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Abstract

This paper will explore how to perform differential calculus operations on vectors in general
curvilinear coordinates. We will begin with the case that the coordinates are orthogonal. Our
differential operations will depend on knowing the so-called Lamé coefficients associated with
the coordinates. When we pass to the general case, the differential operations involve the
metric coefficients and Christoffel symbols. Along the way we will encounter the classical
origins of modern concepts such as covariant and contravariant tensors, Riemannian metrics,
dual bases, and Christoffel symbols.
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1 Introduction

On the inside of the cover of my undergraduate electromagnetism textbook [PS02], there were
cryptic formulae for differential operators in cylindrical and spherical coordinates. For example, in
spherical coordinates, we have the gradient, divergence, curl and Laplacian given as follows:

∇f = r̂
∂f

∂r
+ θ̂

1

r

∂f

∂θ
+ φ̂

1

r sin θ

∂f

∂φ

∇ ·A =
1

r2

∂

∂r
(r2Ar) +

1

r sin θ

∂

∂θ
(sin θAθ) +

1

r sin θ

∂Aφ

∂φ

∇×A =
r̂

r sin θ

[
∂

∂θ
(sin θAφ)−

∂Aθ

∂φ

]
+

θ̂

r

[
1

sin θ

∂Ar

∂φ
− ∂

∂r
(rAφ)

]
+

φ̂

r

[
∂

∂r
(rAθ)−

∂Ar

∂θ

]
∇2f =

1

r2

∂

∂r

(
r2∂f

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂f

∂θ

)
+

1

r2 sin2 θ

∂2f

∂φ2
.

The derivation of these formulae can be quite tedious. Since electromagnetism frequently involves
cylindrical symmetry as well, it was necessary to derive expressions for these operators in cylin-
drical coordinates. In the derivations, one notices that certain expressions come up over and over
again. This makes one suspect that there is something more general behind the computations.
This is indeed correct. Cylindrical and spherical coordinate systems in R3 are examples of or-
thogonal curvilinear coordinate systems in R3. Such coordinate systems come equipped with a set
of functions, called the Lamé coefficients. If the curvilinear coordinates are not orthogonal, the
more general metric coefficients are required. The expressions for the gradient, divergence, curl and
Laplacian operators in curvilinear coordinates can all be expressed in terms of these coefficients.
This allows us to do the computations once and only once for every orthogonal curvilinear coordi-
nate system, or more generally any curvilinear coordinate system. We will explore these concepts
in this paper, with the goal of recovering the expressions above with greater ease. We will start
with the orthogonal case, and proceed to the general case.

In what follows, we make the following conventions. If f(x, y, z) = c is a level surface, then f
is continuously differentiable with nonvanishing gradient. The triple scalar product will be denoted
by:

u · (v ×w) = [u, v, w].

Observe that three vectors {u, v, w} are linearly independent and thus form a basis for R3 if and
only if [u, v, w] 6= 0 (as the triple scalar product can be computed as the determinant of a matrix
with u, v and w as its first, second and third rows respectively). A basis u, v, w for R3 will be
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considered right-handed when [u, v, w] > 0 and left-handed when [u, v, w] < 0. In modern termi-
nology, a right handed basis is one with positive orientation and a left-handed basis has negative
orientation (with respect to the standard basis).

Acknowledgements: The material below comes from private lectures given by Steve Sy at
Michigan State University. Any errors. of course, are my own.

2 Terminology

2.1 Orthogonal Coordinate Surfaces

Suppose we have three level surfaces given by

w1 = f(x, y, z) = c1

w2 = g(x, y, z) = c2

w3 = h(x, y, z) = c3.

Definition 2.1 Three level surfaces, as above, are called orthogonal coordinate surfaces if they
satisfy the following two conditions:

∇w1 ·∇w2 = ∇w1 ·∇w3 = ∇w2 ·∇w3 = 0 (2.1)

[∇w1, ∇w2, ∇w3] > 0 (2.2)

What we consider are families of such level surfaces allowing the constants c1, c2 and c3 to vary
within the range of f, g and h respectively.

As an example, consider the following three level surfaces:

r = f(x, y, z) =
√

x2 + y2 + z2 = c1

θ = g(x, y, z) = cos−1

(
z√

x2 + y2 + z2

)
= c2

φ = h(x, y, z) = tan−1
(y

x

)
= c3

The first level surface gives us a family of spheres centered at the origin, the second level surface
gives us a family of planes making an angle θ with the z-axis (with θ between 0 and π) and the
third level set gives us a family of planes making an angle φ with the positive x-axis. We will
ignore singularities, which essentially have measure zero. With this convention, up to a null set we
can tessellate all of R3 with these level surfaces. These surfaces will be connected with spherical
coordinates, as we shall soon see.

Before looking at the intersections of these surfaces, we introduce one last definition.

Definition 2.2 The level surface w1 = f(x, y, z) = c1 is called the w1-coordinate surface for c1.

We have analogous definitions for w2 = g(x, y, z) = c2 and w3 = h(x, y, z) = c3.
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2.2 Orthogonal Coordinate Curves

Note that any two orthogonal coordinate surfaces intersect in a curve. These curves are called
orthogonal coordinate curves. In particular, we fix the following definitions.

Definition 2.3 The w1-coordinate curve for (c2, c3) is the intersection of the w2-coordinate surface
for c2 and the w3-coordinate surface for c3.

Definition 2.4 The w2-coordinate curve for (c1, c3) is the intersection of the w1-coordinate surface
for c1 and the w3-coordinate surface for c3.

Definition 2.5 The w3-coordinate curve for (c1, c2) is the intersection of the w1-coordinate surface
for c1 and the w2-coordinate surface for c2.

Since these curves line in the orthogonal coordinate surfaces, they intersect orthogonally.

2.3 Orthogonal Curvilinear Coordinates

All three orthogonal coordinate surfaces and all three orthogonal coordinate curves intersect in a
single point P . The point P is uniquely specified by the constants c1, c2 and c3. Therefore, the
point P is uniquely specified by the values of w1, w2 and w3.

Definition 2.6 If w1 = f(x, y, z), w2 = g(x, y, z) and w3 = h(x, y, z) are functions whose level sets
are orthogonal coordinate surfaces, then for a point P ∈ R3 we say that the triple (w1, w2, w3) that
uniquely specifies P represents P in orthogonal curvilinear coordinates.

In modern terminology, the three functions f, g and h are a (local) coordinate system for R3. Condi-
tion 2.2 guarantees that the coordinate system is right-handed. If one considers the example above,
we recover our usual system of spherical coordinates.

Finally, note that at each point P , the orthogonal coordinate curves form a set of “orthogonal
coordinate axes” emanating from P .

3 Tangent Vectors and Lamé Coefficients

3.1 Orthogonal Coordinate Curves II

We start with the vector field of position. This is a vector field defined on R3 in Cartesian coordi-
nates.

Definition 3.1 The vector field of position R in R3 is defined with respect to the standard basis
{ı̂, ̂, k̂} by

R = xı̂ + ŷ + zk̂.

We assume that we have orthogonal curvilinear coordinates given by three functions

w1 = f(x, y, z)

w2 = g(x, y, z)
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w3 = h(x, y, z)

that can be inverted at a point P . This allows us to solve this system for x, y and z to obtain

x = k1(w1, w2, w3)

y = k2(w1, w2, w3)

z = k3(w1, w2, w3)

where ki is continuously differentiable for i = 1, 2, 3. It follows that we can rewrite the vector field
of position in the given orthogonal curvilinear coordinates as

R = k1(w1, w2, w3)ı̂ + k2(w1, w2, w3)̂ + k3(w1, w2, w3)k̂.

Thus R is a vector-valued function given by

R = K(w1, w2, w3).

Continuing with the example of spherical coordinates, we have

x = k1(r, θ, φ) = r sin θ cos φ

y = k2(r, θ, φ) = r sin θ sin φ

z = k3(r, θ, φ) = r cos θ

and the vector field of position is given by

R = r sin θ cos φı̂ + r sin θ sin φ̂ + r cos θk̂.

