The Laplace Transform of step functions (Sect. 6.3).

- Overview and notation.
- ▶ The definition of a step function.
- Piecewise discontinuous functions.
- ▶ The Laplace Transform of discontinuous functions.
- Properties of the Laplace Transform.

Overview: The Laplace Transform method can be used to solve constant coefficients differential equations with *discontinuous* source functions.

Overview: The Laplace Transform method can be used to solve constant coefficients differential equations with *discontinuous* source functions.

Notation:

If $\mathcal{L}[f(t)] = F(s)$, then we denote $\mathcal{L}^{-1}[F(s)] = f(t)$.

Overview: The Laplace Transform method can be used to solve constant coefficients differential equations with *discontinuous* source functions.

Notation:

If $\mathcal{L}[f(t)] = F(s)$, then we denote $\mathcal{L}^{-1}[F(s)] = f(t)$.

Remark: One can show that for a particular type of functions f, that includes all functions we work with in this Section, the notation above is well-defined.

Overview: The Laplace Transform method can be used to solve constant coefficients differential equations with *discontinuous* source functions.

Notation:

If
$$\mathcal{L}[f(t)] = F(s)$$
, then we denote $\mathcal{L}^{-1}[F(s)] = f(t)$.

Remark: One can show that for a particular type of functions f, that includes all functions we work with in this Section, the notation above is well-defined.

Example

From the Laplace Transform table we know that $\mathcal{L}[e^{at}] = \frac{1}{s-a}$.

Overview: The Laplace Transform method can be used to solve constant coefficients differential equations with *discontinuous* source functions.

Notation:

If
$$\mathcal{L}[f(t)] = F(s)$$
, then we denote $\mathcal{L}^{-1}[F(s)] = f(t)$.

Remark: One can show that for a particular type of functions f, that includes all functions we work with in this Section, the notation above is well-defined.

Example

From the Laplace Transform table we know that $\mathcal{L}[e^{at}] = \frac{1}{s-a}$.

Then also holds that
$$\mathcal{L}^{-1}\left[\frac{1}{s-a}\right]=e^{at}$$
.

The Laplace Transform of step functions (Sect. 6.3).

- Overview and notation.
- ► The definition of a step function.
- ▶ Piecewise discontinuous functions.
- ▶ The Laplace Transform of discontinuous functions.
- Properties of the Laplace Transform.

Definition

A function u is called a *step function* at t = 0 iff holds

$$u(t) = \begin{cases} 0 & \text{for } t < 0, \\ 1 & \text{for } t \geqslant 0. \end{cases}$$

Definition

A function u is called a *step function* at t = 0 iff holds

$$u(t) = \begin{cases} 0 & \text{for } t < 0, \\ 1 & \text{for } t \geqslant 0. \end{cases}$$

Example

Graph the step function values u(t) above, and the translations u(t-c) and u(t+c) with c>0.

Definition

A function u is called a *step function* at t = 0 iff holds

$$u(t) = \begin{cases} 0 & \text{for } t < 0, \\ 1 & \text{for } t \geqslant 0. \end{cases}$$

Example

Graph the step function values u(t) above, and the translations u(t-c) and u(t+c) with c>0.

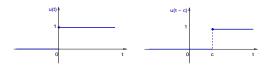
Definition

A function u is called a *step function* at t = 0 iff holds

$$u(t) = \begin{cases} 0 & \text{for } t < 0, \\ 1 & \text{for } t \geqslant 0. \end{cases}$$

Example

Graph the step function values u(t) above, and the translations u(t-c) and u(t+c) with c>0.



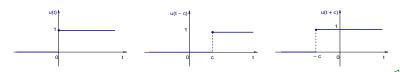
Definition

A function u is called a *step function* at t = 0 iff holds

$$u(t) = \begin{cases} 0 & \text{for } t < 0, \\ 1 & \text{for } t \geqslant 0. \end{cases}$$

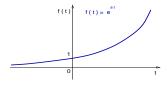
Example

Graph the step function values u(t) above, and the translations u(t-c) and u(t+c) with c>0.

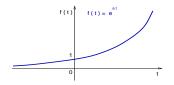


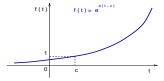
Remark: Given any function values f(t) and c > 0, then f(t - c) is a right translation of f and f(t + c) is a left translation of f.

Remark: Given any function values f(t) and c > 0, then f(t - c) is a right translation of f and f(t + c) is a left translation of f.

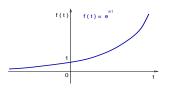


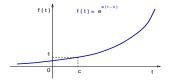
Remark: Given any function values f(t) and c > 0, then f(t - c) is a right translation of f and f(t + c) is a left translation of f.

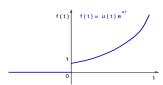




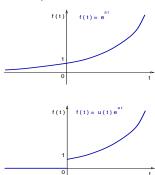
Remark: Given any function values f(t) and c > 0, then f(t - c) is a right translation of f and f(t + c) is a left translation of f.

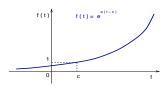


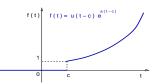




Remark: Given any function values f(t) and c > 0, then f(t - c) is a right translation of f and f(t + c) is a left translation of f.







The Laplace Transform of step functions (Sect. 6.3).

- Overview and notation.
- ▶ The definition of a step function.
- Piecewise discontinuous functions.
- ▶ The Laplace Transform of discontinuous functions.
- Properties of the Laplace Transform.

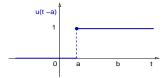
Example

Graph of the function b(t) = u(t - a) - u(t - b), with 0 < a < b.

Example

Graph of the function b(t) = u(t - a) - u(t - b), with 0 < a < b.

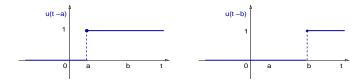
Solution: The bump function *b* can be graphed as follows:



Example

Graph of the function b(t) = u(t - a) - u(t - b), with 0 < a < b.

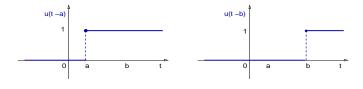
Solution: The bump function *b* can be graphed as follows:

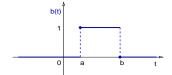


Example

Graph of the function b(t) = u(t - a) - u(t - b), with 0 < a < b.

Solution: The bump function b can be graphed as follows:



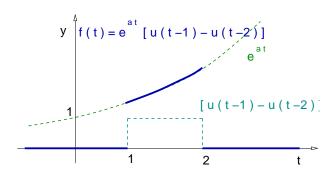


Example

Graph of the function $f(t) = e^{at} [u(t-1) - u(t-2)]$.

Example

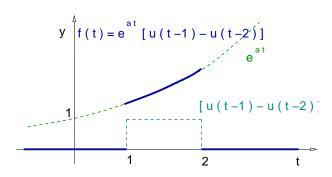
Graph of the function $f(t) = e^{at} [u(t-1) - u(t-2)].$



Example

Graph of the function $f(t) = e^{at} [u(t-1) - u(t-2)]$.

Solution:



Notation: The function values u(t-c) are denoted in the textbook as $u_c(t)$.

The Laplace Transform of step functions (Sect. 6.3).

- Overview and notation.
- ▶ The definition of a step function.
- Piecewise discontinuous functions.
- ► The Laplace Transform of discontinuous functions.
- Properties of the Laplace Transform.

Theorem

Given any real number $c \ge 0$, the following equation holds,

$$\mathcal{L}[u(t-c)] = \frac{e^{-cs}}{s}, \qquad s > 0.$$

Theorem

Given any real number $c \geqslant 0$, the following equation holds,

$$\mathcal{L}[u(t-c)] = \frac{e^{-cs}}{s}, \qquad s > 0.$$

$$\mathcal{L}[u(t-c)] = \int_0^\infty e^{-st} u(t-c) dt$$

Theorem

Given any real number $c \geqslant 0$, the following equation holds,

$$\mathcal{L}[u(t-c)] = \frac{e^{-cs}}{s}, \qquad s > 0.$$

$$\mathcal{L}[u(t-c)] = \int_0^\infty e^{-st} u(t-c) dt = \int_c^\infty e^{-st} dt,$$

Theorem

Given any real number $c \geqslant 0$, the following equation holds,

$$\mathcal{L}[u(t-c)] = \frac{e^{-cs}}{s}, \qquad s > 0.$$

$$\mathcal{L}[u(t-c)] = \int_0^\infty e^{-st} u(t-c) dt = \int_c^\infty e^{-st} dt,$$

$$\mathcal{L}[u(t-c)] = \lim_{N \to \infty} -\frac{1}{s} (e^{-Ns} - e^{-cs})$$

Theorem

Given any real number $c \geqslant 0$, the following equation holds,

$$\mathcal{L}[u(t-c)] = \frac{e^{-cs}}{s}, \qquad s > 0.$$

$$\mathcal{L}[u(t-c)] = \int_0^\infty e^{-st} u(t-c) dt = \int_c^\infty e^{-st} dt,$$

$$\mathcal{L}[u(t-c)] = \lim_{N \to \infty} -\frac{1}{s} \left(e^{-Ns} - e^{-cs} \right) = \frac{e^{-cs}}{s}, \quad s > 0.$$

We conclude that
$$\mathcal{L}[u(t-c)] = \frac{e^{-cs}}{s}$$
.

Example Compute $\mathcal{L}[3u(t-2)]$.

Example

Compute $\mathcal{L}[3u(t-2)]$.

Solution:
$$\mathcal{L}[3u(t-2)] = 3\mathcal{L}[u(t-2)]$$

Example

Compute $\mathcal{L}[3u(t-2)]$.

Solution:
$$\mathcal{L}[3u(t-2)] = 3\mathcal{L}[u(t-2)] = 3\frac{e^{-2s}}{s}$$
.

Example

Compute $\mathcal{L}[3u(t-2)]$.

Solution:
$$\mathcal{L}[3u(t-2)] = 3\mathcal{L}[u(t-2)] = 3\frac{e^{-2s}}{s}$$
.

We conclude:
$$\mathcal{L}[3u(t-2)] = \frac{3e^{-2s}}{s}$$
.

Example

Compute $\mathcal{L}[3u(t-2)]$.

Solution:
$$\mathcal{L}[3u(t-2)] = 3\mathcal{L}[u(t-2)] = 3\frac{e^{-2s}}{s}$$
.

We conclude:
$$\mathcal{L}[3u(t-2)] = \frac{3e^{-2s}}{s}$$
.

Example

Compute
$$\mathcal{L}^{-1}\left[\frac{e^{-3s}}{s}\right]$$
.

 $\langle 1 \rangle$

The Laplace Transform of discontinuous functions.

Example

Compute $\mathcal{L}[3u(t-2)]$.

Solution:
$$\mathcal{L}[3u(t-2)] = 3\mathcal{L}[u(t-2)] = 3\frac{e^{-2s}}{s}$$
.

We conclude:
$$\mathcal{L}[3u(t-2)] = \frac{3e^{-2s}}{s}$$
.

Example

Compute
$$\mathcal{L}^{-1}\left[\frac{e^{-3s}}{s}\right]$$
.

Solution:
$$\mathcal{L}^{-1}\left[\frac{e^{-3s}}{s}\right]$$

 $\langle 1 \rangle$

The Laplace Transform of discontinuous functions.

Example

Compute $\mathcal{L}[3u(t-2)]$.

Solution:
$$\mathcal{L}[3u(t-2)] = 3\mathcal{L}[u(t-2)] = 3\frac{e^{-2s}}{s}$$
.

We conclude:
$$\mathcal{L}[3u(t-2)] = \frac{3e^{-2s}}{s}$$
.

Example

Compute
$$\mathcal{L}^{-1}\left[\frac{e^{-3s}}{s}\right]$$
.

Solution:
$$\mathcal{L}^{-1}\left[\frac{e^{-3s}}{s}\right] = u(t-3).$$

 $\langle 1 \rangle$

The Laplace Transform of discontinuous functions.

Example

Compute $\mathcal{L}[3u(t-2)]$.

Solution:
$$\mathcal{L}[3u(t-2)] = 3\mathcal{L}[u(t-2)] = 3\frac{e^{-2s}}{s}$$
.

We conclude:
$$\mathcal{L}[3u(t-2)] = \frac{3e^{-2s}}{s}$$
.

Example

Compute
$$\mathcal{L}^{-1}\left[\frac{e^{-3s}}{s}\right]$$
.

Solution:
$$\mathcal{L}^{-1}\left[\frac{e^{-3s}}{s}\right] = u(t-3).$$

We conclude:
$$\mathcal{L}^{-1}\left[\frac{e^{-3s}}{s}\right] = u(t-3).$$



 $\langle 1 \rangle$

 \leq

The Laplace Transform of step functions (Sect. 6.3).

- Overview and notation.
- ▶ The definition of a step function.
- Piecewise discontinuous functions.
- ▶ The Laplace Transform of discontinuous functions.
- ▶ Properties of the Laplace Transform.

Theorem (Translations)

If
$$F(s) = \mathcal{L}[f(t)]$$
 exists for $s > a \geqslant 0$ and $c \geqslant 0$, then holds

$$\mathcal{L}[u(t-c)f(t-c)] = e^{-cs} F(s), \qquad s > a.$$

Furthermore,

$$\mathcal{L}[e^{ct}f(t)] = F(s-c), \qquad s > a+c.$$

Theorem (Translations)

If
$$F(s) = \mathcal{L}[f(t)]$$
 exists for $s > a \geqslant 0$ and $c \geqslant 0$, then holds

$$\mathcal{L}[u(t-c)f(t-c)] = e^{-cs} F(s), \qquad s > a.$$

Furthermore,

$$\mathcal{L}[e^{ct}f(t)] = F(s-c), \qquad s > a+c.$$

Remark:

• $\mathcal{L}[\text{translation } (uf)] = (\exp) (\mathcal{L}[f]).$

Theorem (Translations)

If
$$F(s) = \mathcal{L}[f(t)]$$
 exists for $s > a \geqslant 0$ and $c \geqslant 0$, then holds

$$\mathcal{L}[u(t-c)f(t-c)] = e^{-cs} F(s), \qquad s > a.$$

Furthermore,

$$\mathcal{L}[e^{ct}f(t)] = F(s-c), \qquad s > a+c.$$

Remark:

- $\mathcal{L}[\text{translation } (uf)] = (\exp) (\mathcal{L}[f]).$
- $ightharpoonup \mathcal{L}[(\exp)(f)] = \operatorname{translation}(\mathcal{L}[f]).$

Theorem (Translations)

If
$$F(s) = \mathcal{L}[f(t)]$$
 exists for $s > a \geqslant 0$ and $c \geqslant 0$, then holds

$$\mathcal{L}[u(t-c)f(t-c)] = e^{-cs} F(s), \qquad s > a.$$

Furthermore,

$$\mathcal{L}[e^{ct}f(t)] = F(s-c), \qquad s > a+c.$$

Remark:

- $\mathcal{L}[\text{translation } (uf)] = (\exp) (\mathcal{L}[f]).$
- $\qquad \qquad \mathcal{L}\left[\left(\exp\right)\left(f\right)\right] = \operatorname{translation}\left(\mathcal{L}[f]\right).$

Equivalent notation:

Theorem (Translations)

If
$$F(s) = \mathcal{L}[f(t)]$$
 exists for $s > a \geqslant 0$ and $c \geqslant 0$, then holds

$$\mathcal{L}[u(t-c)f(t-c)] = e^{-cs} F(s), \qquad s > a.$$

Furthermore,

$$\mathcal{L}[e^{ct}f(t)] = F(s-c), \qquad s > a+c.$$

Remark:

- $\mathcal{L}[\text{translation } (uf)] = (\exp) (\mathcal{L}[f]).$
- $ightharpoonup \mathcal{L}[(\exp)(f)] = \operatorname{translation}(\mathcal{L}[f]).$

Equivalent notation:

- $\blacktriangleright \mathcal{L}[u(t-c)f(t-c)] = e^{-cs}\mathcal{L}[f(t)],$
- $\blacktriangleright \mathcal{L}[e^{ct}f(t)] = \mathcal{L}[f](s-c).$

Example

Solution:
$$\mathcal{L}[\sin(at)] = \frac{a}{s^2 + a^2}$$
,

Example

Solution:
$$\mathcal{L}[\sin(at)] = \frac{a}{s^2 + a^2}$$
, $\mathcal{L}[u(t-c)f(t-c)] = e^{-cs}\mathcal{L}[f(t)]$.

Example

Solution:
$$\mathcal{L}[\sin(at)] = \frac{a}{s^2 + a^2}$$
, $\mathcal{L}[u(t-c)f(t-c)] = e^{-cs}\mathcal{L}[f(t)]$.

$$\mathcal{L}\big[u(t-2)\sin(a(t-2))\big]=e^{-2s}\,\mathcal{L}[\sin(at)]$$

Example

Solution:
$$\mathcal{L}[\sin(at)] = \frac{a}{s^2 + a^2}$$
, $\mathcal{L}[u(t-c)f(t-c)] = e^{-cs}\mathcal{L}[f(t)]$.

$$\mathcal{L}[u(t-2)\sin(a(t-2))] = e^{-2s}\,\mathcal{L}[\sin(at)] = e^{-2s}\,\frac{a}{s^2 + a^2}.$$

Example

Solution:
$$\mathcal{L}[\sin(at)] = \frac{a}{s^2 + a^2}$$
, $\mathcal{L}[u(t-c)f(t-c)] = e^{-cs}\mathcal{L}[f(t)]$.

$$\mathcal{L}[u(t-2)\sin(a(t-2))] = e^{-2s}\mathcal{L}[\sin(at)] = e^{-2s}\frac{a}{s^2+a^2}.$$

We conclude:
$$\mathcal{L}[u(t-2)\sin(a(t-2))] = e^{-2s}\frac{a}{s^2+a^2}$$
.

Example

Compute $\mathcal{L}[u(t-2)\sin(a(t-2))]$.

Solution:
$$\mathcal{L}[\sin(at)] = \frac{a}{s^2 + a^2}$$
, $\mathcal{L}[u(t-c)f(t-c)] = e^{-cs}\mathcal{L}[f(t)]$.

$$\mathcal{L}[u(t-2)\sin(a(t-2))] = e^{-2s}\mathcal{L}[\sin(at)] = e^{-2s}\frac{a}{s^2+a^2}.$$

We conclude:
$$\mathcal{L}[u(t-2)\sin(a(t-2))] = e^{-2s}\frac{a}{s^2+a^2}$$
.

Example

Compute $\mathcal{L}[e^{3t}\sin(at)]$.

Example

Compute $\mathcal{L}[u(t-2)\sin(a(t-2))]$.

Solution:
$$\mathcal{L}[\sin(at)] = \frac{a}{s^2 + a^2}$$
, $\mathcal{L}[u(t-c)f(t-c)] = e^{-cs}\mathcal{L}[f(t)]$.

$$\mathcal{L}[u(t-2)\sin(a(t-2))] = e^{-2s}\mathcal{L}[\sin(at)] = e^{-2s}\frac{a}{s^2 + a^2}.$$

We conclude:
$$\mathcal{L}[u(t-2)\sin(a(t-2))] = e^{-2s}\frac{a}{s^2+a^2}$$
.

Example

Compute $\mathcal{L}[e^{3t}\sin(at)]$.

Solution: Recall: $\mathcal{L}[e^{ct}f(t)] = \mathcal{L}[f](s-c)$.

Example

Compute $\mathcal{L}[u(t-2)\sin(a(t-2))]$.

Solution:
$$\mathcal{L}[\sin(at)] = \frac{a}{s^2 + a^2}$$
, $\mathcal{L}[u(t-c)f(t-c)] = e^{-cs}\mathcal{L}[f(t)]$.

$$\mathcal{L}[u(t-2)\sin(a(t-2))] = e^{-2s}\mathcal{L}[\sin(at)] = e^{-2s}\frac{a}{s^2 + a^2}.$$

We conclude:
$$\mathcal{L}[u(t-2)\sin(a(t-2))] = e^{-2s}\frac{a}{s^2+a^2}$$
.

Example

Compute $\mathcal{L}[e^{3t}\sin(at)]$.

Solution: Recall: $\mathcal{L}[e^{ct}f(t)] = \mathcal{L}[f](s-c)$.

We conclude:
$$\mathcal{L}[e^{3t}\sin(at)] = \frac{a}{(s-3)^2 + a^2}$$
, with $s > 3$.

Example

Find the Laplace transform of
$$f(t) = \begin{cases} 0, & t < 1, \\ (t^2 - 2t + 2), & t \geqslant 1. \end{cases}$$

Example

Find the Laplace transform of
$$f(t) = \begin{cases} 0, & t < 1, \\ (t^2 - 2t + 2), & t \geqslant 1. \end{cases}$$

Solution: Using step function notation,

Example

Find the Laplace transform of
$$f(t) = \begin{cases} 0, & t < 1, \\ (t^2 - 2t + 2), & t \geqslant 1. \end{cases}$$

Solution: Using step function notation,

$$f(t) = u(t-1)(t^2-2t+2).$$

Example

Find the Laplace transform of
$$f(t) = \begin{cases} 0, & t < 1, \\ (t^2 - 2t + 2), & t \geqslant 1. \end{cases}$$

Solution: Using step function notation,

$$f(t) = u(t-1)(t^2-2t+2).$$

Completing the square we obtain,

$$t^2 - 2t + 2 = (t^2 - 2t + 1) - 1 + 2$$

Example

Find the Laplace transform of $f(t) = \begin{cases} 0, & t < 1, \\ (t^2 - 2t + 2), & t \geqslant 1. \end{cases}$

Solution: Using step function notation,

$$f(t) = u(t-1)(t^2-2t+2).$$

Completing the square we obtain,

$$t^2 - 2t + 2 = (t^2 - 2t + 1) - 1 + 2 = (t - 1)^2 + 1.$$

Example

Find the Laplace transform of $f(t) = \begin{cases} 0, & t < 1, \\ (t^2 - 2t + 2), & t \geqslant 1. \end{cases}$

Solution: Using step function notation,

$$f(t) = u(t-1)(t^2 - 2t + 2).$$

Completing the square we obtain,

$$t^2 - 2t + 2 = (t^2 - 2t + 1) - 1 + 2 = (t - 1)^2 + 1.$$

This is a parabola t^2 translated to the right by 1 and up by one. This is a discontinuous function.

Example

Find the Laplace transform of $f(t) = \begin{cases} 0, & t < 1, \\ (t^2 - 2t + 2), & t \geqslant 1. \end{cases}$

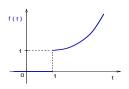
Solution: Using step function notation,

$$f(t) = u(t-1)(t^2-2t+2).$$

Completing the square we obtain,

$$t^2 - 2t + 2 = (t^2 - 2t + 1) - 1 + 2 = (t - 1)^2 + 1.$$

This is a parabola t^2 translated to the right by 1 and up by one. This is a discontinuous function.



Example

Find the Laplace transform of
$$f(t) = \begin{cases} 0, & t < 1, \\ (t^2 - 2t + 2), & t \geqslant 1. \end{cases}$$

Solution: Recall:
$$f(t) = u(t-1)[(t-1)^2 + 1]$$
.

