to receive a binary representation of
the program, based at 0xF600.  A first 32-byte loader program can also be had, along with a program which simply
transmits “Hello!” back down the serial port.

Hitex can also provide its BC167 HEX file to “based” binary file convertor - the .IMG output file is a 32 byte
program based at 0xFA40 and the .bin output file based at 0xF600.  Also available is the simple BOOTTX Quick-
BASIC program which will initialise the bootstrap mode and send the first 32-byte program.  All of these utilities
are supplied on a “freeware” basis without proper support!!

A more advanced bootstrap loader software kit is available for the 166 and 167 FLASH derivatives.

8.4 166 Family Stacks

The situation with the stack on all the 166 family members looks somewhat odd at first - with only 256 (512 for
167) words for the “system” stack available.  Programmers used to older CPUs like the 80C186 might imagine that
running out of stack is very likely.  In fact this is rarely the case, due to the multiple register bank RISC architecture
and the provision of a potentially huge number of local stacks, based on the MOV  reg,[Rx+] and MOV  reg,[Rx-]
instructions. In traditional CPUs, function parameters are pushed onto the stack by the caller, where they are either
moved off the stack into local RAM or operated on directly in situ.  Also, the return address must be stacked.

This has two side-effects:
(i)   A considerable amount of time is spent moving data on and off the stack.
(ii)  A large amount of stack RAM is required.

With the 166, only the return address is pushed onto the system stack with any parameters being moved onto the
user stack, usually created via general purpose register R0.  In practice with the Keil and Tasking compilers, the
caller will leave parameters where they were, i.e. in the general purpose registers.  The combined effects of both
these actions is to drastically reduce the size of system stack required plus considerably reducing the processing
overhead for function calling in C.

In the case of interrupts, the traditional approach of stacking the current register set is possible but is not the best
way:  again, the multiple register bank architecture allows the context to be switched in one 100ns cycle and with
hardly any stack use at all, other than for the return address and last register bank base address (Context Pointer -

32-byte Bootstrap Loader
Program At 0xFA40



166 Designer�s Guide - Page 42

CP).  The special C166 compiler keyword “USING” performs this.  On exit from the service routine the context
(register bank) is restored.  See the relevant section in the C166 C Language Introductory Guide for more details on
handling the stacks.

8.5 Power Consumption

In many projects power consumption is critical, particularly in battery-powered applications.  Ultimately it is the
“processing power per milliamp” that is important in this situation.  When comparing different processors for low-
power applications this ratio can be quite difficult to arrive at and is often not taken into account.  Most design
engineers simply compare the maximum current consumption of competing processors and just choose the one with
the lowest figure.  However, as hardware engineers, they may not have considered the clock speed required to get
the processor throughput needed by the application.  Unfortunately this depends on other factors, such as the
programmer’s skill and the efficiency of the C-compiler.  The 165 has a maximum current consumption related to
the clock speed by the formula:

Icc = 10ma + 4 * Fosc

For example, if the 165 throughput is double that of another CPU, the clock can be reduced by a factor of two to get
the same performance.  The current will then reduce to 55% of the orginal figure.  Thus the “C-lines per second per
milliamp” of the 165 is better, making it a good choice for the application.  In practice, the 165 is around 3 times as
fast when programmed in C than most competitors, making it a very low current device, despite what the databooks
seem to imply!

By way of an example, here are some run times for a benchmark program stated alongside the current consumption
of the CPU at the time.  Although we measured these with a current probe, we have taken the manufacturers’ own
maximum figures to make it fair.

CPU       Speed    Runtime    Current   Idle Current
——————————————————————————————————————————————————————
165: 16MHz    10.333s     74mA       21mA
80C188EB: 16MHz    32.718s     93mA       63mA

Assumptions:(i) 165 max current is 90mA at 20MHz   (74mA at 16MHz)
(ii) 80C188EB max current is 93mA at 16MHz, as stated by the databook

The 165’s typical current consumption is around 45mA when we measured it at 16MHz, despite what the databook
says!  It can be seen that although the current consumption of the two devices compared is similar, the CPU
throughput of the 80C188EB is about 1/3rd of the 165’s.  If the clock speed is reduced by 1/3rd to compensate then
the following is observed:

CPU Speed Runtime Current    Idle mA
————————————————————————————————————————————————————
C165: 5.05MHz 32.718s 30mA       8mA
80C188EB: 16MHz 32.718s 93mA       63mA

To put this in perspective, if the clock of the 165 was reduced to 5.05MHz to yield approximately the same through-
put as the 80C188EB, the current consumption would be around 30mA; less than 1/3 of the 188’s.  The 165’s idle
power consumption would be around 8mA.   This rough calculation is valid as the 165’s current consumption is
approximately proportional to its clock speed, by the formula given above.  It can be seen that it achieves a very
good performance-per-milliamp - the fact that several battery-powered hand-held instruments already use the 166
family shows that other people have done these calculations as well!

8.6 Understanding The DPPs

8.6.1 166 Derivatives

The 166 uses the concept of 16kb long data “pages” to allow the accessing of data.  Memory addresses that are
within a page may be addressed by 2-byte (100ns) instructions like MOV  R1,8000H.  By limiting the addressing
capability of individual assembler instructions to an address within a page, execution speed can be improved over
other CPUs which allow 32-bit address accesses to be made in one instruction.
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The 166 actually only deals in 14-bit addresses that are in reality offsets from the base address of the current 16kb
data page.  The top two bits of any 16-bit address indicate to the CPU which DPP is to be used to form the physical
address that will appear on the 166’s address bus.  For example, the assembler instructions below will use DPP2 to
form the physical address as the top two bits of  the number ‘#8002H’ are ‘10’, i.e. 2, indicating that the page
number held in DPP2 must be used:

MOV R4,#8002H  ;
MOV R1,[R4]    ;  Access address indicated by the contents of R4

If DPP2 contains 2, the base address of the page will be 4000H * 2 = 8000H.  Thus the address placed on the bus
will be:  4000H * 2 + 0002H = 08002H.  However if DPP2 = 8, the instruction sequence would access
address: 4000H * 8 + 0002H = 020002H

Thus it can be seen that the page indicated by DPP2 can be placed anywhere in the 256kb memory space.  In effect,
the top two bits of the address cause an address translation.   To use DPP1 for the access, the instruction sequence
would look like:

MOV R4,#4002H  ;
MOV R1,[R4]    ;  Access address indicated by the contents of R4

Now the top two bits of ‘#4002H’ are ‘01’, indicating that DPP1 should be used.   The precise mechanism that
decides what the top two bits of the address are need not be of concern to the programmer, as they are calculated by
the the linker.   Further information on using the DPPs can be found in the Hitex publication “An Introduction To
Using The C Language On The 166 Family”.

In the case where a check sum is to be performed over a 128KB EPROM, one of the DPPs - usually DPP0 - has to
be incremented every time a page boundary (0x4000) is crossed.
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It must be stressed that the use of the DPPs is totally transparent to the C programmer under normal circumstances
and need only be taken into account when absolute maximum speed is required.   It should not be confused with the
simple paging schemes used on some smaller HC11/12/16 type processors!  As far as the user is concerned, the DPP
concept should be considered as a means of creating 16kb “islands” of very fast access in the 166 memory space.

8.6.2 167 Derivatives

When the 167 expanded the memory space to 16MB, a second data addressing mode was added that was more
suitable to coping with potentially very large data objects.  This allowed 32-bit addresses to be handled directly so
that the 167 could be regarded as having a 32-bit linear address space.  Inevitably the speed of access is reduced to a
small extent but it must be borne in mind that the 166’s native addressing mode is exceptionally fast!    As an
example, using the 167’s linear addressing mode, a 128kb block copy can be performed in 66ms at 20MHz.

The DPP mechanism was retained to permit the user to create the 166’s 16kb regions of very fast access within an
overall linearly-addressable memory space.  The programmer therefore has the option of being able to create
variables that can be addressed by the optimal method - in simplistic terms “small and very fast” or “big and fast”.
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9. Allocating Pins/Port Pins In Your Application

It is often the case that at the point when the user has the least knowledge of the capabilities of the peripherals, the
most critical choices regarding pin allocation have to be made, i.e. at the beginning of the project!  Frequently pin
assigments have to be changed in light of experience gained.  The following examines what sort of functions each
peripheral and then port pin is suited to.  This should allow you to make the right choice for the particular signals in
your application

9.1 General Points About Parallel IO Ports

Each port (except P5) can be configured to be input or output, with any combination of inputs or outputs on the
same port.  After reset all the port pins are high-impedance inputs and it is up to the user to program the appropriate
DPx registers to turn individual pins into outputs.