We can now use the vector field of position to obtain explicit formulae for the orthogonal coordinate
curves. Specifically, if we write

R = K(w1, w2, w3)

then the w1-coordinate curve for (c2, c3) is given by

S1(w1) = K(w1, c2, c3)

the w2-coordinate curve for (c1, c3) is given by

S2(w2) = K(c1, w2, c3)

and the w3-coordinate curve for (c1, c2) is given by

S3(w3) = K(c1, c2, w3).
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3.2 Tangent Vectors

Consider the w1-coordinate curve for (c2, c3) given by S1 above. Then the vector

S′
1(w1) =

d

dw1

(K(w1, c2, c3))

is tangent to the curve, but does not necessarily have unit length. This is because S1 is not
necessarily parameterized by arc length. It follows that

∂

∂w1

K(w1, w2, w3) =
∂R

∂w1

is a vector tangent to any w1-coordinate curve, but may not necessarily have unit length. Similarly,
∂R

∂w2

and
∂R

∂w3

are vectors tangent to any w2 and w3 coordinate curves respectively, but do not

necessarily have unit length.

We define the following in accordance with the discussion above:

h1 =
∂R

∂w1

h2 =
∂R

∂w2

and

h3 =
∂R

∂w3

.

In our example with spherical coordinates:

h1 = sin θ cos φı̂ + sin θ sin φ̂ + cos θk̂

h2 = r cos θ cos φı̂ + r cos θ sin φ̂− r sin θk̂

h3 = −r sin θ sin φı̂ + r sin θ cos φ̂.

3.3 Lamé Coefficients

Define the following:

h1 = |h1| =
∣∣∣∣ ∂R

∂w1

∣∣∣∣
h2 = |h2| =

∣∣∣∣ ∂R

∂w2

∣∣∣∣
and

h3 = |h3| =
∣∣∣∣ ∂R

∂w3

∣∣∣∣ .
Definition 3.2 The quantities h1, h2 and h3 above are called the Lamé coefficients for the orthog-
onal curvilinear coordinate system with coordinates (w1, w2, w3).
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Note that since h1, h2 and h3 do not necessarily have unit or even constant length, the Lamé
coefficients are generally functions on R3.

Let us compute the Lamé coefficients for spherical coordinates. Using the results previously ob-
tained:

h1 = |h1|

=

√
sin2 θ cos2 φ + sin2 θ sin2 φ + cos2 θ

=
√

sin2 θ(cos2 φ + sin2 φ) + cos2 θ

=
√

sin2 θ + cos2 θ

= 1.

h2 = |h2|

=

√
r2 cos2 θ cos2 φ + r2 cos2 θ sin2 φ + r2 sin2 θ

=
√

r2[cos2 θ(cos2 φ + sin2 φ) + sin2 θ]

=
√

r2(cos2 θ + sin2 θ)

=
√

r2

= r

since we always assume r ≥ 0. Finally:

h3 = |h3|

=

√
r2 sin2 θ sin2 φ + r2 sin2 θ cos2 φ

=
√

r2 sin2 θ(sin2 φ + cos2 φ)

=
√

r2 sin2 θ

= r sin θ.

3.4 Unit Tangent Vectors

We can now obtain unit tangent vectors to the orthogonal coordinate curves by dividing the tangent
vectors by the Lamé coefficients. Accordingly we define

ĥ1 =
h1

h1

ĥ2 =
h2

h2

and

ĥ3 =
h3

h3

.
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Then ĥ1, ĥ2 and ĥ3 are unit tangent vectors to the w1, w2 and w3 coordinate curves, respectively.
Note that by condition 2.2, the set {ĥ1, ĥ2, ĥ3} is a right-handed set of mutually orthogonal unit
vectors. In other words, {ĥ1, ĥ2, ĥ3} at a point P form a right-handed orthonormal basis for a copy
of R3 footed at P In modern terminology, these vectors form an orthonormal frame for the tangent
bundle of R3.

Sometimes we use the notation êwi
for ĥi. We will do so with the example of spherical coordi-

nates. Dividing each hi by the corresponding Lamé coefficient hi we get the following for spherical
coordinates:

êr = sin θ cos φı̂ + sin θ sin φ̂ + cos θk̂

êθ = cos θ cos φı̂ + cos θ sin φ̂− sin θk̂

and
êφ = − sin φı̂ + cos φ̂.

3.5 Orthogonal Coordinates Test

Suppose we have a general curvilinear coordinate system where we have defined

h1 =
∂R

∂w1

, h2 =
∂R

∂w2

, h3 =
∂R

∂w3

.

If the vectors {h1, h2, h3} are mutually orthogonal, then the coordinate curves are mutually or-
thogonal and hence the coordinate surfaces are mutually orthogonal. Then with the appropriate
handedness, the coordinate system is orthogonal. If the handedness is not correct, we can inter-
change any pair of indices to obtain a right-handed system.

This gives us the orthogonal coordinates test. Given a set of equations

x = k1(w1, w2, w3)

y = k2(w1, w2, w3)

z = k3(w1, w2, w3)

that define a coordinate system, one can check to see if (w1, w2, w3) are orthogonal by checking to
see if

∂R

∂w1

· ∂R

∂w2

=
∂R

∂w1

· ∂R

∂w3

=
∂R

∂w2

· ∂R

∂w3

= 0.

One can check fairly easily now that spherical coordinates are orthogonal curvilinear coordinates.

As another example, consider paraboloidal coordinates in R3 defined by the equations

x = uv cos φ

y = uv sin φ

z =
1

2
u2 − 1

2
v2

where u, v ≥ 0 and φ ∈ [0, 2π). In such coordinates the vector field of position is

R = (uv cos φ)ı̂ + (uv sin φ)̂ +

(
1

2
u2 − 1

2
v2

)
k̂.
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We compute hi for i = 1, 2, 3. To wit:

h1 =
∂R

∂u

= (v cos φ)ı̂ + (v sin φ)̂− vk̂

h2 =
∂R

∂v

= (u cos φ)ı̂ + (u sin φ)̂ + uk̂

h3 =
∂R

∂φ

= (−uv sin φ)ı̂ + (uv cos φ)̂.

We now check orthogonality:

h1 · h2 = uv cos2 φ + uv sin2 φ− uv

= uv − uv

= 0

h1 · h3 = −uv2 cos φ sin φ + uv2 cos φ sin φ

= 0

h2 · h3 = −u2v cos φ sin φ + u2v cos φ sin φ

= 0.

Therefore the paraboloidal coordinate system, up to handedness, is an orthogonal curvilinear coor-
dinate system. Note that the Lamé coefficients are h1 = (

√
2)v, h2 = (

√
2)u, and h3 = uv.

3.6 Integrating in Orthogonal Curvilinear Coordinates

For simplicity, we will just consider integrating a function f : R3 → R over a compact region
Ω ⊂ R3. Suppose we have orthogonal curvilinear coordinates given by equations

x = k1(w1, w2, w3)

y = k2(w1, w2, w3)

z = k3(w1, w2, w3).

Then by the change of variables formula:∫
Ω

f(x, y, z) dxdydz =

∫
K(Ω)

f(w1, w2, w3)| det(J)| dw1dw2dw3

where J is the Jacobain of the coordinate change K = (k1, k2, k3).
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Proposition 3.3 The determinant | det(J)| = h1h2h3, where h1, h2 and h3 are the Lamé coefficients
for the coordinate system.

Proof: The rows of the matrix J are the vectors hi. It follows that the determinant of J is the
triple scalar product [h1, h2, h3]. Hence:

| det(J)| = |[h1, h2, h3]| = |h1h2h3[ĥ1, ĥ2, ĥ3]| = h1h2h3

as claimed.

As a consequence, it follows that we can integrate in orthogonal curvilinear coordinates accord-
ing to the following:∫

Ω

f(x, y, z) dxdydz =

∫
K(Ω)

f(w1, w2, w3)h1h2h3 dw1dw2dw3.

For example, to integrate in spherical coordinates we have∫
f(x, y, z) dxdydz =

∫
f(r, θ, φ)r2 sin θ drdθdφ

and in paraboloidal coordinates we have∫
f(x, y, z) dxdydz = 2

∫
f(u, v, φ)u2v2 dudvdφ.

