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Agenda

• Overview
• Technical details of Connector 

Architecture
• Status and roadmap
• Q&A
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EIS Integration

• Key issues in EIS integration
– Heterogeneous and complex EISs
– Ease of integration and application 

development
– Tools
– Transactions and security
– Scalability

• Connector Architecture addresses this 
under the scope of the J2EE 1.3 
platform
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J2EE™ Platform

• The J2EE platform provides:
– Faster solution delivery time to market
– Re-usable components
– Write Once, Run Anywhere™

– Huge Industry Support
• Connector architecture adds:

– Easy EIS connectivity
– Enterprise Application Integration
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Connector Architecture

• Standard architecture for EIS integration 
• Targeted EISs under 1.0:

– ERP systems
– Mainframe transaction processing systems
– Non-Java legacy applications
– Database systems

• Defined through the Java Community 
ProcessSM initiative
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Value Proposition

• Reduces scope from m x n to m + n

• Simplifies application development
• Provides scalable, secure and 

transactional integration
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System Contracts

• System Contracts specified in 1.0:
– Connection management
– Transaction management
– Security management

• Proposed enhancements in
later versions:
– Thread management
– JMS pluggability
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Connection
Management Contract
• Supports connection management

– Connection pooling
– Configuration of connection factory
– Creation of connection
– Matching of pooled connections

• Enables application server to provide 
Quality of Services (QoS)
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Transaction Management

• Local Transaction
– Managed internally by an EIS

resource manager
• XA Transaction

– Spans across multiple EIS
resource managers

– Requires transaction coordination by an 
external Transaction Manager

∀ Two-phase commit (2PC)
∀ One-phase commit (1PC) optimization
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Transaction
Management Contract
∀ Resource Manager (RM) can be:

Non-transactional
Local transaction only
Local and XA transaction

∀ Resource Adapter implements:
– LocalTransaction interface
– JTA XAResource interface

• Application server required to 
support all three transaction levels
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Security Management

• Extends the J2EE platform security 
model for secure EIS connectivity

• Security mechanism and technology 
independent:
– Basic user-password mechanism
– Kerberos v5
– EIS specific security mechanism
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Rationale for CCI

• Problem for development tools 
and EAI frameworks: 
– EISs support different client APIs
– Need for adapting client APIs

• CCI solves this problem

...
API nAPI 2API 1

Enterprise Application
Integration Framework

EIS 2 EIS nEIS 1
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Overview of CCI

• Provides simple remote-function call API
• Focuses on toolability
• Leverages JavaBeans™ architecture-

based components and Collections 
• Targets EAI and application

development tools
• Recommended for resource adapters in 

version 1.0
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Scenario: CCI Usage
// Get a Connection
javax.naming.Context nc = new InitialContext();
ConnectionFactory cf = 

(ConnectionFactory)nc.lookup("...");
Connection cx = cf.getConnection();

// Create an Interaction
Interaction ix = cx.createInteraction();

// Create input and output Record
RecordFactory rf = //.. get a RecordFactory
MappedRecord input = rf.createMappedRecord("...");
IndexedRecord output =  rf.createIndexedRecord("...");

// Create/get an InteractionSpec
InteractionSpec ixSpec = // ...
ixSpec.setFunctionName("<NAME-OF-EIS-FUNCTION>");

// Execute the Interaction
boolean ret = ix.execute(ixSpec, input, output);
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Packaging of 
Resource Adapter
• Standard packaging format for 

resource adapter
– Packaged as JAR
– Equivalent to "J2EE module"

• XML based deployment descriptor
– General information
– Configurable properties
– Transaction support level
– Security related configuration
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Status and Roadmap

• Defined through Java Community 
Process initiative

• Release Schedule:
– Public draft 1: Released 06/2000
– Proposed Final Draft 1: Released 10/2000
– Final release: Q2 CY-2001

• Connector.next process initiation
– Targeted for 02/2001 
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Reference Implementation
and CTS
• J2EE™ RI with Connector support:

– Early access released in 10/2000
– Beta release J2EE 1.3 RI: Q1-2001
– Subsequent RI and CTS releases tied 

with the J2EE 1.3 platform
• Connector related J2EE RI features:

– System contracts on container side
– Packaging and deployment
– CCI-based sample resource adapter
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Connectors 2.0

• Proposed features:
– Asynchronous resource adapters
– JMS Pluggability
– XML support in application contract
– Metadata support

• Schedule for 2.0:
– JSR targeted for 02/2001
– Call for experts
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Industry Support

• Part of the J2EE 1.3 platform
• Expert group for Connectors 1.0:

• BEA, Fujitsu, IBM, Inline, Inprise, iPlanet, 
Motorola, Oracle, SAP, Sun, Sybase,
Tibco, Unisys

• Huge Java™ technology community 
interest:
– Successful early access release
– Strong support for resource adapter 

providers 
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Advantages of Architecture

• Application developers
• Application server providers
• Enterprise Information system vendors
• Application development tools provider
• Enterprise application integration

(EAI) vendors
• Third-party ISVs
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Pointers and References

• Web resources:
– http://java.sun.com/j2ee/
– http://java.sun.com/j2ee/connector/

• Spec lead: rahuls@eng.sun.com
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Agenda

• Overview of the Java™ Message 
Service API (JMS)

• JMS Reference Implementation
• Preview of J2EE™ platform-based 

component messaging
• Future considerations
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What Is the JMS API?