Example

Find the Laplace transform of
$$f(t) = \begin{cases} 0, & t < 1, \\ (t^2 - 2t + 2), & t \geqslant 1. \end{cases}$$

Solution: Recall:
$$f(t) = u(t-1)[(t-1)^2 + 1]$$
.

$$f(t) = u(t-1)(t-1)^2 + u(t-1).$$

Example

Find the Laplace transform of
$$f(t) = \begin{cases} 0, & t < 1, \\ (t^2 - 2t + 2), & t \geqslant 1. \end{cases}$$

Solution: Recall:
$$f(t) = u(t-1)[(t-1)^2 + 1]$$
.

$$f(t) = u(t-1)(t-1)^2 + u(t-1).$$

Since
$$\mathcal{L}[t^2] = 2/s^3$$
,

Example

Find the Laplace transform of
$$f(t) = \begin{cases} 0, & t < 1, \\ (t^2 - 2t + 2), & t \geqslant 1. \end{cases}$$

Solution: Recall:
$$f(t) = u(t-1)[(t-1)^2 + 1]$$
.

$$f(t) = u(t-1)(t-1)^2 + u(t-1).$$

Since
$$\mathcal{L}[t^2]=2/s^3$$
, and $\mathcal{L}[u(t-c)g(t-c)]=e^{-cs}\mathcal{L}[g(t)]$,

Example

Find the Laplace transform of
$$f(t) = \begin{cases} 0, & t < 1, \\ (t^2 - 2t + 2), & t \geqslant 1. \end{cases}$$

Solution: Recall:
$$f(t) = u(t-1)[(t-1)^2 + 1]$$
.

$$f(t) = u(t-1)(t-1)^2 + u(t-1).$$

Since
$$\mathcal{L}[t^2] = 2/s^3$$
, and $\mathcal{L}[u(t-c)g(t-c)] = e^{-cs}\mathcal{L}[g(t)]$, then

$$\mathcal{L}[f(t)] = \mathcal{L}[u(t-1)(t-1)^2] + \mathcal{L}[u(t-1)]$$

Example

Find the Laplace transform of
$$f(t) = \begin{cases} 0, & t < 1, \\ (t^2 - 2t + 2), & t \geqslant 1. \end{cases}$$

Solution: Recall:
$$f(t) = u(t-1)[(t-1)^2 + 1]$$
.

$$f(t) = u(t-1)(t-1)^2 + u(t-1).$$

Since
$$\mathcal{L}[t^2]=2/s^3$$
, and $\mathcal{L}[u(t-c)g(t-c)]=e^{-cs}\,\mathcal{L}[g(t)]$, then

$$\mathcal{L}[f(t)] = \mathcal{L}[u(t-1)(t-1)^2] + \mathcal{L}[u(t-1)] = e^{-s}\frac{2}{s^3} + e^{-s}\frac{1}{s}.$$

Example

Find the Laplace transform of
$$f(t) = \begin{cases} 0, & t < 1, \\ (t^2 - 2t + 2), & t \geqslant 1. \end{cases}$$

Solution: Recall:
$$f(t) = u(t-1)[(t-1)^2 + 1]$$
.

$$f(t) = u(t-1)(t-1)^2 + u(t-1).$$

Since
$$\mathcal{L}[t^2]=2/s^3$$
, and $\mathcal{L}[u(t-c)g(t-c)]=e^{-cs}\,\mathcal{L}[g(t)]$, then

$$\mathcal{L}[f(t)] = \mathcal{L}[u(t-1)(t-1)^2] + \mathcal{L}[u(t-1)] = e^{-s}\frac{2}{s^3} + e^{-s}\frac{1}{s}.$$

We conclude:
$$\mathcal{L}[f(t)] = \frac{e^{-s}}{s^3}(2+s^2)$$
.

Remark: The inverse of the formulas in the Theorem above are:

$$\mathcal{L}^{-1}\big[e^{-cs}\,F(s)\big]=u(t-c)\,f(t-c),$$

Remark: The inverse of the formulas in the Theorem above are:

$$\mathcal{L}^{-1}[e^{-cs} F(s)] = u(t-c) f(t-c),$$

$$\mathcal{L}^{-1}[F(s-c)] = e^{ct} f(t).$$

Remark: The inverse of the formulas in the Theorem above are:

$$\mathcal{L}^{-1}[e^{-cs} F(s)] = u(t-c) f(t-c),$$

$$\mathcal{L}^{-1}[F(s-c)] = e^{ct} f(t).$$

Example

Find
$$\mathcal{L}^{-1}\Big[\frac{e^{-4s}}{s^2+9}\Big]$$
.

Remark: The inverse of the formulas in the Theorem above are:

$$\mathcal{L}^{-1}[e^{-cs} F(s)] = u(t-c) f(t-c),$$

$$\mathcal{L}^{-1}[F(s-c)] = e^{ct} f(t).$$

Example

Find
$$\mathcal{L}^{-1}\left[\frac{e^{-4s}}{s^2+9}\right]$$
.

Solution:
$$\mathcal{L}^{-1} \Big[\frac{e^{-4s}}{s^2 + 9} \Big] = \frac{1}{3} \mathcal{L}^{-1} \Big[e^{-4s} \frac{3}{s^2 + 9} \Big].$$

Remark: The inverse of the formulas in the Theorem above are:

$$\mathcal{L}^{-1}[e^{-cs} F(s)] = u(t-c) f(t-c),$$

$$\mathcal{L}^{-1}[F(s-c)] = e^{ct} f(t).$$

Find
$$\mathcal{L}^{-1}\left[\frac{e^{-4s}}{s^2+9}\right]$$
.

Solution:
$$\mathcal{L}^{-1} \Big[\frac{e^{-4s}}{s^2 + 9} \Big] = \frac{1}{3} \mathcal{L}^{-1} \Big[e^{-4s} \frac{3}{s^2 + 9} \Big].$$

Recall:
$$\mathcal{L}^{-1}\left[\frac{a}{s^2+a^2}\right] = \sin(at)$$
.

Remark: The inverse of the formulas in the Theorem above are:

$$\mathcal{L}^{-1}[e^{-cs} F(s)] = u(t-c) f(t-c),$$

$$\mathcal{L}^{-1}[F(s-c)] = e^{ct} f(t).$$

Example

Find
$$\mathcal{L}^{-1}\left[\frac{e^{-4s}}{s^2+9}\right]$$
.

Solution:
$$\mathcal{L}^{-1} \left[\frac{e^{-4s}}{s^2 + 9} \right] = \frac{1}{3} \mathcal{L}^{-1} \left[e^{-4s} \frac{3}{s^2 + 9} \right].$$

Recall: $\mathcal{L}^{-1}\left[\frac{a}{s^2+a^2}\right] = \sin(at)$. Then, we conclude that

$$\mathcal{L}^{-1}\left[\frac{e^{-4s}}{s^2+9}\right] = \frac{1}{3}u(t-4)\sin(3(t-4)).$$

Example Find $\mathcal{L}^{-1}\Big[\frac{(s-2)}{(s-2)^2+9}\Big]$.

Find
$$\mathcal{L}^{-1} \Big[\frac{(s-2)}{(s-2)^2 + 9} \Big].$$

Solution:
$$\mathcal{L}^{-1}\left[\frac{s}{s^2+a^2}\right] = \cos(at)$$
,

Find
$$\mathcal{L}^{-1} \Big[\frac{(s-2)}{(s-2)^2 + 9} \Big].$$

Solution:
$$\mathcal{L}^{-1}\left[\frac{s}{s^2+a^2}\right] = \cos(at)$$
, $\mathcal{L}^{-1}\left[F(s-c)\right] = e^{ct} f(t)$.

Find
$$\mathcal{L}^{-1}\Big[\frac{(s-2)}{(s-2)^2+9}\Big]$$
.

Solution:
$$\mathcal{L}^{-1}\Big[\frac{s}{s^2+a^2}\Big]=\cos(at),\ \mathcal{L}^{-1}\big[F(s-c)\big]=e^{ct}\,f(t).$$

We conclude:
$$\mathcal{L}^{-1} \left[\frac{(s-2)}{(s-2)^2 + 9} \right] = e^{2t} \cos(3t)$$
.

Example

Find
$$\mathcal{L}^{-1} \Big[\frac{(s-2)}{(s-2)^2 + 9} \Big].$$

Solution:
$$\mathcal{L}^{-1}\left[\frac{s}{s^2+a^2}\right] = \cos(at)$$
, $\mathcal{L}^{-1}\left[F(s-c)\right] = e^{ct} f(t)$.

We conclude:
$$\mathcal{L}^{-1} \left[\frac{(s-2)}{(s-2)^2 + 9} \right] = e^{2t} \cos(3t)$$
.

Find
$$\mathcal{L}^{-1}\left[\frac{2e^{-3s}}{s^2-4}\right]$$
.

Example

Find
$$\mathcal{L}^{-1} \Big[\frac{(s-2)}{(s-2)^2 + 9} \Big].$$

Solution:
$$\mathcal{L}^{-1}\Big[\frac{s}{s^2+a^2}\Big]=\cos(at),\ \mathcal{L}^{-1}\big[F(s-c)\big]=e^{ct}\,f(t).$$

We conclude:
$$\mathcal{L}^{-1} \left[\frac{(s-2)}{(s-2)^2 + 9} \right] = e^{2t} \cos(3t)$$
.

Find
$$\mathcal{L}^{-1}\left[\frac{2e^{-3s}}{s^2-4}\right]$$
.

Solution: Recall:
$$\mathcal{L}^{-1}\left[\frac{a}{s^2-a^2}\right] = \sinh(at)$$

Example

Find
$$\mathcal{L}^{-1}\Big[\frac{(s-2)}{(s-2)^2+9}\Big].$$

Solution:
$$\mathcal{L}^{-1}\Big[\frac{s}{s^2+a^2}\Big]=\cos(at),\ \mathcal{L}^{-1}\big[F(s-c)\big]=e^{ct}\,f(t).$$

We conclude:
$$\mathcal{L}^{-1} \left[\frac{(s-2)}{(s-2)^2 + 9} \right] = e^{2t} \cos(3t)$$
. <

Find
$$\mathcal{L}^{-1}\left[\frac{2e^{-3s}}{s^2-4}\right]$$
.

Solution: Recall:
$$\mathcal{L}^{-1}\left[\frac{a}{s^2-a^2}\right]=\sinh(at)$$
 and $\mathcal{L}^{-1}\left[e^{-cs}F(s)\right]=u(t-c)f(t-c)$.

Example

Find
$$\mathcal{L}^{-1}\left[\frac{2e^{-3s}}{s^2-4}\right]$$
.

Solution: Recall:

$$\mathcal{L}^{-1}\Big[\frac{a}{s^2-a^2}\Big]=\sinh(at),\quad \mathcal{L}^{-1}\big[e^{-cs}\,F(s)\big]=u(t-c)\,f(t-c).$$

Example

Find
$$\mathcal{L}^{-1}\left[\frac{2e^{-3s}}{s^2-4}\right]$$
.

Solution: Recall:

$$\mathcal{L}^{-1}\Big[\frac{a}{s^2-a^2}\Big]=\sinh(at),\quad \mathcal{L}^{-1}\big[e^{-cs}\,F(s)\big]=u(t-c)\,f(t-c).$$

$$\mathcal{L}^{-1}\Big[\frac{2e^{-3s}}{s^2-4}\Big] = \mathcal{L}^{-1}\Big[e^{-3s}\,\frac{2}{s^2-4}\Big].$$

Example

Find
$$\mathcal{L}^{-1}\left[\frac{2e^{-3s}}{s^2-4}\right]$$
.

Solution: Recall:

$$\mathcal{L}^{-1}\Big[\frac{a}{s^2-a^2}\Big]=\sinh(at),\quad \mathcal{L}^{-1}\big[e^{-cs}\,F(s)\big]=u(t-c)\,f(t-c).$$

$$\mathcal{L}^{-1}\Big[\frac{2e^{-3s}}{s^2-4}\Big] = \mathcal{L}^{-1}\Big[e^{-3s}\,\frac{2}{s^2-4}\Big].$$

We conclude:
$$\mathcal{L}^{-1} \left[\frac{2e^{-3s}}{s^2 - 4} \right] = u(t - 3) \sinh(2(t - 3)).$$

Example Find $\mathcal{L}^{-1}\Big[\frac{e^{-2s}}{s^2+s-2}\Big].$

Example

Find
$$\mathcal{L}^{-1}\left[\frac{e^{-2s}}{s^2+s-2}\right]$$
.

Solution: Find the roots of the denominator:

$$s_{\pm} = \frac{1}{2} \left[-1 \pm \sqrt{1+8} \right]$$

Example

Find
$$\mathcal{L}^{-1}\left[\frac{e^{-2s}}{s^2+s-2}\right]$$
.

Solution: Find the roots of the denominator:

$$s_{\pm} = \frac{1}{2} \left[-1 \pm \sqrt{1+8} \right] \quad \Rightarrow \quad \begin{cases} s_{+} = 1, \\ s_{-} = -2. \end{cases}$$

Example

Find
$$\mathcal{L}^{-1}\left[\frac{e^{-2s}}{s^2+s-2}\right]$$
.

Solution: Find the roots of the denominator:

$$s_{\pm} = \frac{1}{2} \left[-1 \pm \sqrt{1+8} \right] \quad \Rightarrow \quad \begin{cases} s_{+} = 1, \\ s_{-} = -2. \end{cases}$$

Therefore, $s^2 + s - 2 = (s - 1)(s + 2)$.

Example

Find
$$\mathcal{L}^{-1}\left[\frac{e^{-2s}}{s^2+s-2}\right]$$
.

Solution: Find the roots of the denominator:

$$s_{\pm} = \frac{1}{2} \left[-1 \pm \sqrt{1+8} \right] \quad \Rightarrow \quad \begin{cases} s_{+} = 1, \\ s_{-} = -2. \end{cases}$$

Therefore, $s^2 + s - 2 = (s - 1)(s + 2)$.

$$\frac{1}{s^2 + s - 2} = \frac{1}{(s - 1)(s + 2)}$$

Example

Find
$$\mathcal{L}^{-1}\left[\frac{e^{-2s}}{s^2+s-2}\right]$$
.

Solution: Find the roots of the denominator:

$$s_{\pm} = \frac{1}{2} \left[-1 \pm \sqrt{1+8} \right] \quad \Rightarrow \quad \begin{cases} s_{+} = 1, \\ s_{-} = -2. \end{cases}$$

Therefore, $s^2 + s - 2 = (s - 1)(s + 2)$.

$$\frac{1}{s^2+s-2} = \frac{1}{(s-1)(s+2)} = \frac{a}{(s-1)} + \frac{b}{(s+2)},$$

Example

Find
$$\mathcal{L}^{-1}\left[\frac{e^{-2s}}{s^2+s-2}\right]$$
.

Solution: Find the roots of the denominator:

$$s_{\pm} = \frac{1}{2} \left[-1 \pm \sqrt{1+8} \right] \quad \Rightarrow \quad \begin{cases} s_{+} = 1, \\ s_{-} = -2. \end{cases}$$

Therefore, $s^2 + s - 2 = (s - 1)(s + 2)$.

$$\frac{1}{s^2+s-2} = \frac{1}{(s-1)(s+2)} = \frac{a}{(s-1)} + \frac{b}{(s+2)},$$
$$\frac{1}{s^2+s-2} = a(s+2) + b(s-1)$$

Example

Find
$$\mathcal{L}^{-1}\left[\frac{e^{-2s}}{s^2+s-2}\right]$$
.

Solution: Find the roots of the denominator:

$$s_{\pm} = \frac{1}{2} \left[-1 \pm \sqrt{1+8} \right] \quad \Rightarrow \quad \begin{cases} s_{+} = 1, \\ s_{-} = -2. \end{cases}$$

Therefore, $s^2 + s - 2 = (s - 1)(s + 2)$.

$$\frac{1}{s^2+s-2} = \frac{1}{(s-1)(s+2)} = \frac{a}{(s-1)} + \frac{b}{(s+2)},$$
$$\frac{1}{s^2+s-2} = a(s+2) + b(s-1) = \frac{(a+b)s + (2a-b)}{(s-1)(s+2)}.$$

Find
$$\mathcal{L}^{-1}\left[\frac{e^{-2s}}{s^2+s-2}\right]$$
.

Solution: Recall:
$$\frac{1}{s^2 + s - 2} = \frac{(a+b)s + (2a-b)}{(s-1)(s+2)}$$

Find
$$\mathcal{L}^{-1} \left[\frac{e^{-2s}}{s^2 + s - 2} \right]$$
.

Solution: Recall:
$$\frac{1}{s^2 + s - 2} = \frac{(a+b)s + (2a-b)}{(s-1)(s+2)}$$

$$a+b=0$$
,

Find
$$\mathcal{L}^{-1}\left[\frac{e^{-2s}}{s^2+s-2}\right]$$
.

Solution: Recall:
$$\frac{1}{s^2 + s - 2} = \frac{(a+b)s + (2a-b)}{(s-1)(s+2)}$$

$$a + b = 0$$
, $2a - b = 1$,

Find
$$\mathcal{L}^{-1}\Big[\frac{e^{-2s}}{s^2+s-2}\Big]$$
.

Solution: Recall:
$$\frac{1}{s^2 + s - 2} = \frac{(a+b)s + (2a-b)}{(s-1)(s+2)}$$

$$a + b = 0$$
, $2a - b = 1$, $\Rightarrow a = \frac{1}{3}$, $b = -\frac{1}{3}$.

Find
$$\mathcal{L}^{-1}\left[\frac{e^{-2s}}{s^2+s-2}\right]$$
.

Solution: Recall:
$$\frac{1}{s^2 + s - 2} = \frac{(a+b)s + (2a-b)}{(s-1)(s+2)}$$

$$a + b = 0$$
, $2a - b = 1$, $\Rightarrow a = \frac{1}{3}$, $b = -\frac{1}{3}$.

$$\mathcal{L}^{-1}\left[\frac{e^{-2s}}{s^2+s-2}\right] = \frac{1}{3}\,\mathcal{L}^{-1}\left[e^{-2s}\,\frac{1}{s-1}\right] - \frac{1}{3}\,\mathcal{L}^{-1}\left[e^{-2s}\,\frac{1}{s+2}\right].$$

Find
$$\mathcal{L}^{-1}\left[\frac{e^{-2s}}{s^2+s-2}\right]$$
.

Solution: Recall:
$$\frac{1}{s^2 + s - 2} = \frac{(a+b)s + (2a-b)}{(s-1)(s+2)}$$

$$a + b = 0$$
, $2a - b = 1$, $\Rightarrow a = \frac{1}{3}$, $b = -\frac{1}{3}$.

$$\mathcal{L}^{-1}\left[\frac{e^{-2s}}{s^2+s-2}\right] = \frac{1}{3}\,\mathcal{L}^{-1}\left[e^{-2s}\,\frac{1}{s-1}\right] - \frac{1}{3}\,\mathcal{L}^{-1}\left[e^{-2s}\,\frac{1}{s+2}\right].$$

Recall:
$$\mathcal{L}^{-1}\left[\frac{1}{s-a}\right] = e^{at}$$
,

Find
$$\mathcal{L}^{-1}\left[\frac{e^{-2s}}{s^2+s-2}\right]$$
.

Solution: Recall:
$$\frac{1}{s^2 + s - 2} = \frac{(a+b)s + (2a-b)}{(s-1)(s+2)}$$

$$a + b = 0$$
, $2a - b = 1$, $\Rightarrow a = \frac{1}{3}$, $b = -\frac{1}{3}$.

$$\mathcal{L}^{-1}\left[\frac{e^{-2s}}{s^2+s-2}\right] = \frac{1}{3}\,\mathcal{L}^{-1}\left[e^{-2s}\,\frac{1}{s-1}\right] - \frac{1}{3}\,\mathcal{L}^{-1}\left[e^{-2s}\,\frac{1}{s+2}\right].$$

Recall:
$$\mathcal{L}^{-1}\left[\frac{1}{s-a}\right] = e^{at}$$
, $\mathcal{L}^{-1}\left[e^{-cs} F(s)\right] = u(t-c) f(t-c)$,

Find
$$\mathcal{L}^{-1}\left[\frac{e^{-2s}}{s^2+s-2}\right]$$
.

Solution: Recall:
$$\frac{1}{s^2 + s - 2} = \frac{(a+b)s + (2a-b)}{(s-1)(s+2)}$$

$$a + b = 0$$
, $2a - b = 1$, $\Rightarrow a = \frac{1}{3}$, $b = -\frac{1}{3}$.

$$\mathcal{L}^{-1}\left[\frac{e^{-2s}}{s^2+s-2}\right] = \frac{1}{3}\,\mathcal{L}^{-1}\left[e^{-2s}\,\frac{1}{s-1}\right] - \frac{1}{3}\,\mathcal{L}^{-1}\left[e^{-2s}\,\frac{1}{s+2}\right].$$

Recall:
$$\mathcal{L}^{-1}\left[\frac{1}{s-a}\right] = e^{at}$$
, $\mathcal{L}^{-1}\left[e^{-cs} F(s)\right] = u(t-c) f(t-c)$,

$$\mathcal{L}^{-1}\left[\frac{e^{-2s}}{s^2+s-2}\right] = \frac{1}{3}u(t-2)e^{(t-2)} - \frac{1}{3}u(t-2)e^{-2(t-2)}.$$

Find
$$\mathcal{L}^{-1}\left[\frac{e^{-2s}}{s^2+s-2}\right]$$
.

Solution: Recall:
$$\frac{1}{s^2 + s - 2} = \frac{(a+b)s + (2a-b)}{(s-1)(s+2)}$$

$$a + b = 0$$
, $2a - b = 1$, $\Rightarrow a = \frac{1}{3}$, $b = -\frac{1}{3}$.

$$\mathcal{L}^{-1}\left[\frac{e^{-2s}}{s^2+s-2}\right] = \frac{1}{3}\,\mathcal{L}^{-1}\left[e^{-2s}\,\frac{1}{s-1}\right] - \frac{1}{3}\,\mathcal{L}^{-1}\left[e^{-2s}\,\frac{1}{s+2}\right].$$

Recall:
$$\mathcal{L}^{-1}\left[\frac{1}{s-a}\right] = e^{at}$$
, $\mathcal{L}^{-1}\left[e^{-cs} F(s)\right] = u(t-c) f(t-c)$,

$$\mathcal{L}^{-1}\left[\frac{e^{-2s}}{s^2+s-2}\right] = \frac{1}{3}u(t-2)e^{(t-2)} - \frac{1}{3}u(t-2)e^{-2(t-2)}.$$

Hence:
$$\mathcal{L}^{-1}\left[\frac{e^{-2s}}{s^2+s-2}\right] = \frac{1}{3}u(t-2)\left[e^{(t-2)}-e^{-2(t-2)}\right].$$

Equations with discontinuous sources (Sect. 6.4).

- Differential equations with discontinuous sources.
- We solve the IVPs:
 - (a) Example 1:

$$y' + 2y = u(t - 4),$$
 $y(0) = 3.$

(b) Example 2:

$$y'' + y' + \frac{5}{4}y = b(t), \quad y(0) = 0, \\ y'(0) = 0, \quad b(t) = \begin{cases} 1, & t \in [0, \pi) \\ 0, & t \in [\pi, \infty). \end{cases}$$

(c) Example 3:

$$y''+y'+rac{5}{4}y=g(t), \ \ y(0)=0, \ g(t)= egin{cases} \sin(t), & t\in[0,\pi) \ 0, & t\in[\pi,\infty). \end{cases}$$

Equations with discontinuous sources (Sect. 6.4).