4 Vectors in Orthogonal Curvilinear Coordinates

4.1 Basis

Since {ĥ1, ĥ2, ĥ3} is a right handed set of mutually orthogonal unit vectors, at each point in P ∈ R3

they may be used as a basis for a copy of R3 footed at P . In modern language, {ĥ1, ĥ2, ĥ3} is an
orthonormal frame for the tangent bundle of R3.

A word of caution is in order. The vectors ĥi are not fixed, they vary over the points of R3.
So a vector field given by

V =
∑

i

viĥi

that is constant in the frame ĥi is not, in general, a constant vector field. Consider as an example,
spherical coordinates. Suppose we have a vector field given by

V = 2êr − 3êθ + 5êφ.

The vector field V is constant in spherical coordinates. In Cartesian coordinates V is given by

V = (2 sin θ cos φ− 3 cos θ cos φ− 5 sin φ)ı̂ + (2 sin θ sin φ− 3 cos θ sin φ + 5 cos θ)̂ + (3 cos θ + 5 sin θ)k̂

=
1√

(x2 + y2)(x2 + y2 + z2)

[(
2x
√

x2 + y2 − 3xz − 5y
√

x2 + y2 + z2
)

ı̂

+
(
(2y + 5z)

√
x2 + y2 − 3yz

)
̂ +

(
3x
√

x2 + y2 + 5(x2 + y2)
)

k̂
]

which is certainly not constant!
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4.2 Dot and Cross Products in Orthogonal Curvilinear Coordinates

The dot product and cross product of vectors in orthogonal curvilinear coordinates works the same
way it does in Cartesian coordinates.

Since the vectors {ĥ1, ĥ2, ĥ3} form an orthogonal basis of unit vectors,

ĥi · ĥj = δij

for every i, j ∈ {1, 2, 3} where δij is the Kronecker delta. Therefore for arbitrary vectors v and w:

v ·w =

(∑
i

viĥi

)
·

(∑
j

wjĥj

)
=

∑
i

∑
j

viwjĥi · ĥj

=
∑

i

∑
j

viwjδij

=
∑

i

viwi.

Since {ĥ1, ĥ2, ĥ3} is a right-handed system of orthogonal basis vectors, as in the Cartesian case:

ĥi × ĥj =
∑

k

εijkĥk

where εijk is the Levi-Cevita tensor:

εijk =


1 : if i, j, k is a cyclic permutation of 1,2,3

−1 : if i, j, k is an acyclic permutation 1,2,3
0 : otherwise

Then for arbitrary vectors v and w:

v ×w =

(∑
i

viĥi

)
×

(∑
j

wjĥj

)
=

∑
i

∑
j

viwjĥi × ĥj

=
∑

i

∑
j

∑
k

εijkviwjĥk

exactly as in the Cartesian case.

4.3 Relationship to the Cartesian Basis

In this section we will write the vectors ĥi in Cartesian coordinates and we will write the Cartesian
basis vectors in the new basis {ĥ1, ĥ2, ĥ3}. In order to do the manipulations with the indices, the
Cartesian basis will be written as {δ̂1, δ̂2, δ̂3} with the obvious correspondence with {ı̂, ̂, k̂}.
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Proposition 4.1 The vectors {ĥ1, ĥ2, ĥ3} are written in the Cartesian basis as

ĥi =
∑

j

1

hi

∂xj

∂wi

δ̂j.

Proof: By definition we have

ĥi =
hi

hi

=
1

hi

∂R

∂wi

=
1

hi

∂

∂wi

(∑
j

xj δ̂j

)
.

Since the Cartesian basis vectors δ̂j are constant

∂

∂wi

(∑
j

xj δ̂j

)
=
∑

j

∂xj

∂wi

δ̂j.

The desired result follows.

Proposition 4.2 The Cartesian basis vectors are written in the basis {ĥ1, ĥ2, ĥ3} as

δ̂i =
∑

j

1

hj

∂xi

∂wj

ĥj.

Proof: We write
δ̂i =

∑
j

vjĥj

and solve for vj. Since {ĥ1, ĥ2, ĥ3} is an orthonormal basis,

vk = δ̂i · ĥk.

Using Proposition 4.1, it follows that

δ̂i · ĥk = δ̂i ·

(∑
j

1

hk

∂xj

∂wk

δ̂j

)

=
∑

j

1

hk

∂xj

∂wk

δ̂i · δ̂j

=
∑

j

1

hk

∂xj

∂wk

δij

=
1

hk

∂xi

∂wk

.

The desired result follows.

Remark 4.3 Propositions 4.1 and 4.2 look very similar. The difference lies in the indexing. One
should carefully keep track of indices when doing these calculations.

11



5 Partial Derivative Relationships

5.1 Introduction

Since the frame {ĥ1, ĥ2, ĥ3} varies from point to point, we need to understand how these and
related quantities change. Our ultimate goal is to express the partial derivatives of {ĥ1, ĥ2, ĥ3} in
terms of {ĥ1, ĥ2, ĥ3} and the partial derivatives of the Lamé coefficients. This will be necessary to
obtain the expressions for differential operators in orthogonal curvilinear coefficients. This is where
the derivations for specific coordinate systems, such as spherical coordinates, becomes potentially
painful. Here all of the pain will be done once, then we can use the results for any orthogonal
curvilinear coordinates.

5.2 Partial Derivatives of Lamé Coefficients

The first step is to compute the partial derivatives of the Lamé coefficients.

Lemma 5.1 Suppose {h1, h2, h3} are Lamé coefficients for orthogonal curvilinear coordinates {w1, w2, w3}
in R3 where {x1, x2, x3} are the usual Cartesian coordinates. Then

∂hi

∂wj

=
∑

k

1

hi

(
∂xk

∂wi

)
∂2xk

∂wj∂wi

.

Proof: Using the definition:

hi =

∣∣∣∣∂R

∂wi

∣∣∣∣
we compute:

∂hi

∂wj

=
∂

∂wj

(∣∣∣∣∂R

∂wi

∣∣∣∣)
=

∂

∂wj

(∣∣∣∣∣∑
k

∂xk

∂wi

∂̂k

∣∣∣∣∣
)

=
∂

∂wj

(∑
k

(
∂xk

∂wi

)2
)1/2


=

1

2

[∑
k

(
∂xk

∂wi

)2
]−1/2

∂

∂wj

[∑
k

(
∂xk

∂wi

)2
]

=
1

2

[∑
k

(
∂xi

∂wk

)2
]1/2

∑
k

∂

∂wk

[(
∂xk

∂wj

)2
]

=
1

2hi

∑
k

2

(
∂xk

∂wi

)
∂2xk

∂wj∂wi

=
1

hi

∑
k

(
∂xk

∂wi

)
∂2xk

∂wj∂wi

as claimed.
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5.3 Cyclic Partial Relation

Lemma 5.2 If i, j, k are distinct indices:

hi ·
∂hj

∂wk

= 0.

Proof: Since the indices are all distinct:

hi · hj = hi · hk = hj · hk = 0.

Differentiating we get

∂

∂wk

(hi · hj) = 0.

∂

∂wj

(hi · hk) = 0.

∂

∂wi

(hj · hk) = 0.

Using the definitions, this means

∂

∂wk

(
∂R

∂wi

· ∂R

∂wj

)
= 0.

∂

∂wj

(
∂R

∂wi

· ∂R

∂wk

)
= 0.

∂

∂wi

(
∂R

∂wj

· ∂R

∂wk

)
= 0.

Using the product rule (which holds over dot products) we get the following system of equations:

∂2R

∂wk∂wi

· ∂R

∂wj

+
∂R

∂wi

· ∂2R

∂wk∂wj

= 0. (5.1)

∂2R

∂wj∂wi

· ∂R

∂wk

+
∂R

∂wi

· ∂2R

∂wj∂wk

= 0. (5.2)

∂2R

∂wi∂wj

· ∂R

∂wk

+
∂R

∂wj

· ∂2R

∂wi∂wk

= 0. (5.3)

Since we have sufficient smoothness, equality of mixed partial derivatives and equation (5.3) gives
us

∂2R

∂wj∂wi

· ∂R

∂wk

= − ∂R

∂wj

· ∂2R

∂wi∂wk

. (5.4)

Substituting equation (5.4) into (5.2) gives us

− ∂R

∂wj

· ∂2R

∂wi∂wk

+
∂R

∂wi

· ∂2R

∂wk∂wj

= 0. (5.5)

Adding equations (5.1) and (5.5), invoking equality of mixed partial derivatives again, we get

2
∂R

∂wi

· ∂2R

∂wk∂wj

= 0.
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Rewriting we get
∂R

∂wi

· ∂

∂wk

(
∂R

∂wj

)
= 0.