When configured as outputs, ports P2,3,6,7 and P8 can be either constructed from conventional push-pull drivers or
open drain via the ODPx registers.  The former can drive a pin either high or low, whereas the open drain type can
only pull a pin low against an external pull-up resistor.  This method allows an easy wired-AND and can save on
external logic.  The default mode is push-pull outputs.

Ports P2, P3, P7 and P8 can in addition be programmed as inputs with custom input characteristics.  The default is
TTL-like input thresholds but the PICON registers allow CMOS inputs with hysteresis to be chosen.  This can be
useful in noisy environments or where the input level changes very slowly.   Where the pin has an alternate func-
tion, the default state of the pin is a high impedance input.  The alternate function is only connected to the pin as a
result of the user setting up the peripheral.    If the peripheral is intended to, for example, drive a square wave onto a
pin, it is always the user’s responsibility to set that pin to be an output, using the appropriate DPx register.  For
example, P3.10 is the serial port 0 TX pin.  It only assumes this function if the user has correctly configured the
S0CON UART control register and then set DP3.10 to 1 to connect the UART output to the P3.10 pin..

9.2 Allocating Port Pins To Your Application

With a little ingenuity, it is possible to use 166 family peripherals to generate or measure any sort of digital signal.
Most peripheral blocks are able to perform even quite complex tasks without any CPU intervention - the Peripheral
Event Controller (PEC) is a great help in this area.  The following survey of the available port pins can only suggest
some basic peripheral configurations and functions.   If you are trying to use a particular peripheral to solve a
problem in your application, please feel free to email us with a description of what you want to do and we’ll try to
come up with something!

9.3 Port 0

In all ROMless 166 family designs this port forms the data bus in non-multiplexed configurations or the combined
address/data bus in multiplexed systems.  In the FLASH device this is a general purpose bi-directional IO port.  As
has already been said, single-chip users are strongly advised to leave this port free for use as an external bus.  On the
166 the /BUSACT pin is low to enable port 0 as the bus.

When the external bus is active, port 0 hosts user-defined patterns of pull-down resistors to determine the character-
istics of the bus, number of chip selects, PLL clock multiplier etc..  If an 8-bit data bus is being used in a non-
multiplexed design, the 166 does not allow the upper 8-bits of port 0 to be used as IO.  However the division of P0
into P0L (LOW) and P0H (HIGH) allows the spare upper 8-bits to be used as IO.  Care should be taken that any IO
device attached to P0.15 does not pull the pin down sufficiently to make the CPU think that the PLL clock multi-
plier is not to be used, when it reads the pin coming out of reset.

Port 0 Pin Allocations:
P0.0  - D0/AD0  : P0.15 - D15/AD15

9.4 Port 1

In ROMless 166 family designs using the non-multiplexed bus modes, this port forms the address bus in non-
multiplexed configurations.  In the FLASH device this is a general purpose bi-directional IO port.
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9.5 Port 2

9.5.1 The CAPCOM Unit

Besides being general purpose IO pins, port 2 is equipped with a 16 channel capture and compare (CAPCOM) unit,
consisting of two 16-bit timers and 16 data registers.  It is a means of either generating precisely timed pulses or
measuring times between events.  It is analogous to the “time-processor units” found on some older CISC proces-
sors, except that it is integrated into CPU core, rather than being bolted on as a separate processor.  As the 166 core
is very fast and able to react to real-time events very quickly, the entire CPU is effectively available to process data
connected with the CAPCOM unit.  This is in marked contrast to TPU-equipped processors where only a simple
microcode-driven core is available.

It consists of two 16-bit timers and 16 data registers that can either “capture” the value of one of the timers or be
made to toggle a pin when the contents of a particular register matches (“compares”) that of the chosen timer.   Each
pin has one CAPCOM register allocated to it.  Channel 0 is on P2.0, channel 1 is on P2.1 and so-on.  The capture
function allows the time at which an external port pin level transition occurred, referenced to a 16-bit timer.  The
edge-sensitivity can +ve, -ve or both.  Through this a wide variety of pulse measurement tasks can be realised.   The
compare function allows a pin to be toggled or put into a defined state when a timer reaches a defined value.
The input of the timers is a 0.4us - 51.2us (20MHz) clock, derived from the main CPU clock.  Timer T0 can addi-
tionally be clocked by an external signal of the user’s own choosing, applied to the T0IN pin.   This gives rise to
some interesting possibilities in applications such as engine management or motor drives, when pin transitions must
be created at precisely defined angular positions of a shaft or rotor.  Effectively, when compare registers are
assigned to T0, being clocked by edges from an armature position sensor, the commutation of a DC motor function
can be carried out automatically.

The creation of a software UART is very simple: the capture function for a partcular pin can be made to both detect
the falling edge of the start bit and then clock the bit stream into a variable.

The simplest use of the compare capabilities is the generation of pulse-width modulation (PWM).  When running in
“edge-aligned” mode, 8-bits resolution at a 9.6kHz carrier can be produced, while an 8-bit “centre-aligned” PWM is
possible at 4.8kHz.  Applying modulation, usually sinewave, is very straightforward and a complete demonstration
CAPCOM three-phase sinewave synthesiser driver is available from Hitex.   By adding an external low-pass filter
the CAPCOM PWM channels can also be made into very accurate digital to analog convertors.

The power and flexibility of the CAPCOM unit is considerable and it is unusual to find a signal measurement or
generation task that it cannot be used for!

While the normal use of port 2 is the CAPCOM unit, the 16 IO pins can be used as simple interrupt inputs of rising,
falling, or both edge sensitivity.   The port also hosts 8 very high speed interrupt inputs on P2.8-P2.15, which are
sampled by the CPU every 50ns and can guarantee to cause an interrupt within 250ns.  The CAPCOM-less 165, 163
and C161 also have these inputs.  On the 167, P2.15 is also the optional count input for timer T7.

9.5.2 Time-Processor Unit Versus CAPCOM

A point that is often missed when comparing microcontrollers is that even with the overhead of servicing the
CAPCOM unit, the overall throughput of the 166 is still large.  If it is conservatively assumed that the 167 CPU is
three times the performance of a CISC processor (in reality 3-5 times is usual, depending on the benchmark used)
and the CAPCOM service requires 25% of the 166’s capacity, the remaining processing power is still more than
double that of the CISC.  In a “properly” designed 166 system the CPU load due to the CAPCOM is rarely more
than 15%.

9.5.3 32-bit Period Measurements

While the CAPCOM is essentially a 16-bit peripheral, it is possible to make a 32-bit period measurement that would
ordinarily require 32-bit timers and capture registers.  This is achieved by using both the CAPCOM’s timers,
running half a period out-of-phase to generate the upper 16-bits of the 32-bit value.  An application note is available
from Hitex to illustrate the techniques involved.
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9.5.4 Generating PWM With The 166 CAPCOM Unit

(i) Asymmetric PWM (edge aligned)

PWM pin goes on when compare register matches the Timer0 value and goes off when timer overflows.  The PWM
period is determined by the value in the T0REL register.  A T0REL value of 0xff00 (-255) yields an 8-bit PWM of
period 256*.4us.  The PWM on edge only moves when the PWM changes, resulting in an increase of harmonics in
motor/transformer windings during duty ratio changes.

(ii) Symmetrical PWM (centre aligned)

PWM pin goes on when compare register matches the Timer0 value.  By using the double register compare mode
the PWM pin can be made to go low again when the timer is equidistant from the reload start count.  This yields a
PWM waveform in which both the on and off edges move together.  Thus a symmetrical PWM is created.  This
PWM format is to be preferred for driving inductive loads.

The PWM period is defined by the value in the T0REL register.  A T0REL value of 0xff00 (-255) yields an 8-bit
PWM of period 256*.4us.

9.5.5 Sinewave Synthesis Using The CAPCOM

It is fairly easy to configure CAPCOM1 to produce the 6 output signals required to drive a three-phase AC induc-
tion motor.  This is covered in detail in the Hitex application note, “The 166 Microcontroller As A Three Phase
Induction Motor Controller”, available on request.  The 167 can drive two motors simultaneously by using
CAPCOM2 as well.

The 164 version is intended specifically for motor drive applications, having three special CAPCOM channels with
six outputs which make the implementation of high performance controllers easier.  Each channel has a second pin
which provides the complementary output for driving bridges with a programmable deadtime offset automatically
added in hardware rather than via software, as in the 166/7.   The maximum carrier frequency is similar to that
found on the 167’s dedicated PWM module.  For safety trips, the special /CTRAP pin forces all outputs into an
inactive state within a few hundred nanoseconds, essential for MOSFET drivers.  The input to the unit is usually the
CPU clock for 3-phase and stepper motors but can optionally be a position encoder to allow block commutation in
DC brushless applications.