- Differential equations with discontinuous sources.
- We solve the IVPs:
 - (a) Example 1:

$$y' + 2y = u(t - 4),$$
 $y(0) = 3.$

(b) Example 2:

$$y'' + y' + \frac{5}{4}y = b(t), \quad \begin{array}{c} y(0) = 0, \\ y'(0) = 0, \end{array} \quad b(t) = \begin{cases} 1, & t \in [0, \pi) \\ 0, & t \in [\pi, \infty). \end{cases}$$

(c) Example 3:

$$y''+y'+rac{5}{4}y=g(t), \ \ y(0)=0, \ g(t)= egin{cases} \sin(t), & t\in[0,\pi) \ 0, & t\in[\pi,\infty). \end{cases}$$

Example

Use the Laplace transform to find the solution of the IVP

$$y' + 2y = u(t - 4),$$
 $y(0) = 3.$

Example

Use the Laplace transform to find the solution of the IVP

$$y' + 2y = u(t - 4),$$
 $y(0) = 3.$

Solution: Compute the Laplace transform of the whole equation,

$$\mathcal{L}[y'] + 2\mathcal{L}[y] = \mathcal{L}[u(t-4)]$$

Example

Use the Laplace transform to find the solution of the IVP

$$y' + 2y = u(t - 4),$$
 $y(0) = 3.$

Solution: Compute the Laplace transform of the whole equation,

$$\mathcal{L}[y'] + 2\mathcal{L}[y] = \mathcal{L}[u(t-4)] = \frac{e^{-4s}}{s}.$$

Example

Use the Laplace transform to find the solution of the IVP

$$y' + 2y = u(t - 4),$$
 $y(0) = 3.$

Solution: Compute the Laplace transform of the whole equation,

$$\mathcal{L}[y'] + 2\mathcal{L}[y] = \mathcal{L}[u(t-4)] = \frac{e^{-4s}}{s}.$$

From the previous Section we know that

$$[s \mathcal{L}[y] - y(0)] + 2 \mathcal{L}[y] = \frac{e^{-4s}}{s}$$

Example

Use the Laplace transform to find the solution of the IVP

$$y' + 2y = u(t - 4),$$
 $y(0) = 3.$

Solution: Compute the Laplace transform of the whole equation,

$$\mathcal{L}[y'] + 2\mathcal{L}[y] = \mathcal{L}[u(t-4)] = \frac{e^{-4s}}{s}.$$

From the previous Section we know that

$$[s\mathcal{L}[y]-y(0)]+2\mathcal{L}[y]=\frac{e^{-4s}}{s} \quad \Rightarrow \quad (s+2)\mathcal{L}[y]=y(0)+\frac{e^{-4s}}{s}.$$

Example

Use the Laplace transform to find the solution of the IVP

$$y' + 2y = u(t - 4),$$
 $y(0) = 3.$

Solution: Compute the Laplace transform of the whole equation,

$$\mathcal{L}[y'] + 2\mathcal{L}[y] = \mathcal{L}[u(t-4)] = \frac{e^{-4s}}{s}.$$

From the previous Section we know that

$$\left[s\,\mathcal{L}[y]-y(0)\right]+2\,\mathcal{L}[y]=\frac{e^{-4s}}{s}\quad\Rightarrow\quad (s+2)\,\mathcal{L}[y]=y(0)+\frac{e^{-4s}}{s}.$$

Introduce the initial condition,

Example

Use the Laplace transform to find the solution of the IVP

$$y' + 2y = u(t - 4),$$
 $y(0) = 3.$

Solution: Compute the Laplace transform of the whole equation,

$$\mathcal{L}[y'] + 2\mathcal{L}[y] = \mathcal{L}[u(t-4)] = \frac{e^{-4s}}{s}.$$

From the previous Section we know that

$$[s\mathcal{L}[y]-y(0)]+2\mathcal{L}[y]=\frac{e^{-4s}}{s} \quad \Rightarrow \quad (s+2)\mathcal{L}[y]=y(0)+\frac{e^{-4s}}{s}.$$

Introduce the initial condition,
$$\mathcal{L}[y] = \frac{3}{(s+2)} + e^{-4s} \frac{1}{s(s+2)}$$
,

Example

Use the Laplace transform to find the solution of the IVP

$$y' + 2y = u(t - 4),$$
 $y(0) = 3.$

Solution: Compute the Laplace transform of the whole equation,

$$\mathcal{L}[y'] + 2\mathcal{L}[y] = \mathcal{L}[u(t-4)] = \frac{e^{-4s}}{s}.$$

From the previous Section we know that

$$[s\mathcal{L}[y]-y(0)]+2\mathcal{L}[y]=\frac{e^{-4s}}{s} \quad \Rightarrow \quad (s+2)\mathcal{L}[y]=y(0)+\frac{e^{-4s}}{s}.$$

Introduce the initial condition, $\mathcal{L}[y] = \frac{3}{(s+2)} + e^{-4s} \frac{1}{s(s+2)}$,

Use the table:
$$\mathcal{L}[y] = 3\mathcal{L}[e^{-2t}] + e^{-4s} \frac{1}{s(s+2)}$$
.

Example

Use the Laplace transform to find the solution of the IVP

$$y' + 2y = u(t - 4),$$
 $y(0) = 3.$

Solution: Recall:
$$\mathcal{L}[y] = 3\mathcal{L}[e^{-2t}] + e^{-4s} \frac{1}{s(s+2)}$$
.

Example

Use the Laplace transform to find the solution of the IVP

$$y' + 2y = u(t - 4),$$
 $y(0) = 3.$

Solution: Recall:
$$\mathcal{L}[y] = 3\mathcal{L}[e^{-2t}] + e^{-4s} \frac{1}{s(s+2)}$$
.

We need to invert the Laplace transform on the last term.

Example

Use the Laplace transform to find the solution of the IVP

$$y' + 2y = u(t - 4),$$
 $y(0) = 3.$

Solution: Recall:
$$\mathcal{L}[y] = 3\mathcal{L}[e^{-2t}] + e^{-4s} \frac{1}{s(s+2)}$$
.

Example

Use the Laplace transform to find the solution of the IVP

$$y' + 2y = u(t - 4),$$
 $y(0) = 3.$

Solution: Recall:
$$\mathcal{L}[y] = 3\mathcal{L}[e^{-2t}] + e^{-4s} \frac{1}{s(s+2)}$$
.

$$\frac{1}{s(s+2)} = \frac{a}{s} + \frac{b}{(s+2)}$$

Example

Use the Laplace transform to find the solution of the IVP

$$y' + 2y = u(t - 4),$$
 $y(0) = 3.$

Solution: Recall:
$$\mathcal{L}[y] = 3\mathcal{L}[e^{-2t}] + e^{-4s} \frac{1}{s(s+2)}$$
.

$$\frac{1}{s(s+2)} = \frac{a}{s} + \frac{b}{(s+2)} = \frac{a(s+2) + bs}{s(s+2)}$$

Example

Use the Laplace transform to find the solution of the IVP

$$y' + 2y = u(t - 4),$$
 $y(0) = 3.$

Solution: Recall:
$$\mathcal{L}[y] = 3\mathcal{L}[e^{-2t}] + e^{-4s} \frac{1}{s(s+2)}$$
.

$$\frac{1}{s(s+2)} = \frac{a}{s} + \frac{b}{(s+2)} = \frac{a(s+2) + bs}{s(s+2)} = \frac{(a+b)s + (2a)}{s(s+2)}$$

Example

Use the Laplace transform to find the solution of the IVP

$$y' + 2y = u(t - 4),$$
 $y(0) = 3.$

Solution: Recall:
$$\mathcal{L}[y] = 3\mathcal{L}[e^{-2t}] + e^{-4s} \frac{1}{s(s+2)}$$
.

We need to invert the Laplace transform on the last term. Partial fractions:

$$\frac{1}{s(s+2)} = \frac{a}{s} + \frac{b}{(s+2)} = \frac{a(s+2) + bs}{s(s+2)} = \frac{(a+b)s + (2a)}{s(s+2)}$$

We get, a + b = 0, 2a = 1.

Example

Use the Laplace transform to find the solution of the IVP

$$y' + 2y = u(t - 4),$$
 $y(0) = 3.$

Solution: Recall:
$$\mathcal{L}[y] = 3\mathcal{L}[e^{-2t}] + e^{-4s} \frac{1}{s(s+2)}$$
.

$$\frac{1}{s(s+2)} = \frac{a}{s} + \frac{b}{(s+2)} = \frac{a(s+2) + bs}{s(s+2)} = \frac{(a+b)s + (2a)}{s(s+2)}$$

We get,
$$a + b = 0$$
, $2a = 1$. We obtain: $a = \frac{1}{2}$, $b = -\frac{1}{2}$.

Example

Use the Laplace transform to find the solution of the IVP

$$y' + 2y = u(t - 4),$$
 $y(0) = 3.$

Solution: Recall:
$$\mathcal{L}[y] = 3\mathcal{L}[e^{-2t}] + e^{-4s} \frac{1}{s(s+2)}$$
.

We need to invert the Laplace transform on the last term. Partial fractions:

$$\frac{1}{s(s+2)} = \frac{a}{s} + \frac{b}{(s+2)} = \frac{a(s+2) + bs}{s(s+2)} = \frac{(a+b)s + (2a)}{s(s+2)}$$

We get, a + b = 0, 2a = 1. We obtain: $a = \frac{1}{2}$, $b = -\frac{1}{2}$. Hence,

$$\frac{1}{s(s+2)} = \frac{1}{2} \left[\frac{1}{s} - \frac{1}{(s+2)} \right].$$

Example

Use the Laplace transform to find the solution of the IVP

$$y' + 2y = u(t - 4),$$
 $y(0) = 3.$

Solution: Recall:
$$\frac{1}{s(s+2)} = \frac{1}{2} \left[\frac{1}{s} - \frac{1}{(s+2)} \right].$$

Example

Use the Laplace transform to find the solution of the IVP

$$y' + 2y = u(t - 4),$$
 $y(0) = 3.$

Solution: Recall:
$$\frac{1}{s(s+2)} = \frac{1}{2} \left[\frac{1}{s} - \frac{1}{(s+2)} \right].$$

$$\mathcal{L}[y] = 3 \mathcal{L}[e^{-2t}] + \frac{1}{2} \left[e^{-4s} \frac{1}{s} - e^{-4s} \frac{1}{(s+2)} \right].$$

Example

Use the Laplace transform to find the solution of the IVP

$$y' + 2y = u(t - 4),$$
 $y(0) = 3.$

Solution: Recall:
$$\frac{1}{s(s+2)} = \frac{1}{2} \left[\frac{1}{s} - \frac{1}{(s+2)} \right].$$

$$\mathcal{L}[y] = 3 \mathcal{L}[e^{-2t}] + \frac{1}{2} \left[e^{-4s} \frac{1}{s} - e^{-4s} \frac{1}{(s+2)} \right].$$

$$\mathcal{L}[y] = 3\,\mathcal{L}\left[e^{-2t}\right]$$

Example

Use the Laplace transform to find the solution of the IVP

$$y' + 2y = u(t - 4),$$
 $y(0) = 3.$

Solution: Recall:
$$\frac{1}{s(s+2)} = \frac{1}{2} \left[\frac{1}{s} - \frac{1}{(s+2)} \right].$$

$$\mathcal{L}[y] = 3 \mathcal{L}[e^{-2t}] + \frac{1}{2} \left[e^{-4s} \frac{1}{s} - e^{-4s} \frac{1}{(s+2)} \right].$$

$$\mathcal{L}[y] = 3\mathcal{L}[e^{-2t}] + \frac{1}{2}\left(\mathcal{L}[u(t-4)]\right)$$

Example

Use the Laplace transform to find the solution of the IVP

$$y' + 2y = u(t - 4),$$
 $y(0) = 3.$

Solution: Recall:
$$\frac{1}{s(s+2)} = \frac{1}{2} \left[\frac{1}{s} - \frac{1}{(s+2)} \right].$$

$$\mathcal{L}[y] = 3 \mathcal{L}[e^{-2t}] + \frac{1}{2} \left[e^{-4s} \frac{1}{s} - e^{-4s} \frac{1}{(s+2)} \right].$$

$$\mathcal{L}[y] = 3\mathcal{L}\left[e^{-2t}\right] + \frac{1}{2}\left(\mathcal{L}\left[u(t-4)\right] - \mathcal{L}\left[u(t-4)e^{-2(t-4)}\right]\right).$$

Example

Use the Laplace transform to find the solution of the IVP

$$y' + 2y = u(t - 4),$$
 $y(0) = 3.$

Solution: Recall:
$$\frac{1}{s(s+2)} = \frac{1}{2} \left[\frac{1}{s} - \frac{1}{(s+2)} \right].$$

The algebraic equation for $\mathcal{L}[y]$ has the form,

$$\mathcal{L}[y] = 3 \mathcal{L}[e^{-2t}] + \frac{1}{2} \left[e^{-4s} \frac{1}{s} - e^{-4s} \frac{1}{(s+2)} \right].$$

$$\mathcal{L}[y] = 3\mathcal{L}\left[e^{-2t}\right] + \frac{1}{2}\left(\mathcal{L}\left[u(t-4)\right] - \mathcal{L}\left[u(t-4)e^{-2(t-4)}\right]\right).$$

We conclude that

$$y(t) = 3e^{-2t} + \frac{1}{2}u(t-4)[1-e^{-2(t-4)}].$$

Equations with discontinuous sources (Sect. 6.4).

- Differential equations with discontinuous sources.
- ▶ We solve the IVPs:
 - (a) Example 1:

$$y' + 2y = u(t - 4),$$
 $y(0) = 3.$

(b) Example 2:

$$y'' + y' + \frac{5}{4}y = b(t), \quad \begin{array}{c} y(0) = 0, \\ y'(0) = 0, \end{array} \quad b(t) = \begin{cases} 1, & t \in [0, \pi) \\ 0, & t \in [\pi, \infty). \end{cases}$$

(c) Example 3:

$$y''+y'+rac{5}{4}y=g(t), \ \ y(0)=0, \ g(t)= egin{cases} \sin(t), & t\in[0,\pi) \ 0, & t\in[\pi,\infty). \end{cases}$$

Example

Use the Laplace transform to find the solution of the IVP

$$y'' + y' + \frac{5}{4}y = b(t),$$
 $y(0) = 0,$ $y(t) = \begin{cases} 1, & t \in [0, \pi) \\ 0, & t \in [\pi, \infty). \end{cases}$

Example

Use the Laplace transform to find the solution of the IVP

$$y'' + y' + \frac{5}{4}y = b(t),$$
 $y(0) = 0,$ $y(t) = \begin{cases} 1, & t \in [0, \pi) \\ 0, & t \in [\pi, \infty). \end{cases}$

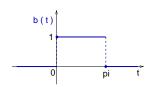
Solution:

Example

Use the Laplace transform to find the solution of the IVP

$$y'' + y' + \frac{5}{4}y = b(t),$$
 $y(0) = 0,$ $y(t) = \begin{cases} 1, & t \in [0, \pi) \\ 0, & t \in [\pi, \infty). \end{cases}$

Solution:

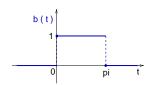


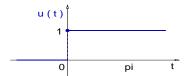
Example

Use the Laplace transform to find the solution of the IVP

$$y'' + y' + \frac{5}{4}y = b(t),$$
 $y(0) = 0,$ $y'(0) = 0,$ $b(t) = \begin{cases} 1, & t \in [0, \pi) \\ 0, & t \in [\pi, \infty). \end{cases}$

Solution:



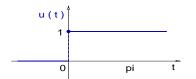


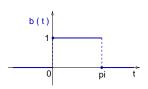
Example

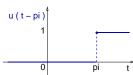
Use the Laplace transform to find the solution of the IVP

$$y'' + y' + \frac{5}{4}y = b(t),$$
 $y(0) = 0,$ $y(t) = \begin{cases} 1, & t \in [0, \pi) \\ 0, & t \in [\pi, \infty). \end{cases}$

Solution:







Example

Use the Laplace transform to find the solution of the IVP

$$y'' + y' + \frac{5}{4}y = b(t),$$
 $y(0) = 0,$ $y'(0) = 0,$ $b(t) = \begin{cases} 1, & t \in [0, \pi) \\ 0, & t \in [\pi, \infty). \end{cases}$

Solution: The graphs imply: $b(t) = u(t) - u(t - \pi)$

Example

Use the Laplace transform to find the solution of the IVP

$$y'' + y' + \frac{5}{4}y = b(t),$$
 $y(0) = 0,$ $y(t) = \begin{cases} 1, & t \in [0, \pi) \\ 0, & t \in [\pi, \infty). \end{cases}$

Solution: The graphs imply: $b(t) = u(t) - u(t - \pi)$

Now is simple to find $\mathcal{L}[b]$,

Example

Use the Laplace transform to find the solution of the IVP

$$y'' + y' + \frac{5}{4}y = b(t),$$
 $y(0) = 0,$ $y(t) = \begin{cases} 1, & t \in [0, \pi) \\ 0, & t \in [\pi, \infty). \end{cases}$

Solution: The graphs imply: $b(t) = u(t) - u(t - \pi)$

Now is simple to find $\mathcal{L}[b]$, since

$$\mathcal{L}[b(t)] = \mathcal{L}[u(t)] - \mathcal{L}[u(t-\pi)]$$

Example

Use the Laplace transform to find the solution of the IVP

$$y'' + y' + \frac{5}{4}y = b(t),$$
 $y(0) = 0,$ $y(t) = \begin{cases} 1, & t \in [0, \pi) \\ 0, & t \in [\pi, \infty). \end{cases}$

Solution: The graphs imply: $b(t) = u(t) - u(t - \pi)$

Now is simple to find $\mathcal{L}[b]$, since

$$\mathcal{L}[b(t)] = \mathcal{L}[u(t)] - \mathcal{L}[u(t-\pi)] = \frac{1}{s} - \frac{e^{-\pi s}}{s}.$$

Example

Use the Laplace transform to find the solution of the IVP

$$y'' + y' + \frac{5}{4}y = b(t),$$
 $y(0) = 0,$ $y(t) = \begin{cases} 1, & t \in [0, \pi) \\ 0, & t \in [\pi, \infty). \end{cases}$

Solution: The graphs imply: $b(t) = u(t) - u(t - \pi)$

Now is simple to find $\mathcal{L}[b]$, since

$$\mathcal{L}[b(t)] = \mathcal{L}[u(t)] - \mathcal{L}[u(t-\pi)] = \frac{1}{s} - \frac{e^{-\pi s}}{s}.$$

So, the source is $\mathcal{L}[b(t)] = (1 - e^{-\pi s}) \frac{1}{s}$,

Example

Use the Laplace transform to find the solution of the IVP

$$y'' + y' + \frac{5}{4}y = b(t),$$
 $y(0) = 0,$ $y(t) = \begin{cases} 1, & t \in [0, \pi) \\ 0, & t \in [\pi, \infty). \end{cases}$

Solution: The graphs imply: $b(t) = u(t) - u(t - \pi)$

Now is simple to find $\mathcal{L}[b]$, since

$$\mathcal{L}[b(t)] = \mathcal{L}[u(t)] - \mathcal{L}[u(t-\pi)] = \frac{1}{s} - \frac{e^{-\pi s}}{s}.$$

So, the source is $\mathcal{L}[b(t)] = (1 - e^{-\pi s}) \frac{1}{s}$, and the equation is

$$\mathcal{L}[y''] + \mathcal{L}[y'] + \frac{5}{4} \mathcal{L}[y] = \left(1 - e^{-\pi s}\right) \frac{1}{s}.$$

Example

Use the Laplace transform to find the solution of the IVP

$$y'' + y' + \frac{5}{4}y = b(t),$$
 $y(0) = 0,$ $y'(0) = 0,$ $b(t) = \begin{cases} 1, & t \in [0, \pi) \\ 0, & t \in [\pi, \infty). \end{cases}$

Solution: So:
$$\mathcal{L}[y''] + \mathcal{L}[y'] + \frac{5}{4}\mathcal{L}[y] = (1 - e^{-\pi s})\frac{1}{s}$$
.

Example

Use the Laplace transform to find the solution of the IVP

$$y'' + y' + \frac{5}{4}y = b(t),$$
 $y(0) = 0,$ $y'(0) = 0,$ $b(t) = \begin{cases} 1, & t \in [0, \pi) \\ 0, & t \in [\pi, \infty). \end{cases}$

Solution: So:
$$\mathcal{L}[y''] + \mathcal{L}[y'] + \frac{5}{4}\mathcal{L}[y] = (1 - e^{-\pi s})\frac{1}{s}$$
.

The initial conditions imply:

Example

Use the Laplace transform to find the solution of the IVP

$$y'' + y' + \frac{5}{4}y = b(t),$$
 $y(0) = 0,$ $y'(0) = 0,$ $b(t) = \begin{cases} 1, & t \in [0, \pi) \\ 0, & t \in [\pi, \infty). \end{cases}$

Solution: So:
$$\mathcal{L}[y''] + \mathcal{L}[y'] + \frac{5}{4}\mathcal{L}[y] = (1 - e^{-\pi s})\frac{1}{s}$$
.

The initial conditions imply: $\mathcal{L}[y''] = s^2 \mathcal{L}[y]$

Example

Use the Laplace transform to find the solution of the IVP

$$y'' + y' + \frac{5}{4}y = b(t),$$
 $y(0) = 0,$ $y'(0) = 0,$ $b(t) = \begin{cases} 1, & t \in [0, \pi) \\ 0, & t \in [\pi, \infty). \end{cases}$

Solution: So:
$$\mathcal{L}[y''] + \mathcal{L}[y'] + \frac{5}{4}\mathcal{L}[y] = (1 - e^{-\pi s})\frac{1}{s}$$
.

The initial conditions imply: $\mathcal{L}[y''] = s^2 \mathcal{L}[y]$ and $\mathcal{L}[y'] = s \mathcal{L}[y]$.

Example

Use the Laplace transform to find the solution of the IVP

$$y'' + y' + \frac{5}{4}y = b(t),$$
 $y(0) = 0,$ $y'(0) = 0,$ $b(t) = \begin{cases} 1, & t \in [0, \pi) \\ 0, & t \in [\pi, \infty). \end{cases}$

Solution: So:
$$\mathcal{L}[y''] + \mathcal{L}[y'] + \frac{5}{4}\mathcal{L}[y] = (1 - e^{-\pi s})\frac{1}{s}$$
.

The initial conditions imply: $\mathcal{L}[y''] = s^2 \mathcal{L}[y]$ and $\mathcal{L}[y'] = s \mathcal{L}[y]$.

Therefore,
$$\left(s^2+s+\frac{5}{4}\right)\mathcal{L}[y]=\left(1-e^{-\pi s}\right)\frac{1}{s}.$$

Example

Use the Laplace transform to find the solution of the IVP

$$y'' + y' + \frac{5}{4}y = b(t),$$
 $y(0) = 0,$ $y'(0) = 0,$ $b(t) = \begin{cases} 1, & t \in [0, \pi) \\ 0, & t \in [\pi, \infty). \end{cases}$

Solution: So:
$$\mathcal{L}[y''] + \mathcal{L}[y'] + \frac{5}{4}\mathcal{L}[y] = (1 - e^{-\pi s})\frac{1}{s}$$
.

The initial conditions imply: $\mathcal{L}[y''] = s^2 \mathcal{L}[y]$ and $\mathcal{L}[y'] = s \mathcal{L}[y]$.

Therefore,
$$\left(s^2+s+\frac{5}{4}\right)\mathcal{L}[y]=\left(1-e^{-\pi s}\right)\frac{1}{s}.$$

We arrive at the expression:
$$\mathcal{L}[y] = \left(1 - e^{-\pi s}\right) \frac{1}{s\left(s^2 + s + \frac{5}{4}\right)}$$
.