Unraveling the definitions, this says that

hi ·
∂hj

∂wk

= 0

as desired.

5.4 Partial Derivatives of Unit Vectors

We now have the necessary tools to satisfy our short term goal. Recall that we wish to obtain
expressions for the partial derivatives of the unit vectors ĥ1, ĥ2, ĥ3 in terms of ĥ1, ĥ2, ĥ3 and the
partial derivatives of the Lamé coefficients. In the following proposition, we will state the desired
expression, and the proof will be a very painful calculation. In other words, ITS GO TIME!

Proposition 5.3 For each i, j = 1, 2, 3:

∂ĥi

∂wj

=
1

hi

∂hj

∂wi

ĥj − δij

∑
k

1

hk

∂hi

∂wk

ĥk.

Proof: Bring it on!! We start by doing basic computations using the definition of hi:

∂ĥi

∂wj

=
∂

∂wj

(
hi

hi

)
=

∂

∂wj

(
1

hi

)
hi +

1

hi

∂hi

∂wj

= − 1

h2
i

∂hi

∂wj

hi +
1

hi

∂2R

∂wj∂wi

= − 1

hi

∂hi

∂wj

ĥi +
1

hi

∑
k

∂2xk

∂wj∂wi

δ̂k.

By Proposition 4.2:

δ̂k =
∑

l

1

hl

∂xk

∂wl

ĥl.

Therefore we have
∂ĥi

∂wj

= − 1

hi

∂hi

∂wj

ĥi +
1

hi

∑
k

∑
l

1

hl

∂xk

∂wl

∂2xk

∂wj∂wi

ĥl.

Add and subtract the Kronecker delta δil in the second term to obtain:

∂ĥi

∂wj

= − 1

hi

∂hi

∂wj

ĥi +
1

hi

∑
k

∑
l

δil
1

hl

∂xk

∂wl

∂2xk

∂wj∂wi

ĥl +
1

hi

∑
k

∑
l

(1− δil)
1

hl

∂xk

∂wl

∂2xk

∂wj∂wi

ĥl

= − 1

hi

∂hi

∂wj

ĥi +
1

hi

∑
k

1

hi

∂xk

∂wi

∂2xk

∂wj∂wi

ĥi +
1

hi

∑
k

∑
l

(1− δil)
1

hl

∂xk

∂wl

∂2xk

∂wjwi

ĥl.
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By Lemma 5.1, this gives us

∂ĥi

∂wj

= − 1

hi

∂hi

∂wj

ĥi +
1

hi

∂hi

∂wj

ĥi +
1

hi

∑
k

∑
l

(1− δil)
1

hl

∂xk

∂wl

∂2xk

∂wjwi

ĥl

=
1

hi

∑
k

∑
l

(1− δil)
1

hl

∂xk

∂wl

∂2xk

∂wjwi

ĥl.

Therefore:
∂ĥi

∂wj

=
1

hi

∑
k

∑
l

(1− δil)
1

hl

∂xk

∂wl

∂2xk

∂wjwi

ĥl. (5.6)

There are now two cases: i = j and i 6= j.

Case 1: i 6= j

This is the easy case. When i = l, 1 − δil = 0 and when i 6= l, 1 − δil = 1. Therefore equa-
tion (5.6) gives us

∂ĥi

∂wj

=
1

hi

∑
k

∑
l 6=i

1

hl

∂xk

∂wl

∂2xk

∂wj∂wi

ĥl.

Since i 6= j, there are two values of l that are not i, one of which is j. Call the other value m. Then
we get

∂ĥi

∂wj

=
1

hi

∑
k

(
1

hj

∂xk

∂wj

∂2xk

∂wi∂wj

ĥj +
1

hm

∂xk

∂wm

∂2xk

∂wj∂wi

ĥm

)

=
1

hi

(∑
k

1

hj

∂xk

∂wj

∂2xk

∂wi∂wj

)
ĥj +

1

hihm

(∑
k

∂xk

∂wm

∂2xk

∂wj∂wi

)
ĥm.

By Lemma 5.1, the first term is

1

hi

(∑
k

1

hj

∂xk

∂wj

∂2xk

∂wi∂wj

)
ĥj =

1

hi

∂hj

∂wi

.

By Lemma 5.2, since i,j and m are all distinct, the second term is

1

hihm

(∑
k

∂xk

∂wm

∂2xk

∂wj∂wi

)
ĥm =

1

hihm

[
∂R

∂wm

· ∂

∂wj

(
∂R

∂wi

)]
ĥm

=
1

hihm

(
hm · ∂hi

∂wj

)
ĥm

= 0.

Therefore, when i 6= j:
∂ĥi

∂wj

=
1

hi

∂hj

∂wi

ĥj. (5.7)
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Case 2: i = j

We start from equation (5.6):

∂ĥi

∂wj

=
1

hi

∑
k

∑
l

(1− δil)
1

hl

∂xk

∂wl

∂2xk

∂wj∂wi

ĥl

=
1

hi

∑
k

∑
l

(1− δil)
1

hl

∂xk

∂wl

∂2xk

∂w2
i

ĥl

=
1

hi

∑
l

(1− δil)
1

hl

[∑
k

∂xk

∂wl

∂2xk

∂w2
i

]
ĥl.

Observe that the product rule gives us

∂

∂wi

(
∂xk

∂wl

∂xk

∂wi

)
=

∂2xk

∂wi∂wl

∂xk

∂wi

+
∂xk

∂wl

∂2xk

∂x2
i

.

Accordingly:

∂ĥi

∂wj

=
1

hi

∑
l

(1− δil)
1

hl

[∑
k

∂xk

∂wl

∂2xk

∂w2
i

]
ĥl

=
1

hi

∑
l

(1− δil)
1

hl

[∑
k

(
∂

∂wi

(
∂xk

∂wl

∂xk

∂wi

)
− ∂2xk

∂wi∂wl

∂xk

∂wi

)]
ĥl

=
∑

l

(1− δil)
1

hl

[
1

hi

∑
k

∂

∂wi

(
∂xk

∂wl

∂xk

∂wi

)
−
∑

k

1

hi

∂xk

∂wi

∂2xk

∂wl∂wi

]
ĥl

=
∑

l

(1− δil)
1

hihl

[∑
k

∂

∂wi

(
∂xk

∂wl

∂xk

∂wi

)]
ĥl +

∑
l

(δil − 1)
1

hl

[∑
k

1

hi

∂xk

∂wi

∂2xk

∂wl∂wi

]
ĥl.

I claim that the first term is zero. Observe that:∑
k

∂

∂wi

(
∂xk

∂wl

∂xk

∂wi

)
=

∂

∂wi

∑
k

∂xk

∂wl

∂xk

∂wi

=
∂

∂wi

(
∂R

∂wl

· ∂R

∂wi

)
.

Since we are working in orthogonal curvilinear coordinates, if i 6= l

∂R

∂wl

· ∂R

∂wi

= 0.

In particular, since for every index i

∂R

∂wi

= hi = hiĥi,

it follows that
∂R

∂wl

· ∂R

∂wi

= hihlδil.
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Therefore the first term is given by

∑
l

(1− δil)
1

hihl

[∑
k

∂

∂wi

(
∂xk

∂wl

∂xk

∂wi

)]
ĥl =

∑
l

(1− δil)
1

hihl

[
∂

∂wi

(hihlδil)

]
ĥl

=
∑

l

(1− δil)δil
1

hihl

[
∂

∂wi

(hihl)

]
ĥl.

