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Preface

The Laplace transform is a wonderful tool for solving ordinary and
partial differential equations and has enjoyed much success in this
realm. With its success, however, a certain casualness has been bred
concerning its application, without much regard for hypotheses and
when they are valid. Even proofs of theorems often lack rigor, and
dubious mathematical practices are not uncommon in the literature
for students.
In the present text, I have tried to bring to the subject a certain

amount of mathematical correctness and make it accessible to un-
dergraduates. To this end, this text addresses a number of issues that
are rarely considered. For instance,whenwe apply the Laplace trans-
formmethod to a linear ordinary differential equation with constant
coefficients,

any
(n) + an−1y(n−1) + · · · + a0y � f (t),

why is it justified to take the Laplace transform of both sides of
the equation (Theorem A.6)? Or, in many proofs it is required to
take the limit inside an integral. This is always frought with danger,
especially with an improper integral, and not always justified. I have
given complete details (sometimes in the Appendix) whenever this
procedure is required.

ix
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Furthermore, it is sometimes desirable to take the Laplace trans-
form of an infinite series term by term. Again it is shown that
this cannot always be done, and specific sufficient conditions are
established to justify this operation.
Another delicate problem in the literature has been the applica-

tion of the Laplace transform to the so-called Dirac delta function.
Except for texts on the theory of distributions, traditional treatments
are usually heuristic in nature. In the present text we give a new and
mathematically rigorous account of the Dirac delta function based
upon the Riemann–Stieltjes integral. It is elementary in scope and
entirely suited to this level of exposition.
One of the highlights of the Laplace transform theory is the

complex inversion formula, examined in Chapter 4. It is the most so-
phisticated tool in the Laplace transformarsenal. In order to facilitate
understanding of the inversion formula and its many subsequent
applications, a self-contained summary of the theory of complex
variables is given in Chapter 3.
On the whole, while setting out the theory as explicitly and

carefully as possible, the wide range of practical applications for
which the Laplace transform is so ideally suited also receive their
due coverage. Thus I hope that the text will appeal to students of
mathematics and engineering alike.

Historical Summary. Integral transforms date back to the work of
Léonard Euler (1763 and 1769), who considered them essentially in
the form of the inverse Laplace transform in solving second-order,
linear ordinary differential equations. Even Laplace, in his great
work, Théorie analytique des probabilités (1812), credits Euler with
introducing integral transforms. It is Spitzer (1878) who attached
the name of Laplace to the expression

y �
∫ b

a

esxφ(s) ds

employed by Euler. In this form it is substituted into the differential
equation where y is the unknown function of the variable x.
In the late 19th century, the Laplace transform was extended to

its complex formby Poincaré and Pincherle, rediscovered by Petzval,



Preface xi

and extended to two variables by Picard, with further investigations
conducted by Abel and many others.
The first application of the modern Laplace transform occurs in

the work of Bateman (1910), who transforms equations arising from
Rutherford’s work on radioactive decay

dP

dt
� −λiP,

by setting

p(x) �
∫ ∞

0
e−xtP(t) dt

and obtaining the transformed equation. Bernstein (1920) used the
expression

f (s) �
∫ ∞

0
e−suφ(u) du,

calling it the Laplace transformation, in his work on theta functions.
The modern approach was given particular impetus by Doetsch in
the 1920s and 30s; he applied the Laplace transform to differential,
integral, and integro-differential equations. This body of work cul-
minated in his foundational 1937 text, Theorie und Anwendungen der
Laplace Transformation.
No account of the Laplace transformation would be complete

without mention of the work of Oliver Heaviside, who produced
(mainly in the context of electrical engineering) a vast body of
what is termed the “operational calculus.” This material is scattered
throughout his three volumes, Electromagnetic Theory (1894, 1899,
1912), and bears many similarities to the Laplace transformmethod.
Although Heaviside’s calculus was not entirely rigorous, it did find
favor with electrical engineers as a useful technique for solving
their problems. Considerable research went into trying to make the
Heaviside calculus rigorous and connecting it with the Laplace trans-
form. One such effort was that of Bromwich, who, among others,
discovered the inverse transform

X(t) � 1
2πi

∫ γ+i∞

γ−i∞
etsx(s) ds

for γ lying to the right of all the singularities of the function x.
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1
C H A P T E R

...........................................

Basic
Principles

Ordinary and partial differential equations describe the way certain
quantities vary with time, such as the current in an electrical circuit,
the oscillations of a vibrating membrane, or the flow of heat through
an insulated conductor. These equations are generally coupled with
initial conditions that describe the state of the system at time t � 0.
A very powerful technique for solving these problems is that of

the Laplace transform, which literally transforms the original differ-
ential equation into an elementary algebraic expression. This latter
can then simply be transformed once again, into the solution of the
original problem. This technique is known as the “Laplace transform
method.” It will be treated extensively in Chapter 2. In the present
chapter we lay down the foundations of the theory and the basic
properties of the Laplace transform.

1.1 The Laplace Transform

Suppose that f is a real- or complex-valued function of the (time)
variable t > 0 and s is a real or complex parameter. We define the

1



1. Basic Principles2

Laplace transform of f as

F(s) � L(
f (t)

) �
∫ ∞

0
e−stf (t) dt

� lim
τ→∞

∫ τ

0
e−stf (t) dt (1.1)

whenever the limit exists (as a finite number). When it does, the
integral (1.1) is said to converge. If the limit does not exist, the integral
is said to diverge and there is no Laplace transform defined for f . The
notation L(f ) will also be used to denote the Laplace transform of
f , and the integral is the ordinary Riemann (improper) integral (see
Appendix).
The parameter s belongs to some domain on the real line or in

the complex plane. We will choose s appropriately so as to ensure
the convergence of the Laplace integral (1.1). In a mathematical and
technical sense, the domain of s is quite important. However, in a
practical sense, when differential equations are solved, the domain
of s is routinely ignored. When s is complex, we will always use the
notation s � x + iy.
The symbol L is the Laplace transformation, which acts on

functions f � f (t) and generates a new function, F(s) � L(
f (t)

)
.

Example 1.1. If f (t) ≡ 1 for t ≥ 0, then

L(
f (t)

) �
∫ ∞

0
e−st1 dt

� lim
τ→∞

(
e−st

−s

∣∣∣∣
τ

0

)

� lim
τ→∞

(
e−sτ

−s
+ 1

s

)
(1.2)

� 1
s

provided of course that s > 0 (if s is real). Thus we have

L(1) � 1
s

(s > 0). (1.3)
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If s ≤ 0, then the integral would diverge and there would be no re-
sulting Laplace transform. If we had taken s to be a complex variable,
the same calculation, withRe(s) > 0, would have given L(1) � 1/s.
In fact, let us just verify that in the above calculation the integral

can be treated in the same way even if s is a complex variable. We
require the well-known Euler formula (see Chapter 3)

eiθ � cos θ + i sin θ, θ real, (1.4)

and the fact that |eiθ| � 1. The claim is that (ignoring the minus sign
as well as the limits of integration to simplify the calculation)∫

est dt � est

s
, (1.5)

for s � x + iy any complex number �� 0. To see this observe that∫
est dt �

∫
e(x+iy)tdt

�
∫

ext cos yt dt + i

∫
ext sin yt dt

by Euler’s formula. Performing a double integration by parts on both
these integrals gives∫

estdt � ext

x2 + y2

[
(x cos yt + y sin yt)+ i(x sin yt − y cos yt)

]
.

Now the right-hand side of (1.5) can be expressed as

est

s
� e(x+iy)t

x + iy

� ext(cos yt + i sin yt)(x − iy)
x2 + y2

� ext

x2 + y2

[
(x cos yt + y sin yt)+ i(x sin yt − y cos yt)

]
,

which equals the left-hand side, and (1.5) follows.
Furthermore, we obtain the result of (1.3) for s complex if we

take Re(s) � x > 0, since then

lim
τ→∞ |e−sτ | � lim

τ→∞ e−xτ � 0,
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killing off the limit term in (1.3).

Let us use the preceding to calculate L(cosωt) and L(sinωt)
(ω real).

Example 1.2. We begin with

L(eiωt) �
∫ ∞

0
e−steiωtdt

� lim
τ→∞

e(iω−s)t

iω − s

∣∣∣∣
τ

0

� 1
s − iω

,

since limτ→∞ |eiωτe−sτ | � limτ→∞ e−xτ � 0, provided x � Re(s) >
0. Similarly, L(e−iωt) � 1/(s + iω). Therefore, using the linearity
property of L, which follows from the fact that integrals are linear
operators (discussed in Section 1.6),

L(eiωt)+ L(e−iωt)
2

� L
(
eiωt + e−iωt

2

)
� L(cosωt),

and consequently,

L(cosωt) � 1
2

(
1

s − iω
+ 1

s + iω

)
� s

s2 + ω2
. (1.6)

Similarly,

L(sinωt) � 1
2i

(
1

s − iω
− 1

s + iω

)
� ω

s2 + ω2

(Re(s) > 0
)
.

(1.7)

The Laplace transform of functions defined in a piecewise
fashion is readily handled as follows.

Example 1.3. Let (Figure 1.1)

f (t) �
{
t 0 ≤ t ≤ 1
1 t > 1.
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t

f�t�

O �

�

FIGURE 1.1

From the definition,

L(
f (t)

) �
∫ ∞

0
e−stf (t) dt

�
∫ 1

0
te−stdt + lim

τ→∞

∫ τ

1
e−stdt

� te−st

−s

∣∣∣∣
1

0
+ 1

s

∫ 1

0
e−stdt + lim

τ→∞
e−st

−s

∣∣∣∣
τ

1

� 1− e−s

s2

(Re(s) > 0
)
.

Exercises 1.1

1. From the definition of the Laplace transform, compute L(
f (t)

)
for

(a) f (t) � 4t (b) f (t) � e2t

(c) f (t) � 2 cos 3t (d) f (t) � 1− cosωt

(e) f (t) � te2t (f) f (t) � et sin t

(g) f (t) �
{
1 t ≥ a

0 t < a
(h) f (t) �



sinωt 0 < t <

π

ω

0
π

ω
≤ t
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(i) f (t) �
{
2 t ≤ 1
et t > 1.

2. Compute the Laplace transform of the function f (t) whose graph
is given in the figures below.

t

f�t�

O

�

�

�a�

t

f�t�

�

O � �

�b�

FIGURE E.1 FIGURE E.2

1.2 Convergence

Although the Laplace operator can be applied to a great many
functions, there are some for which the integral (1.1) does not
converge.

Example 1.4. For the function f (t) � e(t
2),

lim
τ→∞

∫ τ

0
e−stet

2
dt � lim

τ→∞

∫ τ

0
et
2−stdt � ∞

for any choice of the variable s, since the integrand grows without
bound as τ → ∞.
In order to go beyond the superficial aspects of the Laplace trans-

form, we need to distinguish two special modes of convergence of
the Laplace integral.
The integral (1.1) is said to be absolutely convergent if

lim
τ→∞

∫ τ

0
|e−stf (t)| dt

exists. If L(
f (t)

)
does converge absolutely, then∣∣∣∣∣
∫ τ′

τ

e−stf (t) dt

∣∣∣∣∣ ≤
∫ τ′

τ

|e−stf (t)|dt → 0
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as τ → ∞, for all τ′ > τ. This then implies thatL(
f (t)

)
also converges

in the ordinary sense of (1.1).∗

There is another form of convergence that is of the utmost im-
portance from a mathematical perspective. The integral (1.1) is said
to converge uniformly for s in some domain� in the complex plane if
for any ε > 0, there exists some number τ0 such that if τ ≥ τ0, then∣∣∣∣

∫ ∞

τ

e−stf (t) dt
∣∣∣∣ < ε

for all s in �. The point here is that τ0 can be chosen sufficiently
large in order to make the “tail” of the integral arbitrarily small,
independent of s.

Exercises 1.2

1. Suppose that f is a continuous function on [0,∞) and |f (t)| ≤
M < ∞ for 0 ≤ t < ∞.
(a) Show that the Laplace transform F(s) � L(

f (t)
)
con-

verges absolutely (and hence converges) for any s satisfying
Re(s) > 0.

(b) Show that L(
f (t)

)
converges uniformly if Re(s) ≥ x0 > 0.

(c) Show that F(s) � L(
f (t)

) → 0 as Re(s)→ ∞.
2. Let f (t) � et on [0,∞).

(a) Show that F(s) � L(et) converges for Re(s) > 1.
(b) Show that L(et) converges uniformly if Re(s) ≥ x0 > 1.

∗Convergence of an integral ∫ ∞

0

ϕ(t) dt

is equivalent to the Cauchy criterion:∫ τ′

τ

ϕ(t)dt → 0 as τ → ∞, τ ′ > τ.
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(c) Show that F(s) � L(et)→ 0 as Re(s)→ ∞.
3. Show that the Laplace transform of the function f (t) � 1/t, t > 0
does not exist for any value of s.

1.3 Continuity Requirements

Since we can compute the Laplace transform for some functions and
not others, such as e(t

2), we would like to know that there is a large
class of functions that do have a Laplace tranform. There is such a
class once we make a few restrictions on the functions we wish to
consider.

Definition 1.5. A function f has a jump discontinuity at a point
t0 if both the limits

lim
t→t

−
0

f (t) � f (t−0 ) and lim
t→t

+
0

f (t) � f (t+0 )

exist (as finite numbers) and f (t−0 ) �� f (t+0 ). Here, t → t−0 and t → t+0
mean that t → t0 from the left and right, respectively (Figure 1.2).

Example 1.6. The function (Figure 1.3)

f (t) � 1
t − 3

t

f�t�

O t�

f�t�
�
�

f�t�� �

FIGURE 1.2
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t

f�t�

�O

FIGURE 1.3

t

f�t�

O

�

FIGURE 1.4

has a discontinuity at t � 3, but it is not a jump discontinuity since
neither limt→3− f (t) nor limt→3+ f (t) exists.

Example 1.7. The function (Figure 1.4)

f (t) �
{
e−

t2

2 t > 0

0 t < 0

has a jump discontinuity at t � 0 and is continuous elsewhere.
Example 1.8. The function (Figure 1.5)

f (t) �
{
0 t < 0

cos 1
t
t > 0

is discontinuous at t � 0, but limt→0+ f (t) fails to exist, so f does not
have a jump discontinuity at t � 0.
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t

f�t�

O

�

�� FIGURE 1.5

t

f�t�

O �� �� �� �� �� b

FIGURE 1.6

The class of functions for which we consider the Laplace
transform defined will have the following property.

Definition 1.9. A function f is piecewise continuous on the in-
terval [0,∞) if (i) limt→0+ f (t) � f (0+) exists and (ii) f is continuous
on every finite interval (0, b) except possibly at a finite number
of points τ1, τ2, . . . , τn in (0, b) at which f has a jump discontinuity
(Figure 1.6).
The function in Example 1.6 is not piecewise continuous on

[0,∞). Nor is the function in Example 1.8. However, the function
in Example 1.7 is piecewise continuous on [0,∞).
An important consequence of piecewise continuity is that on

each subinterval the function f is also bounded. That is to say,

|f (t)| ≤ Mi, τi < t < τi+1, i � 1, 2, . . . , n − 1,
for finite constants Mi.
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In order to integrate piecewise continuous functions from 0 to b,
one simply integrates f over each of the subintervals and takes the
sum of these integrals, that is,

∫ b

0
f (t) dt �

∫ τ1

0
f (t) dt +

∫ τ2

τ1

f (t) dt + · · · +
∫ b

τn

f (t) dt.

This can be done since the function f is both continuous and
bounded on each subinterval and thus on each has a well-defined
(Riemann) integral.

Exercises 1.3

Discuss the continuity of each of the following functions and locate
any jump discontinuities.

1. f (t) � 1
1+ t

2. g(t) � t sin
1
t

(t �� 0)

3. h(t) �



t t ≤ 1
1

1+ t2
t > 1

4. i(t) �


sinh t
t

t �� 0
1 t � 0

5. j(t) � 1
t
sinh

1
t

(t �� 0)

6. k(t) �


1− e−t

t
t �� 0

0 t � 0

7. l(t) �
{
1 2na ≤ t < (2n + 1)a

−1 (2n + 1)a ≤ t < (2n + 2)a
a > 0, n � 0, 1, 2, . . .