• A common Java™ platform API for 
creating, sending, receiving and reading 
messages

• Enables communication that is
– Loosely coupled
– Reliable
– Asynchronous

• Designed by Sun and partners
• Released 11/1999
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JMS API Objectives

• Capable of mapping to existing Message 
Oriented Middleware (MOM) systems

• Enough functionality to support 
sophisticated messaging applications

• Enable the development of efficient JMS 
Providers

• Allow portability of a new JMS 
application across JMS products in 
same message domain



31

 

JMS Functionality

• Two messaging domains
– Point-to-Point (Reliable Queue)
– Publish/Subscribe

• Message delivery
– Synchronous or asynchronous
– Reliability provided by acknowledgements

• Message selectors
• Transactions
• Choice of five Message types
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Point-to-Point Messaging

SendsClient 1 Client 2Queue
Consumes

Acknowledges

• Only one consumer of queue message
• No timing dependencies 

between sender and receiver
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Publish/Subscribe Messaging

• Broadcast message to all subscribers
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Vendor Implementations

∀ See website:
http://java.sun.com/products/jms/vendor
s.html

∀ 13 implementations of JMS API:
(Note: Listing by vendor request, not all-inclusive)

BEA Systems, Inc.             Fiorano Software, Inc.
IBM                                    objectCube, Inc.
Oracle Corporation            Orion                     
Progress Software             Saga Software, Inc.
Softwired, Inc                     SpiritSoft, Inc.
Sun Java Message Queue
Valto Systems                    Venue Software
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JMS Within the 
J2EE™  Platform
• Enables J2EE components to 

– Interact via first class distributed 
computing paradigm of message passing

– Interact with message-enabled legacy 
systems 

• Uses an open standard API 
– Will allow freedom of choice among JMS 

Providers
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Accessing JMS From an EJB™ 
Architecture-Based Component 
("EJB Component")
• Any EJB component type can send or 

synchronously receive a message
• Message-driven Bean enables 

asynchronous invocation mechanism
• Msg send and receive can participate in 

JTA transaction
• Described in the EJB 2.0 specification
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Goals of Message-Driven Bean

• As simple to write as any other JMS 
MessageListener

• Allow for asynchronous concurrent 
message consumption

JMS 
Provider
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ation
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Bean
Instances
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Bean Class
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Message-Driven 
Bean Instance
• Executes on receipt of a JMS message
• Shares the following characteristics of 

stateless session bean
– Can be transaction-aware
– May update shared data in an underlying 

database
– Is stateless and relatively short-lived
– Notable difference:  

No home or remote interface
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Overview of EJB Architecture 
Messaging Source Code Example
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Code for Publisher Bean
import javax.ejb.*;
import javax.naming.*;
import javax.jms.*;

public class PublisherEJB implements SessionBean {
TopicConnection tconn = null;
Topic topic = null;

// Cache lookup of JMS Connection and Destination
public void ejbCreate() throws RemoteException {
Context ctx = new InitialContext("java:comp/env");
topic = (Topic)ctx.lookup("jms/MyTopic");
TopicConnectionFactorry tcfac = (TopicConnectionFactory)

ctx.lookup("jms/MyTopicConnectionFactory");
tconn = tcfac.createTopicConnection();

}

// Release JMS connection
public void ejbRemove() throws RemoteException {
if (tconn != null) tconn.close();

}
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Code for Publisher Bean (Cont.)

/**
* Publishes a message to a topic.
*/

public void publishNews() throws EJBException {

// Create JMS context to publish message to topic
TopicSession  tsess = tconn.createTopicSession(true, 0); 
TopicPublisher  tpub  = tsess.createPublisher(topic);

// Create and send message
TextMessage message = tsess.createTextMessage("News 

item");
tpub.publish(message);

// Release JMS resources
tsess.close();
}

}
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Code for Message—
Driven Bean
public class SubscriberMsgBean implements MessageDrivenBean {

< define ejbCreate(), ejbRemove() and
setMessageDrivenContext(MessageDrivenContext mdc) >

/* Message acknowledge and database update participate
* in distributed txn.
*/

public void onMessage(Message inMessage) {
TextMessage msg = (TextMessage) inMessage;

try {
< look up JDBC database >
< store info from message in database >

} catch(Exception e) {
e.printStackTrace();

}
}

}
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Benefits of JMS Within 
an EJB Component
• Simplify enterprise development with

– Loosely coupled, reliable, asynchronous 
interactions between EJBs and other 
components

– Ease of extensibility of business events
• Add a new message-driven bean to introduce 

new business logic for existing business events
• JMS functionality enhanced by EJB 

container architecture
– Distributed transaction support 
– Concurrent consumption of messages
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Conclusions

• The J2EE™ platform is ideal for 
enterprise development

• The Java™ Message Service API (JMS) 
enables asynchronous, loosely coupled, 
reliable communication among clients

• JMS adds messaging paradigm to J2EE 
platform

• J2EE container architecture enhances 
JMS functionality
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More Information

• Web sites
– JMS: http://java.sun.com/products/jms
– J2EE: http://java.sun.com/products/j2ee

• Mailing list
– jms-interest@java.sun.com

• Join at http://archives.java.sun.com
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EAI Scenario
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The J2EE™ Platform
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Using J2EE
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