Since 1− δil = 0 when i = l and δil = 0 when i 6= l, the first term is zero as claimed.

This leaves us with
∂ĥi

∂wj

=
∑

l

(δil − 1)
1

hl

[∑
k

1

hi

∂xk

∂wi

∂2xk

∂wl∂wi

]
ĥl.

By Lemma 5.1: ∑
k

1

hi

∂xk

∂wi

∂2xk

∂wl∂wi

=
∂hi

∂wl

.

Therefore

∂ĥi

∂wj

=
∑

l

(δil − 1)
1

hl

∂hi

∂wl

ĥl

=
∑

l

δil
1

hl

∂hi

∂wl

ĥl −
∑

l

1

hl

∂hi

∂wl

=
1

hi

∂hi

∂wi

ĥi −
∑

l

1

hl

∂hi

∂wl

ĥl.

Change the index over which we are summing in the second term to k, and change a couple of i’s
in the first term to j’s (since i = j). This gives us

∂ĥi

∂wj

=
1

hi

∂hj

∂wi

ĥj −
∑

k

1

hk

∂hi

∂wk

ĥk. (5.8)

If we compare equations (5.7) and (5.8), the first term on the right hand side of equation (5.8)
is exactly the same as the only term on the right hand side of equation (5.7), and we only get the
second term on the right hand side of equation (5.8) when i = j. It follows that we can summarize
both cases by the equation

∂ĥi

∂wj

=
1

hi

∂hj

∂wi

ĥj − δij

∑
k

1

hk

∂hi

∂wk

ĥk

which was what we set out to prove.

We have now established an expression for the partial derivatives of the unit vectors that only
depends on the unit vectors themselves and the partial derivatives of the Lamé coefficients. We
can now use this result to establish the forms of differential operators in orthogonal curvilinear
coordinates.
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6 Differential Calculus of Vectors in Orthogonal Curvilin-

ear Coordinates

We are now prepared to tackle the job set out for us. We will compute expressions for the gradient,
divergence, curl and Laplacian in orthogonal curvilinear coordinates, where the expressions will
be in terms of the Lamé coefficients and their derivatives. At each step, we will compute the
appropriate quantity in spherical coordinates.

6.1 The Del Operator

The Del operator will be crucial to our ability to obtain the gradient, divergence, curl and Laplacian.
It is therefore fitting that we express the Del operator in orthogonal curvilinear coordinates. In
Cartesian coordinates, we have

∇ =
∑

i

δ̂i
∂

∂xi

.

By Proposition 4.2, we can write δ̂i in orthogonal curvilinear coordinates giving us

∇ =
∑

i

[∑
j

1

hj

∂xi

∂wj

ĥj

]
∂

∂xi

=
∑

i

∑
j

ĥj

hj

∂xi

∂wj

∂

∂xi

=
∑

j

ĥj

hj

(∑
i

∂xi

∂wj

∂

∂xi

)
.

By the chain rule:
∂

∂wj

=
∑

i

∂xi

∂wj

∂

∂xi

and therefore, changing indices from j to i we get

∇ =
∑

i

ĥi

hi

∂

∂wi

.

6.2 The Gradient of a Scalar Function

Suppose f : R3 → R is a smooth function. We will compute ∇f in orthogonal curvilinear coordi-
nates. Using the expression for ∇ in orthogonal curvilinear coordinates:

∇f =

(∑
i

ĥi

hi

∂

∂wi

)
f =

∑
i

1

hi

∂f

∂wi

ĥi.

As an example, consider spherical coordinates. Using the Lamé coefficients h1 = 1, h2 = r and
h3 = r sin θ we get:

∇f =
∂f

∂r
êr +

1

r

∂f

∂θ
êθ +

1

r sin θ

∂f

∂φ
êφ.

This is the same expression given in the introduction.
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6.3 Coordinate Surface Normals

In order to handle the divergence of a vector field, we need a brief detour about coordinate surface
normals. In order to obtain the tools we need, we have to be able to use the gradient in orthogonal
curvilinear coordinates, which we just established.

6.3.1 What are the Coordinate Surface Normals?

Recall that the orthogonal curvilinear coordinates (w1, w2, w3) are each scalar functions of x, y and
z. In particular, they define the level surfaces we called the orthogonal coordinate surfaces. Since
each wi is a scalar function, we can compute the gradient:

∇wi =
∑

j

1

hj

∂wi

∂wj

ĥj

=
∑

j

1

hj

δijĥj

=
ĥi

hi

.

The gradient ∇wi is normal to the level surface wi = ci, so we call the collection {∇wi} the
coordinate surface normals. The computation above establishes that

∇wi =
ĥi

hi

and

|∇wi| =
1

hi

.

The coordinate surface normals are a mutually orthogonal set of vectors, each of which lies in the
same direction as the tangent vectors hi to the orthogonal coordinate curves.

This last point deserves to be underlined. It is a special feature of the fact that our coordinates are
orthogonal. In general, the coordinate surface normals and the tangent vectors to the coordinate
curves need not be in the same direction. Instead, these sets of vectors are reciprocal to one another,
and this concept simultaneously leads to the notion of dual bases and covariant and contravariant
tensors.

6.3.2 Cross Products of Coordinate Surface Normals

We compute the cross products of the coordinate surface normals using the definition:

∇w1 ×∇w2 =
ĥ1

h1

× ĥ2

h2

=
1

h1h2

ĥ3.

Similarly:

∇w2 ×∇w3 =
1

h2h3

ĥ1

∇w3 ×∇w1 =
1

h3h1

ĥ2.
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Another fact we will use, which I will not prove (to keep our detour brief), is that for any distinct
i and j, the vector field ∇wi ×∇wj is solenoidal. This means that

∇ · (∇wi ×∇wj) = 0.

6.3.3 Unit Tangent Vector Relations

From the cross product calculations, we get the following useful relations:

ĥ1 = h2h3∇w2 ×∇w3

ĥ2 = h3h1∇w3 ×∇w1

ĥ3 = h1h2∇w1 ×∇w2.

6.4 Divergence of a Vector Field

We are now ready to resume our quest. The next object of desire is the divergence of a vector field.
Let V : R3 → R3 be a vector field given in orthogonal curvilinear coordinates by

V =
∑

i

viĥi

where each vi is a scalar function. Then:

∇ · V = ∇ ·

(∑
i

viĥi

)
=

∑
i

∇ · (viĥi)

= ∇ · (v1ĥ1) + ∇ · (v2ĥ2) + ∇ · (v3ĥ3).

Using the unit tangent vector relations, and a version of the product rule:

∇ · (v1ĥ1) = ∇ · [v1h2h3(∇w2 ×∇w3)]

= ∇(v1h2h3) · (∇w2 ×∇w3) + v1h2h3∇ · (∇w2 ×∇w3).

Since ∇w2 ×∇w3 is solenoidal, its divergence is zero and thus the second term is zero. Since

∇w2 ×∇w3 =
1

h2h3

ĥ1

we get

∇ · (v1ĥ1) = ∇(v1h2h3) ·
(

1

h2h3

ĥ1

)
.

Since v1h2h3 is a scalar function, using our formula for the gradient in orthogonal curvilinear
coordinates:

∇(v1h2h3) ·
(

1

h2h3

ĥ1

)
=

(∑
i

1

hi

∂(v1h2h3)

∂wi

ĥi

)
·
(

1

h2h3

ĥ1

)
=

1

h2h3

∑
i

1

hi

∂(v1h2h3)

∂wi

ĥi · ĥ1.
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Since the coordinates are orthogonal, ĥi · ĥ1 = δi1. Therefore:

1

h2h3

∑
i

1

hi

∂(v1h2h3)

∂wi

ĥi · ĥ1 =
1

h2h3

∑
i

1

hi

∂(v1h2h3)

∂wi

δi1

=
1

h1h2h3

∂(v1h2h3)

∂w1

.

Thus:

∇ · (v1ĥ1) =
1

h1h2h3

∂(v1h2h3)

∂w1

.