8. m(t) �
[
t

a

]
+1, for t ≥ 0, a > 0, where [x] � greatest integer ≤ x.
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1.4 Exponential Order

The second consideration of our class of functions possessing a well-
defined Laplace transform has to do with the growth rate of the
functions. In the definition

L(
f (t)

) �
∫ ∞

0
e−stf (t) dt,

whenwe take s > 0
(
orRe(s) > 0

)
, the integral will converge as long

as f does not grow too rapidly. We have already seen by Example 1.4
that f (t) � et

2
does grow too rapidly for our purposes. A suitable rate

of growth can be made explicit.

Definition 1.10. A function f has exponential order α if there
exist constants M > 0 and α such that for some t0 ≥ 0,

|f (t)| ≤ M eαt, t ≥ t0.

Clearly the exponential function eat has exponential order α � a,
whereas tn has exponential order α for any α > 0 and any n ∈ N

(Exercises 1.4, Question 2), and bounded functions like sin t, cos t,
tan−1 t have exponential order 0, whereas e−t has order −1. How-
ever, et

2
does not have exponential order. Note that if β > α, then

exponential order α implies exponential order β, since eαt ≤ eβt,
t ≥ 0. We customarily state the order as the smallest value of α that
works, and if the value itself is not significant it may be suppressed
altogether.

Exercises 1.4

1. If f1 and f2 are piecewise continuous functions of orders α and
β, respectively, on [0,∞), what can be said about the continuity
and order of the functions

(i) c1f1 + c2f2, c1, c2 constants,
(ii) f · g?

2. Show that f (t) � tn has exponential order α for any α > 0, n ∈ N.
3. Prove that the function g(t) � et

2
does not have exponential order.
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1.5 The Class L

We now show that a large class of functions possesses a Laplace
transform.

Theorem 1.11. If f is piecewise continuous on [0,∞) and of exponen-
tial order α, then the Laplace transform L(f ) exists for Re(s) > α and
converges absolutely.

Proof. First,

|f (t)| ≤ M1 e
αt, t ≥ t0,

for some real α. Also, f is piecewise continuous on [0, t0] and hence
bounded there (the bound being just the largest bound over all the
subintervals), say

|f (t)| ≤ M2, 0 < t < t0.

Since eαt has a positive minimum on [0, t0], a constant M can be
chosen sufficiently large so that

|f (t)| ≤ M eαt, t > 0.

Therefore, ∫ τ

0
|e−stf (t)|dt ≤ M

∫ τ

0
e−(x−α)tdt

� M e−(x−α)t

−(x − α)

∣∣∣∣
τ

0

� M

x − α
− M e−(x−α)τ

x − α
.

Letting τ → ∞ and noting that Re(s) � x > α yield∫ ∞

0
|e−stf (t)|dt ≤ M

x − α
. (1.8)

Thus the Laplace integral converges absolutely in this instance (and
hence converges) for Re(s) > α. �
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Example 1.12. Let f (t) � eat, a real. This function is continuous
on [0,∞) and of exponential order a. Then

L(eat) �
∫ ∞

0
e−steatdt

�
∫ ∞

0
e−(s−a)tdt

� e−(s−a)t

−(s − a)

∣∣∣∣
∞

0
� 1

s − a

(Re(s) > a
)
.

The same calculation holds for a complex and Re(s) > Re(a).

Example 1.13. Applying integration by parts to the function f (t) �
t (t ≥ 0), which is continuous and of exponential order, gives

L(t) �
∫ ∞

0
t e−stdt

� −t e−st

s

∣∣∣∣
∞

0
+ 1

s

∫ ∞

0
e−stdt

� 1
s

L(1) (
provided Re(s) > 0

)
� 1

s2
.

Performing integration by parts twice as above, we find that

L(t2) �
∫ ∞

0
e−stt2dt

� 2
s3

(Re(s) > 0
)
.

By induction, one can show that in general,

L(tn) � n!
sn+1

(Re(s) > 0
)

(1.9)

for n � 1, 2, 3, . . . . Indeed, this formula holds even for n � 0, since
0! � 1, and will be shown to hold even for non-integer values of n
in Section 2.1.
Let us define the class L as the set of those real- or complex-

valued functions defined on the open interval (0,∞) for which the
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Laplace transform (defined in terms of the Riemann integral) exists
for some value of s. It is known that whenever F(s) � L(

f (t)
)
exists

for some value s0, then F(s) exists for all s withRe(s) > Re(s0), that
is, the Laplace transform exists for all s in some right half-plane (cf.
Doetsch [2], Theorem 3.4). By Theorem 1.11, piecewise continuous
functions on [0,∞) having exponential order belong to L. However,
there certainly are functions in L that do not satisfy one or both of
these conditions.

Example 1.14. Consider

f (t) � 2t et2 cos(et2).
Then f (t) is continuous on [0,∞) but not of exponential order.
However, the Laplace transform of f (t),

L(
f (t)

) �
∫ ∞

0
e−st2t et

2
cos(et

2
)dt,

exists, since integration by parts yields

L(
f (t)

) � e−st sin(et
2
)
∣∣∣∞
0

+ s

∫ ∞

0
e−st sin(et

2
) dt

� − sin(1)+ sL(
sin(et

2
)
) (Re(s) > 0

)
.

and the latter Laplace transform exists by Theorem 1.11. Thus we
have a continuous function that is not of exponential order yet
nevertheless possesses a Laplace transform. See also Remark 2.8.
Another example is the function

f (t) � 1√
t
. (1.10)

We will compute its actual Laplace transform in Section 2.1 in the
context of the gamma function. While (1.10) has exponential order
α � 0 (|f (t)| ≤ 1, t ≥ 1), it is not piecewise continuous on [0,∞)
since f (t)→ ∞ as t → 0+, that is, t � 0 is not a jump discontinuity.

Exercises 1.5

1. Consider the function g(t) � t et
2
sin(et

2
).
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(a) Is g continuous on [0,∞)? Does g have exponential order?
(b) Show that the Laplace transform F(s) exists for Re(s) > 0.
(c) Show that g is the derivative of some function having

exponential order.

2. Without actually determining it, show that the following func-
tions possess a Laplace transform.

(a)
sin t
t

(b)
1− cos t

t

(c) t2 sinh t

3. Without determining it, show that the function f , whose graph is
given in Figure E.3, possesses a Laplace transform. (See Question
3(a), Exercises 1.7.)

t

f�t�

�

�

�

�

a �a �a �aO

FIGURE E.3

1.6 Basic Properties of the Laplace
Transform

Linearity. One of the most basic and useful properties of the
Laplace operatorL is that of linearity, namely, if f1 ∈ L forRe(s) > α,
f2 ∈ L for Re(s) > β, then f1 + f2 ∈ L for Re(s) > max{α, β}, and

L(c1f1 + c2f2) � c1L(f1)+ c2L(f2) (1.11)
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for arbitrary constants c1, c2.
This follows from the fact that integration is a linear process, to

wit, ∫ ∞

0
e−st

(
c1f1(t)+ c2f2(t)

)
dt

� c1

∫ ∞

0
e−stf1(t) dt + c2

∫ ∞

0
e−stf2(t) dt (f1, f2 ∈ L).

Example 1.15. The hyperbolic cosine function

coshωt � eωt + e−ωt

2

describes the curve of a hanging cable between two supports. By
linearity

L(coshωt) � 1
2
[L(eωt)+ L(e−ωt)]

� 1
2

(
1

s − ω
+ 1

s + ω

)

� s

s2 − ω2
.

Similarly,

L(sinhωt) � ω

s2 − ω2
.

Example 1.16. If f (t) � a0 + a1t + · · · + ant
n is a polynomial of

degree n, then

L(
f (t)

) �
n∑

k�0
akL(tk)

�
n∑

k�0

akk!
sk+1

by (1.9) and (1.11).

Infinite Series. For an infinite series,
∑∞

n�0 ant
n, in general it is not

possible to obtain the Laplace transform of the series by taking the
transform term by term.
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Example 1.17.

f (t) � e−t2 �
∞∑
n�0

(−1)nt2n
n!

, −∞ < t < ∞.

Taking the Laplace transform term by term gives
∞∑
n�0

(−1)n
n!

L(t2n) �
∞∑
n�0

(−1)n
n!

(2n)!
s2n+1

� 1
s

∞∑
n�0

(−1)n(2n) · · · (n + 2)(n + 1)
s2n

.

Applying the ratio test,

lim
n→∞

∣∣∣∣un+1
un

∣∣∣∣ � lim
n→∞

2(2n + 1)
|s|2 � ∞,

and so the series diverges for all values of s.
However, L(e−t2) does exist since e−t2 is continuous and bounded

on [0,∞).
So when can we guarantee obtaining the Laplace transform of an

infinite series by term-by-term computation?

Theorem 1.18. If

f (t) �
∞∑
n�0

ant
n

converges for t ≥ 0, with

|an| ≤ Kαn

n!
,

for all n sufficiently large and α > 0, K > 0, then

L(
f (t)

) �
∞∑
n�0

anL(tn) �
∞∑
n�0

ann!
sn+1

(Re(s) > α
)
.

Proof. Since f (t) is represented by a convergent power series, it is
continuous on [0,∞). We desire to show that the difference∣∣∣∣∣L(

f (t)
) −

N∑
n�0

anL(tn)
∣∣∣∣∣ �

∣∣∣∣∣L
(
f (t)−

N∑
n�0

ant
n

)∣∣∣∣∣



1.6. Basic Properties of the Laplace Transform 19

≤ Lx

(∣∣∣∣∣f (t)−
N∑
n�0

ant
n

∣∣∣∣∣
)

converges to zero as N → ∞, where Lx

(
h(t)

) � ∫ ∞
0 e−xth(t) dt, x �

Re(s).
To this end,∣∣∣∣∣f (t)−

N∑
n�0

ant
n

∣∣∣∣∣ �
∣∣∣∣∣

∞∑
n�N+1

ant
n

∣∣∣∣∣
≤ K

∞∑
n�N+1

(αt)n

n!

� K

(
eαt −

N∑
n�0

(αt)n

n!

)

since ex � ∑∞
n�0 x

n/n!. As h ≤ g implies Lx(h) ≤ Lx(g) when the
transforms exist,

Lx

(∣∣∣∣∣f (t)−
N∑
n�0

ant
n

∣∣∣∣∣
)

≤ K Lx

(
eαt −

N∑
n�0

(αt)n

n!

)

� K

(
1

x − α
−

N∑
n�0

αn

xn+1

)

� K

(
1

x − α
− 1

x

N∑
n�0

(α
x

)n)

→ 0
(Re(s) � x > α

)
as N → ∞. We have used the fact that the geometric series has the
sum

∞∑
n�0

zn � 1
1− z

, |z| < 1.

Therefore,

L(
f (t)

) � lim
N→∞

N∑
n�0

anL(tn)
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�
∞∑
n�0

ann!
sn+1

(Re(s) > α
)
. �

Note that the coefficients of the series in Example 1.17 do not
satisfy the hypothesis of the theorem.

Example 1.19.

f (t) � sin t
t

�
∞∑
n�0

(−1)nt2n
(2n + 1)! .

Then,

|a2n| � 1
(2n + 1)! <

1
(2n)!

, n � 0, 1, 2, . . . ,

and so we can apply the theorem:

L
(
sin t
t

)
�

∞∑
n�0

(−1)nL(t2n)
(2n + 1)!

�
∞∑
n�0

(−1)n
(2n + 1)s2n+1

� tan−1
(
1
s

)
, |s| > 1.

Here we are using the fact that

tan−1 x �
∫ x

0

dt

1+ t2
�

∫ x

0

∞∑
n�0
(−1)nt2n

�
∞∑
n�0

(−1)nx2n+1

2n + 1 , |x| < 1,

with x � 1/s, as we can integrate the series term by term. See also
Example 1.38.

Uniform Convergence. We have already seen by Theorem 1.11
that for functions f that are piecewise continuous on [0,∞) and of
exponential order, the Laplace integral converges absolutely, that is,∫ ∞
0 |e−stf (t)| dt converges. Moreover, for such functions the Laplace
integral converges uniformly.
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To see this, suppose that

|f (t)| ≤ M eαt, t ≥ t0.

Then ∣∣∣∣
∫ ∞

t0

e−stf (t) dt
∣∣∣∣ ≤

∫ ∞

t0

e−xt|f (t)|dt

≤ M

∫ ∞

t0

e−(x−α)tdt

� M e−(x−α)t

−(x − α)

∣∣∣∣
∞

t0

� M e−(x−α)t0

x − α
,

provided x � Re(s) > α. Taking x ≥ x0 > α gives an upper bound
for the last expression:

M e−(x−α)t0

x − α
≤ M

x0 − α
e−(x0−α)t0 . (1.12)

By choosing t0 sufficiently large, we can make the term on the right-
hand side of (1.12) arbitrarily small; that is, given any ε > 0, there
exists a value T > 0 such that∣∣∣∣

∫ ∞

t0

e−stf (t) dt
∣∣∣∣ < ε, whenever t0 ≥ T (1.13)

for all values of s with Re(s) ≥ x0 > α. This is precisely the con-
dition required for the uniform convergence of the Laplace integral
in the region Re(s) ≥ x0 > α (see Section 1.2). The importance
of the uniform convergence of the Laplace transform cannot be
overemphasized, as it is instrumental in the proofs of many results.

F(s) → � as s → ∞. A general property of the Laplace transform
that becomes apparent from an inspection of the table at the back
of this book (pp. 210–218) is the following.

Theorem 1.20. If f is piecewise continuous on [0,∞) and has
exponential order α, then

F(s) � L(
f (t)

) → 0
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as Re(s)→ ∞.

In fact, by (1.8)∣∣∣∣
∫ ∞

0
e−stf (t) dt

∣∣∣∣ ≤ M

x − α
,

(Re(s) � x > α
)
,

and letting x → ∞ gives the result.

Remark 1.21. As it turns out, F(s) → 0 as Re(s) → ∞ when-
ever the Laplace transform exists, that is, for all f ∈ L (cf. Doetsch
[2], Theorem 23.2). As a consequence, any function F(s) without
this behavior, say (s − 1)/(s + 1), es/s, or s2, cannot be the Laplace
transform of any function f .

Exercises 1.6

1. Find L(2t + 3e2t + 4 sin 3t).
2. Show that L(sinhωt) � ω

s2 − ω2
.

3. Compute

(a) L(cosh2 ωt) (b) L(sinh2 ωt).
4. Find L(3 cosh 2t − 2 sinh 2t).
5. ComputeL(cosωt) andL(sinωt) from the Taylor series represen-
tations

cosωt �
∞∑
n�0

(−1)n(ωt)2n
(2n)!

, sinωt �
∞∑
n�0

(−1)n(ωt)2n+1

(2n + 1)! ,

respectively.
6. Determine L(sin2 ωt) and L(cos2 ωt) using the formulas

sin2 ωt � 1
2

− 1
2
cos 2ωt, cos2 ωt � 1− sin2 ωt,

respectively.

7. Determine L
(
1− e−t

t

)
.
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Hint:

log(1+ x) �
∞∑
n�0

(−1)nxn+1

n + 1 , |x| < 1.

8. Determine L
(
1− cosωt

t

)
.

9. Can F(s) � s/log s be the Laplace transform of some function f ?

1.7 Inverse of the Laplace Transform

In order to apply the Laplace transform to physical problems, it is
necessary to invoke the inverse transform. If L(

f (t)
) � F(s), then

the inverse Laplace transform is denoted by

L−1(F(s)) � f (t), t ≥ 0,
which maps the Laplace transform of a function back to the original
function. For example,

L−1
(

ω

s2 + ω2

)
� sinωt, t ≥ 0.