Example

$$y'' + y' + \frac{5}{4}y = b(t),$$
 $y(0) = 0,$ $y'(0) = 0,$ $b(t) = \begin{cases} 1, & t \in [0, \pi) \\ 0, & t \in [\pi, \infty). \end{cases}$

Solution: Recall:
$$\mathcal{L}[y] = \left(1 - e^{-\pi s}\right) \frac{1}{s\left(s^2 + s + \frac{5}{4}\right)}$$
.

Example

$$y'' + y' + \frac{5}{4}y = b(t),$$
 $y(0) = 0,$ $y'(0) = 0,$ $b(t) = \begin{cases} 1, & t \in [0, \pi) \\ 0, & t \in [\pi, \infty). \end{cases}$

Solution: Recall:
$$\mathcal{L}[y] = \left(1 - \mathrm{e}^{-\pi s}\right) \frac{1}{s\left(s^2 + s + \frac{5}{4}\right)}.$$

Denoting:
$$H(s) = \frac{1}{s\left(s^2 + s + \frac{5}{4}\right)}$$
,

Example

$$y'' + y' + \frac{5}{4}y = b(t),$$
 $y(0) = 0,$ $y(t) = \begin{cases} 1, & t \in [0, \pi) \\ 0, & t \in [\pi, \infty). \end{cases}$

Solution: Recall:
$$\mathcal{L}[y] = \left(1 - e^{-\pi s}\right) \frac{1}{s\left(s^2 + s + \frac{5}{4}\right)}$$
.

Denoting:
$$H(s) = \frac{1}{s\left(s^2 + s + \frac{5}{4}\right)}$$
,

we obtain,
$$\mathcal{L}[y] = (1 - e^{-\pi s}) H(s)$$
.

Example

$$y'' + y' + \frac{5}{4}y = b(t),$$
 $y(0) = 0,$ $y(t) = \begin{cases} 1, & t \in [0, \pi) \\ 0, & t \in [\pi, \infty). \end{cases}$

Solution: Recall:
$$\mathcal{L}[y] = \left(1 - e^{-\pi s}\right) \frac{1}{s\left(s^2 + s + \frac{5}{4}\right)}$$
.

Denoting:
$$H(s) = \frac{1}{s\left(s^2 + s + \frac{5}{4}\right)}$$
,

we obtain,
$$\mathcal{L}[y] = (1 - e^{-\pi s}) H(s)$$
.

In other words:
$$y(t) = \mathcal{L}^{-1}[H(s)] - \mathcal{L}^{-1}[e^{-\pi s}H(s)].$$

Example

$$y'' + y' + \frac{5}{4}y = b(t),$$
 $y(0) = 0,$ $y'(0) = 0,$ $b(t) = \begin{cases} 1, & t \in [0, \pi) \\ 0, & t \in [\pi, \infty). \end{cases}$

Solution: Recall:
$$y(t) = \mathcal{L}^{-1}[H(s)] - \mathcal{L}^{-1}[e^{-\pi s} H(s)].$$

Example

Use the Laplace transform to find the solution of the IVP

$$y'' + y' + \frac{5}{4}y = b(t),$$
 $y(0) = 0,$ $y'(0) = 0,$ $b(t) = \begin{cases} 1, & t \in [0, \pi) \\ 0, & t \in [\pi, \infty). \end{cases}$

Solution: Recall: $y(t) = \mathcal{L}^{-1}[H(s)] - \mathcal{L}^{-1}[e^{-\pi s} H(s)].$

Denoting: $h(t) = \mathcal{L}^{-1}[H(s)]$,

Example

Use the Laplace transform to find the solution of the IVP

$$y'' + y' + \frac{5}{4}y = b(t),$$
 $y(0) = 0,$ $y(t) = \begin{cases} 1, & t \in [0, \pi) \\ 0, & t \in [\pi, \infty). \end{cases}$

Solution: Recall:
$$y(t) = \mathcal{L}^{-1}[H(s)] - \mathcal{L}^{-1}[e^{-\pi s} H(s)].$$

Denoting: $h(t) = \mathcal{L}^{-1}[H(s)]$, the $\mathcal{L}[]$ properties imply

$$\mathcal{L}^{-1}\big[e^{-\pi s}H(s)\big]=u(t-\pi)\,h(t-\pi).$$

Example

Use the Laplace transform to find the solution of the IVP

$$y'' + y' + \frac{5}{4}y = b(t),$$
 $y(0) = 0,$ $y(t) = \begin{cases} 1, & t \in [0, \pi) \\ 0, & t \in [\pi, \infty). \end{cases}$

Solution: Recall: $y(t) = \mathcal{L}^{-1}[H(s)] - \mathcal{L}^{-1}[e^{-\pi s} H(s)].$

Denoting: $h(t) = \mathcal{L}^{-1}[H(s)]$, the $\mathcal{L}[]$ properties imply

$$\mathcal{L}^{-1}\big[e^{-\pi s}H(s)\big]=u(t-\pi)\,h(t-\pi).$$

Therefore, the solution has the form

$$y(t) = h(t) - u(t - \pi) h(t - \pi).$$

Example

Use the Laplace transform to find the solution of the IVP

$$y'' + y' + \frac{5}{4}y = b(t),$$
 $y(0) = 0,$ $y(t) = \begin{cases} 1, & t \in [0, \pi) \\ 0, & t \in [\pi, \infty). \end{cases}$

Solution: Recall: $y(t) = \mathcal{L}^{-1}[H(s)] - \mathcal{L}^{-1}[e^{-\pi s} H(s)].$

Denoting: $h(t) = \mathcal{L}^{-1}[H(s)]$, the $\mathcal{L}[]$ properties imply

$$\mathcal{L}^{-1}\big[e^{-\pi s}H(s)\big]=u(t-\pi)\,h(t-\pi).$$

Therefore, the solution has the form

$$y(t) = h(t) - u(t - \pi) h(t - \pi).$$

We only need to find $h(t)=\mathcal{L}^{-1}\Big[rac{1}{s\left(s^2+s+rac{5}{4}
ight)}\Big].$

Example

$$y'' + y' + \frac{5}{4}y = b(t),$$
 $y(0) = 0,$ $y(t) = \begin{cases} 1, & t \in [0, \pi) \\ 0, & t \in [\pi, \infty). \end{cases}$

Solution: Recall:
$$h(t) = \mathcal{L}^{-1}\Big[rac{1}{s\left(s^2+s+rac{5}{4}
ight)}\Big].$$

Example

Use the Laplace transform to find the solution of the IVP

$$y'' + y' + \frac{5}{4}y = b(t),$$
 $y(0) = 0,$ $y'(0) = 0,$ $b(t) = \begin{cases} 1, & t \in [0, \pi) \\ 0, & t \in [\pi, \infty). \end{cases}$

Solution: Recall:
$$h(t) = \mathcal{L}^{-1} \Big[\frac{1}{s \left(s^2 + s + \frac{5}{4} \right)} \Big].$$

Partial fractions:

Example

Use the Laplace transform to find the solution of the IVP

$$y'' + y' + \frac{5}{4}y = b(t),$$
 $y(0) = 0,$ $y'(0) = 0,$ $b(t) = \begin{cases} 1, & t \in [0, \pi) \\ 0, & t \in [\pi, \infty). \end{cases}$

Solution: Recall:
$$h(t) = \mathcal{L}^{-1}\Big[rac{1}{s\left(s^2+s+rac{5}{4}
ight)}\Big].$$

Partial fractions: Find the zeros of the denominator,

Example

Use the Laplace transform to find the solution of the IVP

$$y'' + y' + \frac{5}{4}y = b(t),$$
 $y(0) = 0,$ $y'(0) = 0,$ $b(t) = \begin{cases} 1, & t \in [0, \pi) \\ 0, & t \in [\pi, \infty). \end{cases}$

Solution: Recall:
$$h(t) = \mathcal{L}^{-1}\Big[rac{1}{s\left(s^2+s+rac{5}{4}
ight)}\Big].$$

Partial fractions: Find the zeros of the denominator,

$$s_{\pm} = \frac{1}{2} \bigl[-1 \pm \sqrt{1-5} \bigr]$$

Example

Use the Laplace transform to find the solution of the IVP

$$y'' + y' + \frac{5}{4}y = b(t),$$
 $y(0) = 0,$ $y'(0) = 0,$ $b(t) = \begin{cases} 1, & t \in [0, \pi) \\ 0, & t \in [\pi, \infty). \end{cases}$

Solution: Recall:
$$h(t) = \mathcal{L}^{-1}\Big[rac{1}{s\left(s^2+s+rac{5}{4}
ight)}\Big].$$

Partial fractions: Find the zeros of the denominator,

$$s_{\pm} = \frac{1}{2} \left[-1 \pm \sqrt{1-5} \right] \quad \Rightarrow \quad \text{Complex roots.}$$

Example

Use the Laplace transform to find the solution of the IVP

$$y'' + y' + \frac{5}{4}y = b(t),$$
 $y(0) = 0,$ $y'(0) = 0,$ $b(t) = \begin{cases} 1, & t \in [0, \pi) \\ 0, & t \in [\pi, \infty). \end{cases}$

Solution: Recall:
$$h(t) = \mathcal{L}^{-1}\Big[rac{1}{s\left(s^2+s+rac{5}{4}
ight)}\Big].$$

Partial fractions: Find the zeros of the denominator,

$$s_{\pm} = \frac{1}{2} \left[-1 \pm \sqrt{1-5} \right] \Rightarrow \text{Complex roots.}$$

Example

Use the Laplace transform to find the solution of the IVP

$$y'' + y' + \frac{5}{4}y = b(t),$$
 $y(0) = 0,$ $y(t) = \begin{cases} 1, & t \in [0, \pi) \\ 0, & t \in [\pi, \infty). \end{cases}$

Solution: Recall:
$$h(t) = \mathcal{L}^{-1}\Big[rac{1}{s\left(s^2+s+rac{5}{4}
ight)}\Big].$$

Partial fractions: Find the zeros of the denominator,

$$s_{\pm} = \frac{1}{2} \left[-1 \pm \sqrt{1-5} \right] \Rightarrow \text{Complex roots.}$$

$$H(s) = \frac{1}{\left(s^2 + s + \frac{5}{4}\right)s}$$

Example

Use the Laplace transform to find the solution of the IVP

$$y'' + y' + \frac{5}{4}y = b(t),$$
 $y(0) = 0,$ $y(t) = \begin{cases} 1, & t \in [0, \pi) \\ 0, & t \in [\pi, \infty). \end{cases}$

Solution: Recall:
$$h(t) = \mathcal{L}^{-1}\Big[rac{1}{s\left(s^2+s+rac{5}{4}
ight)}\Big].$$

Partial fractions: Find the zeros of the denominator,

$$s_{\pm} = \frac{1}{2} \left[-1 \pm \sqrt{1-5} \right] \Rightarrow \text{Complex roots.}$$

$$H(s) = \frac{1}{\left(s^2 + s + \frac{5}{4}\right)s} = \frac{a}{s} + \frac{\left(bs + c\right)}{\left(s^2 + s + \frac{5}{4}\right)}$$

Example

$$y'' + y' + \frac{5}{4}y = b(t),$$
 $y(0) = 0,$ $y(t) = \begin{cases} 1, & t \in [0, \pi) \\ 0, & t \in [\pi, \infty). \end{cases}$

Solution: Recall:
$$H(s) = \frac{1}{\left(s^2 + s + \frac{5}{4}\right)s} = \frac{a}{s} + \frac{\left(bs + c\right)}{\left(s^2 + s + \frac{5}{4}\right)}.$$

Example

Use the Laplace transform to find the solution of the IVP

$$y'' + y' + \frac{5}{4}y = b(t),$$
 $y(0) = 0,$ $y(t) = \begin{cases} 1, & t \in [0, \pi) \\ 0, & t \in [\pi, \infty). \end{cases}$

Solution: Recall:
$$H(s) = \frac{1}{\left(s^2 + s + \frac{5}{4}\right)s} = \frac{a}{s} + \frac{\left(bs + c\right)}{\left(s^2 + s + \frac{5}{4}\right)}.$$

Example

Use the Laplace transform to find the solution of the IVP

$$y'' + y' + \frac{5}{4}y = b(t),$$
 $y(0) = 0,$ $y(t) = \begin{cases} 1, & t \in [0, \pi) \\ 0, & t \in [\pi, \infty). \end{cases}$

Solution: Recall:
$$H(s) = \frac{1}{\left(s^2 + s + \frac{5}{4}\right)s} = \frac{a}{s} + \frac{\left(bs + c\right)}{\left(s^2 + s + \frac{5}{4}\right)}.$$

$$1 = a\left(s^2 + s + \frac{5}{4}\right) + s\left(bs + c\right)$$

Example

Use the Laplace transform to find the solution of the IVP

$$y'' + y' + \frac{5}{4}y = b(t),$$
 $y(0) = 0,$ $y(t) = \begin{cases} 1, & t \in [0, \pi) \\ 0, & t \in [\pi, \infty). \end{cases}$

Solution: Recall:
$$H(s) = \frac{1}{\left(s^2 + s + \frac{5}{4}\right)s} = \frac{a}{s} + \frac{\left(bs + c\right)}{\left(s^2 + s + \frac{5}{4}\right)}.$$

$$1 = a\left(s^2 + s + \frac{5}{4}\right) + s\left(bs + c\right) = (a + b)s^2 + (a + c)s + \frac{5}{4}a.$$

Example

Use the Laplace transform to find the solution of the IVP

$$y'' + y' + \frac{5}{4}y = b(t),$$
 $y(0) = 0,$ $y(t) = \begin{cases} 1, & t \in [0, \pi) \\ 0, & t \in [\pi, \infty). \end{cases}$

Solution: Recall:
$$H(s) = \frac{1}{\left(s^2 + s + \frac{5}{4}\right)s} = \frac{a}{s} + \frac{\left(bs + c\right)}{\left(s^2 + s + \frac{5}{4}\right)}$$
.

The partial fraction decomposition is:

$$1 = a\left(s^2 + s + \frac{5}{4}\right) + s\left(bs + c\right) = (a + b)s^2 + (a + c)s + \frac{5}{4}a.$$

This equation implies that a, b, and c, are solutions of

$$a + b = 0$$
, $a + c = 0$, $\frac{5}{4}a = 1$.

Example

$$y'' + y' + \frac{5}{4}y = b(t),$$
 $y(0) = 0,$ $y'(0) = 0,$ $b(t) = \begin{cases} 1, & t \in [0, \pi) \\ 0, & t \in [\pi, \infty). \end{cases}$

Solution: So:
$$a = \frac{4}{5}$$
, $b = -\frac{4}{5}$, $c = -\frac{4}{5}$.

Example

Use the Laplace transform to find the solution of the IVP

$$y'' + y' + \frac{5}{4}y = b(t),$$
 $y(0) = 0,$ $y'(0) = 0,$ $b(t) = \begin{cases} 1, & t \in [0, \pi) \\ 0, & t \in [\pi, \infty). \end{cases}$

Solution: So:
$$a = \frac{4}{5}$$
, $b = -\frac{4}{5}$, $c = -\frac{4}{5}$.

Hence, we have found that,

$$H(s) = \frac{1}{\left(s^2 + s + \frac{5}{4}\right)s}$$

Example

Use the Laplace transform to find the solution of the IVP

$$y'' + y' + \frac{5}{4}y = b(t),$$
 $y(0) = 0,$ $y'(0) = 0,$ $b(t) = \begin{cases} 1, & t \in [0, \pi) \\ 0, & t \in [\pi, \infty). \end{cases}$

Solution: So:
$$a = \frac{4}{5}$$
, $b = -\frac{4}{5}$, $c = -\frac{4}{5}$.

Hence, we have found that,

$$H(s) = \frac{1}{\left(s^2 + s + \frac{5}{4}\right)s} = \frac{4}{5} \left[\frac{1}{s} - \frac{(s+1)}{\left(s^2 + s + \frac{5}{4}\right)}\right]$$

Example

Use the Laplace transform to find the solution of the IVP

$$y'' + y' + \frac{5}{4}y = b(t),$$
 $y(0) = 0,$ $y(t) = \begin{cases} 1, & t \in [0, \pi) \\ 0, & t \in [\pi, \infty). \end{cases}$

Solution: So:
$$a = \frac{4}{5}$$
, $b = -\frac{4}{5}$, $c = -\frac{4}{5}$.

Hence, we have found that,

$$H(s) = \frac{1}{\left(s^2 + s + \frac{5}{4}\right)s} = \frac{4}{5} \left[\frac{1}{s} - \frac{(s+1)}{\left(s^2 + s + \frac{5}{4}\right)}\right]$$

We have to compute the inverse Laplace Transform

Example

Use the Laplace transform to find the solution of the IVP

$$y'' + y' + \frac{5}{4}y = b(t),$$
 $y(0) = 0,$ $y(t) = \begin{cases} 1, & t \in [0, \pi) \\ 0, & t \in [\pi, \infty). \end{cases}$

Solution: So:
$$a = \frac{4}{5}$$
, $b = -\frac{4}{5}$, $c = -\frac{4}{5}$.

Hence, we have found that,

$$H(s) = \frac{1}{\left(s^2 + s + \frac{5}{4}\right)s} = \frac{4}{5} \left[\frac{1}{s} - \frac{(s+1)}{\left(s^2 + s + \frac{5}{4}\right)} \right]$$

We have to compute the inverse Laplace Transform

$$h(t) = \frac{4}{5} \mathcal{L}^{-1} \left[\frac{1}{s} - \frac{(s+1)}{(s^2 + s + \frac{5}{4})} \right]$$

Example

$$y'' + y' + \frac{5}{4}y = b(t),$$
 $y(0) = 0,$ $y'(0) = 0,$ $b(t) = \begin{cases} 1, & t \in [0, \pi) \\ 0, & t \in [\pi, \infty). \end{cases}$

Solution: Recall:
$$h(t) = \frac{4}{5} \mathcal{L}^{-1} \left[\frac{1}{s} - \frac{(s+1)}{\left(s^2 + s + \frac{5}{4}\right)} \right].$$

Example

Use the Laplace transform to find the solution of the IVP

$$y'' + y' + \frac{5}{4}y = b(t),$$
 $y(0) = 0,$ $y'(0) = 0,$ $b(t) = \begin{cases} 1, & t \in [0, \pi) \\ 0, & t \in [\pi, \infty). \end{cases}$

Solution: Recall:
$$h(t) = \frac{4}{5} \mathcal{L}^{-1} \left[\frac{1}{s} - \frac{(s+1)}{\left(s^2 + s + \frac{5}{4}\right)} \right].$$

Example

Use the Laplace transform to find the solution of the IVP

$$y'' + y' + \frac{5}{4}y = b(t),$$
 $y(0) = 0,$ $y'(0) = 0,$ $b(t) = \begin{cases} 1, & t \in [0, \pi) \\ 0, & t \in [\pi, \infty). \end{cases}$

Solution: Recall:
$$h(t) = \frac{4}{5} \mathcal{L}^{-1} \left[\frac{1}{s} - \frac{(s+1)}{(s^2+s+\frac{5}{4})} \right].$$

$$s^{2} + s + \frac{5}{4} = \left[s^{2} + 2\left(\frac{1}{2}\right)s + \frac{1}{4}\right] - \frac{1}{4} + \frac{5}{4}$$

Example

Use the Laplace transform to find the solution of the IVP

$$y'' + y' + \frac{5}{4}y = b(t),$$
 $y(0) = 0,$ $y'(0) = 0,$ $b(t) = \begin{cases} 1, & t \in [0, \pi) \\ 0, & t \in [\pi, \infty). \end{cases}$

Solution: Recall:
$$h(t) = \frac{4}{5} \mathcal{L}^{-1} \left[\frac{1}{s} - \frac{(s+1)}{\left(s^2 + s + \frac{5}{4}\right)} \right].$$

$$s^2 + s + \frac{5}{4} = \left[s^2 + 2\left(\frac{1}{2}\right)s + \frac{1}{4}\right] - \frac{1}{4} + \frac{5}{4} = \left(s + \frac{1}{2}\right)^2 + 1.$$

Example

Use the Laplace transform to find the solution of the IVP

$$y'' + y' + \frac{5}{4}y = b(t),$$
 $y(0) = 0,$ $y'(0) = 0,$ $b(t) = \begin{cases} 1, & t \in [0, \pi) \\ 0, & t \in [\pi, \infty). \end{cases}$

Solution: Recall:
$$h(t) = \frac{4}{5} \mathcal{L}^{-1} \left[\frac{1}{s} - \frac{(s+1)}{\left(s^2 + s + \frac{5}{4}\right)} \right].$$

$$s^2 + s + \frac{5}{4} = \left[s^2 + 2\left(\frac{1}{2}\right)s + \frac{1}{4}\right] - \frac{1}{4} + \frac{5}{4} = \left(s + \frac{1}{2}\right)^2 + 1.$$

So:
$$h(t) = \frac{4}{5} \mathcal{L}^{-1} \left[\frac{1}{s} - \frac{(s+1)}{\left[\left(s + \frac{1}{2} \right)^2 + 1 \right]} \right].$$

Example

Use the Laplace transform to find the solution of the IVP

$$y'' + y' + \frac{5}{4}y = b(t),$$
 $y(0) = 0,$ $y'(0) = 0,$ $b(t) = \begin{cases} 1, & t \in [0, \pi) \\ 0, & t \in [\pi, \infty). \end{cases}$

Solution: Recall:
$$h(t) = \frac{4}{5} \mathcal{L}^{-1} \left[\frac{1}{s} - \frac{(s+1)}{(s^2+s+\frac{5}{4})} \right].$$

$$s^2 + s + \frac{5}{4} = \left[s^2 + 2\left(\frac{1}{2}\right)s + \frac{1}{4}\right] - \frac{1}{4} + \frac{5}{4} = \left(s + \frac{1}{2}\right)^2 + 1.$$

So:
$$h(t) = \frac{4}{5} \mathcal{L}^{-1} \left[\frac{1}{s} - \frac{(s+1)}{\left[\left(s + \frac{1}{2} \right)^2 + 1 \right]} \right].$$

That is,
$$h(t) = \frac{4}{5} \mathcal{L}^{-1} \left[\frac{1}{s} \right] - \frac{4}{5} \mathcal{L}^{-1} \left[\frac{\left(s + \frac{1}{2}\right) + \frac{1}{2}}{\left[\left(s + \frac{1}{2}\right)^2 + 1\right]} \right].$$

Example

$$y'' + y' + \frac{5}{4}y = b(t),$$
 $y(0) = 0,$ $y'(0) = 0,$ $b(t) = \begin{cases} 1, & t \in [0, \pi) \\ 0, & t \in [\pi, \infty). \end{cases}$

Solution: Recall:
$$h(t) = \frac{4}{5} \mathcal{L}^{-1} \left[\frac{1}{s} \right] - \frac{4}{5} \mathcal{L}^{-1} \left[\frac{\left(s + \frac{1}{2}\right) + \frac{1}{2}}{\left[\left(s + \frac{1}{2}\right)^2 + 1\right]} \right].$$

Example

$$y'' + y' + \frac{5}{4}y = b(t),$$
 $y(0) = 0,$ $y(t) = \begin{cases} 1, & t \in [0, \pi) \\ 0, & t \in [\pi, \infty). \end{cases}$

Solution: Recall:
$$h(t) = \frac{4}{5} \mathcal{L}^{-1} \left[\frac{1}{s} \right] - \frac{4}{5} \mathcal{L}^{-1} \left[\frac{\left(s + \frac{1}{2}\right) + \frac{1}{2}}{\left[\left(s + \frac{1}{2}\right)^2 + 1\right]} \right].$$

$$h(t) = \frac{4}{5} \mathcal{L}^{-1} \left[\frac{1}{s} \right] - \frac{4}{5} \mathcal{L}^{-1} \left[\frac{\left(s + \frac{1}{2}\right)}{\left[\left(s + \frac{1}{2}\right)^2 + 1\right]} \right] - \frac{2}{5} \mathcal{L}^{-1} \left[\frac{1}{\left[\left(s + \frac{1}{2}\right)^2 + 1\right]} \right].$$

Example

$$y'' + y' + \frac{5}{4}y = b(t),$$
 $y(0) = 0,$ $y(t) = \begin{cases} 1, & t \in [0, \pi) \\ 0, & t \in [\pi, \infty). \end{cases}$

Solution: Recall:
$$h(t) = \frac{4}{5} \mathcal{L}^{-1} \left[\frac{1}{s} \right] - \frac{4}{5} \mathcal{L}^{-1} \left[\frac{\left(s + \frac{1}{2}\right) + \frac{1}{2}}{\left[\left(s + \frac{1}{2}\right)^2 + 1\right]} \right].$$

$$h(t) = \frac{4}{5} \mathcal{L}^{-1} \left[\frac{1}{s} \right] - \frac{4}{5} \mathcal{L}^{-1} \left[\frac{\left(s + \frac{1}{2}\right)}{\left[\left(s + \frac{1}{2}\right)^2 + 1\right]} \right] - \frac{2}{5} \mathcal{L}^{-1} \left[\frac{1}{\left[\left(s + \frac{1}{2}\right)^2 + 1\right]} \right].$$

Recall:
$$\mathcal{L}^{-1}[F(s-c)] = e^{ct} f(t)$$
.