Similarly:

∇ · (v2ĥ2) =
1

h1h2h3

∂(v2h3h1)

∂w2

and

∇ · (v3ĥ3) =
1

h1h2h3

∂(v3h1h2)

∂w3

Therefore, our expression for the divergence of a vector field is:

∇ · V =
1

h1h2h3

[
∂(v1h2h3)

∂w1

+
∂(v2h3h1)

∂w2

+
∂(v3h1h2)

∂w3

]
.

Returning to our spherical coordinates:

∇ · V =
1

r2 sin θ

[
∂(r2 sin θvr)

∂r
+

∂(r sin θvθ)

∂θ
+

∂(rvφ)

∂φ

]
=

1

r2 sin θ

[
sin θ

∂(r2vr)

∂r
+ r

∂(sin θvθ)

∂θ
+ r

∂vφ

∂φ

]
=

1

r2

∂

∂r
(r2vr) +

1

r sin θ

∂

∂θ
(sin θvθ) +

1

r sin θ

∂vφ

∂φ
.

This is the same as the expression given in the introduction.

6.5 Curl of a Vector Field

We now discuss the curl of a vector field in orthogonal curvilinear coordinates. Using the definitions:

∇× V =

(∑
i

ĥi

hi

∂

∂wi

)
×

(∑
j

vjĥj

)

=
∑

i

∑
j

ĥi

hi

× ∂

∂wi

(vjĥj)

=
∑

i

∑
j

ĥi

hi

×

[
∂vj

∂wi

ĥj + vj
∂ĥj

∂wi

]

=
∑

i

∑
j

1

hi

∂vj

∂wi

ĥi × ĥj +
∑

i

∑
j

vj

hi

ĥi ×
∂ĥj

∂wi

.
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The first term is given by

∑
i

∑
j

1

hi

∂vj

∂wi

ĥi × ĥj =
∑

i

∑
j

1

hi

∂vj

∂wi

[∑
k

εijkĥk

]

=
∑

i

∑
j

∑
k

εijk
1

hi

∂vj

∂wi

ĥk.

Using Proposition 5.3, the second term is:

∑
i

∑
j

vj

hi

ĥi ×
∂ĥj

∂wi

=
∑

i

∑
j

vj

hi

[
ĥi ×

(
1

h j

∂hi

∂wj

ĥi − δij

∑
k

1

hk

∂hj

∂wk

ĥk

)]

= −
∑

i

∑
j

∑
k

δij
vj

hkhi

∂hj

∂wk

ĥi × ĥk

= −
∑

j

∑
k

vj

hkhj

∂hj

∂wk

ĥj × ĥk

= −
∑

k

∑
j

vj

hkhj

∂hj

∂wk

ĥj × ĥk.

Exchange the dummy index k with an i. Then we get:

−
∑

i

∑
j

vj

hihj

∂hj

∂wi

ĥj × ĥi =
∑

i

∑
j

vj

hihj

∂hj

∂wi

ĥi × ĥj

=
∑

i

∑
j

vj

hihj

∂hj

∂wi

(∑
k

εijkĥk

)

=
∑

i

∑
j

∑
k

εijk
vj

hihj

∂hj

∂wi

ĥk.

We can now add the first and second terms:∑
i

∑
j

1

hi

∂vj

∂wi

ĥi × ĥj +
∑

i

∑
j

vj

hi

ĥi ×
∂ĥj

∂wi

=
∑

i

∑
j

∑
k

εijk
1

hi

∂vj

∂wi

ĥk +
∑

i

∑
j

∑
k

εijk
vj

hihj

∂hj

∂wi

ĥk

=
∑

i

∑
j

∑
k

εijk
1

hihj

(
hj

∂vj

∂wi

+ vj
∂hj

∂wi

)
ĥk

=
∑

i

∑
j

∑
k

εijk
1

hihj

∂(vjhj)

∂wi

ĥk

=
∑

i

∑
j

∑
k

εijk
1

hihjhk

∂(vjhj)

∂wi

hkĥk.

Writing this out explicitly yields the following:

∇× V =
1

h1h2h3

[(
∂(v3h3)

∂w2

− ∂(vwh2)

∂w3

)
h1ĥ1 +

(
∂(v1h1)

∂w3

− ∂(v3h3)

∂w1

)
h2ĥ2 +

(
∂(v2h2)

∂w1

− ∂(v1h1)

∂w2

)
h3ĥ3

]
.
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As with the cross product in Cartesian coordinates, this can be written as the determinant of a
matrix as follows:

∇× V =
1

h1h2h3

∣∣∣∣∣∣∣∣
h1ĥ1 h2ĥ2 h3ĥ3

∂

∂w1

∂

∂w2

∂

∂w3

v1h1 v2h2 v3h3

∣∣∣∣∣∣∣∣
Let us perform the calculation in spherical coordinates. Since h1 = 1, h2 = r and h3 = r sin θ, while
w1 = r, w2 = θ and w3 = φ, we get:

∇× V =
1

r2 sin θ

[(
∂(r sin θvφ)

∂θ
− ∂(rvθ)

∂φ

)
êr +

(
∂vr

∂φ
− ∂(r sin θvφ)

∂r

)
rêθ +

(
∂(rvθ)

∂r
− ∂vr

∂θ

)
r sin θêφ

]
=

1

r sin θ

[
∂

∂θ
(sin θvφ)−

∂vθ

∂φ

]
êr +

1

r

[
1

sin θ

∂vr

∂φ
− ∂

∂r
(rvφ)

]
êθ +

1

r

[
∂

∂r
(rvθ)−

∂vr

∂θ

]
êφ.

This is the same expression stated in the introduction.

6.6 Laplacian of a Scalar Function

As our last differential operation, we will compute the Laplacian of a scalar function in orthogonal
curvilinear coordinates. The Laplacian is the divergence of the gradient. Thus if f : R3 → R is a
scalar function, the Laplacian of f in orthogonal curvilinear coordinates is given by:

∇2f = ∇ ·∇f

=
1

h1h2h3

[
∂((∇f)1h2h3)

∂w1

+
∂((∇f)2h3h1)

∂w2

+
∂((∇f)3h1h2)

∂w3

]
=

1

h1h2h3

[
∂

∂w1

(
1

h1

∂f

∂w1

h2h3

)
+

∂

∂w2

(
1

h2

∂f

∂w2

h3h1

)
+

∂

∂w3

(
1

h3

∂f

∂w3

h1h2

)]
.

Therefore the Laplacian of f is given by:

∇2f =
1

h1h2h3

[
∂

∂w1

(
h2h3

h1

∂f

∂w1

)
+

∂

∂w2

(
h3h1

h2

∂f

∂w2

)
+

∂

∂w3

(
h1h2

h3

∂f

∂w3

)]
.

In spherical coordinates, we get

∇2f =
1

r2 sin θ

[
∂

∂r

(
r2 sin θ

∂f

∂r

)
+

∂

∂θ

(
r sin θ

r

∂f

∂θ

)
+

∂

∂φ

(
r

r sin θ

∂f

∂φ

)]
=

1

r2

∂

∂r

(
r2∂f

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂f

∂θ

)
+

1

r2 sin2 θ

∂f

∂φ
.

As before, we have recovered the expression in the introduction.

We can repeat this process now for any orthogonal curvilinear coordinate system, such as cylin-
drical coordinates, paraboloidal coordinates, elliptic coordinates, toroidal coordinates, or oblate
spheroidal coordinates. All one needs are the Lamé coefficients. This resolves the mystery behind
these expressions for differential operators in orthogonal curvilinear coordinates.
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7 General Curvilinear Coordinates

What happens if we have curvilinear coordinates that are not orthogonal? A lot our results so far
were manageable because we had hi ·hj = δij. Now we lose this property. An important consequence
is that the tangent vectors to the coordinate curves and the coordinate surface normals are no
longer proportional. In order to be able to distinguish between these situations, some vectors will
be indexed with subscripts and others will be indexed with superscripts. This section is intended
to be a brief tour of general curvilinear coordinates, so statements will be made without proof.

7.1 Curvilinear Coordinates

First we define curvilinear coordinates in much the same way we defined orthogonal curvilinear
coordinates. We suppose that we have three level surfaces

qi = f i(x, y, z) = ci

for each i and that
[∇q1, ∇q2, ∇q3] > 0.

