
1

The J2EE™ Platform Connector
Architecture 1.0

Rahul Sharma
Senior Staff Engineer
Sun Microsystems, Inc.

2

Agenda

• Overview
• Technical details of Connector

Architecture
• Status and roadmap
• Q&A

3

Enterprise Applications

Clients

Middle Tiers

EIS Tier
DBMSs ERP

Systems

Enterprise
Services

Device

D D D

4

EIS Integration

• Key issues in EIS integration
– Heterogeneous and complex EISs
– Ease of integration and application

development
– Tools
– Transactions and security
– Scalability

• Connector Architecture addresses this
under the scope of the J2EE 1.3
platform

5

J2EE™ Platform

• The J2EE platform provides:
– Faster solution delivery time to market
– Re-usable components
– Write Once, Run Anywhere™

– Huge Industry Support
• Connector architecture adds:

– Easy EIS connectivity
– Enterprise Application Integration

6

Connector Architecture

• Standard architecture for EIS integration
• Targeted EISs under 1.0:

– ERP systems
– Mainframe transaction processing systems
– Non-Java legacy applications
– Database systems

• Defined through the Java Community
ProcessSM initiative

7

Connection
Pooling

Transaction
Manager

Security
Manager

Transaction
Management

Connection
Management

Security
Management

System Contracts

Enterprise
Information System

Resource
Adapter

J2EE
Application Server

Application
Component

High Level Architecture

Application
Contract

EIS-specific
interface

Container-Component
Contract

8

Value Proposition

• Reduces scope from m x n to m + n

• Simplifies application development
• Provides scalable, secure and

transactional integration

Application Servers

Application
Server

EIS

EISs

9

System Contracts

• System Contracts specified in 1.0:
– Connection management
– Transaction management
– Security management

• Proposed enhancements in
later versions:
– Thread management
– JMS pluggability

10

Connection
Management Contract
• Supports connection management

– Connection pooling
– Configuration of connection factory
– Creation of connection
– Matching of pooled connections

• Enables application server to provide
Quality of Services (QoS)

11

Transaction Management

• Local Transaction
– Managed internally by an EIS

resource manager
• XA Transaction

– Spans across multiple EIS
resource managers

– Requires transaction coordination by an
external Transaction Manager

∀ Two-phase commit (2PC)
∀ One-phase commit (1PC) optimization

12

Transaction
Management Contract
∀ Resource Manager (RM) can be:

Non-transactional
Local transaction only
Local and XA transaction

∀ Resource Adapter implements:
– LocalTransaction interface
– JTA XAResource interface

• Application server required to
support all three transaction levels

13

Security Management

• Extends the J2EE platform security
model for secure EIS connectivity

• Security mechanism and technology
independent:
– Basic user-password mechanism
– Kerberos v5
– EIS specific security mechanism

14

Connection
Pooling

Transaction
Manager

Security
Manager

System Contracts

Enterprise
Information System

Resource
Adapter

J2EE
Application Server

Application
Component

Common Client Interface

Application
Contract

EIS-specific
interface

Container-Component
Contract

15

Rationale for CCI

• Problem for development tools
and EAI frameworks:
– EISs support different client APIs
– Need for adapting client APIs

• CCI solves this problem

...
API nAPI 2API 1

Enterprise Application
Integration Framework

EIS 2 EIS nEIS 1

16

Overview of CCI

• Provides simple remote-function call API
• Focuses on toolability
• Leverages JavaBeans™ architecture-

based components and Collections
• Targets EAI and application

development tools
• Recommended for resource adapters in

version 1.0

17

Scenario: EAI Framework

Common Client
Interface

JDBC 2.0 Repository

Resource
Adapter

JDBC 2.0
Driver

Enterprise Application Integration
Framework

18

Scenario: CCI Usage
// Get a Connection
javax.naming.Context nc = new InitialContext();
ConnectionFactory cf =

(ConnectionFactory)nc.lookup("...");
Connection cx = cf.getConnection();

// Create an Interaction
Interaction ix = cx.createInteraction();

// Create input and output Record
RecordFactory rf = //.. get a RecordFactory
MappedRecord input = rf.createMappedRecord("...");
IndexedRecord output = rf.createIndexedRecord("...");

// Create/get an InteractionSpec
InteractionSpec ixSpec = // ...
ixSpec.setFunctionName("<NAME-OF-EIS-FUNCTION>");

// Execute the Interaction
boolean ret = ix.execute(ixSpec, input, output);

19

Packaging of
Resource Adapter
• Standard packaging format for

resource adapter
– Packaged as JAR
– Equivalent to "J2EE module"

• XML based deployment descriptor
– General information
– Configurable properties
– Transaction support level
– Security related configuration