Example

$$y'' + y' + \frac{5}{4}y = b(t),$$
 $y(0) = 0,$ $y'(0) = 0,$ $b(t) = \begin{cases} 1, & t \in [0, \pi) \\ 0, & t \in [\pi, \infty). \end{cases}$

Solution: Recall:
$$h(t) = \frac{4}{5} \mathcal{L}^{-1} \left[\frac{1}{s} \right] - \frac{4}{5} \mathcal{L}^{-1} \left[\frac{\left(s + \frac{1}{2}\right) + \frac{1}{2}}{\left[\left(s + \frac{1}{2}\right)^2 + 1\right]} \right].$$

$$h(t) = \frac{4}{5} \mathcal{L}^{-1} \left[\frac{1}{s} \right] - \frac{4}{5} \mathcal{L}^{-1} \left[\frac{\left(s + \frac{1}{2}\right)}{\left[\left(s + \frac{1}{2}\right)^2 + 1\right]} \right] - \frac{2}{5} \mathcal{L}^{-1} \left[\frac{1}{\left[\left(s + \frac{1}{2}\right)^2 + 1\right]} \right].$$

Recall:
$$\mathcal{L}^{-1} \big[F(s-c) \big] = e^{ct} \, f(t)$$
. Hence,
$$h(t) = \frac{4}{5} \, \Big[1 - e^{-t/2} \, \cos(t) - \frac{1}{2} \, e^{-t/2} \, \sin(t) \Big].$$

Example

Use the Laplace transform to find the solution of the IVP

$$y'' + y' + \frac{5}{4}y = b(t),$$
 $y(0) = 0,$ $y'(0) = 0,$ $b(t) = \begin{cases} 1, & t \in [0, \pi) \\ 0, & t \in [\pi, \infty). \end{cases}$

Solution: Recall:
$$h(t) = \frac{4}{5} \mathcal{L}^{-1} \left[\frac{1}{s} \right] - \frac{4}{5} \mathcal{L}^{-1} \left[\frac{\left(s + \frac{1}{2}\right) + \frac{1}{2}}{\left[\left(s + \frac{1}{2}\right)^2 + 1\right]} \right].$$

$$h(t) = \frac{4}{5} \mathcal{L}^{-1} \left[\frac{1}{s} \right] - \frac{4}{5} \mathcal{L}^{-1} \left[\frac{\left(s + \frac{1}{2}\right)}{\left[\left(s + \frac{1}{2}\right)^2 + 1\right]} \right] - \frac{2}{5} \mathcal{L}^{-1} \left[\frac{1}{\left[\left(s + \frac{1}{2}\right)^2 + 1\right]} \right].$$

Recall:
$$\mathcal{L}^{-1}[F(s-c)] = e^{ct} f(t)$$
. Hence,

$$h(t) = \frac{4}{5} \left[1 - e^{-t/2} \cos(t) - \frac{1}{2} e^{-t/2} \sin(t) \right].$$

We conclude:
$$y(t) = h(t) + u(t - \pi)h(t - \pi)$$
.

<1

Equations with discontinuous sources (Sect. 6.4).

- Differential equations with discontinuous sources.
- We solve the IVPs:
 - (a) Example 1:

$$y' + 2y = u(t - 4),$$
 $y(0) = 3.$

(b) Example 2:

$$y'' + y' + \frac{5}{4}y = b(t),$$
 $y(0) = 0,$ $y(t) = \begin{cases} 1, & t \in [0, \pi) \\ 0, & t \in [\pi, \infty). \end{cases}$

(c) Example 3:

$$y''+y'+rac{5}{4}y=g(t), \ \ y(0)=0, \ g(t)= egin{cases} \sin(t), & t\in[0,\pi) \ 0, & t\in[\pi,\infty). \end{cases}$$

Example

$$y'' + y' + \frac{5}{4}y = g(t),$$
 $y(0) = 0,$ $g(t) = \begin{cases} \sin(t) & t \in [0, \pi) \\ 0 & t \in [\pi, \infty). \end{cases}$

Example

Use the Laplace transform to find the solution of the IVP

$$y'' + y' + \frac{5}{4}y = g(t),$$
 $y(0) = 0,$ $g(t) = \begin{cases} \sin(t) & t \in [0, \pi) \\ 0 & t \in [\pi, \infty). \end{cases}$

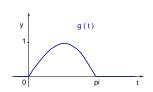
Solution:

Example

Use the Laplace transform to find the solution of the IVP

$$y'' + y' + \frac{5}{4}y = g(t),$$
 $y(0) = 0,$ $g(t) = \begin{cases} \sin(t) & t \in [0, \pi) \\ 0 & t \in [\pi, \infty). \end{cases}$

Solution:

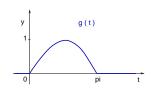


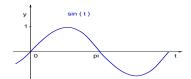
Example

Use the Laplace transform to find the solution of the IVP

$$y'' + y' + \frac{5}{4}y = g(t),$$
 $y(0) = 0,$ $g(t) = \begin{cases} \sin(t) & t \in [0, \pi) \\ 0 & t \in [\pi, \infty). \end{cases}$

Solution:



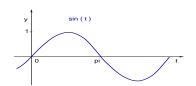


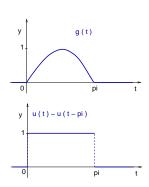
Example

Use the Laplace transform to find the solution of the IVP

$$y'' + y' + \frac{5}{4}y = g(t),$$
 $y(0) = 0,$ $y(t) = \begin{cases} \sin(t) & t \in [0, \pi) \\ 0 & t \in [\pi, \infty). \end{cases}$

Solution:





Example

Use the Laplace transform to find the solution of the IVP

$$y'' + y' + \frac{5}{4}y = g(t),$$
 $y(0) = 0,$ $g(t) = \begin{cases} \sin(t) & t \in [0, \pi) \\ 0 & t \in [\pi, \infty). \end{cases}$

Solution: The graphs imply: $g(t) = [u(t) - u(t - \pi)] \sin(t)$.

Example

Use the Laplace transform to find the solution of the IVP

$$y'' + y' + \frac{5}{4}y = g(t),$$
 $y(0) = 0,$ $g(t) = \begin{cases} \sin(t) & t \in [0, \pi) \\ 0 & t \in [\pi, \infty). \end{cases}$

Solution: The graphs imply: $g(t) = [u(t) - u(t - \pi)] \sin(t)$.

Recall the identity: $sin(t) = -sin(t - \pi)$.

Example

Use the Laplace transform to find the solution of the IVP

$$y'' + y' + \frac{5}{4}y = g(t),$$
 $y(0) = 0,$ $g(t) = \begin{cases} \sin(t) & t \in [0, \pi) \\ 0 & t \in [\pi, \infty). \end{cases}$

Solution: The graphs imply: $g(t) = [u(t) - u(t - \pi)] \sin(t)$.

Recall the identity: $sin(t) = -sin(t - \pi)$. Then,

$$g(t) = u(t)\sin(t) - u(t-\pi)\sin(t),$$

Example

Use the Laplace transform to find the solution of the IVP

$$y'' + y' + \frac{5}{4}y = g(t),$$
 $y(0) = 0,$ $g(t) = \begin{cases} \sin(t) & t \in [0, \pi) \\ 0 & t \in [\pi, \infty). \end{cases}$

Solution: The graphs imply: $g(t) = [u(t) - u(t - \pi)] \sin(t)$.

Recall the identity: $sin(t) = -sin(t - \pi)$. Then,

$$g(t) = u(t) \sin(t) - u(t - \pi) \sin(t),$$

$$g(t) = u(t)\sin(t) + u(t-\pi)\sin(t-\pi).$$

Example

Use the Laplace transform to find the solution of the IVP

$$y'' + y' + \frac{5}{4}y = g(t),$$
 $y(0) = 0,$ $g(t) = \begin{cases} \sin(t) & t \in [0, \pi) \\ 0 & t \in [\pi, \infty). \end{cases}$

Solution: The graphs imply: $g(t) = [u(t) - u(t - \pi)] \sin(t)$.

Recall the identity: $sin(t) = -sin(t - \pi)$. Then,

$$g(t) = u(t)\sin(t) - u(t-\pi)\sin(t),$$

$$g(t) = u(t)\sin(t) + u(t-\pi)\sin(t-\pi).$$

Now is simple to find $\mathcal{L}[g]$,

Example

Use the Laplace transform to find the solution of the IVP

$$y'' + y' + \frac{5}{4}y = g(t),$$
 $y(0) = 0,$ $g(t) = \begin{cases} \sin(t) & t \in [0, \pi) \\ 0 & t \in [\pi, \infty). \end{cases}$

Solution: The graphs imply: $g(t) = [u(t) - u(t - \pi)] \sin(t)$.

Recall the identity: $sin(t) = -sin(t - \pi)$. Then,

$$g(t) = u(t) \sin(t) - u(t - \pi) \sin(t),$$

$$g(t) = u(t)\sin(t) + u(t-\pi)\sin(t-\pi).$$

Now is simple to find $\mathcal{L}[g]$, since

$$\mathcal{L}[g(t)] = \mathcal{L}[u(t)\sin(t)] + \mathcal{L}[u(t-\pi)\sin(t-\pi)].$$

Example

Use the Laplace transform to find the solution of the IVP

$$y'' + y' + \frac{5}{4}y = g(t),$$
 $y(0) = 0,$ $g(t) = \begin{cases} \sin(t) & t \in [0, \pi) \\ 0 & t \in [\pi, \infty). \end{cases}$

Solution: So: $\mathcal{L}[g(t)] = \mathcal{L}[u(t)\sin(t)] + \mathcal{L}[u(t-\pi)\sin(t-\pi)]$.

Example

$$y'' + y' + \frac{5}{4}y = g(t),$$
 $y(0) = 0,$ $g(t) = \begin{cases} \sin(t) & t \in [0, \pi) \\ 0 & t \in [\pi, \infty). \end{cases}$

Solution: So:
$$\mathcal{L}[g(t)] = \mathcal{L}[u(t)\sin(t)] + \mathcal{L}[u(t-\pi)\sin(t-\pi)]$$
.

$$\mathcal{L}[g(t)] = \frac{1}{(s^2+1)} + e^{-\pi s} \frac{1}{(s^2+1)}.$$

Example

Use the Laplace transform to find the solution of the IVP

$$y'' + y' + \frac{5}{4}y = g(t),$$
 $y(0) = 0,$ $g(t) = \begin{cases} \sin(t) & t \in [0, \pi) \\ 0 & t \in [\pi, \infty). \end{cases}$

Solution: So: $\mathcal{L}[g(t)] = \mathcal{L}[u(t)\sin(t)] + \mathcal{L}[u(t-\pi)\sin(t-\pi)]$.

$$\mathcal{L}[g(t)] = \frac{1}{(s^2+1)} + e^{-\pi s} \frac{1}{(s^2+1)}.$$

Recall the Laplace transform of the differential equation

$$\mathcal{L}[y''] + \mathcal{L}[y'] + \frac{5}{4}\mathcal{L}[y] = \mathcal{L}[g].$$

Example

Use the Laplace transform to find the solution of the IVP

$$y'' + y' + \frac{5}{4}y = g(t),$$
 $y(0) = 0,$ $g(t) = \begin{cases} \sin(t) & t \in [0, \pi) \\ 0 & t \in [\pi, \infty). \end{cases}$

Solution: So: $\mathcal{L}[g(t)] = \mathcal{L}[u(t)\sin(t)] + \mathcal{L}[u(t-\pi)\sin(t-\pi)]$.

$$\mathcal{L}[g(t)] = \frac{1}{(s^2+1)} + e^{-\pi s} \frac{1}{(s^2+1)}.$$

Recall the Laplace transform of the differential equation

$$\mathcal{L}[y''] + \mathcal{L}[y'] + \frac{5}{4}\mathcal{L}[y] = \mathcal{L}[g].$$

The initial conditions imply:

Example

Use the Laplace transform to find the solution of the IVP

$$y'' + y' + \frac{5}{4}y = g(t),$$
 $y(0) = 0,$ $g(t) = \begin{cases} \sin(t) & t \in [0, \pi) \\ 0 & t \in [\pi, \infty). \end{cases}$

Solution: So: $\mathcal{L}[g(t)] = \mathcal{L}[u(t)\sin(t)] + \mathcal{L}[u(t-\pi)\sin(t-\pi)]$.

$$\mathcal{L}[g(t)] = \frac{1}{(s^2+1)} + e^{-\pi s} \frac{1}{(s^2+1)}.$$

Recall the Laplace transform of the differential equation

$$\mathcal{L}[y''] + \mathcal{L}[y'] + \frac{5}{4}\mathcal{L}[y] = \mathcal{L}[g].$$

The initial conditions imply: $\mathcal{L}[y''] = s^2 \mathcal{L}[y]$

Example

Use the Laplace transform to find the solution of the IVP

$$y'' + y' + \frac{5}{4}y = g(t),$$
 $y(0) = 0,$ $g(t) = \begin{cases} \sin(t) & t \in [0, \pi) \\ 0 & t \in [\pi, \infty). \end{cases}$

Solution: So: $\mathcal{L}[g(t)] = \mathcal{L}[u(t)\sin(t)] + \mathcal{L}[u(t-\pi)\sin(t-\pi)]$.

$$\mathcal{L}[g(t)] = \frac{1}{(s^2+1)} + e^{-\pi s} \frac{1}{(s^2+1)}.$$

Recall the Laplace transform of the differential equation

$$\mathcal{L}[y''] + \mathcal{L}[y'] + \frac{5}{4}\mathcal{L}[y] = \mathcal{L}[g].$$

The initial conditions imply: $\mathcal{L}[y''] = s^2 \mathcal{L}[y]$ and $\mathcal{L}[y'] = s \mathcal{L}[y]$.

Example

Use the Laplace transform to find the solution of the IVP

$$y'' + y' + \frac{5}{4}y = g(t),$$
 $y(0) = 0,$ $g(t) = \begin{cases} \sin(t) & t \in [0, \pi) \\ 0 & t \in [\pi, \infty). \end{cases}$

Solution: So: $\mathcal{L}[g(t)] = \mathcal{L}[u(t)\sin(t)] + \mathcal{L}[u(t-\pi)\sin(t-\pi)]$.

$$\mathcal{L}[g(t)] = \frac{1}{(s^2+1)} + e^{-\pi s} \frac{1}{(s^2+1)}.$$

Recall the Laplace transform of the differential equation

$$\mathcal{L}[y''] + \mathcal{L}[y'] + \frac{5}{4}\mathcal{L}[y] = \mathcal{L}[g].$$

The initial conditions imply: $\mathcal{L}[y''] = s^2 \mathcal{L}[y]$ and $\mathcal{L}[y'] = s \mathcal{L}[y]$.

Therefore,
$$\left(s^2+s+rac{5}{4}
ight)\mathcal{L}[y]=\left(1+e^{-\pi s}
ight)rac{1}{\left(s^2+1
ight)}.$$

Example

$$y'' + y' + \frac{5}{4}y = g(t),$$
 $y(0) = 0,$ $g(t) = \begin{cases} \sin(t) & t \in [0, \pi) \\ 0 & t \in [\pi, \infty). \end{cases}$

Solution: Recall:
$$\left(s^2+s+\frac{5}{4}\right)\mathcal{L}[y]=\left(1+e^{-\pi s}\right)\frac{1}{\left(s^2+1\right)}$$
.

Example

$$y'' + y' + \frac{5}{4}y = g(t),$$
 $y(0) = 0,$ $g(t) = \begin{cases} \sin(t) & t \in [0, \pi) \\ 0 & t \in [\pi, \infty). \end{cases}$

Solution: Recall:
$$\left(s^2+s+\frac{5}{4}\right)\mathcal{L}[y]=\left(1+e^{-\pi s}\right)\frac{1}{\left(s^2+1\right)}.$$

$$\mathcal{L}[y] = \left(1 + e^{-\pi s}\right) rac{1}{\left(s^2 + s + rac{5}{4}
ight)\left(s^2 + 1
ight)}.$$

Example

$$y'' + y' + \frac{5}{4}y = g(t),$$
 $y(0) = 0,$ $g(t) = \begin{cases} \sin(t) & t \in [0, \pi) \\ 0 & t \in [\pi, \infty). \end{cases}$

Solution: Recall:
$$\left(s^2+s+\frac{5}{4}\right)\mathcal{L}[y]=\left(1+e^{-\pi s}\right)\frac{1}{\left(s^2+1\right)}.$$

$$\mathcal{L}[y] = \left(1 + e^{-\pi s}\right) rac{1}{\left(s^2 + s + rac{5}{4}
ight)(s^2 + 1)}.$$

Introduce the function
$$H(s)=rac{1}{\left(s^2+s+rac{5}{4}
ight)(s^2+1)}$$
.

Example

$$y'' + y' + \frac{5}{4}y = g(t),$$
 $y(0) = 0,$ $g(t) = \begin{cases} \sin(t) & t \in [0, \pi) \\ 0 & t \in [\pi, \infty). \end{cases}$

Solution: Recall:
$$\left(s^2+s+\frac{5}{4}\right)\mathcal{L}[y]=\left(1+e^{-\pi s}\right)\frac{1}{\left(s^2+1\right)}.$$

$$\mathcal{L}[y] = \left(1 + e^{-\pi s}\right) rac{1}{\left(s^2 + s + rac{5}{4}
ight)(s^2 + 1)}.$$

Introduce the function
$$H(s) = \frac{1}{\left(s^2 + s + \frac{5}{4}\right)(s^2 + 1)}$$
.

Then,
$$y(t) = \mathcal{L}^{-1}[H(s)] + \mathcal{L}^{-1}[e^{-\pi s} H(s)].$$

Example

$$y'' + y' + \frac{5}{4}y = g(t),$$
 $y(0) = 0,$ $g(t) = \begin{cases} \sin(t) & t \in [0, \pi) \\ 0 & t \in [\pi, \infty). \end{cases}$

Solution: Recall:
$$y(t) = \mathcal{L}^{-1}[H(s)] + \mathcal{L}^{-1}[e^{-\pi s} H(s)]$$
, and

$$H(s) = \frac{1}{\left(s^2 + s + \frac{5}{4}\right)(s^2 + 1)}.$$

Example

Use the Laplace transform to find the solution of the IVP

$$y'' + y' + \frac{5}{4}y = g(t),$$
 $y(0) = 0,$ $g(t) = \begin{cases} \sin(t) & t \in [0, \pi) \\ 0 & t \in [\pi, \infty). \end{cases}$

Solution: Recall: $y(t) = \mathcal{L}^{-1}[H(s)] + \mathcal{L}^{-1}[e^{-\pi s} H(s)]$, and

$$H(s) = \frac{1}{\left(s^2 + s + \frac{5}{4}\right)(s^2 + 1)}.$$

Partial fractions:

Example

Use the Laplace transform to find the solution of the IVP

$$y'' + y' + \frac{5}{4}y = g(t),$$
 $y(0) = 0,$ $g(t) = \begin{cases} \sin(t) & t \in [0, \pi) \\ 0 & t \in [\pi, \infty). \end{cases}$

Solution: Recall: $y(t) = \mathcal{L}^{-1}[H(s)] + \mathcal{L}^{-1}[e^{-\pi s} H(s)]$, and

$$H(s) = \frac{1}{\left(s^2 + s + \frac{5}{4}\right)\left(s^2 + 1\right)}.$$

Partial fractions: Find the zeros of the denominator,

Example

Use the Laplace transform to find the solution of the IVP

$$y'' + y' + \frac{5}{4}y = g(t),$$
 $y(0) = 0,$ $g(t) = \begin{cases} \sin(t) & t \in [0, \pi) \\ 0 & t \in [\pi, \infty). \end{cases}$

Solution: Recall: $y(t) = \mathcal{L}^{-1}[H(s)] + \mathcal{L}^{-1}[e^{-\pi s} H(s)]$, and

$$H(s) = \frac{1}{\left(s^2 + s + \frac{5}{4}\right)\left(s^2 + 1\right)}.$$

Partial fractions: Find the zeros of the denominator,

$$s_{\pm}=rac{1}{2}igl[-1\pm\sqrt{1-5}igr]$$

Example

Use the Laplace transform to find the solution of the IVP

$$y'' + y' + \frac{5}{4}y = g(t),$$
 $y(0) = 0,$ $g(t) = \begin{cases} \sin(t) & t \in [0, \pi) \\ 0 & t \in [\pi, \infty). \end{cases}$

Solution: Recall: $y(t) = \mathcal{L}^{-1}[H(s)] + \mathcal{L}^{-1}[e^{-\pi s} H(s)]$, and

$$H(s) = \frac{1}{\left(s^2 + s + \frac{5}{4}\right)\left(s^2 + 1\right)}.$$

Partial fractions: Find the zeros of the denominator,

$$s_{\pm} = \frac{1}{2} \left[-1 \pm \sqrt{1-5} \right] \quad \Rightarrow \quad \mathsf{Complex roots}.$$

Example

Use the Laplace transform to find the solution of the IVP

$$y'' + y' + \frac{5}{4}y = g(t),$$
 $y(0) = 0,$ $g(t) = \begin{cases} \sin(t) & t \in [0, \pi) \\ 0 & t \in [\pi, \infty). \end{cases}$

Solution: Recall: $y(t) = \mathcal{L}^{-1}[H(s)] + \mathcal{L}^{-1}[e^{-\pi s} H(s)]$, and

$$H(s) = \frac{1}{\left(s^2 + s + \frac{5}{4}\right)\left(s^2 + 1\right)}.$$

Partial fractions: Find the zeros of the denominator,

$$s_{\pm} = \frac{1}{2} \left[-1 \pm \sqrt{1-5} \right] \quad \Rightarrow \quad \text{Complex roots.}$$