9.5.6 Automotive Applications Of CAPCOM1

The one-shot compare mode (mode 1) is useful for generating precisely timed pulses such as are required for fuel
injection and ignition control.  By driving timer 0 with edges originating from a crankshaft sensor, the compare
registers become a means of generating pin transitions at user-defined crankshaft angles.



166 Designer�s Guide - Page 47

0

1

2

3

4

5

6

7

8

9

10

11

Injector Firing
Angle 0

Injector Firing 
Angle 3

Injector 0 
Opening Time

Injector 3 
Opening Time

CC15 Interrupt, 
cylinder 0

CC15 Interrupt, 
cylinder 3

CC0 Interrupt, 
cylinder 0 injector

CC3 Interrupt, 
cylinder 3 injector

{ time_for_60_degrees = CC15 - time_last_60 ;
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  time_last_60 = CC15 ; }

{ time_for_60_degrees = CC15 - time_last_60 ;
  CC3 = CC15 + (Injector_Firing _Angle * time_for_60_degrees)/60 ;
  time_last_60 = CC15 ; }

{ CC0 += Injector_Pulse_Width ; }

{ CC3 += Injector_Pulse_Width ; }

Two application notes are available on request, that describe firstly how the CAPCOM can be used to produce 12
sequential fuel injection drives and secondly how it can be used to drive diesel unit injectors.

9. 5.7 Digital To Analog Conversion Using The CAPCOM Unit

In PWM mode and with suitable low-pass filter, the CAPCOM can be used to produce very accurate A/D conver-
sion.  Where the load is inductive the load itself will average the voltage level automatically and no filter is re-
quired.  In most cases a simple low pass filter, with a cut-off frequency well below the PWM switching frequency,
will remove any noise and give a smooth DC level.
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As might be expected, the resolution of the PWM-based A/D convertor is related to the switching frequency.  At
9.6kHz this would be 8-bits, while for 14-bits 152Hz results.  In the latter case the cut-off frequency of the filter
would need to be around 30Hz.  The 167’s PWM module can give even higher performance - see section 9.10 on
port 7 for more details.

9.5.8 Timebase Generation

Besides being able to either drive port pins or measure incoming pulsetrains, the CAPCOM unit can simply generate
interrupts at defined times.  Either a conventional interrupt service routine can be called or, more often, a PEC data
transfer made.

Scheme For 12 Cylinder
Sequential Fuel Injection
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9.5.9 Software UARTs

It is very easy to add extra UARTs to the 166 family using the CAPCOM unit.  A typical single UART will repre-
sent approximately a 2% CPU load at 9600 baud, under worst case conditions.  Special software UARTs like a
receiver for IRDA reduced duty-ratio infra-red links are very simple to implement.  Here is a simple conventional
NRZ receive routine in ‘C’ on port 2.8:

/*** UARTA Receive Interrupt ***/
// Detects falling edge of start bit. Waits one and a half bit periods until centre of
// bit 0, then waits one period. Sample input pin every bit period and count bits shifted
// in. After 8-bits revert to input capture mode for next start bit
/***/

void uartA_rx_interrupt(void) interrupt 0x18 {

   if(!start_bit_detect_mode) { // If jump not taken, time is saved???

      /*** Now in centre of bit period so sample uartA pin ***/

    rxA_shift_reg_input = uartA_input_pin ;
      rxA_shift_reg = rxA_shift_reg >> 1 ;

      CC8 += SABRG ;   // Make interrupt one bit period later

      uartA_bit_count— ;
      if(Z) {
        uartA_bit_count = 9 ;
        start_bit_detect_mode = 1 ;  // Enable CC8, capture neg edge, T0, to
                                      // find next start bit
        SARBUF = rxA_shift_reg ;
        SARIR = 1 ;     // Set dummy receive interrupt pending flag
         }
      }
   else {

      /*** Start bit detected... ***/

      CC8 += SABRG + SABRG/2 ;  // Wait 1+1/2 bits until
                                // first input pin sampling point for bit 0
      start_bit_detect_mode = 0 ;  // Enable CC8, compare mode 0, T0
      }
   }

It should be stressed that even with 4 software UARTs running on the CAPCOM unit, this would represent a 10%
CPU load.  If the 166 is 20 times faster than a 12MHz 8032, then even with the overhead of software UARTs, you
would still have 18 times the performance - hardly a big issue!

If 16 channels of CAPCOM are not enough, the 167 has another 16....
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9.6 Port 3

In addition to providing general purpose IO, this port is connected to the GPT1 and GPT2 timer blocks.  These 6
timers can be combined in various ways to implement gated timers, counters, input capture, output compare, PWM
and pulsetrain generation, plus complex software timing functions.  The 165/3/1 have no port 2 CAPCOM unit and
so these general purpose timers are of special significance.  They allow the 165/3/1 to generate and detect real-time
events, despite their more microprocessor-like appearance.  In essence the 165, 163 and 161 are very similar to an
8032 except they are 20 times faster and, indeed have proved to be popular with 8032 users as an easy performance
upgrade.

P3.1  - CAPCOM Timer0 count input (166/7 only)
P3.2  - Timer 6 toggle latch output
P3.3  - Capture of timer5 input/reload of timer 6 input
P3.4  - Timer3 count direction control
P3.5  - Timer4 count/gating/reload/capture input
P3.6  - Timer3 count/gating input
P3.7  - Timer2 count/gating/reload/capture input
P3.8  - 166 Serial port1 transmit
P3.8  - 165/7/1 Synchronous serial port master receive/Slave  transmit
P3.9  - Serial port1 receive
P3.9  - 165/7/1 Synchronous serial port master transmit/Slave receive
P3.10 - Serial port0 transmit
P3.11 - Serial port0 receive
P3.12 - Bus high enable or /WRH
P3.13 - Synchronous serial port clock
P3.14 - READY
P3.15 - System clock output

9.6.1 Using GPT1

GPT1 consists of three 16-bit timers (T2, T3 & T4) plus a number of IO pins.  It can be used to make period
measurements, generate pulsetrains or PWM.  Like the CAPCOM unit, it is based on a maximum input frequency of
2.5MHz.  The T2IN, T3IN and T4IN input pins can be used as clock sources for their respective timers.  T2IN and
T4IN are also able to trigger a capture of the free running timer 3.  If the timing functions are not required, the
GPT1 input pins, T2IN, T4IN and T3IN, can be used to generate interrupts.  There are dozens of different ways of
using GPT1 but what follows are typical applications.  Ones marked with an ‘* ’ are available as application notes
from Hitex.

Some typical GPT1  applications are:

PWM driver for DC motor drives*
X-Y trackerball input position detector*
Timebase generator*
33-bit period measurement
Missing tooth detector*
Automatic baudrate detector up to 115.2kBaud*
Quadrature encoder input - provides speed and direction of quadrature input with zero CPU overhead*

void init_quad_decoder(void) {

   T3CON = 0 ;
   T3UD = 1 ;       // If T3EUD pin high then T3 counts up
   T3UDE = 1 ;

   T2CON = 0x0029 ; // Capture T3 to T2 on T2IN channel A +ve edge

   T4 = 0x8000 ;    // Load T3 with 0x8000
   T4CON = 0x0023 ; // T4 reloads T3 on T4IN channel B +ve edge
                    // Channel A -> T4IN and T3EUD
                   // T4 holds signed value of angular velocity
   T3R = 1 ;        // Start T3
   }
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9.6.2 Using GPT2

This is a block of two 16-bit timers that can operate at up to 5MHz on a 20MHz CPU.   The input clock can be a
prescaled version of the CPU clock or an external input signal, up to 5MHz.   Like GPT2, the timers can be
concatenated to produce a 32-bit timer.  However it can do some very clever tricks, such as the multiplication of an
input frequency applied to the CAPIN pin or period measurement with zero CPU intervention.

Some typical GPT2 applications are:

Timebase generation*
Pulse generation
Time-between-edge measurements*
Two-channel software UART*
TV line capture and buffering*
Automotive missing tooth filler*
Pulse position modulation receiver for TV remote control*

9.7 Port 4

A general purpose digital IO port whose two bits are the A16 and A17 address lines in segmented designs.  In the
165/7 it forms the upper 8 address lines, A16 - A23.