The question naturally arises: Could there be some other func-
tion f (t) �≡ sinωt with L−1(ω/(s2 + ω2)

) � f (t)? More generally, we
need to know when the inverse transform is unique.

Example 1.22. Let

g(t) �
{
sinωt t > 0

1 t � 0.
Then

L(
g(t)

) � ω

s2 + ω2
,

since altering a function at a single point (or even at a finite number
of points) does not alter the value of the Laplace (Riemann) integral.

This example illustrates that L−1(F(s)) can be more than one
function, in fact infinitelymany, at least when considering functions
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with discontinuities. Fortunately, this is the only case (cf. Doetsch
[2], p. 24).

Theorem 1.23. Distinct continuous functions on [0,∞) have distinct
Laplace transforms.

This result is known as Lerch’s theorem. Itmeans that if we restrict
our attention to functions that are continuous on [0,∞), then the
inverse transform

L−1(F(s)) � f (t)

is uniquely defined and we can speak about the inverse, L−1(F(s)).
This is exactly what we shall do in the sequel, and hence we write

L−1
(

ω

s2 + ω2

)
� sinωt, t ≥ 0.

Since many of the functions we will be dealing with will be so-
lutions to differential equations and hence continuous, the above
assumptions are completely justified.
Note also that L−1 is linear, that is,

L−1(a F(s)+ bG(s)
) � a f (t)+ b g(t)

if L(
f (t)

) � F(s), L(
g(t)

) � G(s). This follows from the linearity of
L and holds in the domain common to F and G.
Example 1.24.

L−1
(

1
2(s − 1) + 1

2(s + 1)
)

� 1
2
et + 1

2
e−t

� cosh t, t ≥ 0.
One of the practical features of the Laplace transform is that it

can be applied to discontinuous functions f . In these instances, it
must be borne in mind that when the inverse transform is invoked,
there are other functions with the same L−1(F(s)).
Example 1.25. An important function occurring in electrical
systems is the (delayed) unit step function (Figure 1.7)

ua(t) �
{
1 t ≥ a

0 t < a,
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t

ua�t�

O

�

a FIGURE 1.7

for a ≥ 0. This function delays its output until t � a and then as-
sumes a constant value of one unit. In the literature, the unit step
function is also commonly defined as

ua(t) �
{
1 t > a

0 t < a,

for a ≥ 0, and is known as the Heaviside (step) function. Both defini-
tions of ua(t) have the same Laplace transform and so from that point
of view are indistinguishable. When a � 0, wewill write ua(t) � u(t).
Another common notation for the unit step function ua(t) is u(t−a).

Computing the Laplace transform,

L(
ua(t)

) �
∫ ∞

0
e−stua(t) dt

�
∫ ∞

a

e−stdt

� e−st

−s

∣∣∣∣
∞

a

� e−as

s

(Re(s) > 0
)
.

It is appropriate to write
(
with either interpretation of ua(t)

)
L−1

(
e−as

s

)
� ua(t),
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although we could equally have written L−1 (e−as/s
) � va(t) for

va(t) �
{
1 t > a

0 t ≤ a,

which is another variant of the unit step function.
Another interesting function along these lines is the following.

Example 1.26. For 0 ≤ a < b, let

uab(t) � 1
b − a

(
ua(t)− ub(t)

) �



0 t < a

1
b−a

a ≤ t < b

0 t ≥ b,

as shown in Figure 1.8.
Then

L(
uab(t)

) � e−as − e−bs

s(b − a)
.

Exercises 1.7

1. Prove that L−1 is a linear operator.
2. A function N(t) is called a null function if∫ t

0
N(τ) dτ � 0,

for all t > 0.

(a) Give an example of a null function that is not identically
zero.

t

uab�t�

O a b

�

b�a

FIGURE 1.8
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(b) Use integration by parts to show that

L(
N(t)

) � 0,
for any null function N(t).

(c) Conclude that

L(
f (t)+ N(t)

) � L(
f (t)

)
,

for any f ∈ L and null function N(t). (The converse is also
true, namely, if L(f1) ≡ L(f2) in a right half-plane, then f1
and f2 differ by at most a null function. See Doetsch [2],
pp. 20–24).

(d) How can part (c) be reconciled with Theorem 1.23?

3. Consider the function f whose graph is given in Question 3 of
Exercises 1.5 (Figure E.3).

(a) Compute the Laplace transformof f directly from the explicit
values f (t) and deduce that

L(
f (t)

) � 1
s(1− e−as)

(Re(s) > 0, a > 0
)
.

(b) Write f (t) as an infinite series of unit step functions.
(c) By taking the Laplace transform term by term of the infinite

series in (b), show that the same result as in (a) is attained.

1.8 Translation Theorems

We present two very useful results for determining Laplace trans-
forms and their inverses. The first pertains to a translation in the
s-domain and the second to a translation in the t-domain.

Theorem 1.27 (First Translation Theorem). If F(s) � L(
f (t)

)
for

Re(s) > 0, then

F(s − a) � L(
eatf (t)

) (
a real, Re(s) > a

)
.

Proof. For Re(s) > a,

F(s − a) �
∫ ∞

0
e−(s−a)tf (t) dt
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�
∫ ∞

0
e−steatf (t) dt

� L(
eatf (t)

)
. �

Example 1.28. Since

L(t) � 1
s2

(Re(s) > 0
)
,

then

L(t eat) � 1
(s − a)2

(Re(s) > a
)
,

and in general,

L(tneat) � n!
(s − a)n+1 , n � 0, 1, 2, . . . (Re(s) > a

)
.

This gives a useful inverse:

L−1
(

1
(s − a)n+1

)
� 1

n!
tneat, t ≥ 0.

Example 1.29. Since

L(sinωt) � ω

s2 + ω2
,

then

L(e2t sin 3t) � 3
(s − 2)2 + 9 .

In general,

L(eat cosωt) � s − a

(s − a)2 + ω2

(Re(s) > a
)

L(eat sinωt) � ω

(s − a)2 + ω2

(Re(s) > a
)

L(eat coshωt) � s − a

(s − a)2 − ω2

(Re(s) > a
)

L(eat sinhωt) � ω

(s − a)2 − ω2

(Re(s) > a
)
.
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Example 1.30.

L−1
(

s

s2 + 4s + 1
)

� L−1
(

s

(s + 2)2 − 3
)

� L−1
(

s + 2
(s + 2)2 − 3

)
− L−1

(
2

(s + 2)2 − 3
)

� e−2t cosh
√
3t − 2√

3
e−2t sinh

√
3 t.

In the first step we have used the procedure of completing the square.

Theorem 1.31 (Second Translation Theorem). If F(s) � L(
f (t)

)
,

then

L(
ua(t)f (t − a)

) � e−asF(s) (a ≥ 0).
This follows from the basic fact that∫ ∞

0
e−st[ua(t)f (t − a)] dt �

∫ ∞

a

e−stf (t − a) dt,

and setting τ � t − a, the right-hand integral becomes∫ ∞

0
e−s(τ+a)f (τ) dτ � e−as

∫ ∞

0
e−sτf (τ) dτ

� e−asF(s).

Example 1.32. Let us determine L(
g(t)

)
for (Figure 1.9)

g(t) �
{

0 0 ≤ t < 1

(t − 1)2 t ≥ 1.

t

g�t�

O � FIGURE 1.9
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Note that g(t) is just the function f (t) � t2 delayed by (a �) 1 unit
of time. Whence

L(
g(t)

) � L(
u1(t)(t − 1)2

)
� e−sL(t2)
� 2e

−s

s3

(Re(s) > 0
)
.

The second translation theoremcan also be considered in inverse
form:

L−1(e−asF(s)
) � ua(t)f (t − a), (1.14)

for F(s) � L(
f (t)

)
, a ≥ 0.

Example 1.33. Find

L−1
(

e−2s

s2 + 1
)
.

We have

e−2s

s2 + 1 � e−2sL(sin t),
so by (1.14)

L−1
(

e−2s

s2 + 1
)

� u2(t) sin(t − 2), (t ≥ 0).

This is just the function sin t, which gets “turned on” at time t � 2.

Exercises 1.8

1. Determine

(a) L(e2t sin 3t) (b) L(t2e−ωt)

(c) L−1
(

4
(s − 4)3

)
(d) L(e7t sinh√

2 t)

(e) L−1
(

1
s2 + 2s + 5

)
(f) L−1

(
s

s2 + 6s + 1
)
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(g) L(
e−at cos(ωt + θ)

)
(h) L−1

(
s

(s + 1)2
)
.

2. Determine L(
f (t)

)
for

(a) f (t) �
{
0 0 ≤ t < 2
eat t ≥ 2 (b) f (t) �

{
0 0 ≤ t < π

2

sin t t ≥ π
2

(c) f (t) � uπ(t) cos(t − π).

3. Find

(a) L−1
(
e−2s

s3

)

(b) L−1
(
E

s
− s

s2 + 1 e
−as

)
(E constant)

(c) L−1
(

e−πs

s2 − 2
)
.

1.9 Differentiation and Integration of
the Laplace Transform

As will be shown in Chapter 3, when s is a complex variable, the
Laplace transform F(s) (for suitable functions) is an analytic func-
tion of the parameter s. When s is a real variable, we have a formula
for the derivative of F(s), which holds in the complex case as well
(Theorem 3.3).

Theorem 1.34. Let f be piecewise continuous on [0,∞) of exponential
order α and L(

f (t)
) � F(s). Then

dn

dsn
F(s) � L(

(−1)ntnf (t)), n � 1, 2, 3, . . . (s > α). (1.15)

Proof. By virtue of the hypotheses, for s ≥ x0 > α, it is justified
(cf. Theorem A.12) to interchange the derivative and integral sign
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in the following calculation.

d

ds
F(s) � d

ds

∫ ∞

0
e−stf (t) dt

�
∫ ∞

0

∂

∂s
e−stf (t) dt

�
∫ ∞

0
−te−stf (t) dt

� L( − tf (t)
)
.

Since for any s > α, one can find some x0 satisfying s ≥ x0 > α,
the preceding result holds for any s > α. Repeated differentiation
(or rather induction) gives the general case, by virtue of L(

tkf (t)
)

being uniformly convergent for s ≥ x0 > α. �

Example 1.35.

L(t cosωt) � − d

ds
L(cosωt)

� − d

ds

s

s2 + ω2

� s2 − ω2

(s2 + ω2)2
.

Similarly,

L(t sinωt) � 2ωs
(s2 + ω2)2

.

For n � 1 we can express (1.15) as

f (t) � −1
t

L−1
(
d

ds
F(s)

)
(t > 0) (1.16)

for f (t) � L−1(F(s)). This formulation is also useful.
Example 1.36. Find

f (t) � L−1
(
log

s + a

s + b

)
.
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Since

d

ds
log

(
s + a

s + b

)
� 1

s + a
− 1

s + b
,

f (t) � −1
t

L−1
(
1

s + a
− 1

s + b

)

� 1
t
(e−bt − e−at).

Not only can the Laplace transform be differentiated, but it can
be integrated as well. Again the result is another Laplace transform.

Theorem 1.37. If f is piecewise continuous on [0,∞) and of exponen-
tial order α, with F(s) � L(

f (t)
)

and such that limt→0+ f (t)/t exists,
then ∫ ∞

s

F(x) dx � L
(
f (t)
t

)
(s > α).

Proof. Integrating both sides of the equation

F(x) �
∫ ∞

0
e−xtf (t) dt (x real),

we obtain ∫ ∞

s

F(x) dx � lim
w→∞

∫ w

s

(∫ ∞

0
e−xtf (t) dt

)
dx.

As
∫ ∞
0 e−xtf (t) dt converges uniformly for α < s ≤ x ≤ w (1.12), we

can reverse the order of integration (cf. Theorem A.11), giving∫ ∞

s

F(x) dx � lim
w→∞

∫ ∞

0

(∫ w

s

e−xtf (t) dx
)
dt

� lim
w→∞

∫ ∞

0

[
e−xt

−t
f (t)

]w
s

dt

�
∫ ∞

0
e−st f (t)

t
dt − lim

w→∞

∫ ∞

0
e−wt f (t)

t
dt

� L
(
f (t)
t

)
,
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as limw→∞ G(w) � 0 by Theorem 1.20 for G(w) � L (
f (t)/t

)
. The

existence of L (
f (t)/t

)
is ensured by the hypotheses. �

Example 1.38.

(i) L
(
sin t
t

)
�

∫ ∞

s

dx

x2 + 1 � π

2
− tan−1 s

� tan−1
(
1
s

)
(s > 0).

(ii) L
(
sinhωt

t

)
�

∫ ∞

s

ω dx

x2 − ω2

� 1
2

∫ ∞

s

(
1

x − ω
− 1

x + ω

)
dx

� 1
2
ln

s + ω

s − ω
(s > |ω|).

Exercises 1.9

1. Determine

(a) L(t coshωt) (b) L(t sinhωt)

(c) L(t2 cosωt) (d) L(t2 sinωt).
2. Using Theorem 1.37, show that

(a) L
(
1− e−t

t

)
� log

(
1+ 1

s

)
(s > 0)

(b) L
(
1− cosωt

t

)
� 1
2 log

(
1+ ω2

s2

)
(s > 0).

[Compare (a) and (b) with Exercises 1.6, Question 7 and 8,
respectively.]

(c) L
(
1− coshωt

t

)
� 1
2
log

(
1− ω2

s2

)
(s > |ω|).

3. Using (1.16), find

(a) L−1
(
log

(
s2 + a2

s2 + b2

))
(b) L−1

(
tan−1 1

s

)
(s > 0).
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4. If

L−1
(
e−a

√
s

√
s

)
� e−a2/4t

√
πt

,

find L−1(e−a
√
s).

1.10 Partial Fractions

In many applications of the Laplace transform it becomes neces-
sary to find the inverse of a particular transform, F(s). Typically it
is a function that is not immediately recognizable as the Laplace
transform of some elementary function, such as

F(s) � 1
(s − 2)(s − 3) ,

for s confined to some region �
(
e.g., Re(s) > α

)
. Just as in calcu-

lus (for s real), where the goal is to integrate such a function, the
procedure required here is to decompose the function into partial
fractions.
In the preceding example, we can decompose F(s) into the sum

of two fractional expressions:

1
(s − 2)(s − 3) � A

s − 2 + B

s − 3 ,

that is,

1 � A(s − 3)+ B(s − 2). (1.17)

Since (1.17) equates two polynomials [1 and A(s − 3) + B(s − 2)]
that are equal for all s in �, except possibly for s � 2 and s � 3, the
two polynomials are identically equal for all values of s. This follows
from the fact that two polynomials of degree n that are equal at more
than n points are identically equal (Corollary A.8).
Thus, if s � 2, A � −1, and if s � 3, B � 1, so that

F(s) � 1
(s − 2)(s − 3) � −1

s − 2 + 1
s − 3 .
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Finally,

f (t) � L−1(F(s)) � L−1
(

− 1
s − 2

)
+ L−1

(
1

s − 3
)

� −e2t + e3t .

Partial Fraction Decompositions. We will be concerned with the
quotient of two polynomials, namely a rational function

F(s) � P(s)
Q (s)

,

where the degree of Q (s) is greater than the degree of P(s), and P(s)
and Q (s) have no common factors. Then F(s) can be expressed as a
finite sum of partial fractions.

(i) For each linear factor of the form as + b of Q (s), there
corresponds a partial fraction of the form

A

as + b
, A constant.

(ii) For each repeated linear factor of the form (as + b)n, there
corresponds a partial fraction of the form

A1

as + b
+ A2

(as + b)2
+· · ·+ An

(as + b)n
, A1, A2, . . . , An constants.

(iii) For every quadratic factor of the form as2 + bs + c, there
corresponds a partial fraction of the form

As + B

as2 + bs + c
, A, B constants.

(iv) For every repeated quadratic factor of the form (as2+bs+c)n,
there corresponds a partial fraction of the form

A1s + B1

as2 + bs + c
+ A2s + B2

(as2 + bs + c)2
+ · · · + Ans + Bn

(as2 + bs + c)n
,

A1, . . . , An, B1, . . . , Bn constants.