The partial fraction decomposition is:

Example

Use the Laplace transform to find the solution of the IVP

$$y'' + y' + \frac{5}{4}y = g(t),$$
 $y(0) = 0,$ $g(t) = \begin{cases} \sin(t) & t \in [0, \pi) \\ 0 & t \in [\pi, \infty). \end{cases}$

Solution: Recall: $y(t) = \mathcal{L}^{-1}[H(s)] + \mathcal{L}^{-1}[e^{-\pi s} H(s)]$, and

$$H(s) = \frac{1}{\left(s^2 + s + \frac{5}{4}\right)(s^2 + 1)}.$$

Partial fractions: Find the zeros of the denominator,

$$s_{\pm} = \frac{1}{2} \left[-1 \pm \sqrt{1-5} \right] \Rightarrow \text{Complex roots.}$$

The partial fraction decomposition is:

$$\frac{1}{\left(s^2+s+\frac{5}{4}\right)\left(s^2+1\right)} = \frac{\left(as+b\right)}{\left(s^2+s+\frac{5}{4}\right)} + \frac{\left(cs+d\right)}{\left(s^2+1\right)}.$$

Example

$$y'' + y' + \frac{5}{4}y = g(t),$$
 $y(0) = 0,$ $g(t) = \begin{cases} \sin(t) & t \in [0, \pi) \\ 0 & t \in [\pi, \infty). \end{cases}$

Solution: So:
$$\frac{1}{\left(s^2+s+\frac{5}{4}\right)\left(s^2+1\right)} = \frac{\left(as+b\right)}{\left(s^2+s+\frac{5}{4}\right)} + \frac{\left(cs+d\right)}{\left(s^2+1\right)}.$$

Example

Use the Laplace transform to find the solution of the IVP

$$y'' + y' + \frac{5}{4}y = g(t),$$
 $y(0) = 0,$ $g(t) = \begin{cases} \sin(t) & t \in [0, \pi) \\ 0 & t \in [\pi, \infty). \end{cases}$

Solution: So:
$$\frac{1}{\left(s^2+s+\frac{5}{4}\right)\left(s^2+1\right)} = \frac{\left(as+b\right)}{\left(s^2+s+\frac{5}{4}\right)} + \frac{\left(cs+d\right)}{\left(s^2+1\right)}.$$

Therefore, we get

$$1 = (as + b)(s^2 + 1) + (cs + d)(s^2 + s + \frac{5}{4}),$$

Example

Use the Laplace transform to find the solution of the IVP

$$y'' + y' + \frac{5}{4}y = g(t),$$
 $y(0) = 0,$ $g(t) = \begin{cases} \sin(t) & t \in [0, \pi) \\ 0 & t \in [\pi, \infty). \end{cases}$

Solution: So:
$$\frac{1}{\left(s^2+s+\frac{5}{4}\right)\left(s^2+1\right)} = \frac{\left(as+b\right)}{\left(s^2+s+\frac{5}{4}\right)} + \frac{\left(cs+d\right)}{\left(s^2+1\right)}.$$

Therefore, we get

$$1 = (as + b)(s^2 + 1) + (cs + d)(s^2 + s + \frac{5}{4}),$$

$$1 = (a+c) s^3 + (b+c+d) s^2 + \left(a + \frac{5}{4} c + d\right) s + \left(b + \frac{5}{4} d\right).$$

Example

Use the Laplace transform to find the solution of the IVP

$$y'' + y' + \frac{5}{4}y = g(t),$$
 $y(0) = 0,$ $g(t) = \begin{cases} \sin(t) & t \in [0, \pi) \\ 0 & t \in [\pi, \infty). \end{cases}$

Solution: So:
$$\frac{1}{\left(s^2+s+\frac{5}{4}\right)\left(s^2+1\right)} = \frac{\left(as+b\right)}{\left(s^2+s+\frac{5}{4}\right)} + \frac{\left(cs+d\right)}{\left(s^2+1\right)}.$$

Therefore, we get

$$1 = (as + b)(s^2 + 1) + (cs + d)(s^2 + s + \frac{5}{4}),$$

$$1 = (a+c) s^3 + (b+c+d) s^2 + \left(a + \frac{5}{4} c + d\right) s + \left(b + \frac{5}{4} d\right).$$

This equation implies that a, b, c, and d, are solutions of

$$a+c=0, \quad b+c+d=0, \quad a+\frac{5}{4}\,c+d=0, \quad b+\frac{5}{4}\,d=1.$$

Example

Use the Laplace transform to find the solution of the IVP

$$y'' + y' + \frac{5}{4}y = g(t),$$
 $y(0) = 0,$ $g(t) = \begin{cases} \sin(t) & t \in [0, \pi) \\ 0 & t \in [\pi, \infty). \end{cases}$

Solution: So:
$$a = \frac{16}{17}$$
, $b = \frac{12}{17}$, $c = -\frac{16}{17}$, $d = \frac{4}{17}$.

Example

Use the Laplace transform to find the solution of the IVP

$$y'' + y' + \frac{5}{4}y = g(t),$$
 $y(0) = 0,$ $g(t) = \begin{cases} \sin(t) & t \in [0, \pi) \\ 0 & t \in [\pi, \infty). \end{cases}$

Solution: So:
$$a = \frac{16}{17}$$
, $b = \frac{12}{17}$, $c = -\frac{16}{17}$, $d = \frac{4}{17}$.

We have found:
$$H(s) = \frac{4}{17} \left[\frac{(4s+3)}{(s^2+s+\frac{5}{4})} + \frac{(-4s+1)}{(s^2+1)} \right].$$

Example

Use the Laplace transform to find the solution of the IVP

$$y'' + y' + \frac{5}{4}y = g(t),$$
 $y(0) = 0,$ $g(t) = \begin{cases} \sin(t) & t \in [0, \pi) \\ 0 & t \in [\pi, \infty). \end{cases}$

Solution: So:
$$a = \frac{16}{17}$$
, $b = \frac{12}{17}$, $c = -\frac{16}{17}$, $d = \frac{4}{17}$.

We have found:
$$H(s) = \frac{4}{17} \left[\frac{(4s+3)}{(s^2+s+\frac{5}{4})} + \frac{(-4s+1)}{(s^2+1)} \right].$$

Example

Use the Laplace transform to find the solution of the IVP

$$y'' + y' + \frac{5}{4}y = g(t),$$
 $y(0) = 0,$ $g(t) = \begin{cases} \sin(t) & t \in [0, \pi) \\ 0 & t \in [\pi, \infty). \end{cases}$

Solution: So:
$$a = \frac{16}{17}$$
, $b = \frac{12}{17}$, $c = -\frac{16}{17}$, $d = \frac{4}{17}$.

We have found:
$$H(s) = \frac{4}{17} \left[\frac{(4s+3)}{(s^2+s+\frac{5}{4})} + \frac{(-4s+1)}{(s^2+1)} \right].$$

$$s^{2} + s + \frac{5}{4} = \left[s^{2} + 2\left(\frac{1}{2}\right)s + \frac{1}{4}\right] - \frac{1}{4} + \frac{5}{4}$$

Example

Use the Laplace transform to find the solution of the IVP

$$y'' + y' + \frac{5}{4}y = g(t),$$
 $y(0) = 0,$ $g(t) = \begin{cases} \sin(t) & t \in [0, \pi) \\ 0 & t \in [\pi, \infty). \end{cases}$

Solution: So:
$$a = \frac{16}{17}$$
, $b = \frac{12}{17}$, $c = -\frac{16}{17}$, $d = \frac{4}{17}$.

We have found:
$$H(s) = \frac{4}{17} \left[\frac{(4s+3)}{(s^2+s+\frac{5}{4})} + \frac{(-4s+1)}{(s^2+1)} \right].$$

$$s^{2} + s + \frac{5}{4} = \left[s^{2} + 2\left(\frac{1}{2}\right)s + \frac{1}{4}\right] - \frac{1}{4} + \frac{5}{4} = \left(s + \frac{1}{2}\right)^{2} + 1.$$

Example

Use the Laplace transform to find the solution of the IVP

$$y'' + y' + \frac{5}{4}y = g(t),$$
 $y(0) = 0,$ $g(t) = \begin{cases} \sin(t) & t \in [0, \pi) \\ 0 & t \in [\pi, \infty). \end{cases}$

Solution: So:
$$a = \frac{16}{17}$$
, $b = \frac{12}{17}$, $c = -\frac{16}{17}$, $d = \frac{4}{17}$.

We have found:
$$H(s) = \frac{4}{17} \left[\frac{(4s+3)}{(s^2+s+\frac{5}{4})} + \frac{(-4s+1)}{(s^2+1)} \right].$$

$$s^{2} + s + \frac{5}{4} = \left[s^{2} + 2\left(\frac{1}{2}\right)s + \frac{1}{4}\right] - \frac{1}{4} + \frac{5}{4} = \left(s + \frac{1}{2}\right)^{2} + 1.$$

$$H(s) = \frac{4}{17} \left[\frac{\left(4s + 3\right)}{\left[\left(s + \frac{1}{2}\right)^{2} + 1\right]} + \frac{\left(-4s + 1\right)}{\left(s^{2} + 1\right)} \right].$$

Example

Use the Laplace transform to find the solution of the IVP

$$y'' + y' + \frac{5}{4}y = g(t),$$
 $y(0) = 0,$ $g(t) = \begin{cases} \sin(t) & t \in [0, \pi) \\ 0 & t \in [\pi, \infty). \end{cases}$

Solution: So:
$$H(s) = \frac{4}{17} \left[\frac{(4s+3)}{\left[(s+\frac{1}{2})^2 + 1 \right]} + \frac{(-4s+1)}{(s^2+1)} \right].$$

Example

Use the Laplace transform to find the solution of the IVP

$$y'' + y' + \frac{5}{4}y = g(t),$$
 $y(0) = 0,$ $g(t) = \begin{cases} \sin(t) & t \in [0, \pi) \\ 0 & t \in [\pi, \infty). \end{cases}$

Solution: So:
$$H(s) = \frac{4}{17} \left[\frac{(4s+3)}{\left[\left(s + \frac{1}{2} \right)^2 + 1 \right]} + \frac{(-4s+1)}{\left(s^2 + 1 \right)} \right].$$

Example

Use the Laplace transform to find the solution of the IVP

$$y'' + y' + \frac{5}{4}y = g(t),$$
 $y(0) = 0,$ $g(t) = \begin{cases} \sin(t) & t \in [0, \pi) \\ 0 & t \in [\pi, \infty). \end{cases}$

Solution: So:
$$H(s) = \frac{4}{17} \left[\frac{(4s+3)}{\left[\left(s + \frac{1}{2} \right)^2 + 1 \right]} + \frac{(-4s+1)}{(s^2+1)} \right].$$

$$(4s+3) = 4(s+\frac{1}{2}-\frac{1}{2})+3$$

Example

Use the Laplace transform to find the solution of the IVP

$$y'' + y' + \frac{5}{4}y = g(t),$$
 $y(0) = 0,$ $g(t) = \begin{cases} \sin(t) & t \in [0, \pi) \\ 0 & t \in [\pi, \infty). \end{cases}$

Solution: So:
$$H(s) = \frac{4}{17} \left[\frac{(4s+3)}{\left[\left(s + \frac{1}{2} \right)^2 + 1 \right]} + \frac{(-4s+1)}{(s^2+1)} \right].$$

$$(4s+3) = 4\left(s + \frac{1}{2} - \frac{1}{2}\right) + 3 = 4\left(s + \frac{1}{2}\right) + 1,$$

Example

Use the Laplace transform to find the solution of the IVP

$$y'' + y' + \frac{5}{4}y = g(t),$$
 $y(0) = 0,$ $g(t) = \begin{cases} \sin(t) & t \in [0, \pi) \\ 0 & t \in [\pi, \infty). \end{cases}$

Solution: So:
$$H(s) = \frac{4}{17} \left[\frac{(4s+3)}{\left[\left(s + \frac{1}{2} \right)^2 + 1 \right]} + \frac{(-4s+1)}{(s^2+1)} \right].$$

$$(4s+3) = 4\left(s + \frac{1}{2} - \frac{1}{2}\right) + 3 = 4\left(s + \frac{1}{2}\right) + 1,$$

$$H(s) = \frac{4}{17} \left[4 \frac{\left(s + \frac{1}{2}\right)}{\left[\left(s + \frac{1}{2}\right)^2 + 1\right]} + \frac{1}{\left[\left(s + \frac{1}{2}\right)^2 + 1\right]} - 4 \frac{s}{\left(s^2 + 1\right)} + \frac{1}{\left(s^2 + 1\right)} \right],$$

Example

Use the Laplace transform to find the solution of the IVP

$$y'' + y' + \frac{5}{4}y = g(t),$$
 $y(0) = 0,$ $g(t) = \begin{cases} \sin(t) & t \in [0, \pi) \\ 0 & t \in [\pi, \infty). \end{cases}$

Solution:

$$H(s) = \frac{4}{17} \left[4 \frac{\left(s + \frac{1}{2}\right)}{\left[\left(s + \frac{1}{2}\right)^2 + 1\right]} + \frac{1}{\left[\left(s + \frac{1}{2}\right)^2 + 1\right]} - 4 \frac{s}{\left(s^2 + 1\right)} + \frac{1}{\left(s^2 + 1\right)} \right],$$

Example

Use the Laplace transform to find the solution of the IVP

$$y'' + y' + \frac{5}{4}y = g(t),$$
 $y(0) = 0,$ $g(t) = \begin{cases} \sin(t) & t \in [0, \pi) \\ 0 & t \in [\pi, \infty). \end{cases}$

Solution:

$$H(s) = \frac{4}{17} \left[4 \frac{\left(s + \frac{1}{2}\right)}{\left[\left(s + \frac{1}{2}\right)^2 + 1\right]} + \frac{1}{\left[\left(s + \frac{1}{2}\right)^2 + 1\right]} - 4 \frac{s}{\left(s^2 + 1\right)} + \frac{1}{\left(s^2 + 1\right)} \right],$$

Use the Laplace Transform table to get H(s) equal to

$$H(s) = \frac{4}{17} \Big[4 \mathcal{L} \big[e^{-t/2} \cos(t) \big] + \mathcal{L} \big[e^{-t/2} \sin(t) \big] - 4 \mathcal{L} [\cos(t)] + \mathcal{L} [\sin(t)] \Big].$$

Example

Use the Laplace transform to find the solution of the IVP

$$y'' + y' + \frac{5}{4}y = g(t),$$
 $y(0) = 0,$ $g(t) = \begin{cases} \sin(t) & t \in [0, \pi) \\ 0 & t \in [\pi, \infty). \end{cases}$

Solution:

$$H(s) = \frac{4}{17} \left[4 \frac{\left(s + \frac{1}{2}\right)}{\left[\left(s + \frac{1}{2}\right)^2 + 1\right]} + \frac{1}{\left[\left(s + \frac{1}{2}\right)^2 + 1\right]} - 4 \frac{s}{\left(s^2 + 1\right)} + \frac{1}{\left(s^2 + 1\right)} \right],$$

Use the Laplace Transform table to get H(s) equal to

$$H(s) = \frac{4}{17} \Big[4 \mathcal{L} \big[e^{-t/2} \cos(t) \big] + \mathcal{L} \big[e^{-t/2} \sin(t) \big] - 4 \mathcal{L} [\cos(t)] + \mathcal{L} [\sin(t)] \Big].$$

$$H(s) = \mathcal{L}\left[\frac{4}{17}\left(4e^{-t/2}\cos(t) + e^{-t/2}\sin(t) - 4\cos(t) + \sin(t)\right)\right].$$

Example

Use the Laplace transform to find the solution of the IVP

$$y'' + y' + \frac{5}{4}y = g(t),$$
 $y(0) = 0,$ $g(t) = \begin{cases} \sin(t) & t \in [0, \pi) \\ 0 & t \in [\pi, \infty). \end{cases}$

Solution: Recall:

$$H(s) = \mathcal{L}\Big[\frac{4}{17}\Big(4e^{-t/2}\cos(t) + e^{-t/2}\sin(t) - 4\cos(t) + \sin(t)\Big)\Big].$$

Example

Use the Laplace transform to find the solution of the IVP

$$y'' + y' + \frac{5}{4}y = g(t),$$
 $y(0) = 0,$ $g(t) = \begin{cases} \sin(t) & t \in [0, \pi) \\ 0 & t \in [\pi, \infty). \end{cases}$

Solution: Recall:

$$H(s) = \mathcal{L}\Big[\frac{4}{17}\Big(4e^{-t/2}\cos(t) + e^{-t/2}\sin(t) - 4\cos(t) + \sin(t)\Big)\Big].$$

Denote:

$$h(t) = \frac{4}{17} \Big[4e^{-t/2}\cos(t) + e^{-t/2}\sin(t) - 4\cos(t) + \sin(t) \Big].$$

Example

Use the Laplace transform to find the solution of the IVP

$$y'' + y' + \frac{5}{4}y = g(t),$$
 $y(0) = 0,$ $g(t) = \begin{cases} \sin(t) & t \in [0, \pi) \\ 0 & t \in [\pi, \infty). \end{cases}$

Solution: Recall:

$$H(s) = \mathcal{L}\Big[\frac{4}{17}\Big(4e^{-t/2}\cos(t) + e^{-t/2}\sin(t) - 4\cos(t) + \sin(t)\Big)\Big].$$

Denote:

$$h(t) = \frac{4}{17} \Big[4e^{-t/2}\cos(t) + e^{-t/2}\sin(t) - 4\cos(t) + \sin(t) \Big].$$

Then, $H(s) = \mathcal{L}[h(t)]$.

Example

Use the Laplace transform to find the solution of the IVP

$$y'' + y' + \frac{5}{4}y = g(t),$$
 $y(0) = 0,$ $g(t) = \begin{cases} \sin(t) & t \in [0, \pi) \\ 0 & t \in [\pi, \infty). \end{cases}$

Solution: Recall:

$$H(s) = \mathcal{L}\Big[\frac{4}{17}\Big(4e^{-t/2}\cos(t) + e^{-t/2}\sin(t) - 4\cos(t) + \sin(t)\Big)\Big].$$

Denote:

$$h(t) = \frac{4}{17} \Big[4e^{-t/2}\cos(t) + e^{-t/2}\sin(t) - 4\cos(t) + \sin(t) \Big].$$

Then,
$$H(s) = \mathcal{L}[h(t)]$$
. Recalling: $\mathcal{L}[y(t)] = H(s) + e^{-\pi s} H(s)$,

Example

Use the Laplace transform to find the solution of the IVP

$$y'' + y' + \frac{5}{4}y = g(t),$$
 $y(0) = 0,$ $g(t) = \begin{cases} \sin(t) & t \in [0, \pi) \\ 0 & t \in [\pi, \infty). \end{cases}$

Solution: Recall:

$$H(s) = \mathcal{L}\Big[\frac{4}{17}\Big(4e^{-t/2}\cos(t) + e^{-t/2}\sin(t) - 4\cos(t) + \sin(t)\Big)\Big].$$

Denote:

$$h(t) = \frac{4}{17} \Big[4e^{-t/2}\cos(t) + e^{-t/2}\sin(t) - 4\cos(t) + \sin(t) \Big].$$

Then,
$$H(s)=\mathcal{L}[h(t)]$$
. Recalling: $\mathcal{L}[y(t)]=H(s)+e^{-\pi s}\,H(s),$
$$\mathcal{L}[y(t)]=\mathcal{L}[h(t)]+e^{-\pi s}\,\mathcal{L}[h(t)].$$

Example

Use the Laplace transform to find the solution of the IVP

$$y'' + y' + \frac{5}{4}y = g(t),$$
 $y(0) = 0,$ $g(t) = \begin{cases} \sin(t) & t \in [0, \pi) \\ 0 & t \in [\pi, \infty). \end{cases}$

Solution: Recall:

$$H(s) = \mathcal{L}\Big[\frac{4}{17}\Big(4e^{-t/2}\cos(t) + e^{-t/2}\sin(t) - 4\cos(t) + \sin(t)\Big)\Big].$$

Denote:

$$h(t) = \frac{4}{17} \Big[4e^{-t/2}\cos(t) + e^{-t/2}\sin(t) - 4\cos(t) + \sin(t) \Big].$$

Then, $H(s) = \mathcal{L}[h(t)]$. Recalling: $\mathcal{L}[y(t)] = H(s) + e^{-\pi s} H(s)$,

$$\mathcal{L}[y(t)] = \mathcal{L}[h(t)] + e^{-\pi s} \mathcal{L}[h(t)].$$

We conclude:
$$y(t) = h(t) + u(t - \pi)h(t - \pi)$$
.

 $\langle 1 \rangle$

Generalized sources (Sect. 6.5).

- ▶ The Dirac delta generalized function.
- Properties of Dirac's delta.
- Relation between deltas and steps.
- Dirac's delta in Physics.
- ▶ The Laplace Transform of Dirac's delta.
- Differential equations with Dirac's delta sources.

Generalized sources (Sect. 6.5).

- ► The Dirac delta generalized function.
- Properties of Dirac's delta.
- Relation between deltas and steps.
- Dirac's delta in Physics.
- ▶ The Laplace Transform of Dirac's delta.
- Differential equations with Dirac's delta sources.

Definition

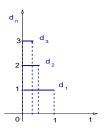
Consider the sequence of functions for $n \ge 1$,

$$\delta_n(t) = \left\{ egin{array}{ll} 0, & t < 0 \ n, & 0 \leqslant t \leqslant rac{1}{n} \ 0, & t > rac{1}{n}. \end{array}
ight.$$

Definition

Consider the sequence of functions for $n \ge 1$,

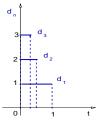
$$\delta_n(t) = \left\{ egin{array}{ll} 0, & t < 0 \ n, & 0 \leqslant t \leqslant rac{1}{n} \ 0, & t > rac{1}{n}. \end{array}
ight.$$



Definition

Consider the sequence of functions for $n \ge 1$,

$$\delta_n(t) = \left\{ egin{array}{ll} 0, & t < 0 \ n, & 0 \leqslant t \leqslant rac{1}{n} \ 0, & t > rac{1}{n}. \end{array}
ight.$$



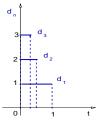
The Dirac delta generalized function is given by

$$\lim_{n\to\infty}\delta_n(t)=\delta(t), \qquad t\in\mathbb{R}.$$

Definition

Consider the sequence of functions for $n \ge 1$,

$$\delta_n(t) = \left\{ egin{array}{ll} 0, & t < 0 \ n, & 0 \leqslant t \leqslant rac{1}{n} \ 0, & t > rac{1}{n}. \end{array}
ight.$$



The Dirac delta generalized function is given by

$$\lim_{n\to\infty}\delta_n(t)=\delta(t), \qquad t\in\mathbb{R}.$$

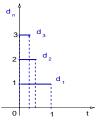
Remarks:

(a) There exist infinitely many sequences δ_n that define the same generalized function δ .