As before, we say that these level surfaces are coordinate surfaces. Any two coordinate surfaces
intersect in a coordinate curve. All three coordinate curves intersect in a single point P . Since P
is uniquely specified by (c1, c2, c3), then a point P is uniquely specified by prescribing values for
(q1, q2, q3). Thus (q1, q2, q3) represents P in curvilinear coordinates. All the ancillary definitions
that were made for orthogonal curvilinear coordinates apply to the general case.

We also assume that each function can be inverted. Hence we can assume that we can write

x = k1(q1, q2, q3)

y = k2(q1, q2, q3)

z = k3(q1, q2, q3).

In particular, then, we can write the vector field of position R in curvilinear coordinates.

7.2 Tangent Vectors

As in the orthogonal case,
∂R

∂qi
is a vector tangent to any qi coordinate curve. Therefore we define

gi =
∂R

∂qi

as the coordinate tangent vectors. Note that if (q1, q2, q3) are orthogonal curvilinear coordinates,
gi = hi.

7.3 Coordinate Surface Normals

For each i we define
gi = ∇qi.

These are the coordinate surface normals. In general, gi is not proportional to gi. We saw that in
the orthogonal case, these vectors coincide, up to scaling. This does not hold in general.
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7.4 Bases

We can expand both sets of vectors in the Cartesian basis. We end up with the following:

gi =
∑

j

∂xj

∂qi
δ̂j

and

gi =
∑

j

∂qi

∂xj

δ̂j.

It turns out that each triplet of vectors is linearly independent and hence at each point P forms a
basis for R3 footed at P . Since gi and gj (respectively gi, gj) are not orthogonal, there is no point
in normalizing them.

Since {g1, g2, g3} form a basis for R3, we can expand any vector v in this basis. Hence we can
write

v =
∑

i

vig
i.

It turns out that vi = v · gi. This is a consequence of what follows in the next section. Since the
vectors gi are not unit vectors, the numbers vi are not physical components of the vector. They are
called the covariant components of v.

Similarly we can expand v in the basis {g1, g2, g3} to write

v =
∑

i

vigi.

It also turns out that vi = v · gi. Since the vectors gi do not have unit length, the real numbers vi

are not physical components of v. They are called the contravariant components of v.

Tensors can also be written in each of these bases (or in mixed bases) and components may be
contravariant, covariant, or mixed. We have thus arrived at the classical origins of covariant, con-
travariant and mixed tensors.

7.5 Relationship Between Tangent Vectors and Coordinate Surface Nor-
mals

The sets of vectors {g1, g2, g3} and {g1, g2, g3} are reciprocal sets of vectors. This means that for
all i and j,

gi · gj = δ j
i .

Since these reciprocal sets of vectors are both bases for R3, we say that the sets are dual bases.
We have now arrived at the classical origin of dualization.

If we define A to be the matrix whose rows are the vectors gi and B to be the matrix whose
columns are the vectors gi, it follows that A and B are inverses. Since the determinant of A is the
triple scalar product [g1, g2, g3] (which is positive from our assumptions), we get the relation:

[g1, g2, g3] =
1

[g1, g2, g3]
.
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7.6 Metric Coefficients

The metric coefficients {gij} (for i, j = 1, 2, 3) are defined by

gij = gi · gj.

The reason for the name will be explained shortly. Note that if the curvilinear coordinates are
orthogonal, the metric coefficients are zero unless i = j in which case the metric coefficient is the
square of the ith Lamé coefficient.

We can also define reciprocal metric coefficients {gij}. These are the quantities given by

gij = gi · gj.

Observe that commutativity of the dot product implies that for all i and j, gij = gji and gij = gji.

Using the metric coefficients and the reciprocal metric coefficients, we can determine the con-
travariant components of gi and the covariant components of gi. Specifically:

gi =
∑

j

gijgj

and
gi =

∑
j

gijg
j.

We can use these relations to determine how to transform between covariant and contravariant
components of a vector. To wit, if

v =
∑

i

vig
i =

∑
i

vigi

then:
vi =

∑
j

gijv
j

and
vi =

∑
j

gijvj.

Similar rules define how contravariant and covariant components of tensors can be transformed.
This is the germ of the notion that a tensor can be defined as a collection of quantities that trans-
form according to certain rules.

Notice that there is a nice pattern to the transformations between covariant and contravariant
components. Multiplying a quantity with a superscript of j by a gij and summing over j lowers the
superscript j and changes it to i. Similarly multiplying a quantity with a subscript of j by gij and
summing over j raises the j to an i. Because of this pattern, the metric coefficients and reciprocal
metric coefficients are sometimes referred to as lowering and raising operators, respectively.
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7.7 Integration in General Curvilinear Coordinates

Arrange the metric coefficients in a matrix G in the obvious way. Denote

g = det G.

We can similarly arrange the reciprocal metric coefficients in a matrix, and the result is the inverse
G−1. If the coordinates are orthogonal, then in terms of the Lamé coefficients we have

g = h2
1h

2
2h

2
3.

Observe that
[h1, h2, h3] =

√
g.

It turns out that this holds true in general curvilinear coordinates as well, except we have to be
careful about which triple scalar product is

√
g. The following is the correct result:

[g1, g2, g3] =
√

g.

Therefore, to integrate in general curvilinear coordinates, the integrand must be multiplied by
√

g.

Since the coordinate surface normals are reciprocal to the coordinate tangent vectors, we get

[g1, g2, g3] =
1
√

g
.

One condition that is equivalent to a collection {v1, v2, v3} and {w1, w2, w3} being reciprocal sets
of vectors is that

vi =
wj ×wk

[w1, w2, w3]

whenever i, j, k are a cyclic permutation of 1, 2 and 3. Accordingly, when i, j, k are cyclic permuta-
tions of 1, 2, 3 we get:

gi =
gj × gk√

g

and
gi =

√
g(gj × gk).

This gives us cross-product relationships:

gi × gj =
∑

k

εijk
√

ggk

and

gi × gj =
∑

k

εijk

√
g
gk.

Sometimes the following notation is used:

Eijk = εijk
√

g and E ijk =
εijk

√
g
.

This allows us to write
gi × gj =

∑
k

Eijkgk

and
gi × gj =

∑
k

E ijkgk.

This also makes the Levi-Cevita symbol into a tensor.
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7.8 The Metric Tensor

Using the metric coefficients, we can define a special dyadic tensor. In order to make sense of this
concept, I will give a brief description of what a dyadic tensor is.

7.8.1 Dyadic Tensors

We discuss dyadic tensors in Cartesian coordinates. Suppose you have two vectors in R3 given by:

v = 3ı̂− 4k̂, w = −ı̂ + 2̂.

Suppose, moreover, you are teaching vector calculus and a student asks why you can’t multiply v
and w by writing

vw = (3ı̂− 4k̂)(−ı̂ + 2̂)

and using FOIL. The answer is that you can, but what you get back is no longer a vector. Rather
it is a quantity that looks like

vw = −3ı̂ı̂ + 6ı̂̂ + 4k̂ı̂− 8k̂̂.

This quantity is a dyadic tensor, and the symbols such as ı̂ı̂ represent new basis vectors for a nine-
dimensional vector space. They are called the unit dyads, and the product vw is called the dyadic
product. In modern terminology, if we view R3 as a three dimensional vector space V over R, the
nine-dimensional vector space vw lives in is the tensor product V ⊗ V . A quantity such as ı̂ı̂ is
now denoted e1 ⊗ e1, and the dyadic product is denoted v⊗w. The fact that not every element of
a tensor product can be written as a simple tensor v⊗w corresponds to the notion that not every
dyadic tensor can be decomposed into the dyadic product of two vectors.

Note that sometimes the dyadic product is called an outer product. The reason is as follows.
The nine double-indexed components of a dyadic tensor can be arranged into a three-by-three ma-
trix in an obvious way. If we represent a vector by a column matrix, the inner product of two
vectors v and w can be described as the matrix product

v ·w = vT w.

The other product, given by
vw = vwT

where the right hand side is matrix multiplication, gives a three by three matrix whose components
are the same as their dyadic product. This gives a concrete way of viewing dyadic tensors.