20

Deployment of
Resource Adapter

Resource
Adapter

Operational
Environment
Configured

Processed
by Deployer

Created by
Resource
Adapter
Provider

Resource
Adapter
Module

Packaged with other
J2EE Modules

J2EE Container

21

Status and Roadmap

• Defined through Java Community
Process initiative

• Release Schedule:
– Public draft 1: Released 06/2000
– Proposed Final Draft 1: Released 10/2000
– Final release: Q2 CY-2001

• Connector.next process initiation
– Targeted for 02/2001

22

Reference Implementation
and CTS
• J2EE™ RI with Connector support:

– Early access released in 10/2000
– Beta release J2EE 1.3 RI: Q1-2001
– Subsequent RI and CTS releases tied

with the J2EE 1.3 platform
• Connector related J2EE RI features:

– System contracts on container side
– Packaging and deployment
– CCI-based sample resource adapter

23

Connectors 2.0

• Proposed features:
– Asynchronous resource adapters
– JMS Pluggability
– XML support in application contract
– Metadata support

• Schedule for 2.0:
– JSR targeted for 02/2001
– Call for experts

24

Industry Support

• Part of the J2EE 1.3 platform
• Expert group for Connectors 1.0:

• BEA, Fujitsu, IBM, Inline, Inprise, iPlanet,
Motorola, Oracle, SAP, Sun, Sybase,
Tibco, Unisys

• Huge Java™ technology community
interest:
– Successful early access release
– Strong support for resource adapter

providers

25

Advantages of Architecture

• Application developers
• Application server providers
• Enterprise Information system vendors
• Application development tools provider
• Enterprise application integration

(EAI) vendors
• Third-party ISVs

26

Pointers and References

• Web resources:
– http://java.sun.com/j2ee/
– http://java.sun.com/j2ee/connector/

• Spec lead: rahuls@eng.sun.com

27

Java Message Service (JMS) 1.0

Rahul Sharma
Senior Staff Engineer
Sun Microsystems, Inc.

28

Agenda

• Overview of the Java™ Message
Service API (JMS)

• JMS Reference Implementation
• Preview of J2EE™ platform-based

component messaging
• Future considerations

29

What Is the JMS API?

• A common Java™ platform API for
creating, sending, receiving and reading
messages

• Enables communication that is
– Loosely coupled
– Reliable
– Asynchronous

• Designed by Sun and partners
• Released 11/1999

30

JMS API Objectives

• Capable of mapping to existing Message
Oriented Middleware (MOM) systems

• Enough functionality to support
sophisticated messaging applications

• Enable the development of efficient JMS
Providers

• Allow portability of a new JMS
application across JMS products in
same message domain

31

JMS Functionality

• Two messaging domains
– Point-to-Point (Reliable Queue)
– Publish/Subscribe

• Message delivery
– Synchronous or asynchronous
– Reliability provided by acknowledgements

• Message selectors
• Transactions
• Choice of five Message types

32

Point-to-Point Messaging

SendsClient 1 Client 2Queue
Consumes

Acknowledges

• Only one consumer of queue message
• No timing dependencies

between sender and receiver

33

Client 1 Publishes

Client 3
Delivers

Subscribes

Topic

Subscribes Client 2

Delivers

Publish/Subscribe Messaging

• Broadcast message to all subscribers

34

Vendor Implementations

∀ See website:
http://java.sun.com/products/jms/vendor
s.html

∀ 13 implementations of JMS API:
(Note: Listing by vendor request, not all-inclusive)

BEA Systems, Inc. Fiorano Software, Inc.
IBM objectCube, Inc.
Oracle Corporation Orion
Progress Software Saga Software, Inc.
Softwired, Inc SpiritSoft, Inc.
Sun Java Message Queue
Valto Systems Venue Software

35

JMS Within the
J2EE™ Platform
• Enables J2EE components to

– Interact via first class distributed
computing paradigm of message passing

– Interact with message-enabled legacy
systems

• Uses an open standard API
– Will allow freedom of choice among JMS

Providers

36

Accessing JMS From an EJB™
Architecture-Based Component
("EJB Component")
• Any EJB component type can send or

synchronously receive a message
• Message-driven Bean enables

asynchronous invocation mechanism
• Msg send and receive can participate in

JTA transaction
• Described in the EJB 2.0 specification

37

Goals of Message-Driven Bean

• As simple to write as any other JMS
MessageListener

• Allow for asynchronous concurrent
message consumption

JMS
Provider

Container

Destin-
ation

Consumer
Msg-driven

Bean
Instances

Msg-driven
Bean Class

38

Message-Driven
Bean Instance
• Executes on receipt of a JMS message
• Shares the following characteristics of

stateless session bean
– Can be transaction-aware
– May update shared data in an underlying

database
– Is stateless and relatively short-lived
– Notable difference:

No home or remote interface

39

Overview of EJB Architecture
Messaging Source Code Example

Data
Base

EJB
Server Subscriber

Msg-driven
Instances

Receives

Ackowledges

Publisher
Bean

Client
App Durable

Subscription

Published

Database

Store
s

EJB
Server

ContainerContainer
Subscriber
Msg-driven
Instances

Delivers

Ackowledges

Publisher
Bean

Client
App Durable

Subscription

Publishes

40

Code for Publisher Bean
import javax.ejb.*;
import javax.naming.*;
import javax.jms.*;

public class PublisherEJB implements SessionBean {
TopicConnection tconn = null;
Topic topic = null;

// Cache lookup of JMS Connection and Destination
public void ejbCreate() throws RemoteException {
Context ctx = new InitialContext("java:comp/env");
topic = (Topic)ctx.lookup("jms/MyTopic");
TopicConnectionFactorry tcfac = (TopicConnectionFactory)

ctx.lookup("jms/MyTopicConnectionFactory");
tconn = tcfac.createTopicConnection();

}

// Release JMS connection
public void ejbRemove() throws RemoteException {
if (tconn != null) tconn.close();

}

41

Code for Publisher Bean (Cont.)

/**
* Publishes a message to a topic.
*/

public void publishNews() throws EJBException {

// Create JMS context to publish message to topic
TopicSession tsess = tconn.createTopicSession(true, 0);
TopicPublisher tpub = tsess.createPublisher(topic);

// Create and send message
TextMessage message = tsess.createTextMessage("News

item");
tpub.publish(message);

// Release JMS resources
tsess.close();
}

}

42

Code for Message—
Driven Bean
public class SubscriberMsgBean implements MessageDrivenBean {

< define ejbCreate(), ejbRemove() and
setMessageDrivenContext(MessageDrivenContext mdc) >

/* Message acknowledge and database update participate
* in distributed txn.
*/

public void onMessage(Message inMessage) {
TextMessage msg = (TextMessage) inMessage;

try {
< look up JDBC database >
< store info from message in database >

} catch(Exception e) {
e.printStackTrace();

}
}

}

43

Benefits of JMS Within
an EJB Component
• Simplify enterprise development with

– Loosely coupled, reliable, asynchronous
interactions between EJBs and other
components

– Ease of extensibility of business events
• Add a new message-driven bean to introduce

new business logic for existing business events
• JMS functionality enhanced by EJB

container architecture
– Distributed transaction support
– Concurrent consumption of messages

44

Conclusions

• The J2EE™ platform is ideal for
enterprise development

• The Java™ Message Service API (JMS)
enables asynchronous, loosely coupled,
reliable communication among clients

• JMS adds messaging paradigm to J2EE
platform

• J2EE container architecture enhances
JMS functionality

45

More Information

• Web sites
– JMS: http://java.sun.com/products/jms
– J2EE: http://java.sun.com/products/j2ee

• Mailing list
– jms-interest@java.sun.com

• Join at http://archives.java.sun.com

46

EAI Scenario

Inventory Management
Application

<Mainframe system>

Logictics Application
<ERP system>

Financial Application
<ERP System>

Buyer

Order Database

eMarketplace
Application Server

Order Managament
Application

Enterprise Messaging System

Customer Database

Fulfillment
Service Provider

47

The J2EE™ Platform

Middle Tier
EIS
Tier

Client

Client

Client

Client

Other Services:
JNDI, JMS,
JavaMail™

Enterprise
JavaBean

Enterprise
JavaBean

Enterprise
Information

Systems (EIS):

Relational-
Database,

Legacy
Applications,
ERP Systems

Client

Web Server
JSP, Servlet,
HTML, XML

Application
Server

Client
Tier

Firewall

48

Using J2EE

Inventory Management
Application

<Mainframe system>

Logictics Application
<ERP system>

Financial Application
<ERP System>

Buyer

Order Database

eMarketplace

J2EE-based Application Server

Enterprise Messaging System

Customer Database

Fulfillment
Service Provider

JDBC

J2EE Connector
Architecture

Java Message Service

Java API
for XML Messaging EJBJSP

JAXP

Java Transaction API

Inventory Management
Application

<Mainframe system>

Logictics Application
<ERP system>

Financial Application
<ERP System>

Buyer

Order Database

eMarketplace

J2EE-based Application Server

Enterprise Messaging System

Customer Database

Fulfillment
Service Provider

JDBC

J2EE Connector
Architecture

Java Message Service

Java API
for XML Messaging EJBJSP

JAXPServlet

XML