The object is to determine the constants once the polynomial
P(s)/Q (s) has been represented by a partial fraction decomposition.
This can be achieved by several different methods.
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Example 1.39.

1
(s − 2)(s − 3) � A

s − 2 + B

s − 3
or

1 � A(s − 3)+ B(s − 2),
as we have already seen. Since this is a polynomial identity valid for
all s, we may equate the coefficients of like powers of s on each side
of the equals sign (see Corollary A.8). Thus, for s, 0 � A + B; and
for s0, 1 � −3A − 2B. Solving these two equations simultaneously,
A � −1, B � 1 as before.
Example 1.40. Find

L−1
(

s + 1
s2(s − 1)

)
.

Write
s + 1

s2(s − 1) � A

s
+ B

s2
+ C

s − 1 ,

or

s + 1 � As(s − 1)+ B(s − 1)+ Cs2,

which is an identity for all values of s. Setting s � 0 gives B � −1;
setting s � 1 gives C � 2. Equating the coefficients of s2 gives 0 �
A + C, and so A � −2. Whence

L−1
(

s + 1
s2(s − 1)

)
� −2L−1

(
1
s

)
− L−1

(
1
s2

)
+ 2L−1

(
1

s − 1
)

� −2− t + 2et.
Example 1.41. Find

L−1
(

2s2

(s2 + 1)(s − 1)2
)
.

We have

2s2

(s2 + 1)(s − 1)2 � As + B

s2 + 1 + C

s − 1 + D

(s − 1)2 ,
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or

2s2 � (As + B)(s − 1)2 + C(s2 + 1)(s − 1)+ D(s2 + 1).
Setting s � 1 gives D � 1. Also, setting s � 0 gives 0 � B−C+D, or

−1 � B − C.

Equating coefficients of s3 and s, respectively,

0 � A + C,

0 � A − 2B + C.

These last two equations imply B � 0. Then from the first equation,
C � 1; finally, the second equation shows A � −1. Therefore,

L−1
(

2s2

(s2 + 1)(s − 1)2
)

� −L−1
(

s

s2 + 1
)

+ L−1
(
1

s − 1
)

+ L−1
(

1
(s − 1)2

)

� − cos t + et + tet.

Simple Poles. Suppose that we have F(t) � L(
f (t)

)
for

F(s) � P(s)
Q (s)

� P(s)
(s − α1)(s − α2) · · · (s − αn)

, αi �� αj,

where P(s) is a polyomial of degree less than n. In the terminology of
complex variables (cf. Chapter 3), the αis are known as simple poles
of F(s). A partial fraction decomposition is

F(s) � A1

s − α1
+ A2

s − α2
+ · · · + An

s − αn
. (1.18)

Multiplying both sides of (1.18) by s − αi and letting s → αi yield

Ai � lim
s→αi
(s − αi)F(s). (1.19)

(
In Chapter 3 we will see that the Ais are the residues of F(s) at the
poles αi.

)
Therefore,

f (t) � L−1(F(s)) �
n∑
i�1

L−1
(

Ai

s − αi

)
�

n∑
i�1

Aie
αit.
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Putting in the expression (1.19) for Ai gives a quick method for
finding the inverse:

f (t) � L−1(F(s)) �
n∑
i�1
lim
s→αi
(s − αi)F(s) eαit. (1.20)

Example 1.42. Find

L−1
(

s

(s − 1)(s + 2)(s − 3)
)
.

f (t) � lim
s→1(s − 1)F(s)et + lim

s→−2(s + 2)F(s)e−2t + lim
s→3(s − 3)F(s) e3t

� −1
6
et − 2

15
e−2t + 3

10
e3t .

Exercises 1.10

1. Find L−1 of the following transforms F(s) by the partial fraction
method.

(a)
1

(s − a)(s − b)
(b)

s

2s2 + s − 1

(c)
s2 + 1

s(s − 1)3 (d)
s

(s2 + a2)(s2 + b2)
(a �� b)

(e)
s

(s2 + a2)(s2 − b2)
(f)

s + 2
s5 − 3s4 + 2s3

(g)
2s2 + 3

(s + 1)2(s2 + 1)2 (h)
s2 + s + 3

s(s3 − 6s2 + 5s + 12)

(See Example 2.42).

2. Determine

L−1
(

s2

(s2 − a2)(s2 − b2)(s2 − c2)

)
(a) by the partial fraction method
(b) by using (1.20).



2
C H A P T E R

...........................................

Applications
and Properties

The various types of problems that can be treated with the Laplace
transform include ordinary and partial differential equations as well
as integral and integro-differential equations. In this chapter we
delineate the principles of the Laplace transform method for the
purposes of solving all but PDEs (which we discuss in Chapter 5).
In order to expand our repetoire of Laplace transforms, we

discuss the gamma function, periodic functions, infinite series, con-
volutions, as well as the Dirac delta function, which is not really a
function at all in the conventional sense. This latter is considered
in an entirely new but rigorous fashion from the standpoint of the
Riemann–Stieltjes integral.

2.1 Gamma Function

Recall from equation (1.9) that

L(tn) � n!
sn+1 , n � 1, 2, 3, . . . .

41
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In order to extend this result for non-integer values of n, consider

L(tν) �
∫ ∞

0
e−sttνdt (ν > −1).

Actually, for −1 < ν < 0, the function f (t) � tν is not piecewise
continuous on [0,∞) since it becomes infinite as t → 0+. However,
as the (improper) integral

∫ τ

0 t
νdt exists for ν > −1, and f (t) � tν is

bounded for all large values of t, the Laplace transform, L(tν), exists.
By a change of variables, x � st (s > 0),

L(tν) �
∫ ∞

0
e−x

(x
s

)ν 1
s
dx

� 1
sν+1

∫ ∞

0
xνe−x dx. (2.1)

The quantity

�(p) �
∫ ∞

0
xp−1e−xdx (p > 0)

is known as the (Euler) gamma function. Although the improper in-
tegral exists and is a continuous function of p > 0, it is not equal to
any elementary function (Figure 2.1).
Then (2.1) becomes

L(tν) � �(ν + 1)
sν+1

, ν > −1, s > 0. (2.2)

p

��p�

O �

�

���� � �

FIGURE 2.1
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Comparing (1.9) with (2.2) when v � n � 0, 1, 2, . . . yields
�(n + 1) � n!. (2.3)

Thus we see that the gamma function is a generalization of the no-
tion of factorial. In fact, it can be defined for all complex values of
ν, ν �� 0,−1,−2, · · ·, and enjoys the factorial property

�(ν + 1) � ν �(ν), ν �� 0,−1,−2, . . .
(see Exercises 2.1, Question 1).

Example 2.1. For ν � −1/2,

L(
t−

1
2
) � �

( 1
2

)
s
1
2

,

where

�
( 1
2

) �
∫ ∞

0
x− 1

2 e−x dx.

Making a change of variables, x � u2,

�
( 1
2

) � 2
∫ ∞

0
e−u2 du.

This integral is well known in the theory of probability and has the
value

√
π. (To see this, write

I2 �
(∫ ∞

0
e−x2 dx

)(∫ ∞

0
e−y2 dy

)
�

∫ ∞

0

∫ ∞

0
e−(x

2+y2)dx dy,

and evaluate the double integral by polar coordinates, to get I �√
π/2.)
Hence

L(
t−

1
2
) �

√
π

s
(s > 0) (2.4)

and

L−1(s− 1
2
) � 1√

πt
(t > 0). (2.5)

Example 2.2. Determine

L(log t) �
∫ ∞

0
e−st log t dt.
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Again setting x � st, s > 0,

L(log t) �
∫ ∞

0
e−x log

(x
s

) 1
s
dx

� 1
s

(∫ ∞

0
e−x log x dx − log s

∫ ∞

0
e−xdx

)

� −1
s
(log s + γ), (2.6)

where

γ � −
∫ ∞

0
e−x log x dx � 0.577215 . . .

is Euler’s constant. See also Exercises 2.1, Question 4.

Infinite Series. If

f (t) �
∞∑
n�0

ant
n+ν (ν > −1)

converges for all t ≥ 0 and |an| ≤ K(αn/n!), K, α > 0, for all n
sufficiently large, then

L(
f (t)

) �
∞∑
n�0

an�(n + ν + 1)
sn+ν+1

(Re(s) > α
)
.

This generalizes Theorem 1.18 (cf. Watson [14], P 1.3.1). In terms of
the inverse transform, if

F(s) �
∞∑
n�0

an

sn+ν+1 (ν > −1), (2.7)

where the series converges for |s| > R, then the inverse can be
computed term by term:

f (t) � L−1(F(s)) �
∞∑
n�0

an

�(n + ν + 1) t
n+ν, t ≥ 0. (2.8)

To verify (2.8), note that since the series in (2.7) converges for
|s| > R, ∣∣∣an

sn

∣∣∣ ≤ K
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for some constant K and for all n. Then for |s| � r > R,

|an| ≤ K rn. (2.9)

Also,

rn <
2n

n
rn � αn

n
, (2.10)

taking α � 2r. Since �(n+ ν+ 1) ≥ �(n) for ν > −1, n ≥ 2, (2.9) and
(2.10) imply

|an|
�(n + ν + 1) ≤ K αn

n �(n)
� K αn

n!
, (2.11)

as required.
Furthermore, (2.11) guarantees∣∣∣∣ an

�(n + ν + 1)
∣∣∣∣ tn ≤ K(αt)n

n!
(t ≥ 0),

and as
∑∞

n�0 (αt)
n/n! � eαt converges, (2.8) converges absolutely.

This also shows that f has exponential order.
Taking ν � 0 in (2.7): If

F(s) �
∞∑
n�0

an

sn+1

converges for |s| > R, then the inverse is given by

f (t) � L−1(F(s)) �
∞∑
n�0

an

n!
tn.

Example 2.3. Suppose

F(s) � 1√
s + a

� 1√
s

(
1+ a

s

)− 1
2

(a real).

Using the binomial series expansion for (1+ x)α,

F(s) � 1√
s

[
1− 1

2

(a
s

)
+

( 1
2

) ( 3
2

)
2!

(a
s

)2
−

( 1
2

) ( 3
2

) ( 5
2

)
3!

(a
s

)3

+ · · · + (−1)
n · 1 · 3 · 5 · · · (2n − 1)

2nn!

(a
s

)n
+ · · ·

]
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�
∞∑
n�0

(−1)n · 1 · 3 · 5 · · · (2n − 1)an
2nn! sn+ 1

2

, |s| > |a|.

Inverting in accordance with (2.8),

f (t) � L−1(F(s)) �
∞∑
n�0

(−1)n1 · 3 · 5 · · · (2n − 1)antn− 1
2

2nn!�
(
n + 1

2

)

� 1√
t

∞∑
n�0

(−1)n1 · 3 · 5 · · · (2n − 1)antn
2nn!�

(
n + 1

2

) .

Here we can use the formula ν �(ν) � �(ν + 1) to find by induction
that

�

(
n + 1

2

)
� �

(
1
2

)(
1 · 3 · 5 · · · (2n − 1)

2n

)

� √
π

(
1 · 3 · 5 · · · (2n − 1)

2n

)
.

Thus

f (t) � 1√
t

∞∑
n�0

(−1)nantn√
π n!

� 1√
πt

e−at.

Note that in this case f (t) can also be determined from the first
translation theorem (1.27) and (2.5).

Exercises 2.1

1. Establish the “factorial property” of the gamma function

�(ν + 1) � ν �(ν),

for ν > 0.
2. Compute

(a) �
( 3
2

)
(b) �(3)
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(c) �
(− 1

2

)
(d) �

(− 3
2

)
.

3. Compute

(a) L
(
e3t√
t

)
(b) L−1

(
e−2s√
s

)

(c) L−1
(

1
(s − a)3/2

)
(d) L−1

( ∞∑
n�0

(−1)n
sn+1

)
, |s| > 1

(e) L−1
( ∞∑
n�1

(−1)n+1

ns2n

)
, |s| > 1

(f) L(√t).

4. (a) Show that

∂

∂ν
tν−1 � tν−1 log t.

(b) From (a) and 2.2 prove that

L(tν−1 log t) � �′(ν)− �(ν) log s
sν

, s > 0, ν > 0.

(c) Conclude that

L(log t) � −1
s
(log s + γ),

where

γ � −
∫ ∞

0
e−x log x dx � 0.577215 . . . ,

is the Euler constant as in (2.6).

2.2 Periodic Functions

If a function f is periodic with period T > 0, then f (t) � f (t + T),
−∞ < t < ∞. The periodic functions sin t and cos t both have period
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t

f�t�

T �T �TO FIGURE 2.2

T � 2π, whereas tan t has period T � π. Since the functions f with
which we are dealing are defined only for t ≥ 0, we adopt the same
condition for periodicity as above for these functions as well.
The function f in Figure 2.2, is periodic with period T. We define

F1(s) �
∫ T

0
e−stf (t) dt, (2.12)

which is the Laplace transform of the function denoting the first
period and zero elsewhere.
The Laplace transform of the entire function f is just a particular

multiple of this first one.

Theorem 2.4. If F(s) � L(
f (t)

)
and f is periodic of period T, then

F(s) � 1
1− e−sT

F1(s). (2.13)

Proof.

F(s) �
∫ ∞

0
e−stf (t) dt �

∫ T

0
e−stf (t) dt +

∫ ∞

T

e−stf (t) dt.

Changing variables with τ � t − T in the last integral,∫ ∞

T

e−stf (t) dt �
∫ ∞

0
e−s(τ+T)f (τ + T) dτ

� e−sT

∫ ∞

0
e−sτf (τ) dτ
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t

f�t�

a �a �a �a �aO

�

FIGURE 2.3

by the periodicity of f . Therefore,

F(s) �
∫ T

0
e−stf (t) dt + e−sTF(s);

solving,

F(s) � 1
1− e−sT

F1(s). �

Example 2.5. Find the Laplace transform of the square–wave
function depicted in Figure 2.3. This bounded, piecewise continuous
function is periodic of period T � 2a, and so its Laplace transform
is given by

F(s) � 1
1− e−2as

F1(s),

where

F1(s) �
∫ 2a

a

e−stdt

� 1
s
(e−as − e−2as). (2.14)

Thus,

F(s) � e−as

s(1+ e−as)
� 1

s(1+ eas)
.
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Observe that (2.13) can be written as

F(s) �
∞∑
n�0

e−nTsF1(s)
(
x � Re(s) > 0

)
. (2.15)

In the case of the square–wave (Figure 2.3), the function can be
expressed in the form

f (t) � ua(t)− u2a(t)+ u3a(t)− u4a(t)+ · · · . (2.16)

Since F1(s) � (1/s)(e−as − e−2as), we have from (2.15)

F(s) � L(
f (t)

) �
∞∑
n�0

e−2nas
1
s
(e−as − e−2as) (T � 2a)

� 1
s

∞∑
n�0
(e−(2n+1)as − e−(2n+2)as)

� 1
s
(e−as − e−2as + e−3as − e−4as + · · ·)

� L(
ua(t)

) − L(
u2a(t)

) + L(
u3a(t)

) − L(
u4a(t)

) + · · · ,
that is, we can take the Laplace transform of f term by term.
For other periodic functions with a representation as in (2.16),

taking the Laplace transform in this fashion is often useful and
justified.

Example 2.6. The half –wave–rectified sine function is given by

f (t) �
{
sinωt 2nπ

ω
< t <

(2n+1)π
ω

0 (2n+1)π
ω

< t <
(2n+2)π

ω
,

n � 0, 1, 2, . . .

(Figure 2.4). This bounded, piecewise continuous function is
periodic with period T � 2π/ω. Thus,

L(
f (t)

) � 1

1− e−
2πs
ω

F1(s),

where

F1(s) �
∫ π

ω

0
e−st sinωt dt
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t

f�t�

O �

�

��

�

��

�

�

FIGURE 2.4

� e−st

s2 + ω2
(−s sinωt − ω cosωt)

∣∣∣∣
π

ω

0

� ω

s2 + ω2
(1+ e−

πs

ω ).