Definition

Consider the sequence of functions for $n \ge 1$,

$$\delta_n(t) = \left\{ egin{array}{ll} 0, & t < 0 \ n, & 0 \leqslant t \leqslant rac{1}{n} \ 0, & t > rac{1}{n}. \end{array}
ight.$$

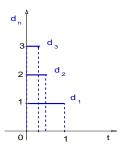


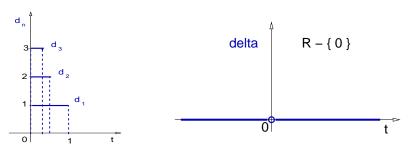
The Dirac delta generalized function is given by

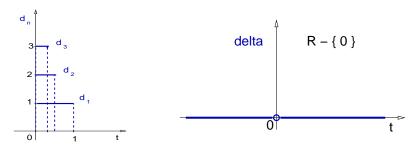
$$\lim_{n\to\infty}\delta_n(t)=\delta(t), \qquad t\in\mathbb{R}.$$

Remarks:

- (a) There exist infinitely many sequences δ_n that define the same generalized function δ .
- (b) For example, compare with the sequence δ_n in the textbook.

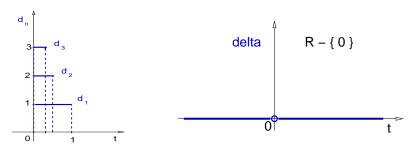






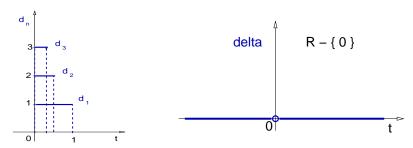
Remarks:

(a) The Dirac δ is a function on the domain $\mathbb{R}-\{0\}$, and $\delta(t)=0$ for $t\in\mathbb{R}-\{0\}$.



Remarks:

- (a) The Dirac δ is a function on the domain $\mathbb{R} \{0\}$, and $\delta(t) = 0$ for $t \in \mathbb{R} \{0\}$.
- (b) δ at t=0 is not defined, since $\delta(0)=\lim_{n\to\infty}n=+\infty$.



Remarks:

- (a) The Dirac δ is a function on the domain $\mathbb{R} \{0\}$, and $\delta(t) = 0$ for $t \in \mathbb{R} \{0\}$.
- (b) δ at t=0 is not defined, since $\delta(0)=\lim_{n\to\infty}n=+\infty$.
- (c) δ is not a function on \mathbb{R} .

Generalized sources (Sect. 6.5).

- ▶ The Dirac delta generalized function.
- ► Properties of Dirac's delta.
- Relation between deltas and steps.
- Dirac's delta in Physics.
- The Laplace Transform of Dirac's delta.
- Differential equations with Dirac's delta sources.

Properties of Dirac's delta.

Remark: The Dirac δ is not a function.

Properties of Dirac's delta.

Remark: The Dirac δ is not a function.

We define operations on Dirac's δ as limits $n \to \infty$ of the operation on the sequence elements δ_n .

Properties of Dirac's delta.

Remark: The Dirac δ is not a function.

We define operations on Dirac's δ as limits $n \to \infty$ of the operation on the sequence elements δ_n .

Definition

$$\delta(t-c)=\lim_{n\to\infty}\delta_n(t-c),$$

Remark: The Dirac δ is not a function.

We define operations on Dirac's δ as limits $n \to \infty$ of the operation on the sequence elements δ_n .

$$\delta(t-c) = \lim_{n\to\infty} \delta_n(t-c),$$

$$a\,\delta(t) + b\,\delta(t) = \lim_{n\to\infty} \big[a\,\delta_n(t) + b\,\delta_n(t)\big],$$

Remark: The Dirac δ is not a function.

We define operations on Dirac's δ as limits $n \to \infty$ of the operation on the sequence elements δ_n .

$$\delta(t-c) = \lim_{n \to \infty} \delta_n(t-c),$$

$$a \, \delta(t) + b \, \delta(t) = \lim_{n \to \infty} \left[a \, \delta_n(t) + b \, \delta_n(t) \right],$$

$$f(t) \, \delta(t) = \lim_{n \to \infty} \left[f(t) \, \delta_n(t) \right],$$

Remark: The Dirac δ is not a function.

We define operations on Dirac's δ as limits $n \to \infty$ of the operation on the sequence elements δ_n .

$$\delta(t-c) = \lim_{n \to \infty} \delta_n(t-c),$$

$$a \, \delta(t) + b \, \delta(t) = \lim_{n \to \infty} \left[a \, \delta_n(t) + b \, \delta_n(t) \right],$$

$$f(t) \, \delta(t) = \lim_{n \to \infty} \left[f(t) \, \delta_n(t) \right],$$

$$\int_a^b \delta(t) \, dt = \lim_{n \to \infty} \int_a^b \delta_n(t) \, dt,$$

Remark: The Dirac δ is not a function.

We define operations on Dirac's δ as limits $n \to \infty$ of the operation on the sequence elements δ_n .

$$\delta(t-c) = \lim_{n \to \infty} \delta_n(t-c),$$

$$a \, \delta(t) + b \, \delta(t) = \lim_{n \to \infty} \left[a \, \delta_n(t) + b \, \delta_n(t) \right],$$

$$f(t) \, \delta(t) = \lim_{n \to \infty} \left[f(t) \, \delta_n(t) \right],$$

$$\int_a^b \delta(t) \, dt = \lim_{n \to \infty} \int_a^b \delta_n(t) \, dt,$$

$$\mathcal{L}[\delta] = \lim_{n \to \infty} \mathcal{L}[\delta_n].$$

Theorem

$$\int_{-a}^{a} \delta(t) dt = 1, \qquad a > 0.$$

Theorem

$$\int_{-a}^{a} \delta(t) dt = 1, \qquad a > 0.$$

$$\int_{-a}^{a} \delta(t) \, dt$$

Theorem

$$\int_{-a}^{a} \delta(t) dt = 1, \qquad a > 0.$$

$$\int_{-a}^{a} \delta(t) dt = \lim_{n \to \infty} \int_{-a}^{a} \delta_n(t) dt$$

Theorem

$$\int_{-a}^{a} \delta(t) dt = 1, \qquad a > 0.$$

$$\int_{-a}^{a} \delta(t) dt = \lim_{n \to \infty} \int_{-a}^{a} \delta_n(t) dt = \lim_{n \to \infty} \int_{0}^{1/n} n dt$$

Theorem

$$\int_{-a}^{a} \delta(t) dt = 1, \qquad a > 0.$$

$$\int_{-a}^{a} \delta(t) dt = \lim_{n \to \infty} \int_{-a}^{a} \delta_n(t) dt = \lim_{n \to \infty} \int_{0}^{1/n} n dt$$
$$\int_{-a}^{a} \delta(t) dt = \lim_{n \to \infty} \left[n \left(t \Big|_{0}^{1/n} \right) \right]$$

Theorem

$$\int_{-a}^{a} \delta(t) dt = 1, \qquad a > 0.$$

$$\int_{-a}^{a} \delta(t) dt = \lim_{n \to \infty} \int_{-a}^{a} \delta_n(t) dt = \lim_{n \to \infty} \int_{0}^{1/n} n dt$$

$$\int_{-a}^{a} \delta(t) dt = \lim_{n \to \infty} \left[n \left(t \Big|_{0}^{1/n} \right) \right] = \lim_{n \to \infty} \left[n \frac{1}{n} \right].$$

Theorem

$$\int_{-a}^{a} \delta(t) dt = 1, \qquad a > 0.$$

$$\int_{-a}^{a} \delta(t) dt = \lim_{n \to \infty} \int_{-a}^{a} \delta_n(t) dt = \lim_{n \to \infty} \int_{0}^{1/n} n dt$$

$$\int_{-a}^{a} \delta(t) dt = \lim_{n \to \infty} \left[n \left(t \Big|_{0}^{1/n} \right) \right] = \lim_{n \to \infty} \left[n \frac{1}{n} \right].$$

We conclude:
$$\int_{-2}^{a} \delta(t) dt = 1.$$

Theorem

$$\int_{t_0-a}^{t_0+a} \delta(t-t_0) f(t) dt = f(t_0).$$

Theorem

If $f : \mathbb{R} \to \mathbb{R}$ is continuous, $t_0 \in \mathbb{R}$ and a > 0, then

$$\int_{t_0-a}^{t_0+a} \delta(t-t_0) f(t) dt = f(t_0).$$

Proof: Introduce the change of variable $\tau=t-t_0$,

$$I = \int_{t_0-a}^{t_0+a} \delta(t-t_0) f(t) dt$$

Theorem

If $f : \mathbb{R} \to \mathbb{R}$ is continuous, $t_0 \in \mathbb{R}$ and a > 0, then

$$\int_{t_0-a}^{t_0+a} \delta(t-t_0) f(t) dt = f(t_0).$$

Proof: Introduce the change of variable $\tau = t - t_0$,

$$I = \int_{t_0-a}^{t_0+a} \delta(t-t_0) f(t) dt = \int_{-a}^{a} \delta(\tau) f(\tau+t_0) d\tau,$$

Theorem

If $f : \mathbb{R} \to \mathbb{R}$ is continuous, $t_0 \in \mathbb{R}$ and a > 0, then

$$\int_{t_0-a}^{t_0+a} \delta(t-t_0) f(t) dt = f(t_0).$$

Proof: Introduce the change of variable $\tau = t - t_0$,

$$I = \int_{t_0-a}^{t_0+a} \delta(t-t_0) f(t) dt = \int_{-a}^{a} \delta(\tau) f(\tau+t_0) d\tau,$$

$$I = \lim_{n \to \infty} \int_{-a}^{a} \delta_n(\tau) f(\tau + t_0) d\tau$$

Theorem

If $f : \mathbb{R} \to \mathbb{R}$ is continuous, $t_0 \in \mathbb{R}$ and a > 0, then

$$\int_{t_0-a}^{t_0+a} \delta(t-t_0) f(t) dt = f(t_0).$$

Proof: Introduce the change of variable $\tau = t - t_0$,

$$I = \int_{t_0-a}^{t_0+a} \delta(t-t_0) f(t) dt = \int_{-a}^{a} \delta(\tau) f(\tau+t_0) d\tau,$$

$$I = \lim_{n \to \infty} \int_{-a}^{a} \delta_n(\tau) f(\tau + t_0) d\tau = \lim_{n \to \infty} \int_{0}^{1/n} n f(\tau + t_0) d\tau$$

Theorem

If $f: \mathbb{R} \to \mathbb{R}$ is continuous, $t_0 \in \mathbb{R}$ and a > 0, then

$$\int_{t_0-a}^{t_0+a} \delta(t-t_0) f(t) dt = f(t_0).$$

Proof: Introduce the change of variable $\tau=t-t_0$,

$$I = \int_{t_0-a}^{t_0+a} \delta(t-t_0) f(t) dt = \int_{-a}^{a} \delta(\tau) f(\tau+t_0) d\tau,$$

$$I = \lim_{n \to \infty} \int_{-a}^{a} \delta_n(\tau) f(\tau + t_0) d\tau = \lim_{n \to \infty} \int_{0}^{1/n} n f(\tau + t_0) d\tau$$

Therefore,
$$I = \lim_{n \to \infty} n \int_0^{1/n} F'(\tau + t_0) d\tau$$
,

Theorem

If $f: \mathbb{R} \to \mathbb{R}$ is continuous, $t_0 \in \mathbb{R}$ and a > 0, then

$$\int_{t_0-a}^{t_0+a} \delta(t-t_0) f(t) dt = f(t_0).$$

Proof: Introduce the change of variable $\tau = t - t_0$,

$$I = \int_{t_0-a}^{t_0+a} \delta(t-t_0) f(t) dt = \int_{-a}^{a} \delta(\tau) f(\tau+t_0) d\tau,$$

$$I = \lim_{n \to \infty} \int_{-a}^{a} \delta_n(\tau) f(\tau + t_0) d\tau = \lim_{n \to \infty} \int_{0}^{1/n} n f(\tau + t_0) d\tau$$

Therefore, $I = \lim_{n \to \infty} n \int_0^{1/n} F'(\tau + t_0) d\tau$, where we introduced the primitive $F(t) = \int f(t) dt$, that is, f(t) = F'(t).

Theorem

$$\int_{t_0-a}^{t_0+a} \delta(t-t_0) f(t) dt = f(t_0).$$

Proof: So,
$$I = \lim_{n \to \infty} n \int_0^{1/n} F'(\tau + t_0) d\tau$$
, with $f(t) = F'(t)$.

Theorem

$$\int_{t_0-a}^{t_0+a} \delta(t-t_0) f(t) dt = f(t_0).$$

Proof: So,
$$I = \lim_{n \to \infty} n \int_0^{1/n} F'(\tau + t_0) d\tau$$
, with $f(t) = F'(t)$.

$$I = \lim_{n \to \infty} n \left[F(\tau + t_0) \Big|_{0}^{1/n} \right]$$

Theorem

$$\int_{t_0-a}^{t_0+a} \delta(t-t_0) f(t) dt = f(t_0).$$

Proof: So,
$$I = \lim_{n \to \infty} n \int_0^{1/n} F'(\tau + t_0) d\tau$$
, with $f(t) = F'(t)$.

$$I = \lim_{n \to \infty} n \left[F(\tau + t_0) \Big|_0^{1/n} \right] = \lim_{n \to \infty} n \left[F\left(t_0 + \frac{1}{n}\right) - F(t_0) \right].$$

Theorem

$$\int_{t_0-a}^{t_0+a} \delta(t-t_0) f(t) dt = f(t_0).$$

Proof: So,
$$I = \lim_{n \to \infty} n \int_0^{1/n} F'(\tau + t_0) d\tau$$
, with $f(t) = F'(t)$.

$$I = \lim_{n \to \infty} n \left[F(\tau + t_0) \Big|_0^{1/n} \right] = \lim_{n \to \infty} n \left[F\left(t_0 + \frac{1}{n}\right) - F(t_0) \right].$$

$$I = \lim_{n \to \infty} \frac{\left[F\left(t_0 + \frac{1}{n}\right) - F(t_0)\right]}{\frac{1}{n}}$$

Theorem

$$\int_{t_0-a}^{t_0+a} \delta(t-t_0) f(t) dt = f(t_0).$$

Proof: So,
$$I = \lim_{n \to \infty} n \int_0^{1/n} F'(\tau + t_0) d\tau$$
, with $f(t) = F'(t)$.

$$I = \lim_{n \to \infty} n \left[F(\tau + t_0) \Big|_0^{1/n} \right] = \lim_{n \to \infty} n \left[F\left(t_0 + \frac{1}{n}\right) - F(t_0) \right].$$

$$I = \lim_{n \to \infty} \frac{\left[F\left(t_0 + \frac{1}{n}\right) - F(t_0)\right]}{\frac{1}{n}} = F'(t_0)$$

Theorem

$$\int_{t_0-a}^{t_0+a} \delta(t-t_0) f(t) dt = f(t_0).$$

Proof: So,
$$I = \lim_{n \to \infty} n \int_0^{1/n} F'(\tau + t_0) d\tau$$
, with $f(t) = F'(t)$.

$$I = \lim_{n \to \infty} n \left[F(\tau + t_0) \Big|_0^{1/n} \right] = \lim_{n \to \infty} n \left[F\left(t_0 + \frac{1}{n}\right) - F(t_0) \right].$$

$$I=\lim_{n\to\infty}\frac{\left[F\left(t_0+\frac{1}{n}\right)-F(t_0)\right]}{\frac{1}{n}}=F'(t_0)=f(t_0).$$

Theorem

$$\int_{t_0-a}^{t_0+a} \delta(t-t_0) f(t) dt = f(t_0).$$

Proof: So,
$$I = \lim_{n \to \infty} n \int_0^{1/n} F'(\tau + t_0) d\tau$$
, with $f(t) = F'(t)$.

$$I = \lim_{n \to \infty} n \left[F(\tau + t_0) \Big|_0^{1/n} \right] = \lim_{n \to \infty} n \left[F\left(t_0 + \frac{1}{n}\right) - F(t_0) \right].$$

$$I=\lim_{n\to\infty}\frac{\left[F\left(t_0+\frac{1}{n}\right)-F(t_0)\right]}{\frac{1}{n}}=F'(t_0)=f(t_0).$$

We conclude:
$$\int_{t_0-a}^{t_0+a} \delta(t-t_0) f(t) dt = f(t_0).$$

Generalized sources (Sect. 6.5).

- ▶ The Dirac delta generalized function.
- Properties of Dirac's delta.
- Relation between deltas and steps.
- Dirac's delta in Physics.
- The Laplace Transform of Dirac's delta.
- Differential equations with Dirac's delta sources.

Theorem

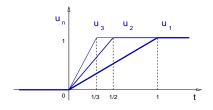
The sequence of functions for $n \ge 1$,

$$u_n(t) = \begin{cases} 0, & t < 0 \\ nt, & 0 \leqslant t \leqslant \frac{1}{n} \\ 1, & t > \frac{1}{n} \end{cases}$$

Theorem

The sequence of functions for $n \ge 1$,

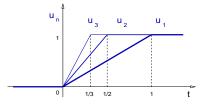
$$u_n(t) = \left\{ egin{array}{ll} 0, & t < 0 \ nt, & 0 \leqslant t \leqslant rac{1}{n} \ 1, & t > rac{1}{n}. \end{array}
ight.$$



Theorem

The sequence of functions for $n \ge 1$,

$$u_n(t) = \left\{ egin{array}{ll} 0, & t < 0 \ nt, & 0 \leqslant t \leqslant rac{1}{n} \ 1, & t > rac{1}{n}. \end{array}
ight.$$



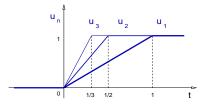
satisfies, for $t \in (-\infty, 0) \cup (0, 1/n) \cup (1/n, \infty)$, both equations,

$$u'_n(t) = \delta_n(t), \qquad \lim_{n \to \infty} u_n(t) = u(t), \qquad t \in \mathbb{R}.$$

Theorem

The sequence of functions for $n \ge 1$,

$$u_n(t) = \begin{cases} 0, & t < 0 \\ nt, & 0 \leqslant t \leqslant \frac{1}{n} \\ 1, & t > \frac{1}{n}. \end{cases}$$



satisfies, for $t \in (-\infty,0) \cup (0,1/n) \cup (1/n,\infty)$, both equations,

$$u'_n(t) = \delta_n(t), \qquad \lim_{n \to \infty} u_n(t) = u(t), \qquad t \in \mathbb{R}.$$

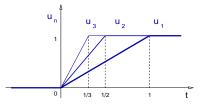
Remark:

▶ If we generalize the notion of derivative as $u'(t) = \lim_{n \to \infty} \delta_n(t)$, then holds $u'(t) = \delta(t)$.

Theorem

The sequence of functions for $n \ge 1$,

$$u_n(t) = \begin{cases} 0, & t < 0 \\ nt, & 0 \leqslant t \leqslant \frac{1}{n} \\ 1, & t > \frac{1}{n}. \end{cases}$$



satisfies, for $t \in (-\infty,0) \cup (0,1/n) \cup (1/n,\infty)$, both equations,

$$u'_n(t) = \delta_n(t), \qquad \lim_{n \to \infty} u_n(t) = u(t), \qquad t \in \mathbb{R}.$$

Remark:

- ▶ If we generalize the notion of derivative as $u'(t) = \lim_{n \to \infty} \delta_n(t)$, then holds $u'(t) = \delta(t)$.
- ▶ Dirac's delta is a generalized derivative of the step function.

Generalized sources (Sect. 6.5).

- ▶ The Dirac delta generalized function.
- Properties of Dirac's delta.
- Relation between deltas and steps.
- Dirac's delta in Physics.
- The Laplace Transform of Dirac's delta.
- Differential equations with Dirac's delta sources.

Remarks:

(a) Dirac's delta generalized function is useful to describe *impulsive forces* in mechanical systems.

Remarks:

- (a) Dirac's delta generalized function is useful to describe *impulsive forces* in mechanical systems.
- (b) An impulsive force transmits a finite momentum in an infinitely short time.

Remarks:

- (a) Dirac's delta generalized function is useful to describe *impulsive forces* in mechanical systems.
- (b) An impulsive force transmits a finite momentum in an infinitely short time.
- (c) For example: The momentum transmitted to a pendulum when hit by a hammer.

Remarks:

- (a) Dirac's delta generalized function is useful to describe *impulsive forces* in mechanical systems.
- (b) An impulsive force transmits a finite momentum in an infinitely short time.
- (c) For example: The momentum transmitted to a pendulum when hit by a hammer. Newton's law of motion says,

$$m v'(t) = F(t),$$

Remarks:

- (a) Dirac's delta generalized function is useful to describe *impulsive forces* in mechanical systems.
- (b) An impulsive force transmits a finite momentum in an infinitely short time.
- (c) For example: The momentum transmitted to a pendulum when hit by a hammer. Newton's law of motion says,

$$m v'(t) = F(t)$$
, with $F(t) = F_0 \delta(t - t_0)$.

Remarks:

- (a) Dirac's delta generalized function is useful to describe *impulsive forces* in mechanical systems.
- (b) An impulsive force transmits a finite momentum in an infinitely short time.
- (c) For example: The momentum transmitted to a pendulum when hit by a hammer. Newton's law of motion says,

$$m v'(t) = F(t)$$
, with $F(t) = F_0 \delta(t - t_0)$.

The momentum transfer is:

$$\Delta I = \lim_{\Delta t \to 0} m v(t) \Big|_{t_0 - \Delta t}^{t_0 + \Delta t}$$

Remarks:

- (a) Dirac's delta generalized function is useful to describe *impulsive forces* in mechanical systems.
- (b) An impulsive force transmits a finite momentum in an infinitely short time.
- (c) For example: The momentum transmitted to a pendulum when hit by a hammer. Newton's law of motion says,

$$m v'(t) = F(t)$$
, with $F(t) = F_0 \delta(t - t_0)$.

The momentum transfer is:

$$\Delta I = \lim_{\Delta t \to 0} m v(t) \Big|_{t_0 - \Delta t}^{t_0 + \Delta t} = \lim_{\Delta t \to 0} \int_{t_0 - \Delta t}^{t_0 + \Delta t} F(t) dt$$

Remarks:

- (a) Dirac's delta generalized function is useful to describe *impulsive forces* in mechanical systems.
- (b) An impulsive force transmits a finite momentum in an infinitely short time.
- (c) For example: The momentum transmitted to a pendulum when hit by a hammer. Newton's law of motion says,

$$m v'(t) = F(t)$$
, with $F(t) = F_0 \delta(t - t_0)$.

The momentum transfer is:

$$\Delta I = \lim_{\Delta t \to 0} mv(t) \Big|_{t_0 - \Delta t}^{t_0 + \Delta t} = \lim_{\Delta t \to 0} \int_{t_0 - \Delta t}^{t_0 + \Delta t} F(t) dt = F_0.$$

Remarks:

- (a) Dirac's delta generalized function is useful to describe *impulsive forces* in mechanical systems.
- (b) An impulsive force transmits a finite momentum in an infinitely short time.
- (c) For example: The momentum transmitted to a pendulum when hit by a hammer. Newton's law of motion says,

$$m v'(t) = F(t)$$
, with $F(t) = F_0 \delta(t - t_0)$.

The momentum transfer is:

$$\Delta I = \lim_{\Delta t \to 0} m v(t) \Big|_{t_0 - \Delta t}^{t_0 + \Delta t} = \lim_{\Delta t \to 0} \int_{t_0 - \Delta t}^{t_0 + \Delta t} F(t) dt = F_0.$$

That is, $\Delta I = F_0$.

Generalized sources (Sect. 6.5).

- ▶ The Dirac delta generalized function.
- Properties of Dirac's delta.
- Relation between deltas and steps.
- Dirac's delta in Physics.
- ► The Laplace Transform of Dirac's delta.
- Differential equations with Dirac's delta sources.

Recall: The Laplace Transform can be generalized from functions to δ ,

Recall: The Laplace Transform can be generalized from functions to δ , as follows, $\mathcal{L}[\delta(t-c)] = \lim_{n \to \infty} \mathcal{L}[\delta_n(t-c)]$.