9.7.1 Interfacing To CAN Networks

The CAN peripheral’s TX and RX alternate functions of P4.5 and P4.6 may appear to limit the addressing range of
the 167 to A0-A19, i.e. 1MB.  This is not the case as in fact up to 5MB can be addressed - see section 4.4 for details.
A simple CAN drive chip such as the 82C250 is attached to the 167, as shown below:

167
82C250

A22

A21

CAN_TXD

CAN_RXD

TXD

RXD CANL

CANH

Vcc

Vcc

GND
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This is a very simple interface and does not provide any significant galvanic isolation  between the CAN physical
layer and the 167.  It assumes that the 167 system will provide the power for the entire network via the Vcc and
GND pins on the 82C250.   The potentiometer on the RS pin sets the rise and fall times of the CAN driver, so that at
lower baud rates the RFI emissions can be reduced.  For the fastest edges required for 1MB/s operation, the RS pin
should be grounded.
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A more robust alternative has opto-isolation between the 82C250 and the 167, and assumes that the Vcc and GND
for the latter are supplied by two additional wires that run parallel to the CAN data lines.  For bit rates of above
100kbit/s, it is essential that there is adequate termination on the CAN data lines of 120 ohms if reflections are to be
avoided.

P4.0 - General purpose IO or A16
P4.1 - General purpose IO or A17
P4.2 - (165/7) General purpose IO or A18
P4.3 - (165/7) General purpose IO or A19
P4.4 - (165/7) General purpose IO or A20
P4.5 - (165/7) General purpose IO or A21 or CAN_RXD
P4.6 - (165/7) General purpose IO or A22 or CAN_TXD
P4.7 - (165/7) General purpose IO or A23

9.8 Port 5

9.8.1 166 Analog To Digital Convertor

The 10 lines of port 5 are a 10-channel 10-bit resolution analog to digital convertor input.  Alternatively they are 12
general purpose digital input only pins, with Schmitt trigger characteristics.  Pins may be allocated to either function
freely.  The functionality is as per the 167 in section 9.8.2.

9.8.2 167 Analog To Digital Convertor

The 16 lines of port 5 are a 16-channel 10-bit resolution analog to digital convertor input.  Alternatively they are 16
general purpose digital input only pins, with Schmitt trigger characteristics.  Pins may be allocated to either function
freely.

P5.0 - Analog input channel 0/Schmitt trigger input 0
.
.
P5.9 - Analog input channel 9/Schmitt trigger input 9
P5.10 - (167) Analog input channel 10/ Schmitt trigger input 10/Timer6 direction
P5.11 - (167) Analog input channel 11/ Schmitt trigger input 10/Timer5 direction
P5.12 - (167) Analog input channel 12/ Schmitt trigger input 10/Timer6 count input
P5.13 - (167) Analog input channel 13/ Schmitt trigger input 10/ Timer5 count input
P5.14 - (167) Analog input channel 14/ Schmitt trigger input 10/Timer4 direction
P5.15 - (167) Analog input channel 15/  Schmitt trigger input 15/Timer2 direction

The analog to digital convertor (ADC) is a very high-performance unit with sample-and-hold, auto-calibration and a
large number of special conversion modes that are designed to suit real time applications.  Indeed, on several
occasions, the 167 has been selected for applications simply on the quality of the ADC - a case of a great ADC with
a free 16 bit micrcontroller attached to it!

Given a suitable board layout the ADC can yield a genuine 10-bit resolution, with guaranteed monotonicity (i.e. an
increasing input voltage will never result in a smaller digital output).  With 4.9mV per bit, robust grounding of the
analog ground input plus the provision of guard tracks between signal lines is essential.  The analog reference must
be a true voltage reference and not the Vcc!

In addition to the standard single conversion mode, it is possible to set the ADC up to convert a single channel
continuously, so that every 9.7us (at 20MHz) a new value will be ready in the ADDAT results register.  An interrupt
request may be generated to move the data into a RAM buffer but, more usually, the peripheral event controller
(PEC) is used to automatically move the result to either a single RAM location or an array.  Thus the ADC can
collect values into an array with no CPU intervention, other than in the latter case, a sub-1us interrupt routine to
reset the array pointer (“DTSPx = (unsigned short) _sof_(&ad_store[0])”) .   Building on this, in
the autoscan mode a number of analog channels can be converted sequentially, with the results being continuously
transferred by the PEC into a ram buffer, so that at any one time the ram array contains the latest values from each
of up to 16 channels, again with minimal CPU activity.  One point to bear in mind is that channels that are to be
included in the autoscan process must be on adjacent channels, as the mode will convert the channel number that
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appears in the lower four bits of the ADCON control register first, working in sequence down to channel 0.  Auto-
matic conversion of other channels is only possible with the enhancements in the 167, outlined in section 9.8.4.
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9.8.3 Over-Voltage Protected Analog Inputs

Despite the genuine 10-bit resolution, the 167’s analog inputs can be easily protected against out-of-range voltage
inputs as might occur under a fault condition in a real system.   Clamping diodes allow a simple series resistor on
each analog input to provide a good level protection against excessive voltage of either polarity.

Unlike many microcontroller A/D convertors, the total unadjusted error (TUE) on any input is guranteed even if an
unselected channel has a fault condition voltage of over 5v or under 0v applied to it.   Under these conditions, most
convertors will start to give erroneous readings on other channels, which can have unsafe side-effects as from
software, it is very difficult to detect a loss of accuracy.  The channel with the fault will read as either 0x0000 or
0x03FFF for under- and over-voltages respectively.

The only requirement that must be satisfied to allow the continued correct operation of the fault-free inputs is that
the sum total of the fault current flowing into any two unselected analog channels must be less than 10mA.   A
simple current-limiting resistor can thus prevent the fault affecting other channels.

The series protection resistor (Rap) to be added to the analog inputs can be easily calculated by:

Rap =  (Vmax – Vcc)/Imax

Where: Vmax = maximum fault voltage & Imax = maximum permissible current flow

For an automotive application where a common fault condition voltage might be 14v, the series resistor would be
around  (14v – 5v)/0/010 = 1K0.   Of course, this additional resistance will have to be added to the source resistance
of the analog signal source itself and it is important to ensure that the sample time is long enough to guarantee a
stable voltage on the sample-and-hold capacitor, as outlined in section 9.8.5.

9.8.4 167/4-Specific Enhancements

- wait-for-ADDAT-read mode
- channel injection
- programmable sampling times

The 167 has some additional modes such as “wait for ADDAT read mode” and “channel injection” mode.  The
former inhibits further conversions until the last result is read so that unused conversion data is not accidently over-
written.  The channel injection feature is aimed at allowing analog conversions to be made coincident with some
event which is asynchronous to the software execution or the normal operation of the convertor.  With the ADC
being able to automatically scan through a number of channels continuously, making a conversion of a specific
channel that is not included in the sequence is taken care of by “Injecting” a conversion by setting the ADCRQ bit.
The ADC will finish any conversion that was in progress  due to the autoscan mode and make a fresh conversion of

Using The PEC To Automate
Analog Sampling
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the channel specified in the top four bits of ADDAT2 and placing the result in the lower 10- bits of the same
register.  The autoscan process then resumes.  The user must ensure that the wait-for ADDAT-read mode is acti-
vated.

The most important use of the injection mode is to make a conversion of a specified channel in response to a level
transition on the CC31 port pin (P7.7).  Typical examples of where this is useful are the crankshaft-synchronised
reading of the inlet manifold pressure in an engine management system or the reading of current in the windings of
a motor drive at a specific rotor angle.

9.8.5 Matching The A/D Inputs To Signal Sources

It is possible to alter the apparent input resistance of the analog inputs to allow a better match to the internal resist-
ance of the signal source that is driving them.  Sources that change rapidly and that are to be read frequently require
a fast conversion time but this will reduce the time available to charge the sample-and-hold  (SAH) capacitor in the
A/D convertor itself.  Thus such signal sources must have a low internal resistance if the voltage level on the
sample-and-hold capacitor is to be fully charged and stable by the time the conversion begins.  If the signal can be
converted more slowly this requirement is relaxed as the sampling time can be set to a larger value.  Thus the
internal resistance of the source can be greater without loss of accuracy.

Of course, extending the sampling time does not physically alter the input resistance as it is always several
megohms.  As the sample-and-hold appears to be a simple RC filter whose series resistor is the internal resistance of
the source, it is just a matter of making sure that there is sufficient current drive in the signal source to charge up the
sampling capacitor  before the conversion begins.

The user must also consider the internal resistance of the analog reference voltage source applied to the Varef pin on
the 167.   Again, the reference voltage source must be able to fully charge the input capacitance of this pin within
one conversion clock period.
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The ADCTC and ADSTC bits in the ADCON A/D convertor control register allow the user to easily alter the rate at
which the convertor hardware is clocked and thus the length of the sampling time (for SAH capacitor charging) and
the conversion phase.   The basic timing of the A/D unit is the conversion clock and as the sampling clock is derived
from this, the choice of sampling and conversion time is not unlimited.  The next table gives the possible legal
combinations of conversion and sampling times with the maximum signal and reference internal resistances that are
acceptable in each case.