Consequently,

L(
f (t)

) � ω

(s2 + ω2)(1− e−
πs

ω )
.

The full–wave–rectified sine function (Figure 2.5)

f (t) � | sinωt|,

t

f�t�

O ��

�

��

�

�

�

�

FIGURE 2.5
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with T � π/ω, has

L(
f (t)

) � 1

1− e−
πs

ω

F1(s)

� ω

s2 + ω2

(
1+ e−

πs

ω

1− e−
πs

ω

)

� ω

s2 + ω2
coth

πs

2ω
.

Exercises 2.2

1. For Figures E.4–E.7, find the Laplace transform of the periodic
function f (t).

t

f�t�

�

a �a �a �aO FIGURE E.4

t

f�t�

�

a �a �a �aO

��
FIGURE E.5
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t

f�t�

�

a �a �a �aO FIGURE E.6

t

f�t�

�

a �a �a �aO FIGURE E.7

2. Compute the Laplace transform of the function

f (t) � u(t)− ua(t)+ u2a(t)− u3a(t)+ · · ·
term by term and compare with Question 1(a).

3. Express the function in Question 1(b) as an infinite series of unit
step functions and compute its Laplace transform term by term.

4. Determine f (t) � L−1(F(s)) for
F(s) � 1− e−as

s(eas + e−as)

(Re(s) > 0, a > 0
)

by writing F(s) as an infinite series of exponential functions and
computing the inverse term by term. Draw a graph of f (t) and
verify that indeed L(

f (t)
) � F(s).

2.3 Derivatives

In order to solve differential equations, it is necessary to know the
Laplace transform of the derivative f ′ of a function f . The virtue of
L(f ′) is that it can be written in terms of L(f ).
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Theorem 2.7 (Derivative Theorem).
Suppose that f is continuous on (0,∞) and of exponential order α

and that f ′ is piecewise continuous on [0,∞). Then

L(
f ′(t)

) � sL(
f (t)

) − f (0+)
(Re(s) > α

)
. (2.17)

Proof. Integrating by parts,∫ ∞

0
e−stf ′(t) dt � lim

δ→0
τ→∞

∫ τ

δ

e−stf ′(t) dt

� lim
δ→0
τ→∞

[
e−stf (t)

∣∣∣τ
δ
+ s

∫ τ

δ

e−stf (t) dt
]

� lim
δ→0
τ→∞

[
e−sτf (τ)− e−sδf (δ)+ s

∫ τ

δ

e−stf (t) dt
]

� −f (0+)+ s

∫ ∞

0
e−stf (t) dt

(Re(s) > α
)
.

Therefore,

L(
f ′(t)

) � sL(
f (t)

) − f (0+).

We have made use of the fact that for Re(s) � x > α,

|e−sτf (τ)| ≤ e−xτM eατ

� M e−(x−α)τ → 0 as τ → ∞.

Also, note that f (0+) exists since f ′(0+) � limt→0+ f ′(t) exists (see
Exercises 2.3, Question 1). Clearly, if f is continuous at t � 0, then
f (0+) � f (0) and our formula becomes

L(
f ′(t)

) � sL(
f (t)

) − f (0). (2.18)

�

Remark 2.8. An interesting feature of the derivative theorem is
that we obtain L(

f ′(t)
)
without requiring that f ′ itself be of expo-

nential order. Example 1.14 was an example of this with f (t) �
sin(et

2
).

Example 2.9. Let us computeL(sin2 ωt) andL(cos2 ωt) from (2.18).
For f (t) � sin2 ωt, we have f ′(t) � 2ω sinωt cosωt � ω sin 2ωt. From
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(2.18),

L(ω sin 2ωt) � sL(sin2 ωt)− sin2 0,

that is,

L(sin2 ωt) � 1
s

L(ω sin 2ωt)

� ω

s

2ω
s2 + 4ω2

� 2ω2

s(s2 + 4ω2) .

Similarly,

L(cos2 ωt) � 1
s

L(−ω sin 2ωt)+ 1
s

� −ω

s

2ω
s2 + 4ω2 + 1

s

� s2 + 2ω2
s(s2 + 4ω2) .

Note that if f (0) � 0, (2.18) can be expressed as

L−1(sF(s)) � f ′(t),

where F(s) � L(
f (t)

)
. Thus, for example

L−1
(

s

s2 − a2

)
�

(
sinh at

a

)′
� cosh at.

It may be the case that f has a jump discontinuity other than at the
origin. This can be treated in the following way.

Theorem 2.10. Suppose that f is continuous on [0,∞) except for a
jump discontinuity at t � t1 > 0, and f has exponential order α with f ′

piecewise continuous on [0,∞). Then

L(
f ′(t)

) � sL(
f (t)

) − f (0)− e−t1s
(
f (t+1 )− f (t−1 )

) (Re(s) > α
)
.
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Proof.∫ ∞

0
e−stf ′(t) dt

� lim
τ→∞

∫ τ

0
e−stf ′(t) dt

� lim
τ→∞

[
e−stf (t)

∣∣∣t−1
0

+ e−stf (t)
∣∣∣τ
t
+
1

+ s

∫ τ

0
e−stf (t) dt

]

� lim
τ→∞

[
e−st1 f (t−1 )− f (0)+ e−sτf (τ)− e−st1 f (t+1 )+ s

∫ τ

0
e−stf (t) dt

]
.

Hence

L(
f ′(t)

) � sL(
f (t)

) − f (0)− e−st1
(
f (t+1 )− f (t−1 )

)
.

If 0 � t0 < t1 < · · · < tn are a finite number of jump
discontinuities, the formula becomes

L(
f ′(t)

) � sL(
f (t)

) − f (0+)−
n∑

k�1
e−stk

(
f (t+k )− f (t−k )

)
. (2.19)

�

Remark 2.11. If we assume that f ′ is continuous [0,∞) and also of
exponential order, then it follows that the same is true of f itself .

To see this, suppose that

|f ′(t)| ≤ M eαt, t ≥ t0, α �� 0.
Then

f (t) �
∫ t

t0

f ′(τ) dτ + f (t0)

by the fundamental theorem of calculus, and

|f (t)| ≤ M

∫ t

t0

eατdτ + |f (t0)|

≤ M

α
eαt + |f (t0)|

≤ C eαt, t ≥ t0.

Since f is continuous, the result holds for α �� 0, and the case α � 0
is subsumed under this one.
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To treat differential equations we will also need to know L(f ′′)
and so forth. Suppose that for the moment we can apply formula
(2.18) to f ′′. Then

L(
f ′′(t)

) � sL(
f ′(t)

) − f ′(0)
� s

(
sL(

f (t)
) − f (0)

) − f ′(0)
� s2L(

f (t)
) − s f (0)− f ′(0). (2.20)

Similarly,

L(
f ′′′(t)

) � sL(
f ′′(t)

) − f ′′(0)
� s3L(

f (t)
) − s2f (0)− s f ′(0)− f ′′(0) (2.21)

under suitable conditions.
In the general case we have the following result.

Theorem 2.12. Suppose that f (t), f ′(t), · · · , f (n−1)(t) are continuous
on (0,∞) and of exponential order, while f (n)(t) is piecewise continuous
on [0,∞). Then

L(
f (n)(t)

) � snL(
f (t)

) − sn−1f (0+)− sn−2f ′(0+)− · · · − f (n−1)(0+).
(2.22)

Example 2.13. Determine the Laplace transform of the Laguerre
polynomials, defined by

Ln(t) � et

n!
dn

dtn
(tne−t), n � 0, 1, 2, . . . .

Let y(t) � tne−t. Then

L(
Ln(t)

) � L
(
et
1
n!

y(n)
)
.

First, wefind byTheorem2.12, and subsequently the first translation
theorem (1.27) coupled with (1.9),

L(y(n)) � snL(y) � snn!
(s + 1)n+1 .

It follows that

L(
Ln(t)

) � L
(
et
1
n!

y(n)
)

� (s − 1)n
sn+1

(Re(s) > 1
)
,

again by the first translation theorem.
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Exercises 2.3

1. In Theorem 2.7, prove that f (0+) exists?
(Hint: Consider for c sufficiently small,∫ c

δ

f ′(t)dt � f (c)− f (δ),

and let δ → 0+.)
2. Using the derivative theorem (2.7), show by mathematical
induction that

L(tn) � n!
sn+1

(Re(s) > 0
)
, n � 1, 2, 3, . . . .

3. (a) Show that

L(sinhωt) � ω

s2 − ω2

by letting f (t) � sinhωt and applying formula (2.20).
(b) Show that

L(t coshωt) � s2 + ω2

(s2 − ω2)2
.

(c) Show that

L(t sinhωt) � 2ωs
(s2 − ω2)2

.

4. Verify Theorem 2.10 for the function

f (t) �
{
t 0 ≤ t ≤ 1
2 t > 1.

5. Compute

(a) L(sin3 ωt) (b) L(cos3 ωt).
6. Write out the details of the proof of Theorem 2.12.
7. Give an example to show that in Remark 2.11 the condition of
continuity cannot be replaced by piecewise continuity.
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2.4 Ordinary Differential Equations

The derivative theorem in the form of Theorem 2.12 opens up the
possibility of utilizing the Laplace transform as a tool for solving or-
dinary differential equations. Numerous applications of the Laplace
transform to ODEs will be found in ensuing sections.

Example 2.14. Consider the initial-value problem

d2y

d t2
+ y � 1, y(0) � y′(0) � 0.

Let us assume for the moment that the solution y � y(t) satisfies
suitable conditions so that we may invoke (2.22). Taking the Laplace
transform of both sides of the differential equation gives

L(y′′)+ L(y) � L(1).
An application of (2.22) yields

s2L(y)− s y(0)− y′(0)+ L(y) � 1
s
,

that is,

L(y) � 1
s(s2 + 1) .

Writing

1
s(s2 + 1) � A

s
+ Bs + C

s2 + 1
as a partial fraction decomposition, we find

L(y) � 1
s

− s

s2 + 1 .
Applying the inverse transform gives the solution

y � 1− cos t.
One may readily check that this is indeed the solution to the initial-
value problem.

Note that the initial conditions of the problem are absorbed into
the method, unlike other approaches to problems of this type (i.e.,
the methods of variation of parameters or undetermined coefficients).
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General Procedure. The Laplace transform method for solving or-
dinary differential equations can be summarized by the following
steps.

(i) Take the Laplace transform of both sides of the equation. This
results in what is called the transformed equation.

(ii) Obtain an equation L(y) � F(s), where F(s) is an algebraic
expression in the variable s.

(iii) Apply the inverse transform to yield the solution y �
L−1(F(s)).

The various techniques for determining the inverse trans-
form include partial fraction decomposition, translation, derivative
and integral theorems, convolutions, and integration in the com-
plex plane. All of these techniques except the latter are used in
conjunction with standard tables of Laplace transforms.

Example 2.15. Solve

y′′′ + y′′ � et + t + 1, y(0) � y′(0) � y′′(0) � 0.
Taking L of both sides gives

L(y′′′)+ L(y′′) � L(et)+ L(t)+ L(1),
or

[s3L(y)− s2y(0)− s y′(0)− y′′(0)]

+[s2 L(y)− s y(0)− y′(0)] � 1
s − 1 + 1

s2
+ 1

s
.

Putting in the initial conditions gives

s3L(y)+ s2L(y) � 2s2 − 1
s2(s − 1) ,

which is

L(y) � 2s2 − 1
s4(s + 1)(s − 1) .

Applying a partial fraction decomposition to

L(y) � 2s2 − 1
s4(s + 1)(s − 1) � A

s
+ B

s2
+ C

s3
+ D

s4
+ E

s + 1 + F

s − 1 ,
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we find that

L(y) � − 1
s2

+ 1
s4

− 1
2(s + 1) + 1

2(s − 1) ,

and consequently

y � −L−1
(
1
s2

)
+ L−1

(
1
s4

)
− 1
2

L−1
(
1

s + 1
)

+ 1
2

L−1
(
1

s − 1
)

� −t + 1
6
t3 − 1

2
e−t + 1

2
et.

In general, the Laplace transformmethod demonstrated above is
particularly applicable to initial-value problems of nth-order linear
ordinary differential equations with constant coefficients, that is,

an
dny

d tn
+ an−1

dn−1y
d tn−1 + · · · + a0y � f (t),

y(0) � y0, y′(0) � y1, . . . , y(n−1)(0) � yn−1.
(2.23)

In engineering parlance, f (t) is known as the input, excitation, or
forcing function, and y � y(t) is the output or response. In the event
the input f (t) has exponential order and be continuous, the output
y � y(t) to (2.23) can also be shown to have exponential order and
be continuous (Theorem A.6). This fact helps to justify the applica-
tion of the Laplace transformmethod (see the remark subsequent to
Theorem A.6). More generally, when f ∈ L, the method can still be
applied by assuming that the hypotheses of Theorem 2.12 are sat-
isfied. While the solution y � y(t) to (2.23) is given by the Laplace
transform method for t ≥ 0, it is in general valid on the whole real
line, −∞ < t < ∞, if f (t) has this domain.
Another important virtue of the Laplace transform method is

that the input function f (t) can be discontinuous.

Example 2.16. Solve

y′′ + y � E ua(t), y(0) � 0, y′(0) � 1.
Here the system is receiving an input of zero for 0 ≤ t < a and E
(constant) for t ≥ a. Then

s2L(y)− s y(0)− y′(0)+ L(y) � E e−as

s
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and

L(y) � 1
s2 + 1 + E e−as

s(s2 + 1)

� 1
s2 + 1 + E

(
1
s

− s

s2 + 1
)
e−as.

Whence

y � L−1
(

1
s2 + 1

)
+ EL−1

[(
1
s

− s

s2 + 1
)
e−as

]

� sin t + E ua(t)
(
1− cos(t − a)

)
,

by the second translation theorem (1.27). We can also express y in
the form

y �
{
sin t 0 ≤ t < a

sin t + E
(
1− cos(t − a)

)
t ≥ a.

Note that y(a−) � y(a+) � sin a, y′(a−) � y′(a+) � cos a, y′′(a−) �
− sin a, but y′′(a+) � − sin a + E a2. Hence y′′(t) is only piecewise
continuous.

Example 2.17. Solve

y′′ + y �
{
sin t 0 ≤ t ≤ π

0 t > π
y(0) � y′(0) � 0.

We have

s2L(y)+ L(y) �
∫ π

0
e−st sin t dt

� −e−st

s2 + 1 (s · sin t + cos t)
∣∣∣∣
π

0

� e−πs

s2 + 1 + 1
s2 + 1 .

Therefore,

L(y) � 1
(s2 + 1)2 + e−πs

(s2 + 1)2 ,
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and by Example 2.42 (i) and the second translation theorem (1.31),

y � 1
2
(sin t − t cos t)+ uπ(t)

[
1
2

(
sin(t − π)− (t − π) cos(t − π)

)]
.

In other words,

y �
{
1
2 (sin t − t cos t) 0 ≤ t < π

− 1
2 π cos t t ≥ π.

Observe that denoting the input function by f (t),

f (t) � sin t(1− uπ(t)
)

� sin t + uπ(t) sin(t − π),

from which

L(
f (t)

) � 1
s2 + 1 + e−πs

s2 + 1 ,

again by the second translation theorem.

General Solutions. If the initial-value data of (2.23) are unspeci-
fied, the Laplace transform can still be applied in order to determine
the general solution.

Example 2.18. Consider

y′′ + y � e−t ,

and let y(0) � y0, y′(0) � y1 be unspecified. Then

s2L(y)− s y(0)− y′(0)+ L(y) � L(e−t),

that is,

L(y) � 1
(s + 1)(s2 + 1) + s y0

s2 + 1 + y1

s2 + 1

�
1
2

s + 1 −
1
2 s − 1

2

s2 + 1 + y0s

s2 + 1 + y1

s2 + 1 ,

by taking a partial fraction decomposition. Applying L−1,

y � 1
2
e−t +

(
y0 − 1

2

)
cos t +

(
y1 + 1

2

)
sin t.