7.8.2 The Metric Dyadic Tensor

The dyadic product can be rewritten in orthogonal or general curvilinear coordinates. Accordingly,
we can consider the dyadic tensor

gigj.

Since we can arrange the metric coefficients in a matrix the same way we can arrange the components
of a dyadic tensor, it is not surprising that we can write down a dyadic tensor

G =
∑

i

∑
j

gijg
igj.
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This is called the metric dyadic tensor. In modern language, this is a Riemannian metric. The ac-
tion on pairs of vectors would be obtained using an operation called the double-dot product, which
I will not discuss. I will only mention that this action corresponds to the ordinary inner product
when gij = δij and the coordinates correspond to the Cartesian coordinates. In fact, if we define
the change of coordinates map Φ from curvilinear coordinates to Cartesian coordinates, the metric

G acts as the pull-back of the usual inner product. Hence, in modern language, R3 with curvilinear

coordinates and the metric G is isometric to E3.

One should pause and note at this point that we have arrived at the foundation of Riemannian
geometry, using only basic vector calculus and linear algebra!

7.9 Christoffel Symbols

Just as in the orthogonal curvilinear case, {g1, g2, g3} and {g1, g2, g3} vary from point to point.
Consequently, we need to understand how these change from point to point in order to do differen-
tial operations. As a matter of notation, when we differentiate a vector field V with respect to qj,
we will write a subscript /j. For example, gi = R/i.

As horrific as the derivations in the orthogonal curvilinear case, orthogonality helped a great deal.
Hence some symbols are used to pack up the ugliness into something more compact. These symbols
are the Christoffel symbols. We define Chirstoffel symbols of the first kind by

[ij, k] = gi/j · gk.

Then we can write
gi/j =

∑
k

[ij, k]gk.

This gives the covariant components of gi/j. Similarly, we define Christoffel symbols of the second
kind by {

k

ij

}
= gi/j · gk.

Then we can write:

gi/j =
∑

k

{
k

ij

}
gk.

This gives the contravariant components of gi/j. Note that by equality of mixed partial derivatives,
since we have sufficient smoothness,

gi/j = R/i/j = R/j/i = gj/i.

Hence

[ij, k] = [ji, k] and

{
k

ij

}
=

{
k

ji

}
showing that the Christoffel symbols have a certain type of symmetry.

All of this begs the question, how on earth do we compute the Christoffel symbols? It turns
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out that one can prove that the Christoffel symbols can be computed using the metric coefficients.
The formula for the Christoffel symbols of the first kind is

[ij, k] =
1

2
(gki/j + gjk/i − gij/k).

The formula for the Christoffel symbols of the second kind, which will look familiar to some readers,
is given by {

k

ij

}
=

1

2

∑
l

gkl(gil/j + gjl/i − gij/l).

This shows that the Christoffel symbols of the second kind are precisely the same as the modern
notion of the Christoffel symbols Γk

ij used in defining the Levi-Civita connection with respect to the

Riemannian metric G defined above.

Last, we can use the Christoffel symbols of the second kind to describe the partial derivatives
of the coordinate surface normals. Namely:

gi
/j = −

∑
k

{
i

kj

}
gk.

Now that we know how to differentiate our basis vectors without reference to Cartesian coordinates,
we are prepared to make the last step in our journey and do differential calculus in general curvilinear
coordinates.

7.10 Differential Calculus of Vectors in General Curvilinear Coordi-
nates

As with the orthogonal case, we begin with the Del operator. This turns out to be quite simple,
although one should note that the coordinate surface normals are used, and not the coordinate
tangent vectors. With that remark, the Del operator in curvilinear coordinates is given by

∇ =
∑

j

gi ∂

∂qi
.

We then get the gradient of a smooth function f : R3 → R by

∇f =
∑

i

f/ig
i.

The divergence of a vector field V is given by

∇ · V =
∑

i

(
vi

/i +
∑

j

vj

{
i

ji

})
.

This can be simplified, using various vector identities, to

∇ · V =
1
√

g

∑
i

(vi√g)/i.
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As an amusing corollary, we get ∑
j

{
j

ij

}
= (ln

√
g)/i.

The curl of a vector field is given by

∇× V =
∑

i

∑
j

∑
k

εijk

√
g

(
vj/i −

∑
l

{
l

ji

}
vl

)
gk.

In this form, the curl of a vector field is useful in covariant differentiation. A simpler form of the
curl of a vector field is given by

∇× V =
1
√

g

∑
i

∑
j

∑
k

εijkvi/jgk.

This can be arranged as the determinant of a matrix:

∇× V =
1
√

g

∣∣∣∣∣∣∣∣
g1 g2 g3
∂

∂q1

∂

∂q2

∂

∂q3

v1 v2 v3

∣∣∣∣∣∣∣∣ .
Finally, the Laplacian of a scalar function is given by

∇2f =
1
√

g

∑
i

∑
j

(
√

ggijf/j)/i.

8 Conclusion

After a long road, we have learned how to handle differential vector calculus in general curvilinear
coordinates in R3. When the coordinates are orthogonal, the expressions for all of our differential
operations are in terms of the Lamé coefficients. When the coordinates are not orthogonal, the
expressions for the differential operations involve only the metric coefficients (and possibly the
Christoffel symbols, which in turn depend on the metric coefficients). Along the way, we have
witnessed the development of basic elements of Riemannian geometry, including Riemannian metrics
and Christoffel symbols. We have also witnessed the classical origins of concepts such as tensor
products, dual bases, and covariant/contravariant tensors. One can proceed to define covariant
differentiation, the curvature tensor and other such players from differential geometry using the
tools we have constructed. The interested reader is referred to [Spa03] or [Kre91]. One can proceed
in a different direction and define differential calculus with tensors, starting with dyadic tensors.
This gets complicated very quickly, since the number of components and indices as well as the types
of operations one can perform get out of control. At the level of vectors (one-tensors), however, the
classical background adds depth to the formalities one encounters using the modern notions.

9 Exercises

Determine expressions for the Del operator, the gradient of a scalar function, the divergence of a
vector field, the curl of a vector field, and the Laplacian of a scalar function in each of the following
coordinate systems.
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1. Cylindrical coordinates defined by:

x = ρ cos φ

y = ρ sin φ

z = z

where ρ > 0 and 0 < φ < 2π.

2. Parabolic coordinates defined by:

x =
1

2
u2 − 1

2
v2

y = uv

z = z

where v ≥ 0.

3. Paraboloidal coordinates defined by:

x = uv cos φ

y = uv sin φ

z =
1

2
u2 − 1

2
v2

where u, v ≥ 0 and 0 < φ < 2π.

4. Elliptic coordinates defined by:

x = cosh u cos v

y = sinh u sin v

z = z

where u ≥ 0 and 0 < v < 2π.

5. Prolate spheroidal coordinates defined by:

x = sinh ξ sin η cos φ

y = sinh ξ sin η sin φ

z = cosh ξ cos η

where ξ ≥ 0, 0 < η < π and 0 < φ < 2π.

6. Oblate spheroidal coordinates defined by:

x = cosh ξ cos η cos φ

y = cosh ξ cos η sin φ

z = sinh ξ sin η

where ξ ≥ 0, −π/2 < η < π/2 and 0 < φ < 2π.
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7. Bipolar cylindrical coordinates defined by:

x =
sinh v

cosh v − cos u

y =
sin u

cosh v − cos u
z = z

where 0 < u < 2π.

8. Bispherical coordinates defined by:

x =
sin ξ cos φ

cosh η − cos ξ

y =
sin ξ sin φ

cosh η − cos ξ

z =
sinh η

cosh η − cos ξ
.

9. Toroidal coordinates defined by:

x =
sinh v cos φ

cosh v − cos u

y =
sinh v sin φ

cosh v − cos u

z =
sin u

cosh v − cos u

where v ≥ 0 and 0 < φ, u < 2π.

10. Conical coordinates defined with parameters a and b by:

x =
λµν

ab

y =
λ

a

√
(µ2 − a2)(ν2 − a2)

a2 − b2

z =
λ

b

√
(µ2 − b2)(ν2 − b2)

b2 − a2
.
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