Analog To Digital
Convertor Voltage
Sources And
Resistances
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It can be seen that at the (default) fastest combined sampling and conversion time of 9.7us, the signal source resist-
ance must be less than 3K3 Ohms to ensure complete charging of the sampling capacitor.  At the other extreme, with
a sampling time of  38.4us (resulting in an overall conversion time of 72.1us), the source resistance can be up to
116K.  If a series protection resistor is being used, the figure in the table for the signal source resistance must be
reduced by the resistor’s value as it is effectively in series with the source’s own internal resistance.

As these timing characteristics are programmable on-the-fly in software, it is entirely possible to make special
settings to the ADCTC and ADSTC bits prior to the conversion of any channel which has a much higher source
internal resistance than the others.  Note that all timings are reduced by 20% at a CPU clock of 25MHz.

9.8.6  165/3

6-bit Schmitt-trigger digital input port.  This type of input is useful where the input signal is noisy or changes very
slowly from 0 to 5v as the Schmitt-trigger introduces hysteresis.

P5.10 - (167) Schmitt input Timer6 direction P5.13 - (167) Schmitt input Timer5 count input
P5.11 - (167) Schmitt input Timer5 direction P5.14 - (167) Schmitt input Timer4 direction
P5.12 - (167) Schmitt input Timer6 count input P5.15 - (167) Schmitt input Timer2 direction

9.9 Port 6 (167)

General purpose bi-directional IO port with push-pull or open drain outputs which are also chip select lines for
memory decoding and external device enabling.  The number of pins to be used as chip selects is set by the P0
configuration resistors - see section 1.5.

P6.0 - Port 6.0/Chip select 0 P6.3 - Port 6.3/Chip select 3
P6.1 - Port 6.1/Chip select 1 P6.4 - Port 6.4/Chip select 4
P6.2 - Port 6.2/Chip select 2

9.10 Port 7 (167 Only)

General purpose bi-directional IO port with push-pull or open drain outputs.  Also input/output pins for second
capture compare unit, channels 28 to 31.

P7.0 - Port 7.0/hi-res PWM module channel 0 output P7.4 - Port 7.4/CAPCOM (unit 2) channel 28
P7.1 - Port 7.1/hi-res PWM module channel 1 output P7.5 - Port 7.5/CAPCOM (unit 2) channel 29
P7.2 - Port 7.2/hi-res PWM module channel 2 output P7.6 - Port 7.6/CAPCOM (unit 2) channel 30
P7.3 - Port 7.3/hi-res PWM module channel 3 output P7.7 - Port 7.7/CAPCOM (unit 2) channel 31

Tuning The ADC
To Your Hardware

Default Configuration
At CPU Clock = 20MHz
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50ns PWM Module/High Resolution Digital To Analog Convertor

Besides the 32 potential PWMs formed from the two CAPCOM units on the 167, there are four additional dedicated
PWM channels on port 7.  These are very simple to configure, having just a period register and a duty ratio register.
The carrier frequencies can be much higher than those obtainable from the CAPCOM unit.  Typically 78kHz can be
achieved at an 8-bit resolution, edge-aligned PWM.  This reduces to 39kHz in 8-bits, centre-aligned mode.  Each
extra bit of resolution will halve the carrier frequency.

The inclusion of a shadow register means that the updating of the duty ratio registers to modulate the PWM can be
done from a simple interrupt service routine at the overflow point of the PWM module timer while still allowing a
0-100% duty ratio.

9.11 Port 8 (167 Only)

General purpose bi-directional IO port with push-pull or open drain outputs.  Also input/ouput pins for second
capture compare unit, channels 16 to 23.

P8.0 - Port 8.0/CAPCOM (unit 2) channel 16 P8.4 - Port 8.4/CAPCOM (unit 2) channel 20
P8.1 - Port 8.1/CAPCOM (unit 2) channel 17 P8.5 - Port 8.5/CAPCOM (unit 2) channel 21
P8.2 - Port 8.2/CAPCOM (unit 2) channel 18 P8.6 - Port 8.6/CAPCOM (unit 2) channel 22
P8.3 - Port 8.3/CAPCOM (unit 2) channel 19 P8.7 - Port 8.7/CAPCOM (unit 2) channel 23

9.12 Summary Of Port Pin Interrupt Capabilities

9.12.1 Interrupts From Port Pins

The 166 family can generate interrupts from dual-function port pins on rising, falling or both edges.  The pins are
scanned every 400ns (20MHz clock).  Thus it will take a maximum of 400ns for the 166 to detect the interrupt
request.  On the 167, port 2.8-2.15 provides 8 fast interrupt pins that are scanned every 50ns.  The latency times of 6
to 12 state times (300-600ns) must be added to this for the time from an edge arriving at a pin to the interrupt vector
being executed.

It is possible to create 50ns resolution interrupt inputs on the 166 by ganging together the bottom 8 pins of P2.  A
100ns resolution would require 4 pins and 200ns just two.  This enhanced scan rate is achieved as a result of the
CAPCOM unit scanning its 8 pins every 400ns.  Thus by ganging pins together the effective scan rate can be
increased.  The CAPIN pin on GPT2 has a 200ns scan time.

9.12.2 166 Variants

The basic 166 device can trigger interrupts on rising, falling or both edges on 21 pins.  It should be borne in mind
that the core is easily fast enough to service all of these.

9.12.3 167 Variants

The 144 pin 167 can generate interrupts from up to 37 pins, depending on the bus mode being used.
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9.13 Typical 166 Family Applications

Here are some applications in which we know the 166 family is being used.  In almost every case, the family was
selected for one or more of the following reasons:

Very high processing performance in C Large number of IO pins
Large number of interrupt pins Up to 32 capture and compare pins
High resolution PWM generators Part 2.0B CAN peripheral
PEC DMA controller No microcoded TPU!
Close coupled core and peripherals Very low current consumption per MIPs
Low EMC emissions Some variants are second-sourced

Note: In cases where there were specific reasons for selection that we know of, they are given.

9.13.1 Automotive Applications

Formula one engine management and gearbox
control systems - High CPU performance allowed
innovative control algorithms.  Close coupled CPU
with 16 channel CAPCOM unit.  Ease using BREQ/
HOLD/HOLDA to share common RAM in dual
processor system.
Indy car engine management systems - Entire
program could be in C language without losing
performance, including high speed interrupt sections -
previous project abandoned due to difficulty in
altering TPU programming in CISC CPU.  Availabil-
ity of part 2.0B CAN peripheral.  Quality of develop-
ment tools.  High level of support from Hitex.
Touring car engine management - Ease of program-
ming as entire program in C.  Close coupling of
CAPCOM to CPU simplified program design.
Deterministic interrupt latency times.
Low-volume prestige car engine management
system - Ease of programming as entire program in
C.  Close coupling of CAPCOM to CPU simplified
program design.  Previous project compromised by
difficulty in applying TPU.  Part 2.0B CAN interface.
Competition ignition systems
Diesel unit injector control
Diesel injection pump control - Ease of program-
ming an entire program in C.  Close coupling of
CAPCOM to CPU simplified program design.  Part
2.0B CAN interface.  Second sourced part. Very high
CPU performance and IO pin count, flexible bus
interface, in-circuit reprogrammability via bootstrap
loader, low cost in volume, high integration, low
power consumption, quality of development tools..
High level of support from Hitex.
Petrol engine management systems
Marine diesel engine regulators - Flexibility of
peripherals, outright CPU performance, ease of
programming in C, IO pin count, flexible bus inter-
face, part 2.0B CAN peripheral, compatible with very
low cost versions like C161.
Active suspension control
Anti-lock braking systems - Large number of
frequency-measuring inputs, high CPU performance,
deterministic interrupt response,  high resolution
PWM unit, part 2.0B CAN peripheral.

Electronically-assisted power steering controller -
Near DSP performance, high IO pin count, 32 chan-
nels of capture and compare, part 2.0B CAN, ease of
programming, second sourced part.