Administrator
ferret
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Since y0, y1 can take on all possible values, the general solution to
the problem is given by

y � c0 cos t + c1 sin t + 1
2 e

−t ,

where c0, c1 are arbitrary real constants. Note that this solution is
valid for −∞ < t < ∞.
Boundary-Value Problems. This type of problem is also amenable
to solution by the Laplace transform method. As a typical example
consider

y′′ + λ2y � cos λt, y(0) � 1, y

( π

2λ

)
� 1.

Then

L(y′′)+ λ2L(y) � L(cos λt),
so that

(s2 + λ2)L(y) � s

s2 + λ2
+ s y(0)+ y′(0),

implying

L(y) � s

(s2 + λ2)2
+ s y(0)

s2 + λ2
+ y′(0)

s2 + λ2
.

Therefore,

y � 1
2λ

t sin λt + cos λt + y′(0)
λ

sin λt, (2.24)

where we have invoked Example 2.42 (ii) to determine the first term
and replaced y(0) with its value of 1. Finally, from (2.24)

1 � y

( π

2λ

)
� π

4λ2
+ y′(0)

λ

gives

y′(0)
λ

� 1− π

4λ2
,

and thus

y � 1
2λ

t sin λt + cos λt +
(
1− π

4λ2

)
sin λt.
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Similarly, if the boundary data had been, say

y(0) � 1, y′
(π
λ

)
� 1,

then differentiating in (2.24)

y′ � 1
2λ
(sin λt + λt cos λt)− λ sin λt + y′(0) cos λt.

Thus,

1 � y′
(π
λ

)
� −π

2λ
− y′(0)

and

y′(0) � −
(
1+ π

2λ

)
,

to yield

y � 1
2λ

t sin λt + cos λt − 1
λ

(
1+ π

2λ

)
sin λt.

Systems of Differential Equations. Systems of differential equa-
tions can also be readily handled by the Laplace transform method.
We illustrate with a few examples.

Example 2.19.

dy

dt
� −z;

dz

dt
� y, y(0) � 1, z(0) � 0.

Then

L(y′) � −L(z) i.e., sL(y)− 1 � −L(z)
and (2.25)

L(z′) � L(y) i.e., sL(z) � L(y).
Solving the simultaneous equation (2.25)

s2L(y)− s � −sL(z) � −L(y),
or

L(y) � s

s2 + 1 ,



2. Applications and Properties66

so that

y � cos t, z � −y′ � sin t.
Example 2.20.

y′ + z′ + y + z � 1,
y′ + z � et, y(0) � −1, z(0) � 2.

From the first equation, we have

sL(y)+ 1+ sL(z)− 2+ L(y)+ L(z) � 1
s
. (2.26)

From the second equation, we have

sL(y)+ 1+ L(z) � 1
s − 1 . (2.27)

Solving (2.26) and (2.27), we arrive at

L(y) � −s2 + s + 1
s(s − 1)2

� 1
s

− 2
s − 1 + 1

(s − 1)2 .

Taking the inverse transform yields

y � 1− 2et + t et, z � 2et − t et.

Integrals. In certain differential equations it is also necessary to
compute the Laplace transform of an integral.

Theorem 2.21. If f is piecewise continuous on [0,∞) of exponential
order α(≥ 0), and

g(t) �
∫ t

0
f (u) du,

then

L(
g(t)

) � 1
s

L(
f (t)

) (Re(s) > α
)
.

Proof. Since g′(t) � f (t) except at points of discontinuity of f ,
integration by parts gives∫ ∞

0
e−stg(t) dt � lim

τ→∞

[
g(t)e−st

−s

∣∣∣∣
τ

0
+ 1

s

∫ τ

0
e−stf (t) dt

]
.



2.4. Ordinary Differential Equations 67

Since g(0) � 0, we need only compute

lim
τ→∞

g(τ)e−sτ

−s
.

To this end,

|g(τ)e−sτ | ≤ e−xτ

∫ τ

0
|f (u)| du

≤ M e−xτ

∫ τ

0
eαudu

� M

α
(e−(x−α)τ − e−xτ)

→ 0 as τ → ∞ for x � Re(s) > α > 0.

Similarly, this holds for α � 0. Hence

L(
g(t)

) � 1
s

L(
f (t)

) (Re(s) > α
)
. �

Example 2.22.

L(
Si(t)

) � L
(∫ t

0

sin u
u

du

)
� 1

s
L
(
sin t
t

)

� 1
s
tan−1 1

s
,

by Example 1.34 (i). The function, Si(t), is called the sine integral.

The result of Theorem 2.22 can also be expressed in the form

L−1
(
F(s)
s

)
�

∫ t

0
f (u) du,

where F(s) � L(
f (t)

)
. Hence, for example,

L−1
(

1
s(s2 − a2)

)
� 1

a

∫ t

0
sinh au du � 1

a2
(cosh at − 1).

Differential equations that involve integrals (known as integro-
differential equations) commonly arise in problems involving elec-
trical circuits.
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L: inductance (constant)
R: resistance (constant)
C: capacitance (constant)
I: current

E�t� C

L

R

FIGURE 2.6

Electrical Circuits. In the (RCL) circuit in Figure 2.6, the volt-
age drops across the inductor, resistor, and capacitor are given by
L(dI/dt), RI, and (1/C)

∫ t

0 I(τ) dτ, respectively, where Kirchoff’s volt-
age law states that the sum of the voltage drops across the individual
components equals the impressed voltage, E(t), that is,

L
dI

dt
+ RI + 1

C

∫ t

0
I(τ) dτ � E(t). (2.28)

Setting Q (t) � ∫ t

0 I(τ) dτ (the charge of the condenser), we can write
(2.28) as

L
d2Q

dt2
+ R

dQ

dt
+ Q

C
� E(t) (2.29)

since I � dQ/dt. This will be the basis of some of the electrical
circuit problems throughout the sequel.

Example 2.23. Suppose that the current I in an electrical circuit
satisfies

L
dI

dt
+ RI � E0 sinωt,

where L, R, E0, and ω are constants. Find I � I(t) for t > 0 if I(0) � 0.
Taking the Laplace transform,

LsL(I)+ RL(I) � E0ω

s2 + ω2
,

that is,

L(I) � E0ω

(Ls + R)(s2 + ω2)
.
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Considering partial fractions

L(I) � E0ω/L

(s + R/L)(s2 + ω2)
� A

s + R/L
+ Bs + C

s2 + ω2
,

we find that

A � E0Lω

L2ω2 + R2
, B � −E0Lω

L2ω2 + R2
, C � E0Rω

L2ω2 + R2
,

and so

I(t) � E0Lω

L2ω2 + R2
e−

R

L
t + E0R

L2ω2 + R2
sinωt − E0Lω

L2ω2 + R2
cosωt.

Example 2.24. Suppose that the current I in the electrical circuit
depicted in Figure 2.7 satisfies

L
dI

dt
+ 1

C

∫ t

0
I(τ) dτ � E,

where L, C, and E are positive constants, I(0) � 0. Then

LsL(I)+ L(I)
Cs

� E

s
,

implying

L(I) � EC

LC s2 + 1 � E

L(s2 + 1/LC) .

Thus,

I(t) � E

√
C

L
sin

1√
LC

t.

E�t� C

L

FIGURE 2.7
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Differential Equations with Polynomial Coefficients. Recall
(Theorem 1.34) that for F(s) � L(

y(t)
)
,

dn

dsn
F(s) � (−1)nL(

tny(t)
)

(s > α)

for y(t) piecewise continuous on [0,∞) and of exponential order α.
Hence, for n � 1,

L(
ty(t)

) � −F ′(s).

Suppose further that y′(t) satisfies the hypotheses of the theorem.
Then

L(
ty′(t)

) � − d

ds
L(
y′(t)

)
� − d

ds

(
sF(s)− y(0)

)
� −sF ′(s)− F(s).

Similarly, for y′′(t),

L(ty′′) � − d

ds
L(
y′′(t)

)
� − d

ds

(
s2F(s)− sy(0)− y′(0)

)
� −s2F ′(s)− 2sF(s)+ y(0).

In many cases these formulas for L(
ty(t)

)
, L(

ty′(t)
)
, and L(

ty′′(t)
)

can be used to solve linear differential equations whose coefficients
are (first-degree) polynomials.

Example 2.25. Solve

y′′ + ty′ − 2y � 4, y(0) � −1, y′(0) � 0.
Taking the Laplace transform of both sides yields

s2F(s)+ s − (
sF ′(s)+ F(s)

) − 2F(s) � 4
s
,

or

F ′(s)+
(
3
s

− s

)
F(s) � − 4

s2
+ 1.
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The integrating factor is

µ(s) � e
∫
( 3
s
−s)ds � s3e−s2/2.

Therefore, (
F(s)s3e−s2/2

)′ � − 4
s2
s3e−s2/2 + s3e−s2/2,

and

F(s)s3e−s2/2 � −4
∫

se−s2/2ds +
∫

s3e−s2/2ds.

Substituting u � −s2/2 into both integrals gives

F(s)s3e−s2/2 � 4
∫

eudu + 2
∫

ueudu

� 4e−s2/2 + 2
(−s2

2
e−s2/2 − e−s2/2

)
+ C

� 2e−s2/2 − s2e−s2/2 + C.

Thus,

F(s) � 2
s3

− 1
s

+ C

s3
es
2/2.

Since F(s)→ 0 as s → ∞, we must have C � 0 and
y(t) � t2 − 1,

which can be verified to be the solution.

There are pitfalls, however, of which the reader should be aware.
A seemingly innocuous problem such as

y′ − 2ty � 0, y(0) � 1,
has y(t) � et

2
as its solution, and this function, as we know, does

not possess a Laplace transform. (See what happens when you try
to apply the Laplace transform method to this problem.)
Another caveat is that if the differential equation has a regular

singular point, one of the solutions may behave like log t as t → 0+;
hence its derivative has no Laplace transform (see Exercises 1.2,
Question 3). In this case, the Laplace transform method can deliver
only the solution that is bounded at the origin.
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Example 2.26. Solve

ty′′ + y′ + 2y � 0.
The point t � 0 is a regular singular point of the equation. Let us
determine the solution that satisfies y(0) � 1. Taking the Laplace
transform,( − s2F ′(s)− 2sF(s)+ 1) + (

sF(s)− 1) + 2F(s) � 0,
that is,

−s2F ′(s)− sF(s)+ 2F(s) � 0,
or

F ′(s)+
(
1
s

− 2
s2

)
F(s) � 0, s > 0.

Then the integrating factor is

µ(s) � e

∫ (
1
s
− 2

s2

)
ds � se2/s.

Therefore, (
F(s)se2/s

)′ � 0
and

F(s) � Ce−2/s

s
.

Taking the series ex � ∑∞
n�0(x

n/n!) with x � −2/s implies

F(s) � C

∞∑
n�0

(−1)n2n
n!sn+1 .

In view of (2.8) we can take L−1 term by term so that

y(t) � C

∞∑
n�0

(−1)n2ntn
(n!)2

.

The condition y(0) � 1 gives C � 1.
Note that y(t) � J0(2

√
at) with a � 2, from the table of Laplace

transforms (pp. 210–218), where J0 is the well-known Bessel function
(2.55). There is another solution to this differential equationwhich is
unbounded at the origin and cannot be determined by the preceding
method.
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Exercises 2.4

1. Solve the following initial-value problems by the Laplace trans-
form method.

(a)
dy

dt
− y � cos t, y(0) � −1

(b)
dy

dt
+ y � t2et, y(0) � 2

(c)
d2y

dt2
+ 4y � sin t, y(0) � 1, y′(0) � 0

(d)
d2y

dt2
− 2dy

dt
− 3y � tet, y(0) � 2, y′(0) � 1

(e)
d3y

dt3
+ 5d

2y

dt2
+ 2dy

dt
− 8y � sin t, y(0) � 0, y′(0) � 0,

y′′(0) � −1
(f)

d2y

dt2
+ dy

dt
� f (t), y(0) � 1, y′(0) � −1, where

f (t) �
{
1 0 < t < 1
0 t > 1

(g) y′′ + y �
{
cos t 0 ≤ t ≤ π

0 t > π, y(0) � 0, y′(0) � 0
(h) y(4) − y � 0, y(0) � 1, y′(0) � y′′(0) � y′′′(0) � 0.

2. Solve the boundary value problems.

(a) y′′ + λ2y � sin λt, y(0) � 1, y
(
π
2λ

) � π.
(b) y′′ + λ2y � t, y(0) � 1, y′ (π

λ

) � −1.
3. Suppose that the current I in an electrical circuit satisfies

L
dI

dt
+ RI � E0,

where L, R, E0 are positive constants.

(a) Find I(t) for t > 0 if I(0) � I0 > 0.
(b) Sketch a graph of the solution in (a) for the case I0 > E0/R.
(c) Show that I(t) tends to E0/R as t → ∞.

4. Suppose that the current I in an electrical circuit satisfies

L
d I

dt
+ RI � E0 + A cosωt,
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where L, R, E0, A and ω are constants. Find I(t) for t > 0 if
I(0) � 0.

5. Find the current I(t), t > 0, if

L
d I

dt
+ RI + 1

C

∫ t

0
I(τ) dτ � sin t,

and L � 1, R � 3, C � 1
2 , I(0) � 1.

6. Solve the following systems of equations by the Laplace transform
method.

(a) 2
dx

dt
+ 3x + y � 0

2
dy

dt
+ x + 3y � 0

x(0) � 2, y(0) � 0

(b)
dx

dt
+ x − y � 1+ sin t

dy

dt
− dx

dt
+ y � t − sin t

x(0) � 0, y(0) � 1

(c) x(t)− y′′(t)+ y(t) � e−t − 1
x′(t)+ y′(t)− y(t) � −3e−t + t

x(0) � 0, y(0) � 1, y′(0) � −2.
7. Solve the following differential equations by the Laplace trans-
form method.

(a) ty′ − y � 1
(b) ty′′ − y′ � −1, y(0) � 0
(c) ty′′ + y � 0, y(0) � 0
(d) ty′′ + (t + 1)y′ + 2y � e−t, y(0) � 0.

2.5 Dirac Operator

In order to model certain physical events mathematically, such as a
sudden power surge caused by a bolt of lightning, or the dynamical
effects of a hammer blow to a spring-mounted weight, it turns out
that ordinary functions are ill suited for these purposes. What is
required is an entirely new entity that is not really a function at all.
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Because of the status of this new entity, we also require a new tool
in order to discuss it, namely the Riemann–Stieltjes integral, which
is just a natural extension of the conventional Riemann integral.

Riemann–Stieltjes Integral. Consider a partition of the interval
[α, β] given by α � t0 < t1 < · · · < tn−1 < tn � β, choosing from
each subinterval [ti−1, ti] an arbitrary point xi with ti−1 ≤ xi ≤ ti.
Given functions f and ϕ defined on [α, β], we form the sum

n∑
i�1

f (xi)[ϕ(ti)− ϕ(ti−1)]. (2.30)

If these sums converge to a finite limit L as � � maxi(ti − ti−1)→ 0
as i → ∞, and for every choice of xi ∈ [ti−1, ti], then this limit is
called the Riemann–Stieltjes integral of f with respect to ϕ on [α, β],
and for the value of L we write∫ β

α

f (t) dϕ(t).