Recall: The Laplace Transform can be generalized from functions to δ , as follows, $\mathcal{L}[\delta(t-c)] = \lim_{n \to \infty} \mathcal{L}[\delta_n(t-c)]$.

Theorem

$$\mathcal{L}[\delta(t-c)]=e^{-cs}.$$

Recall: The Laplace Transform can be generalized from functions to δ , as follows, $\mathcal{L}[\delta(t-c)] = \lim_{n \to \infty} \mathcal{L}[\delta_n(t-c)]$.

Theorem

$$\mathcal{L}[\delta(t-c)] = e^{-cs}.$$

$$\mathcal{L}[\delta(t-c)] = \lim_{n\to\infty} \mathcal{L}[\delta_n(t-c)],$$

Recall: The Laplace Transform can be generalized from functions to δ , as follows, $\mathcal{L}[\delta(t-c)] = \lim_{n \to \infty} \mathcal{L}[\delta_n(t-c)]$.

Theorem

$$\mathcal{L}[\delta(t-c)] = e^{-cs}.$$

$$\mathcal{L}[\delta(t-c)] = \lim_{n\to\infty} \mathcal{L}[\delta_n(t-c)], \qquad \delta_n(t) = n\left[u(t) - u\left(t - \frac{1}{n}\right)\right].$$

Recall: The Laplace Transform can be generalized from functions to δ , as follows, $\mathcal{L}[\delta(t-c)] = \lim_{n \to \infty} \mathcal{L}[\delta_n(t-c)]$.

Theorem

$$\mathcal{L}[\delta(t-c)]=e^{-cs}.$$

$$\mathcal{L}[\delta(t-c)] = \lim_{n \to \infty} \mathcal{L}[\delta_n(t-c)], \qquad \delta_n(t) = n \left[u(t) - u(t-\frac{1}{n}) \right].$$

$$\mathcal{L}[\delta(t-c)] = \lim_{n \to \infty} n \left(\mathcal{L}[u(t-c)] - \mathcal{L}\left[u(t-c-\frac{1}{n})\right] \right)$$

Recall: The Laplace Transform can be generalized from functions to δ , as follows, $\mathcal{L}[\delta(t-c)] = \lim_{n \to \infty} \mathcal{L}[\delta_n(t-c)]$.

Theorem

$$\mathcal{L}[\delta(t-c)]=e^{-cs}.$$

$$\mathcal{L}[\delta(t-c)] = \lim_{n \to \infty} \mathcal{L}[\delta_n(t-c)], \qquad \delta_n(t) = n \left[u(t) - u(t-\frac{1}{n}) \right].$$

$$\mathcal{L}[\delta(t-c)] = \lim_{n \to \infty} n \left(\mathcal{L}[u(t-c)] - \mathcal{L}\left[u(t-c-\frac{1}{n})\right] \right)$$

$$\mathcal{L}[\delta(t-c)] = \lim_{n \to \infty} n \left(\frac{e^{-cs}}{s} - \frac{e^{-(c+\frac{1}{n})s}}{s} \right)$$

Recall: The Laplace Transform can be generalized from functions to δ , as follows, $\mathcal{L}[\delta(t-c)] = \lim_{n \to \infty} \mathcal{L}[\delta_n(t-c)]$.

Theorem

$$\mathcal{L}[\delta(t-c)]=e^{-cs}.$$

$$\begin{split} \mathcal{L}[\delta(t-c)] &= \lim_{n \to \infty} \mathcal{L}[\delta_n(t-c)], \qquad \delta_n(t) = n \left[u(t) - u(t - \frac{1}{n}) \right]. \\ \mathcal{L}[\delta(t-c)] &= \lim_{n \to \infty} n \left(\mathcal{L}[u(t-c)] - \mathcal{L}\left[u(t-c - \frac{1}{n}) \right] \right) \\ \mathcal{L}[\delta(t-c)] &= \lim_{n \to \infty} n \left(\frac{e^{-cs}}{s} - \frac{e^{-(c + \frac{1}{n})s}}{s} \right) = e^{-cs} \lim_{n \to \infty} \frac{(1 - e^{-\frac{s}{n}})}{(\frac{s}{n})}. \end{split}$$

Recall: The Laplace Transform can be generalized from functions to δ , as follows, $\mathcal{L}[\delta(t-c)] = \lim_{n \to \infty} \mathcal{L}[\delta_n(t-c)]$.

Theorem

$$\mathcal{L}[\delta(t-c)]=e^{-cs}.$$

Proof:

$$\mathcal{L}[\delta(t-c)] = \lim_{n \to \infty} \mathcal{L}[\delta_n(t-c)], \qquad \delta_n(t) = n \left[u(t) - u(t - \frac{1}{n}) \right].$$

$$\mathcal{L}[\delta(t-c)] = \lim_{n \to \infty} n \left(\mathcal{L}[u(t-c)] - \mathcal{L}\left[u(t-c - \frac{1}{n})\right] \right)$$

$$\mathcal{L}[\delta(t-c)] = \lim_{n \to \infty} n \left(\frac{e^{-cs}}{s} - \frac{e^{-(c + \frac{1}{n})s}}{s} \right) = e^{-cs} \lim_{n \to \infty} \frac{(1 - e^{-\frac{s}{n}})}{(\frac{s}{n})}.$$

This is a singular limit, $\frac{0}{0}$.

Recall: The Laplace Transform can be generalized from functions to δ , as follows, $\mathcal{L}[\delta(t-c)] = \lim_{n \to \infty} \mathcal{L}[\delta_n(t-c)]$.

Theorem

$$\mathcal{L}[\delta(t-c)]=e^{-cs}.$$

Proof:

$$\mathcal{L}[\delta(t-c)] = \lim_{n \to \infty} \mathcal{L}[\delta_n(t-c)], \qquad \delta_n(t) = n \left[u(t) - u(t - \frac{1}{n}) \right].$$

$$\mathcal{L}[\delta(t-c)] = \lim_{n \to \infty} n \left(\mathcal{L}[u(t-c)] - \mathcal{L}\left[u(t-c - \frac{1}{n})\right] \right)$$

$$\mathcal{L}[\delta(t-c)] = \lim_{n \to \infty} n \left(\frac{e^{-cs}}{s} - \frac{e^{-(c + \frac{1}{n})s}}{s} \right) = e^{-cs} \lim_{n \to \infty} \frac{(1 - e^{-\frac{s}{n}})}{(\frac{s}{n})}.$$

This is a singular limit, $\frac{0}{0}$. Use l'Hôpital rule.

Proof: Recall:
$$\mathcal{L}[\delta(t-c)] = e^{-cs} \lim_{n \to \infty} \frac{(1-e^{-\frac{s}{n}})}{(\frac{s}{n})}$$
.

Proof: Recall:
$$\mathcal{L}[\delta(t-c)] = e^{-cs} \lim_{n \to \infty} \frac{(1 - e^{-\frac{s}{n}})}{\left(\frac{s}{n}\right)}$$
.
$$\lim_{n \to \infty} \frac{(1 - e^{-\frac{s}{n}})}{\left(\frac{s}{n}\right)}$$

Proof: Recall:
$$\mathcal{L}[\delta(t-c)] = e^{-cs} \lim_{n \to \infty} \frac{\left(1 - e^{-\frac{s}{n}}\right)}{\left(\frac{s}{n}\right)}.$$

$$\lim_{n \to \infty} \frac{\left(1 - e^{-\frac{s}{n}}\right)}{\left(\frac{s}{n}\right)} = \lim_{n \to \infty} \frac{\left(-\frac{s}{n^2}e^{-\frac{s}{n}}\right)}{\left(-\frac{s}{n^2}\right)}$$

Proof: Recall:
$$\mathcal{L}[\delta(t-c)] = e^{-cs} \lim_{n \to \infty} \frac{\left(1 - e^{-\frac{s}{n}}\right)}{\left(\frac{s}{n}\right)}.$$

$$\lim_{n \to \infty} \frac{\left(1 - e^{-\frac{s}{n}}\right)}{\left(\frac{s}{n}\right)} = \lim_{n \to \infty} \frac{\left(-\frac{s}{n^2} e^{-\frac{s}{n}}\right)}{\left(-\frac{s}{n^2}\right)} = \lim_{n \to \infty} e^{-\frac{s}{n}}.$$

Proof: Recall:
$$\mathcal{L}[\delta(t-c)] = e^{-cs} \lim_{n \to \infty} \frac{(1 - e^{-\frac{s}{n}})}{\left(\frac{s}{n}\right)}.$$

$$\lim_{n \to \infty} \frac{(1 - e^{-\frac{s}{n}})}{\left(\frac{s}{n}\right)} = \lim_{n \to \infty} \frac{(-\frac{s}{n^2} e^{-\frac{s}{n}})}{\left(-\frac{s}{n^2}\right)} = \lim_{n \to \infty} e^{-\frac{s}{n}} = 1.$$

Proof: Recall:
$$\mathcal{L}[\delta(t-c)] = e^{-cs} \lim_{n \to \infty} \frac{(1 - e^{-\frac{s}{n}})}{\left(\frac{s}{n}\right)}.$$

$$\lim_{n \to \infty} \frac{(1 - e^{-\frac{s}{n}})}{\left(\frac{s}{n}\right)} = \lim_{n \to \infty} \frac{(-\frac{s}{n^2} e^{-\frac{s}{n}})}{\left(-\frac{s}{n^2}\right)} = \lim_{n \to \infty} e^{-\frac{s}{n}} = 1.$$

We therefore conclude that
$$\mathcal{L}[\delta(t-c)] = e^{-cs}$$
.

Proof: Recall:
$$\mathcal{L}[\delta(t-c)] = e^{-cs} \lim_{n \to \infty} \frac{(1 - e^{-\frac{s}{n}})}{\left(\frac{s}{n}\right)}.$$

$$\lim_{n \to \infty} \frac{(1 - e^{-\frac{s}{n}})}{\left(\frac{s}{n}\right)} = \lim_{n \to \infty} \frac{(-\frac{s}{n^2} e^{-\frac{s}{n}})}{\left(-\frac{s}{n^2}\right)} = \lim_{n \to \infty} e^{-\frac{s}{n}} = 1.$$

We therefore conclude that $\mathcal{L}[\delta(t-c)] = e^{-cs}$.

Remarks:

Proof: Recall:
$$\mathcal{L}[\delta(t-c)] = e^{-cs} \lim_{n \to \infty} \frac{(1 - e^{-\frac{s}{n}})}{\left(\frac{s}{n}\right)}.$$

$$\lim_{n \to \infty} \frac{(1 - e^{-\frac{s}{n}})}{\left(\frac{s}{n}\right)} = \lim_{n \to \infty} \frac{(-\frac{s}{n^2} e^{-\frac{s}{n}})}{\left(-\frac{s}{n^2}\right)} = \lim_{n \to \infty} e^{-\frac{s}{n}} = 1.$$

We therefore conclude that $\mathcal{L}[\delta(t-c)] = e^{-cs}$.

Remarks:

$$\int_{t_0-a}^{t_0+a} \delta(t-t_0) f(t) dt = f(t_0).$$

Proof: Recall:
$$\mathcal{L}[\delta(t-c)] = e^{-cs} \lim_{n \to \infty} \frac{(1-e^{-\frac{s}{n}})}{\left(\frac{s}{n}\right)}.$$

$$\lim_{n \to \infty} \frac{(1-e^{-\frac{s}{n}})}{\left(\frac{s}{n}\right)} = \lim_{n \to \infty} \frac{(-\frac{s}{n^2}e^{-\frac{s}{n}})}{\left(-\frac{s}{n^2}\right)} = \lim_{n \to \infty} e^{-\frac{s}{n}} = 1.$$

We therefore conclude that $\mathcal{L}[\delta(t-c)] = e^{-cs}$.

Remarks:

$$\int_{t_0-a}^{t_0+a} \delta(t-t_0) f(t) dt = f(t_0).$$

(b)
$$\mathcal{L}[\delta(t-c)] = \int_0^\infty \delta(t-c) e^{-st} dt = e^{-cs}$$
.

Proof: Recall:
$$\mathcal{L}[\delta(t-c)] = e^{-cs} \lim_{n \to \infty} \frac{(1-e^{-\frac{s}{n}})}{\left(\frac{s}{n}\right)}.$$

$$\lim_{n \to \infty} \frac{(1-e^{-\frac{s}{n}})}{\left(\frac{s}{n}\right)} = \lim_{n \to \infty} \frac{(-\frac{s}{n^2}e^{-\frac{s}{n}})}{\left(-\frac{s}{n^2}\right)} = \lim_{n \to \infty} e^{-\frac{s}{n}} = 1.$$

We therefore conclude that $\mathcal{L}[\delta(t-c)] = e^{-cs}$.

Remarks:

$$\int_{t_0-a}^{t_0+a} \delta(t-t_0) f(t) dt = f(t_0).$$

(b)
$$\mathcal{L}[\delta(t-c)] = \int_0^\infty \delta(t-c) e^{-st} dt = e^{-cs}$$
.

(c)
$$\mathcal{L}[\delta(t-c)f(t)] = \int_0^\infty \delta(t-c)e^{-st}f(t)dt = e^{-cs}f(c).$$

Generalized sources (Sect. 6.5).

- ▶ The Dirac delta generalized function.
- Properties of Dirac's delta.
- Relation between deltas and steps.
- Dirac's delta in Physics.
- The Laplace Transform of Dirac's delta.
- ▶ Differential equations with Dirac's delta sources.

Example

$$y'' - y = -20 \delta(t - 3),$$
 $y(0) = 1,$ $y'(0) = 0.$

Example

$$y'' - y = -20 \delta(t - 3),$$
 $y(0) = 1,$ $y'(0) = 0.$

Solution: Compute:
$$\mathcal{L}[y''] - \mathcal{L}[y] = -20 \mathcal{L}[\delta(t-3)].$$

Example

Find the solution *y* to the initial value problem

$$y'' - y = -20 \delta(t - 3),$$
 $y(0) = 1,$ $y'(0) = 0.$

$$\mathcal{L}[y''] = s^2 \mathcal{L}[y] - s y(0) - y'(0)$$

Example

Find the solution *y* to the initial value problem

$$y'' - y = -20 \delta(t - 3),$$
 $y(0) = 1,$ $y'(0) = 0.$

$$\mathcal{L}[y''] = s^2 \mathcal{L}[y] - s y(0) - y'(0) \quad \Rightarrow \quad (s^2 - 1) \mathcal{L}[y] - s = -20 e^{-3s},$$

Example

Find the solution y to the initial value problem

$$y'' - y = -20 \delta(t - 3),$$
 $y(0) = 1,$ $y'(0) = 0.$

$$\mathcal{L}[y''] = s^2 \mathcal{L}[y] - s y(0) - y'(0) \quad \Rightarrow \quad (s^2 - 1) \mathcal{L}[y] - s = -20 e^{-3s},$$

We arrive to the equation
$$\mathcal{L}[y] = \frac{s}{(s^2 - 1)} - 20 e^{-3s} \frac{1}{(s^2 - 1)}$$

Example

Find the solution *y* to the initial value problem

$$y'' - y = -20 \delta(t - 3),$$
 $y(0) = 1,$ $y'(0) = 0.$

$$\mathcal{L}[y''] = s^2 \mathcal{L}[y] - s y(0) - y'(0) \quad \Rightarrow \quad (s^2 - 1) \mathcal{L}[y] - s = -20 e^{-3s},$$

We arrive to the equation
$$\mathcal{L}[y] = \frac{s}{(s^2 - 1)} - 20 e^{-3s} \frac{1}{(s^2 - 1)}$$

$$\mathcal{L}[y] = \mathcal{L}[\cosh(t)] - 20 \mathcal{L}[u(t-3) \sinh(t-3)],$$

Example

Find the solution *y* to the initial value problem

$$y'' - y = -20 \delta(t - 3),$$
 $y(0) = 1,$ $y'(0) = 0.$

Solution: Compute: $\mathcal{L}[y''] - \mathcal{L}[y] = -20 \mathcal{L}[\delta(t-3)]$.

$$\mathcal{L}[y''] = s^2 \mathcal{L}[y] - s y(0) - y'(0) \quad \Rightarrow \quad (s^2 - 1) \mathcal{L}[y] - s = -20 e^{-3s},$$

We arrive to the equation $\mathcal{L}[y] = \frac{s}{(s^2 - 1)} - 20 e^{-3s} \frac{1}{(s^2 - 1)}$

$$\mathcal{L}[y] = \mathcal{L}[\cosh(t)] - 20 \mathcal{L}[u(t-3) \sinh(t-3)],$$

We conclude:
$$y(t) = \cosh(t) - 20 u(t-3) \sinh(t-3)$$
.

Example

$$y'' + 4y = \delta(t - \pi) - \delta(t - 2\pi),$$
 $y(0) = 0,$ $y'(0) = 0.$

Example

$$y'' + 4y = \delta(t - \pi) - \delta(t - 2\pi),$$
 $y(0) = 0,$ $y'(0) = 0.$

Solution: Compute:
$$\mathcal{L}[y''] + 4\mathcal{L}[y] = \mathcal{L}[\delta(t-\pi)] - \mathcal{L}[\delta(t-2\pi)],$$

Example

$$y'' + 4y = \delta(t - \pi) - \delta(t - 2\pi),$$
 $y(0) = 0,$ $y'(0) = 0.$

Solution: Compute:
$$\mathcal{L}[y''] + 4\mathcal{L}[y] = \mathcal{L}[\delta(t-\pi)] - \mathcal{L}[\delta(t-2\pi)]$$
,

$$(s^2 + 4) \mathcal{L}[y] = e^{-\pi s} - e^{-2\pi s}$$

Example

$$y'' + 4y = \delta(t - \pi) - \delta(t - 2\pi),$$
 $y(0) = 0,$ $y'(0) = 0.$

Solution: Compute:
$$\mathcal{L}[y''] + 4\mathcal{L}[y] = \mathcal{L}[\delta(t-\pi)] - \mathcal{L}[\delta(t-2\pi)],$$

$$(s^2+4) \mathcal{L}[y] = e^{-\pi s} - e^{-2\pi s} \quad \Rightarrow \quad \mathcal{L}[y] = \frac{e^{-\pi s}}{(s^2+4)} - \frac{e^{-2\pi s}}{(s^2+4)},$$

Example

$$y'' + 4y = \delta(t - \pi) - \delta(t - 2\pi),$$
 $y(0) = 0,$ $y'(0) = 0.$

Solution: Compute:
$$\mathcal{L}[y''] + 4\mathcal{L}[y] = \mathcal{L}[\delta(t-\pi)] - \mathcal{L}[\delta(t-2\pi)],$$

$$(s^2+4)\mathcal{L}[y] = e^{-\pi s} - e^{-2\pi s} \quad \Rightarrow \quad \mathcal{L}[y] = \frac{e^{-\pi s}}{(s^2+4)} - \frac{e^{-2\pi s}}{(s^2+4)},$$

that is,
$$\mathcal{L}[y] = \frac{e^{-\pi s}}{2} \frac{2}{(s^2 + 4)} - \frac{e^{-2\pi s}}{2} \frac{2}{(s^2 + 4)}$$
.

Example

$$y'' + 4y = \delta(t - \pi) - \delta(t - 2\pi),$$
 $y(0) = 0,$ $y'(0) = 0.$

Solution: Compute:
$$\mathcal{L}[y''] + 4\mathcal{L}[y] = \mathcal{L}[\delta(t-\pi)] - \mathcal{L}[\delta(t-2\pi)],$$

$$(s^2+4)\mathcal{L}[y] = e^{-\pi s} - e^{-2\pi s} \quad \Rightarrow \quad \mathcal{L}[y] = \frac{e^{-\pi s}}{(s^2+4)} - \frac{e^{-2\pi s}}{(s^2+4)},$$

that is,
$$\mathcal{L}[y] = \frac{e^{-\pi s}}{2} \frac{2}{(s^2 + 4)} - \frac{e^{-2\pi s}}{2} \frac{2}{(s^2 + 4)}$$
.

Recall:
$$e^{-cs} \mathcal{L}[f(t)] = \mathcal{L}[u(t-c) f(t-c)].$$

Example

Find the solution to the initial value problem

$$y'' + 4y = \delta(t - \pi) - \delta(t - 2\pi),$$
 $y(0) = 0,$ $y'(0) = 0.$

Solution: Compute: $\mathcal{L}[y''] + 4\mathcal{L}[y] = \mathcal{L}[\delta(t-\pi)] - \mathcal{L}[\delta(t-2\pi)],$

$$(s^2+4)\mathcal{L}[y] = e^{-\pi s} - e^{-2\pi s} \quad \Rightarrow \quad \mathcal{L}[y] = \frac{e^{-\pi s}}{(s^2+4)} - \frac{e^{-2\pi s}}{(s^2+4)},$$

that is,
$$\mathcal{L}[y] = \frac{e^{-\pi s}}{2} \frac{2}{(s^2 + 4)} - \frac{e^{-2\pi s}}{2} \frac{2}{(s^2 + 4)}$$
.

Recall: $e^{-cs} \mathcal{L}[f(t)] = \mathcal{L}[u(t-c) f(t-c)]$. Therefore,

$$\mathcal{L}[y] = \frac{1}{2} \mathcal{L} \Big[u(t-\pi) \, \sin \big[2(t-\pi) \big] \Big] - \frac{1}{2} \mathcal{L} \Big[u(t-2\pi) \, \sin \big[2(t-2\pi) \big] \Big].$$

Example

Find the solution to the initial value problem

$$y'' + 4y = \delta(t - \pi) - \delta(t - 2\pi),$$
 $y(0) = 0,$ $y'(0) = 0.$

Solution: Recall:

$$\mathcal{L}[y] = \frac{1}{2} \mathcal{L} \Big[u(t-\pi) \sin[2(t-\pi)] \Big] - \frac{1}{2} \mathcal{L} \Big[u(t-2\pi) \sin[2(t-2\pi)] \Big].$$

Example

Find the solution to the initial value problem

$$y'' + 4y = \delta(t - \pi) - \delta(t - 2\pi),$$
 $y(0) = 0,$ $y'(0) = 0.$

Solution: Recall:

$$\mathcal{L}[y] = \frac{1}{2} \mathcal{L} \Big[u(t-\pi) \sin[2(t-\pi)] \Big] - \frac{1}{2} \mathcal{L} \Big[u(t-2\pi) \sin[2(t-2\pi)] \Big].$$

This implies that,

$$y(t) = \frac{1}{2} u(t - \pi) \sin[2(t - \pi)] - \frac{1}{2} u(t - 2\pi) \sin[2(t - 2\pi)],$$

Example

Find the solution to the initial value problem

$$y'' + 4y = \delta(t - \pi) - \delta(t - 2\pi),$$
 $y(0) = 0,$ $y'(0) = 0.$

Solution: Recall:

$$\mathcal{L}[y] = \frac{1}{2} \mathcal{L} \Big[u(t-\pi) \sin[2(t-\pi)] \Big] - \frac{1}{2} \mathcal{L} \Big[u(t-2\pi) \sin[2(t-2\pi)] \Big].$$

This implies that,

$$y(t) = \frac{1}{2} u(t - \pi) \sin[2(t - \pi)] - \frac{1}{2} u(t - 2\pi) \sin[2(t - 2\pi)],$$

We conclude:
$$y(t) = \frac{1}{2} [u(t - \pi) - u(t - 2\pi)] \sin(2t)$$
. <