9.13.2 Industrial Control Applications

AC induction motor drives (vector control) - Near
DSP performance at low cost, flexible sinewave
synthesis via CAPCOM unit, full vector control
possible.
AC induction motor drives (open loop) - Low cost,
high integration, ease of sinewave synthesis via
CAPCOM, in-circuit reprogrammability of FLASH
EPROM.
Linear induction motor control - Easy waveform
generation via CAPCOM unit.
DC brushless motor control - High CPU perform-
ance, simple commutation via angle-driven CAPCOM
unit, non-intrusive PEC update of switching points.
C Programmable logic controllers (PLC) - High
performance in C, simplicity of bus design, ease of
interfacing to LCD panels, low CPU cost.
High speed packaging machines - Very high CPU
and CAPCOM performance, peripheral event control-
ler allows non-intrusive drive of CAPCOM, low cost
for performance, high IO pin count.
Bottling line barcode printers - Very fast conversion
of ASCII text to bitmap images using C, non-intrusive
PEC transfer of image data to inkjet printhead on
synchronous serial port, high IO pin count, low cost.
High speed gluespotting machines - Very high CPU
performance in C allows  major calculations in
interrupts, ease of CAPCOM programming, ease of
synchronising CAPCOM unit to shaft encoder.
Cigarette rolling and packaging machines - Very
high CPU performance, ease of coupling CAPCOM to
rotating shafts, ease of coupling CAPCOM to sole-
noids, high resolution PWM module, part 2.0B CAN.
Printing press controls -Multi-channel pulse meas-
urement and generation via CAPCOM, automatic
angle-to-time domain conversion in CAPCOM, part
2.0B CAN, very high CPU performance, PWM module.
Cotton carding machine controls
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Power invertor controllers
Elevator controls
Networked security systems
Easy creation of 8 software UARTs via CAPCOM, part
2.0B CAN peripheral, high quality development tools.
Intelligent CCTV security system - Real time synchro-
nisation to lines, 1us sampling and PEC transfer of data
into RAM array, very high CPU performance.

9.13.3 Telecommuncations Applications

Modem concentrators - Easy upgrade from 8032, large
address space, fast context switch, easy multi-tasking,
low cost; UART, ease of implementing software UARTs.
ISDN terminal equipment - 5x higher performance than
16-bit 8051 at same price, high pin count, compatibility
of C compiler to C51.
Mobile radio base stations - High IO pin count, low
EMC emissions.
GSM cellphone handsets - Low current consumption,
fast context switch.
ISDN test gear - Easy 33 bit period measurement, high
CPU performance, low current consumption-per-
instruction-per-second.
Internet server cooling supervisors - High accuracy AD
convertor, ability to drive 4x three-phase motors from
dual CAPCOM unit.
Profibus interfaces
CAN to PC interfaces - Easy implementation of master-
slave ISA bus interface, part 2.0B CAN peripheral.
PCMCIA CAN interface card - Very small package
size, low power consumption, very high CPU perform-
ance, UART.

9.13.4 Transport Applications

Marine radar systems - Very high integration, very high
CPU performance allows tracking of 24 targets, easy
interface to VGA graphics, easy frequency lock to GPS
markers, lower cost family members available.
Aviation power bus management
Marine positioning and navigation systems - Easy
upgrade from 8032, very good floating point perform-
ance in C, quality of development tools.
Networked traffic signal controllers

Bus ticketing systems
Taxi meters

9.13.5 Consumer Applications

Lighting desk controls - Easy 250kbit/s UART, high
IO pin count, 28 PWM channels on CAPCOM, ease of
programming in C, 16 channel A/D convertor.
Audio mixing desks
Video recorder servo controller
Hard disk drive controllers - Deterministic interrupt
latency, high CPU performance, interrupt structure,
low cost.
TV test gear and pattern generators - ease of
synchronising to line sync. pulses and pulse genera-
tion via CAPCOM. High CPU performance allows
useful processing within line.
TV mixing desks
TV standards convertors - ease of synchronising to
line sync. pulses. PEC capture of incoming lines to
array and high CPU performance.
Scanning electron microscopes
High voltage precision power supplies - low cost,
ease of interfacing to large memory areas, simultane-
ous mixed 8- and 16-bit busses.
PCMCIA modem interface (165 inside card)
PCMCIA CAN interface (165 inside card) - high
CPU performance required to process 1MB/s CAN
data.
Inkjet printer controller  - high CPU performance for
fast bitmap imaging, PEC transfer to synchronous
port, low cost.

9.13.6 Instrumentation Applications

Hand held vibration analyser (battery powered) -
very low current consumption, high throughput per
milliamp, bootstrap loading of FLASH program.
Hand held non-destructive testers (battery pow-
ered) - high performance per milliamp, 33 period
measurement with GPT2, SPI via synchronous port.
Hand held sound level meters (battery powered) -
high performance for power consumed, accurate AD
convertor, on-chip FLASH EPROM is in-circuit
programmable.
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10. 166 Compatibility With Other Architectures

The 166 has an original RISC-like core design that is not derived from an older architecture such as 8086.  This
means that it is not possible to execute, for example, 8051 binary code directly.  There is a code translator utility
available which will take in 8051 assembly programs and emit A166 source files.  However, the fact that the most
popular 8051 C compiler manufacturer also produces a 166 compiler, means that the port to the 166 is not particu-
larly difficult if program is in C.  Of course the peripherals are different but do have some similarities, which at least
makes the job feasible.

The bus interface of the 166 and 8051 can be quite different but if the 8-bit multiplexed or non-multiplexed modes
are used, it is suprisingly easy to hook a 161 into an 8032 design.  In fact the resulting design  may be simpler due to
the elimination of the address latch which is redundant due to the 161’s non-multiplexed bus.  The following shows
how a 161 can be literally wired into an 8032 socket - further details on this are available from Hitex.  This was a
complex case as the old 8032 design had been stretched over the years to add more and more EPROM, using bank-
switching.  The switch had to be made to 16-bits as the 8032 simply could not execute the vast amount of software
fast enough!  The 161 version was some 12 times faster, even with an 8-bit bus...
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11. Mounting 166 Family Devices

11.1 Package Types

Like most modern microprocessors, all 166 devices are in packages that are intended for direct surface mounting
onto the PCB. The pin pitches range from 0.8mm down to 0.5mm, with pin counts of up to 144.    The increasing
number of package types being used for 166 family devices are listed in the following table:

CPU Package Type Pin Pitch SMD Socket Yamaichi
166 P-MQFP-100-2 0.65 mm SOMR100-Y IC149-100-014-S15
165
164
163

P-MQFP-100-2 Low cost Production Socket IC198-1001-210*
165 P-TQFP-100-3 0.50 mm SOTQ100-Y TBD
167 P-MQFP-144 0.65 mm SOMQ100-Y IC149-144-KS11453-0S
161 P-MQFP-80-1 0.65 mm SOMQ80-1-Y IC149-080-021-S5

P-MQFP-80-2 0.80 mm SOMQ80-2-Y IC149-080-017-S5

When choosing a suitable socket for your prototype,  it is important to note that Yamaichi list at least two different
versions of each package.  These generally only differ in terms of lead length but it is important to get exactly the
right one.  The Hitex part numbers given in the above are correct for the 166 family devices.

It is important to note that the approximation used in some older 0.10” based CAD packages of 0.635 for the metric
0.65mm will result in an accumulated error of 0.5mm over the length of one side of a 144 pin 167 - inconvenient to
say the least.  This will require some careful pin bending when you build up the first prototype!

If it is not necessary to have a socket with the same footprint as the CPU, there is a 144 MQFP socket from AMP
which has a PGA pin-out underneath.

Yamaichi MQFP80 Socket

Yamaichi
MQFP100
Socket

Yamaichi
Low Cost
Production
Socket
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11.2 Emulating 166 Devices

In the past, first prototypes would have had the CPU fitted in a socket so that it could be easily replaced after
accidents and an emulator could be fitted directly.  DIL and PLCC sockets are cheap and readily available.  Unfor-
tunately the sockets for MQFP and TQFP are relatively expensive and not easy to find in the UK, especially in the
144MQFP format used by the 167.   For building development boards they are ideal, as they have the same footprint
as the CPUs themselves, so that no board changes are required to fit  them.  It is advisable to leave 0.2” around the
perimeter of the CPU pads as the sockets are somewhat bulkier than the chips.

The socket is an assembly of a base platform with fine contacts around the edge and a clamping ring. There are
extensions in the corners with threaded holes to allow the CPU retaining ring to be firmly screwed down.  Some-
what confusingly, the Yamaichi sockets are supplied assembled “upside down”, so that pegs intended to locate the
CPU appear to be postioning studs, designed to fit into holes in the PCB.  THIS IS NOT THE CASE - the underside
of the CPU platform is flat!  The retaining ring must removed to get the real picture.  The shape of the contacts is
such that it is very difficult to solder them down using even a very fine soldering iron.  Solder paste and a hot-air
gun are much more likely to be successful!

Yamaichi are the major supplier of these sockets, but local distrbutors are usually only interested in bulk orders so a
request for ones and twos will not get an enthusiastic response!  Hitex keeps a small stock of all Yamaichi socket
types for emergencies but we have to charge a higher price for them than component specialists.

In-circuit emulation presents a particular problem as the “clip-over” connectors that were reasonably reliable with
PLCC and bumpered QFP packages are almost totally useless on the MQFP and TQFP packages.  This is a pity as it
means connecting an emulator onto a production board with a surface mounted MQFP processor is a challenge.  It
is possible to partially solve the clip-over problem by sticking a metal boss with a threaded hole onto the top of the
CPU and then bolting the clip-over to it.  However solutions to electronic problems that require glue must always be
a little suspect....