If ϕ(t) � t, then all the sums in (2.30) are the usual Riemann
sums and we obtain the ordinary Riemann integral.
The basic properties of the Riemann–Stieltjes integral are listed

in the Appendix (Theorem A.9) and are very similar to those of the
Riemann integral, as one might expect. It is important to note that
the function ϕ need not be continuous. In fact, if f is continuous on
[α, β] and ϕ is a nondecreasing function on [α, β], then

∫ β

α
f (t) dϕ(t) exists

(see Protter and Morrey [10], Theorem 12.16).
For example, let ϕ(t) � ua(t), the unit step function (Example

1.25):

ϕ(t) �
{
1 t ≥ a

0 t < a,

for a ≥ 0. If f is continuous on some interval [α, β] containing a, say
α < a < β, then for any particular partition, only for tj−1 < a ≤ tj
is there any contribution to the integral (all the other terms being
zero), and

n∑
i�1

f (xi)[ϕ(ti)− ϕ(ti−1)] � f (xj)[ϕ(tj)− ϕ(tj−1)]
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t

��t�

�

O a� tj�� xj tj � FIGURE 2.8

� f (xj)(1− 0)
� f (xj)

(Figure 2.8). Taking the limit as � → 0 (whereby xj → a) gives the
value of the Riemann–Stieltjes integral∫ β

α

f (t) dua(t) � f (a) (2.31)

since f (xj)→ f (a).
The property (2.31) is called the “sifting property” in that it sifts

out one particular value of the function f . Let us denote

δa � dua, a ≥ 0, (2.32)

and for a � 0, set δ � δ0. From the sifting property we see that the
action of δa on continuous functions is that of an operator, that is,

δa[f ] �
∫ ∞

−∞
f (t) δa(t) � f (a), (2.33)

and we see that this operator is linear:

δa[c1f1 + c2f2] � c1δa[f1]+ c2δa[f2],

for constants c1, c2.
We shall call δa the Dirac operator, although it is also known as

the Dirac distribution, Dirac measure concentrated at a, Dirac delta
function, or impulse function. P.A.M. Dirac, one of the founders of
quantummechanics, made extensive use of it in his work. However,
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the “delta function” was highly controversial until it was made rig-
orous by the French mathematician Laurent Schwartz, in his book
Théorie des distributions (cf. [13]). The class of linear operators of
which the Dirac operator is just one example is known as distribu-
tions or generalized functions (see Guest [5], Chapter 12; also Richards
and Youn [11]).
Let us use the Riemann integral to show that the sifting prop-

erty (2.33) for continuous functions could not possibly hold for any
“proper function” ϕa.
Let fn be continuous, fn(t) � 0 for |t| ≥ 1/n, fn(t) � 1 − n|t| for

|t| < 1/n, so that with a � 0, fn(0) � 1. If ϕ0 is Riemann integrable,
then it must be bounded by some constant M on, say, [−1, 1]. If ϕ0
satisfies the sifting property, it follows that

1 �
∫ ∞

−∞
fn(t) ϕ0(t) dt ≤

∫ 1
n

− 1
n

fn(t)|ϕ0(t)| dt

≤ M

∫ 1
n

− 1
n

dt � 2M
n
,

a contradiction for n sufficiently large (Figure 2.9).
However, there is an important relationship between the Rie-

mann–Stieltjes and Riemann integrals under suitable conditions.
Notably, if f , ϕ, ϕ′ are continuous on [α, β], then∫ β

α

f (t) dϕ(t) �
∫ β

α

f (t) ϕ′(t) dt (2.34)

(see Theorem A.10).

t

�

fn

O�

�

n

�

n FIGURE 2.9
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One further property of the Dirac operator worth noting is∫ ∞

−∞
δa(t) � 1, (2.35)

which can be expressed as the total point mass concentrated at a is
unity.

Laplace Transform. In terms of the Riemann–Stieltjes integral, the
Laplace transform with respect to a function ϕ defined on [0,∞) is given
by [cf. Widder [15] for an explication using this approach]

F(s) � LR−S(dϕ) �
∫ ∞

−∞
e−stdϕ(t) � lim

b→∞

∫ b

−b

e−stdϕ(t) (2.36)

whenever this integral exists. Since we have taken the integral over
(−∞,∞), we will always set ϕ(t) � 0 for t < 0. In particular, for
dϕ � dua � δa,

LR−S(δa) �
∫ ∞

−∞
e−stδa(t)

� e−as, a ≥ 0, (2.37)

by the sifting property. When a � 0, we have
LR−S(δ) � 1.

Here we have an instance of the basic property of the Laplace
transform, F(s)→ 0 as s → ∞, being violated. But of course, δ is not
a function but a linear operator.
The application of the Riemann–Stieltjes Laplace transform (or

Laplace–Stieltjes transform as it is known) becomes more transparent
with the following result. We will take a slight liberty here with the
notation and writeLR−S(ψ′) forLR−S(dψ) wheneverψ′ is continuous
on [0,∞).
Theorem 2.27. Suppose that ϕ is a continuous function of exponential
order on [0,∞). Then

LR−S(ϕ) � L(ϕ).
Proof. Let

ψ(t) �
∫ t

0
ϕ(τ) dτ,
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and set ϕ(t) � ψ(t) � 0 for t < 0. Then ψ′(t) � ϕ(t), except possibly
at t � 0, and in view of (2.34),

L(ϕ) �
∫ ∞

−∞
e−stϕ(t) dt �

∫ ∞

−∞
e−stψ′(t) dt �

∫ ∞

−∞
e−stdψ(t)

� LR−S(dψ) � LR−S(ψ′) � LR−S(ϕ),

as desired. �

Remark 2.28. In the preceding theorem, the continuous function
ϕ need not be of exponential order as long as the usual Laplace
transform exists.

Thus we have the following general principle:
When taking the Laplace–Stieltjes transform LR−S of functions in

a differential equation, we may instead take the ordinary Laplace
transform, L.
Example 2.29. Let us solve the differential equation

x′(t) � δ(t), x(0) � 0.
First note that this equation can be interpreted in the sense that
both sides are linear operators

[
i.e., x′[f ] � ∫ ∞

−∞ f (t) x′(t) dt for, say,
continuous f , which vanishes outside a finite interval

]
. Applying

LR−S to both sides,

sL(x) � LR−S(δ) � 1,
and

L(x) � 1
s
,

so that x(t) ≡ 1, t ≥ 0.
Note, however, that the initial condition x(0) � 0 is not satisfied,

but if we define x(t) � 0 for t < 0, then limt→0− x(t) � 0. Moreover,
x(t) � u(t),

the unit step function
(
compare with (2.32)

)
.

Applications. The manner in which the Dirac operator has come
to be used in modeling a sudden impulse comes from consideration
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t

uab�t�

O a b

�

b�a

FIGURE 2.10

of the step function (Example 1.26):

uab(t) � 1
b − a

(
ua(t)− ub(t)

)
, b > a ≥ 0

(Figure 2.10). Note that uab(t) has the property∫ ∞

−∞
uab(t) dt � 1. (2.38)

In order to simulate a sudden “impulse,” we let b approach a and
define

�a(t) � lim
b→a

uab(t). (2.39)

Then �a(t) � 0 for all t �� a and is undefined (or ∞ if you like) at
t � a.
From another perspective, let f be continuous in some interval

[α, β] containing a, with α < a < b < β. Then∫ ∞

−∞
f (t) uab(t) dt � 1

b − a

∫ b

a

f (t) dt

� f (c)

for some point c ∈ [a, b] by the mean-value theorem for integrals
(Figure 2.11). Taking the limit as b → a, we get f (c)→ f (a), that is,

lim
b→a

∫ ∞

−∞
f (t) uab(t) dt � f (a). (2.40)

This suggests in a heuristic sense that if only we could take this
limit inside the integral (which is not possible), then coupled with
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O � a

f�a�

b
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(2.39) we would arrive at the expression∫ ∞

−∞
f (t)�a(t) dt � f (a).

This formula has absolutely no meaning in the Riemann integral
sense

(
remember that �a(t) is zero except for the value∞ at t � a),

but we have already given such an expression a rigorous meaning
in the Riemann–Stieltjes sense of (2.33).
Again, in (2.38), if only one could take the limit as b → a inside

the integral, we would have∫ ∞

−∞
�a(t) dt � 1,

also achieved rigorously in (2.35).
As far as the Laplace transform goes, we have

L(
uab(t)

) � e−as − e−bs

s(b − a)

as in Example 1.26. Letting b → a and applying l’Hôpital’s rule,

lim
b→a

L(
uab(t)

) � lim
b→a

e−as − e−bs

s(b − a)
� e−as. (2.41)

Since limb→a uab(t) � �a(t), it is tempting (butmeaningless) to write

lim
b→a

L(
uab(t)

) � L(
�a(t)

)
,
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and hence by (2.41), equating the two limits

L(
�a(t)

) � e−as.

This is just the expression obtained in (2.37).
The foregoing illustrates that the mathematical modeling of a

sudden impulse is achieved rigorously by the treatment given in
terms of the Riemann–Stieltjes integral.
Hereafter, for the sake of convenience, wewill abuse the notation

further and simply write

L(δa) � e−as.

Example 2.30. A pellet of massm is fired from a gun at time t � 0
with a muzzle velocity v0. If the pellet is fired into a viscous gas, the
equation of motion can be expressed as

m
d2x

dt2
+ k

dx

dt
� mvo δ(t), x(0) � 0, x′(0) � 0,

where x(t) is the displacement at time t ≥ 0, and k > 0 is a constant.
Here, x′(0) � 0 corresponds to the fact that the pellet is initially at
rest for t < 0.

Taking the transform of both sides of the equation, we have

ms2 L(x)+ ksL(x) � mv0 L(δ) � mv0,

L(x) � mv0

ms2 + ks
� v0

s(s + k/m)
.

Writing

v0

s(s + k/m)
� A

s
+ B

s + k/m
,

we find that

A � mv0

k
, B � −mv0

k
,

and

L(x) � mv0/k

s
− mv0/k

s + k/m
.

The solution given by the inverse transform is

x(t) � mv0

k
(1− e−

k

m
t)
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(Figure 2.12). Computing the velocity,

x′(t) � v0 e
− k

m
t,

and limt→0+ x′(t) � v0, whereas limt→0− x′(t) � 0, indicating the
instantaneous jump in velocity at t � 0, from a rest state to the
value v0 (Figure 2.13).
Another formulation of this problem would be

m
d2x

dt2
+ k

dx

dt
� 0, x(0) � 0, x′(0) � v0.

Solving this version yields the same results as above.

Example 2.31. Suppose that at time t � 0 an impulse of 1V is
applied to an RCL circuit (Figure 2.6), and for t < 0, I(t) � 0 and the
charge on the capacitor is zero. This can bemodeled by the equation

L
dI

dt
+ RI + 1

C

∫ t

0
I(τ) dτ � δ(t),

where L, R, and C are positive constants, and

(i)
L

C
>

R2

4
, (ii)

L

C
<

R2

4
.
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Applying the Laplace transform gives

LsL(I)+ RL(I)+ 1
Cs

L(I) � 1,

that is,

L(I) � s

Ls2 + Rs + 1/C
� s

L[(s + R/2L)2 + (1/LC − R2/4L2)]
.

Setting a � R/2L, b2 � 1/LC − R2/4L2 > 0, assuming (i), then,

LL(I) � s

(s + a)2 + b2

� s + a

(s + a)2 + b2
− a

(s + a)2 + b2
, (2.42)

and so

I(t) � e−at

L

(
cos bt − a

b
sin bt

)
.

Assuming (ii), (2.42) becomes

LL(I) � s

(s + a)2 − b2
� s + a

(s + a)2 − b2
− a

(s + a)2 − b2

with a � R/2L, b2 � R2/4L2 − 1/LC > 0. Consequently,

I(t) � e−at

L

(
cosh bt − a

b
sinh bt

)
.

A Mechanical System. We consider a mass m suspended on a
spring that is rigidly supported from one end (Figure 2.14). The rest
position is denoted by x � 0, downward displacement is represented
by x > 0, and upward displacement is shown by x < 0.
To analyze this situation let

i. k > 0 be the spring constant from Hooke’s law,
ii. a(dx/dt) be the damping force due to the medium (e.g., air),
where a > 0, that is, the damping force is proportional to the
velocity,

iii. F(t) represents all external impressed forces on m.
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m
position
rest

x � �

x � �

FIGURE 2.14

Newton’s second law states that the sum of the forces acting on m

equals md2x/dt2, that is,

m
d2x

dt2
� −kx − a

dx

dt
+ F(t),

or

m
d2x

dt2
+ a

dx

dt
+ kx � F(t). (2.43)

This equation is called the equation of motion.

Remark 2.32. If a � 0, the motion is called undamped. If a �� 0,
the motion is called damped. If F(t) ≡ 0 (i.e., no impressed forces),
the motion is called free; otherwise it is forced.

We can write (2.43) with F(t) ≡ 0 as
d2x

dt2
+ a

m

dx

dt
+ k

m
x � 0.

Setting a/m � 2b, k/m � λ2, we obtain

d2x

dt2
+ 2b dx

dt
+ λ2x � 0. (2.44)

The characteristic equation is

r2 + 2br + λ2 � 0,
with roots

r � −b ±
√
b2 − λ2.
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t

x�t�

y � Ce�bt

O

FIGURE 2.15

The resulting behavior of the system depends on the relation be-
tween b and λ. One interesting case is when 0 < b < λ, where we
obtain

x(t) � e−bt(c1 sin
√
λ2 − b2t + c2 cos

√
λ2 − b2t),

which after some algebraic manipulations (setting c �
√
c21 + c22,

cos ϕ � c2/c) becomes

x(t) � c e−bt cos(
√
λ2 − b2t − ϕ).

This represents the behavior of damped oscillation (Figure 2.15).
Let us apply a unit impulse force to the above situation.

Example 2.33. For 0 < b < λ, suppose that

d2x

dt2
+ 2b dx

dt
+ λ2x � δ(t), x(0) � 0, x′(0) � 0,

which models the response of the mechanical system to a unit
impulse.
Therefore,

L(x′′)+ 2bL(x′)+ λ2L(x) � L(δ) � 1,
so that

L(x) � 1
s2 + 2bs + λ2

� 1
(s + b)2 + (λ2 − b2)

,
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and

x(t) � 1√
λ2 − b2

e−bt sin(
√
λ2 − b2t),

which again is a case of damped oscillation.

Exercises 2.5

1. Solve

d2y

dt2
− 4dy

dt
+ 2y � δ(t), y(0) � y′(0) � 0.

2. The response of a spring with no damping (a � 0) to a unit
impulse at t � 0 is given by

m
d2x

dt2
+ kx � δ(t), x(0) � 0, x′(0) � 0.

Determine x(t).
3. Suppose that the current in an RL circuit satisifies

L
d I

dt
+ RI � E(t),

where L, and R are constants, and E(t) is the impressed voltage.
Find the response to a unit impulse at t � 0, assuming E(t) � 0
for t ≤ 0.

4. Solve

m
d2x

dt2
+ a

dx

dt
+ kx � δ(t),

for m � 1, a � 2, k � 1, x(0) � x′(0) � 0.
5. Show that if f satisfies the conditions of the derivative theorem
(2.7), then

L−1(sF(s)) � f ′(t)+ f (0) δ(t).

6. Show that

L−1
(
s − a

s + a

)
� δ(t)− 2ae−at.
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7. A certain function U(x) satisfies

a2U ′′ − b2U � −1
2
δ, x > 0,

where a and b are positive constants. If U(x)→ 0 as x → ∞, and
U(−x) � U(x), show that

U(x) � 1
2ab

e−
b

a
|x|.

[Hint: Take U(0) � c, U ′(0) � 0, where c is to be determined.]

2.6 Asymptotic Values

Two properties of the Laplace transform are sometimes useful in
determining limiting values of a function f (t) as t → 0 or as t → ∞,
even though the function is not known explicitly. This is achieved
by examining the behavior of L(

f (t)
)
.

Theorem 2.34 (Initial-Value Theorem). Suppose that f , f ′ satisfy
the conditions as in the derivative theorem (2.7), and F(s) � L(

f (t)
)
.

Then

f (0+) � lim
t→0+

f (t) � lim
s→∞ s F(s) (s real).

Proof. By the general property of all Laplace transforms (of func-
tions), we know that L(

f ′(t)
) � G(s)→ 0 as s → ∞ (Theorem 1.20).

By the derivative theorem,

G(s) � s F(s)− f (0+), s > α.

Taking the limit,

0 � lim
s→∞G(s) � lim

s→∞
(
s F(s)− f (0+)

)
.