It is fortunate that Yamaichi also make mating halves for the sockets that are very reliable.  These are the best
option for attaching an emulator but they do require a socket on the board.

Finally, the solder-in “stack” or “replace” adaptor provides a reliable method but requires a rather tall (and expen-
sive) block to be soldered into the CPU’s normal position.  It is possible to fit a socket to the top of the stack so that
the board can be run without the emulator but this then becomes physically very large.

For external ROM designs the ICEconnect interface has proven very reliable, provided that the limitations associ-
ated with it are acceptable.

11.3 166 Family PCBs

Except in very low clock speed designs or possibly in educational projects, it is essential to use at least a gridded-
ground earth plane.  It is entirely possible to use a simple double-sided arrangement but it is usually the difficulty of
routing up to 144 processor connections that dictates the use of a multi-layer board.  At 20MHz though, the de-
mands of low EMC emissions and reliability means that at least a 4-layer or even 6-layer board will be required,
with two power planes.

It goes without saying that the clock source must be as physically close to the CPU as possible, as should the
memory devices.  Unless a very large number of devices will be attached to the bus, no external bus drivers should
be required.  At 10-bits the A/D convertor inputs should be routed well away from the bus, preferably with each one
interleaved with guard tracks.

11.4 CAD Symbols

Ready-made ORCAD libraries are available on the Siemens “Applis” CD-ROM to save you the effort of drawing
your own symbols.  Derivatives like the 165 come in either MRFP or TQFP packages.  Be aware that the pinout of
the TQFP version has the same pin ordering as the former but is displaced by two pins.  Some older databooks do
not give the pinout for the TQFP version and some unfortunates have put down pads for the TQFP processor but
with the MRFP pin positions.  Much track cutting is required to move each of the 100 pins two places to the left.
Make sure you use the proper drawing for the package you are using!
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12. The ICE Connect Emulation Interface For External ROM 166 Family
Designs

12.1 The Problem

All new high performance microcontrollers and microprocessors like the 166 family are now released in packages
of 100 to 200 pins.  Coupled with small size, the pin pitch is typically 0.635mm, and as the devices are always
surface mounted the pins are short.   Most projects go straight to a surface mounted prototype with the CPU sol-
dered in, so in-circuit emulation must be performed via clip-overs costing around $500-$800.   The 166 family
devices have been designed to recognise the presence of the clip-over and subsequently put all pins into a high
impedance tri-state, to allow On-Circuit Emulation (ONCE).  Thus the soldered-in CPU is dormant.

Older package types such as PQFP have bumpers at the corner on to which clip-over can be anchored quite effec-
tively.  Clip-overs for newer package types like the bumperless MRFP rely on sprung contacts being compressed
around the perimeter of the device by a sliding locking ring.  This is at best temperamental and usually unreliable
after extended use.  The connectors themselves are easily damaged during storage due to the long and exposed
nature of the pins.  Clip-overs are by definition sacrificial parts which is unacceptable in view of their high cost.
Some existing 166 users have already originated various ways of by-passing the troublesome clip-over by bringing
the signals required for emulation out on a special connector or additional row of pads around the CPU.

12.2 The Solution - ICEconnect166

Now to try and standardise these clip-overless connection methods, Hitex have defined an emulation interface for
the 166 family which does not involve clipping onto very fine CPU pins.   The new interface does not rely on the
ONCE mode employed by the existing clip-over as it is the soldered-in CPU which actually performs the emulation.
If new 166 users include a Hitex-supplied 2 x 40 way connector with a signal arrangement according to the
ICEconnect specification, then a low cost emulation probe can be used.  For mass production, the ICEconnect
socket is removed so that the only overhead on the design is a row of pads 35 x 4 mm in area.

By using the soldered-in CPU as the emulation device, a number of other benefits follow such as reduced distur-
bance of port lines due to there being no extension of signal paths.  This is particularly important for A/D convertor
inputs as worn clip-overs can quite easily add one or two bits of uncertainty to the 166’s 10-bit A/D convertor.  The
mechanical integrity of the connection is considerably higher than a clip-over and is rated at around 1000 cycles.
The ICEconnect socket can be used as an end-of-line test port to allow the bus integrity to be verified.  It also allows
alternative test code to be presented to the soldered-in CPU, overriding any application code installed on the board.
As ICEconnect relies on sampling the external CPU address and data busses, it is only suitable for designs where an
external ROM and/or RAM is present.

The full ICEconnect connector specification is available from Hitex on request.
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Simple Port Pin Toggling Program!

13. Getting New Boards Going

Your new board arrives, fully assembled, with the microcontroller soldered down directly to the board.  How do you
get it running?

If you have designed your system using the guidelines set out earlier in this publication, then there is a good chance
that the system will run straightaway.  However experience has shown that it is better to take things one step at a
time.

An oscilloscope is really an essential piece of kit when first testing new designs.  However a proper in-circuit
emulator is perhaps the greatest aid, as it allows you to effectively “sit” inside the CPU and look out across the bus -
any bus errors are then obvious and a great deal of time can be saved.  However, if you are lucky enough to have an
AX166B in-circuit emulator ready and waiting, do not plug it into the hardware straight away and switch on - 166
bond-out chips are delicate and expensive and a major board fault could destroy the emulation device.  It is a very
good idea to run through the basic checks listed below before jumping in with the emulator!  Engineers equipped
with the AX166 non-bondout emulators can be a bit more cavalier, as these systems are rather more able to take
short-circuits, Vcc on Vss pins etc..  After all, the emulation chips are just off-the-shelf parts!

It is definitely a good idea to check that the bus lines are not shorted to Vcc or Vss before powering up the board.  It
is also worth running a scope probe around the CPU pins to make sure that there is 5v on all the Vcc pins and 0v on
all the Vss and that there are no voltages above 5v on any pin.  The analog reference and ground should also be
checked as it seems to be quite common for these to be omitted or connected up incorrectly.  These latter two points
can spell instant damage to the emulation chip in a bondout-type emulator.  However, should everything look OK,
now would be a good time to plug the ICE into the hardware.

For those without proper equipment, the bootstrap loader mechanism can be very useful for diagnosing hardware
faults and Hitex can provide a free bootstrap-loadable diagnostics tool on request.  Most initial problems are due to
one or more of the reasons examined in the next few sections...

13.1 External Bus Design Pitfalls

166: EBC0 or EBC1 not at correct voltage level for bus mode required.  A CPU that comes out of RESET expecting
an 8-bit multiplexed bus mode is not going to be much use if it reads 00 on the EBC0 & 1 pins.  Also make sure that
the /BUSACT pin is grounded if your design is external bus.

167: Make sure that the pull-down resistors on port 0 are correctly installed, as any mistakes here will almost
certainly prevent the CPU running properly.   If you have done your pull-down resistor calculations properly then,
with the 167 held with the /RESIN pin low, there should be around 5v on any bus line that does not have a pull-
down resistor and less than 1v on lines that have.
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If your system has the EPROM socketed, then it is probably worth blowing a simple program into the EPROMs
before fitting them to the board.  The program need only wave the port 2.0 pin up and down so that something can
be seen on the ‘scope.  Make sure that the while(1) { ; }  loop that contains the pin toggling code has a few
NOPs in it, as if the loop is too small the CPU will simply jump within the instruction pipeline and the bus will
appear to be dead.  In the event of problems this inactivity could be misleading.  If you are using the standard
STARTUP.A66 or CSTART.A66 C compiler start-up files, one waitstate will have been programmed.  With the 167
it is a good idea to enable the CLKOUT pin so that the real CPU frequency can be measured, in case the PLL is not
working correctly.

When the FLASH EPROMs are soldered down you will have to use the bootstrap loader to initially get a program
into the board.  If at all possible, you should blow a test program into the EPROMs before they are soldered down as
trying to program FLASH in-situ via the bootstrap loader on a brand new board, with a possibly unfamiliar CPU, is
not easy.  Overall it is best to build the first prototypes with socketed EPROMs and processor if at all possible!

Powering up the board for the first time is always a slightly anxious moment.  If your board is being powered off a
bench power supply, turn the current limit down to say 250mA and wind it up slowly.....apart from the obvious
steps of making sure that the current consumption is not excessive and that there is no smoke, some basic steps will
have to be taken to confirm that the CPU can run.

If you are lucky, putting a ‘scope onto P2.0 (or whatever your program in EPROM does) should reveal a square
wave of around 2MHz.  Should you be fortunate to get this, you are not quite home and dry because it is still
possible for the program to run if you have the CPU running multiplexed in a non-multiplexed design.  If you do
not see anything then check the items in the next section.  If your EPROMs are empty you ought to check them as
well but, ultimately, you will have to use the bootstrap loader to program them.

Is the /RESIN pin high after powering-on?  If your reset circuit is working correctly, it should be.  If it is not,
check the circuit!  With the /RESIN pin high, the XTAL1/2 pins should show a clock signal of the frequency
expected.  With the 167, the amplitude should be around 4v peak to peak if the RESIN pin is high.  If it is low, the
clock should have an amplitude of around 4.5v peak-to-peak.  Changing the state of  the /RESIN pin should change
the clock amplitude by a selectable amount.

The ALE pin will be running, regardless of bus mode.  Its frequency will give some idea of what the CPU is doing.
If it is running with a high time of 50ns and a low time of 950ns, then the program is probably not being read
correctly at all from the EPROM and the CPU is still running with its default 15 wait states.    You may also see the
CPU reset every 6.5ms (at 20MHz) with the RESETOUT going high and low as the on-chip watchdog trips out.
This will also cause the /CS0 to go high briefly.  If your program successfully got through the initialisation code, the
ALE will be running with a low time of around 150ns.  It will thus have executed the EINIT instruction and so the /
RESOUT pin will have gone high.

167: If nothing is happening on the ALE and the /RESIN is high, then check that there are no spurious pull-down
resistors on P0 as these are the emulation modes and the chip will be in ONCE mode.   Also check that the lower P0
lines are showing signs of activity.

Next, put the ‘scope onto the /CS0 pin (P6.0) and check that it is high when the /RESIN pin is high and goes low
when /RESIN is forced low.  Make sure that the /CS0 makes it to the EPROM’s /CS pin!  Also check that the /RD
pin is active after reset and that it is getting to the /OE on the EPROM.

If nothing unusual has been found, it is time to enlist the help of the CPU itself: if your board has provision for
using bootstrap mode, then make the link or whatever the mechanism is and power -cycle the board to put the 166
into bootrap mode.  If you have not provided for this, put an 8k2 pull down resistor on P0.4 (ALE for the 166) and
cause a reset.  If you have no RS232 driver on serial port0, you will have to add one, perhaps by putting a MAX232
on a piece of Veroboard and attaching the input lines to the S0TX and S0RX on the 166.  On the connection to the
PC COM port, pins 7 and 8 on the D-type connector will need to be connected together, as will 1, 4 and 6, so that
the PC’s UART will not hang up.

Using the Hitex bootstrap utility, you should be able to get the CPU to report back the contents of the SYSCON
(and BUSCON0 with the 167).  From the returned value you should be able to deduce the bus mode, number of
address and chip select lines, and whether the /WRH/WRL low mode is being used.  All this information should be
compared with the design specification for the board.   If the bus mode or the WRH/WRL mode are wrong, this
could be the problem.
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Testing The RAM And ROM On The Target System Via HiTOP166

13.2 Single Chip Designs

With no external bus there is very little that can go wrong, other than the EBC and BUSACT pins being in the
wrong state for single-chip operation.  You are advised to program the FLASH CPU before committing it to the
board.  If not, the bootstrap loader will have to be used to get the program in.  Ask for the Hitex bootstrap utilities to
this.  The only thing to be aware of is that the FLASH EPROM itself can be damaged if you apply the 12v Vpp
programming voltage before the 5v Vcc.

13.3 Testing The System

If you have managed to get a simple port-pin toggling program going, you will have to now make sure that the /WR
line(s) and chip select(s) are working by writing data into any external RAM devices or IO devices.

If you have an AX166, the View-User-SYSCON window will show you whether the /WRCFG pull-down resistor is
present or not and will allow you to individually enable the chip selects, without using software, so that the RAM
can be enabled, for example, or the registers in an off-chip peripheral examined.  Testing these basic aspects of a
new system is very time consuming and any errors missed at this stage can have major knock-on effects later in the
project.

Even if you have not budgeted for a proper emulator for the project,
we strongly recommend that you at least rent one for as long as it
takes to prove that the basic hardware is working properly before the
board is passed over to the software department!

To summarize, using an emulator to do the initial hardware debug is very easy as it allows you to effectively sit
inside the CPU and look out through its pins.  Errors such as stuck address lines, incorrect bus modes and open
circuit IO pins become obvious as their side-effects can be seen directly in the instruction and memory windows.
More subtle problems such as inadequate grounding or poor clock circuit design may only come to light once the
processor is used to run real software...the ICEconnect method is very good for this.
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14. Conclusion

If you are about to embark on a 166 family design, we hope that you will have found some useful hints and tips in
this guide.  Should you be evaluating the family for a new project, you should now have realised that behind the vast
amount of information in the data books there is a really great processor.

Good Luck!
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16. Feedback

We hope you find this guide useful.  As we are constantly revising it, we would welcome your suggestions for
revisions or new topics.  If you have any clever 166 tricks of your own, we would like to see them as well.  Future
editions will include such topics as EMC design, board layout, PC bus interfacing and others.

Please email your suggestions to INSIDE166@HITEX.CO.UK

Further Reading

If you enjoyed this 166 hardware epic, you may like the software sequel “An Introduction To The C Language On
The 166 Family”, available from Hitex (UK) Ltd. for just $10.

There is also a complete “Teach Yourself 167 Programming” self-study course available, including a powerful
training board, including a local CAN network.  This unique kit allows engineers to familiarise themselves with the
167 CPU and its peripherals within their own workplaces.  Please contact Hitex for more details.
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Hitex (UK) Ltd. , University Of Warwick Science Park, Sir William Lyons Road, Coventry, CV4 7EZ, United
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To request any of the example software mentioned in this guide, please email INSIDE166@HITEX.CO.UK with
your area of interest.  If you have not seen what you want, it’s probably worth contacting us anyway as we may well
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Additional copies may also be obtained from:

Hitex-Systementwicklung GmbH., Greschbachstrasse 12, D76229, Karlsruhe, Germany.
Tel. +49 (0)721 9628-193 FAX +49 (0)721 9628-262 Email:Team166@hitex.de

Hitex Development Tools (USA), 2055 Gateway Place, Suite 400, San Jose, California, USA.
Tel. +1 (408) 298-9077 FAX +1 (408) 441-9486 Email: info@hitex.com
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Appendix 1 - Siemens C166 Family Part Numbers

As with all electronic components care must be taken when ordering parts. In general ALL  letters and digits of
C166 part numbers are significant and MUST be specified. If in doubt ask someone who knows! As an illustration
of the problems that a wrong part number can cause, consider the following real life story. An anguished user rang
with a problem. He had done his development work based on comercially available SAB C167CR-LM processor
boards. He had then carefully designed a PCB, a batch of which were sent for assembly. On testing the first produc-
tion units he was somewhat surprised to find his C167 running at 2.5MHz CPU clock when he was expecting
20MHz.  On investigation, it was discovered that the processor that had been fitted was an SAB C167-LM, which is
a reduced specification device in comparison with the SAB C167CR-LM. Specifically the “CR” part has a Phase
Locked Loop clock multiplier which (by default) multiplies the oscillator frequency by 4 to obtain the CPU clock.
By comparison the “non-CR” part divides the oscillator frequency by 2 to generate the CPU Clock. In addition to
the different clock generation the “non-CR” part had 2Kbytes less RAM than a “CR” and the “non-CR” part also
had no CAN interface,  which was essential for the application.

Over the years Siemens part numbers have undergone a number of changes. The most recent took place between
production release of the first C166 family member (the 166) and subsequent members of the family.  As a result
there are 2 types of part number.

C166 devices are numbered as follows:-

SAB 8xC166x-M-xx
Temperature Range: Blank = 0 to 70degC

T3      = -40 to 85degC
T4      = -40 to 110degC

Package Type: Always M (MQFP) for C166

Device Variant: Blank = CPU Clock is Xtal frequency/2
W       = CPU Clock is Xtal frequency 

Memory Type: 80 = ROMless (no on-chip ROM)
83 = 32k Masked ROM on-chip
88 = 32k FLASH on-chip

Other family members are numbered as follows :-

SAx C16xxx-xxxxxx

Package Type: M = MQFP(Metric Quad Flat Pack)
F  = TQFP (Thin Quad Flat Pack)

Device Variant: Blank, 1 or 2 letters (meaning 
depends on family members).

Program Memory:

ROM/FLASH Size

CPU Clock

L =  ROMless (no on-chip ROM)
R = Masked ROM on-chip
F =  FLASH ROM on-chip

in multiples of 8K bytes
e.g. 16 = 128k bytes

Blank = Standard (For device type)
25 = 25MHz

Temperature Range: 

Family Member:

SAB = 0 to 70degC
SAF = -40 to 85degC
SAK = -40 to 125degC

e.g. 167, 165 etc.
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Appendix 2 - SGS-Thomson ST10 Variants Part Numbers
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