Therefore,

f (0+) � lim
s→∞ s F(s). �

Example 2.35. If

L(
f (t)

) � s + 1
(s − 1)(s + 2) ,
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then

f (0+) � lim
s→∞ s

(
s + 1

(s − 1)(s + 2)
)

� 1.

Theorem 2.36 (Terminal-Value Theorem). Suppose that f satis-
fies the conditions of the derivative theorem (2.7) and furthermore that
limt→∞ f (t) exists. Then this limiting value is given by

lim
t→∞ f (t) � lim

s→0 s F(s) (s real),

where F(s) � L(
f (t)

)
.

Proof. First note that f has exponential order α � 0 since it is
bounded in view of the hypothesis. By the derivative theorem,

G(s) � L(
f ′(t)

) � s F(s)− f (0+) (s > 0).

Taking the limit,

lim
s→0G(s) � lim

s→0 s F(s)− f (0+). (2.45)

Furthermore,

lim
s→0G(s) � lim

s→0

∫ ∞

0
e−stf ′(t) dt

�
∫ ∞

0
f ′(t) dt, (2.46)

since in this particular instance the limit can be passed inside the
integral (see Corollary A.4). The integral in (2.46) exists since it is
nothing but ∫ ∞

0
f ′(t) dt � lim

τ→∞

∫ τ

0
f ′(t) dt

� lim
τ→∞[f (τ)− f (0+)]. (2.47)

Equating (2.45), (2.46), and (2.47),

lim
t→∞ f (t) � lim

s→0 s F(s).
�

Example 2.37. Let f (t) � sin t. Then
lim
s→0 s F(s) � lim

s→0
s

s2 + 1 � 0,
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but limt→∞ f (t) does not exist! Thus we may deduce that if
lims→0 s F(s) � L, then either limt→∞ f (t) � L or this limit does
not exist. That is the best we can do without knowing a priori that
limt→∞ f (t) exists.

Exercises 2.6

1. Without determining f (t) and assuming f (t) satisfies the hy-
potheses of the initial-value theorem (2.34), compute f (0+)
if

(a) L(
f (t)

) � s3 + 3a2s
(s2 − a2)3

(b) L(
f (t)

) �
√
s2 + a2 − s)n√

s2 + a2
(n ≥ 0)

(c) log
(
s + a

s + b

)
(a �� b).

2. Without determining f (t), and assuming f (t) satisfies the hy-
potheses of the terminal-value theorem (2.36), compute lim

t→∞ f (t)

if

(a) L(
f (t)

) � s + b

(s + b)2 + a2
(b > 0)

(b) L(
f (t)

) � 1
s

+ tan−1
(a
s

)
.

3. Show that

lim
s→0 s

s

(s2 + a2)2

exists, and

L
(

t

2a
sin at

)
� s

(s2 + a2)2
,

yet

lim
t→∞

t

2a
sin at

does not exist.
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2.7 Convolution

The convolution of two functions, f (t) and g(t), defined for t >

0, plays an important role in a number of different physical
applications.
The convolution is given by the integral

(f ∗ g)(t) �
∫ t

0
f (τ)g(t − τ) dτ,

which of course exists if f and g are, say, piecewise continuous.
Substituting u � t − τ gives

(f ∗ g)(t) �
∫ t

0
g(u) f (t − u) du � (g ∗ f )(t),

that is, the convolution is commutative.
Other basic properties of the convolution are as follows:

(i) c(f ∗ g) � cf ∗ g � f ∗ cg, c constant;
(ii) f ∗ (g ∗ h) � (f ∗ g) ∗ h (associative property);
(iii) f ∗ (g + h) � (f ∗ g)+ (f ∗ h) (distributive property).

Properties (i) and (iii) are routine to verify. As for (ii),

[f ∗ (g ∗ h)](t)
�

∫ t

0
f (τ)(g ∗ h)(t − τ) dτ

�
∫ t

0
f (τ)

(∫ t−τ

0
g(x)h(t − τ − x) dx

)
dτ

�
∫ t

0

(∫ t

τ

f (τ)g(u − τ)h(t − u) du
)
dτ (x � u − τ)

�
∫ t

0

(∫ u

0
f (τ)g(u − τ) dτ

)
h(t − u) du

� [(f ∗ g) ∗ h](t),

having reversed the order of integration.
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Example 2.38. If f (t) � et, g(t) � t, then

(f ∗ g)(t) �
∫ t

0
eτ(t − τ) dτ

� t eτ
∣∣∣t
0
− (τ eτ − eτ)

∣∣∣t
0

� et − t − 1.
One of the very significant properties possessed by the convolu-

tion in connection with the Laplace transform is that the Laplace
transform of the convolution of two functions is the product of their
Laplace transforms.

Theorem 2.39 (Convolution Theorem). If f and g are piecewise
continuous on [0,∞) and of exponential order α, then

L[(f ∗ g)(t)] � L(
f (t)

) · L(
g(t)

) (Re(s) > α
)
.

Proof. Let us start with the product

L(
f (t)

) · L(
g(t)

) �
(∫ ∞

0
e−sτf (τ) dτ

)(∫ ∞

0
e−sug(u) du

)

�
∫ ∞

0

(∫ ∞

0
e−s(τ+u)f (τ) g(u) du

)
dτ.

Substituting t � τ + u, and noting that τ is fixed in the interior
integral, so that du � dt, we have

L(
f (t)

) · L(
g(t)

) �
∫ ∞

0

(∫ ∞

τ

e−stf (τ) g(t − τ) dt
)
dτ. (2.48)

If we define g(t) � 0 for t < 0, then g(t − τ) � 0 for t < τ and we
can write (2.48) as

L(
f (t)

) · L(
g(t)

) �
∫ ∞

0

∫ ∞

0
e−stf (τ)g(t − τ) dt dτ.

Due to the hypotheses on f and g, the Laplace integrals of f and g
converge absolutely and hence, in view of the preceding calculation,∫ ∞

0

∫ ∞

0

∣∣e−stf (τ)g(t − τ)
∣∣ dt dτ



2.7. Convolution 93

converges. This fact allows us to reverse the order of integration,∗

so that

L(
f (t)

) · L(
g(t)

) �
∫ ∞

0

∫ ∞

0
e−stf (τ)g(t − τ) dτ dt

�
∫ ∞

0

(∫ t

0
e−stf (τ) g(t − τ) dτ

)
dt

�
∫ ∞

0
e−st

(∫ t

0
f (τ) g(t − τ) dτ

)
dt

� L[(f ∗ g)(t)]. �

Example 2.40.

L(eat ∗ ebt) � 1
(s − a)(s − b)

.

Moreover,

L−1
(

1
(s − a)(s − b)

)
� eat ∗ ebt

�
∫ t

0
eaτ eb(t−τ)dτ

� eat − ebt

a − b
a �� b.

∗Let

amn �
∫ n+1

n

∫ m+1

m

|h(t, τ)| dt dτ, bmn �
∫ n+1

n

∫ m+1

m

h(t, τ) dt dτ,

so that |bmn| ≤ amn. If ∫ ∞

0

∫ ∞

0

|h(t, τ)| dt dτ < ∞,

then
∑∞

n�0
∑∞

m�0 amn < ∞, implying∑∞
n�0

∑∞
m�0 |bmn| < ∞. Hence, by a standard

result on double series, the order of summation can be interchanged:
∞∑
n�0

∞∑
m�0

bmn �
∞∑
m�0

∞∑
n�0

bmn,

i.e., ∫ ∞

0

∫ ∞

0

h(t, τ) dt dτ �
∫ ∞

0

∫ ∞

0

h(t, τ) dτ dt.
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Example 2.41. Find

L−1
(

1
s2(s − 1)

)
.

Previously we applied a partial fraction decomposition. But we can
also write

1
s2(s − 1) � 1

s2
· 1
s − 1 ,

where L(t) � 1/s2, L(et) � 1/(s − 1). By the convolution theorem,
1
s2

· 1
s − 1 � L(t ∗ et),

and thus

L−1
(

1
s2(s − 1)

)
� t ∗ et

� et − t − 1

by Example 2.38.

Example 2.42.

(i)
ω2

(s2 + ω2)2
� ω

s2 + ω2
· ω

s2 + ω2

� L(sinωt ∗ sinωt),
so that

L−1
(

ω2

(s2 + ω2)2

)
� sinωt ∗ sinωt

�
∫ t

0
sinwτ sinω(t − τ) dτ

� 1
2w
(sinωt − ωt cosωt).
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Similarly,

(ii) L−1
(

s

(s2 + ω2)2

)
� 1

ω
cosωt ∗ sinωt

� 1
ω

∫ t

0
cosωτ sinω(t − τ) dτ

� 1
2ω

t sinωt.

Here we have used the fact that

sin(A − B) � sinA cosB − cosA sin B
to compute both integrals.
These examples illustrate the utility of the convolution theorem

in evaluating inverse transforms that are products.

Error Function. The error function from the theory of probability
is defined as

erf(t) � 2√
π

∫ t

0
e−x2dx.

Note that

lim
t→∞ erf(t) � 2√

π

∫ ∞

0
e−x2dx � 1 (2.49)

by Example 2.1 (Figure 2.16). The error function is related to Laplace
transforms through the problem (see also Chapters 4 and 5) of
finding

L−1
(

1√
s(s − 1)

)
.

t

erf�t�

�

��

O

FIGURE 2.16
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We know from (2.5) that

L
(
1√
πt

)
� 1√

s

and also that L(et) � 1/(s − 1). Then by the convolution theorem,

L−1
(

1√
s(s − 1)

)
� 1√

πt
∗ et

�
∫ t

0

1√
πx

et−xdx

� et√
π

∫ t

0

e−x

√
x
dx.

Substituting u � √
x gives

L−1
(

1√
s(s − 1)

)
� 2et√

π

∫ √
t

0
e−u2du

� et erf(
√
t).

Applying the first translation theorem 1.27 with a � −1 yields
L(
erf(

√
t)
) � 1

s
√
s + 1 .

Beta Function. If f (t) � ta−1, g(t) � tb−1, a, b > 0, then

(f ∗ g)(t) �
∫ t

0
τa−1(t − τ)b−1dτ.

Substituting τ � ut,

(f ∗ g)(t) � ta+b−1
∫ 1

0
ua−1(1− u)b−1du. (2.50)

The term

B(a, b) �
∫ 1

0
ua−1(1− u)b−1du (2.51)

is known as the beta function. Then by the convolution theorem,

L(
ta+b−1B(a, b)

) � L(ta−1)L(tb−1)

� �(a)�(b)
sa+b
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by (2.2). Therefore,

ta+b−1B(a, b) � L−1
(
�(a)�(b)

sa+b

)

� �(a)�(b)
ta+b−1

�(a + b)
, (2.52)

and we obtain Euler’s formula for the beta function:

B(a, b) � �(a)�(b)
�(a + b)

. (2.53)

Calculating B(1/2, 1/2) in (2.51) with u � sin2 θ, we find from
(2.53)

π � B
( 1
2 ,
1
2

) � [
�
( 1
2

)]2
,

that is,

�
( 1
2

) � √
π (2.54)

since �(1/2) > 0. See also Example 2.1.

Bessel Function. This important function is the solution to the
Bessel equation of order ν,

t2
d2y

dt2
+ t

dy

dt
+ (t2 − ν2)y � 0, (2.55)

and is given by
(
the solution to (2.55) has a � 1)

Jν(at) �
∞∑
n�0

(−1)n(at)2n+ν

22n+νn!(n + ν)!
,

where (n + ν)! � �(n + ν + 1). For ν � 0,

J0(at) �
∞∑
n�0

(−1)na2nt2n
22n(n!)2

�
∞∑
n�0

a2nt
2n

(Figure 2.17). J0(at) is a bounded function and

|a2n| � |a|2n
22n(n!)2

≤ |a|2n
(2n)!

.
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t

J��at�

�

O

FIGURE 2.17

The latter inequality for n � 0, 1, 2, · · · can be verified by induction.
Taking α � |a| in Theorem 1.18 means that we can take the Laplace
transform of J0(at) term by term.
Hence,

L(
J0(at)

) �
∞∑
n�0

(−1)na2n
22n(n!)2

L(t2n)

�
∞∑
n�0

(−1)na2n(2n)!
22n(n!)2s2n+1

� 1
s

∞∑
n�0

(−1)n(2n)!
22n(n!)2

(
a2

s2

)n

� 1
s

(
s√

s2 + a2

) (Re(s) > |a|)

� 1√
s2 + a2

.

Here we have used the Taylor series expansion

1√
1+ x2

�
∞∑
n�0

(−1)n(2n)!
22n(n!)2

x2n (|x| < 1)

with x � a/s.

Integral Equations. Equations of the form

f (t) � g(t)+
∫ t

0
k(t, τ) f (τ) dτ
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and

g(t) �
∫ t

0
k(t, τ) f (τ) dτ

are known as integral equations, where f (t) is the unknown function.
When the kernel k(t, τ) is of the particular form

k(t, τ) � k(t − τ),

the integrals represent convolutions. In this case, the Laplace
transform lends itself to their solution.
Considering the first type, if g and k are known, then formally

L(f ) � L(g)+ L(f )L(k)
by the convolution theorem. Then

L(f ) � L(g)
1− L(k) ,

and from this expression f (t) often can be found since the right-hand
side is just a function of the variable s.

Example 2.43. Solve the integral equation

x(t) � e−t +
∫ t

0
sin(t − τ) x(τ) dτ.

We apply the Laplace transform to both sides of the equation so that

L(
x(t)

) � L(e−t)+ L(sin t)L(
x(t)

)
and

L(
x(t)

) � L(e−t)
1− L(sin t)

� s2 + 1
s2(s + 1)

� 2
s + 1 + 1

s2
− 1

s
.

Hence

x(t) � 2e−t + t − 1.
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x

y

u

y

y � y�x�

O FIGURE 2.18

As an example of an integral equation of the second type, let
us consider a classical problem from the 19th century. A particle
is to slide down a frictionless curve with the requirement that the
duration of descent (due to gravity) is independent of the starting
point (Figure 2.18). Such a curve is called a tautochrone.
An analysis of the physics of the situation leads to the (Abel)

integral equation

T0 � 1√
2g

∫ y

0

f (u) du√
y − u

, (2.56)

whereT0 is a constant (time), g is the gravitational constant, and f (u)
represents ds/dy at y � u, where s � s(y) is arc length. The integral
(2.56) then is the convolution of the functions f (y) and 1/

√
y.

Taking the transform gives

L(T0) � 1√
2g

L(
f (y)

)L
(
1√
y

)
,

and so by (2.4)

L(
f (y)

) �
√
2g T0/s√
π/s

.

Therefore,

L(
f (y)

) �
√
2g/π

s
1
2

T0 � c0

s
1
2

.

The inverse transform gives

f (y) � c√
y
. (2.57)
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Since

f (y) � ds

dy
�

√
1+

(
dx

dy

)2
,

we arrive at the differential equation

1+
(
dx

dy

)2
� c2

y
,

invoking (2.57). Then

x �
∫ √

c2 − y

y
dy.

Setting y � c2 sin2(ϕ/2) leads to

x � c2

2
(ϕ + sin ϕ), y � c2

2
(1− cos ϕ),

which are the parametric equations of a cycloid.

Exercises 2.7

1. Use the convolution theorem to find the following:

(a) L−1
(

1
(s − 1)(s + 2)

)
(b) L−1

(
1

s(s2 + 1)
)

(c) L−1
(

1
s2(s2 + 1)

)
(d) L−1

(
1

s2(s + 4)2
)

(e) L−1
(

s

(s2 + 1)3
)
.

2. Prove the distributive property for convolutions:

f ∗ (g + h) � f ∗ g + f ∗ h.
3. Show that if f and g are piecewise continuous and of exponential
order on [0,∞), then (f ∗ g)(t) is of exponential order on [0,∞).
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4. Use the convolution theorem to show that∫ t

0
cos τ sin(t − τ) dτ � 1

2 t sin t.

5. Show that

y(t) � 1
ω

∫ t

0
f (τ) sinhω(t − τ) dτ

is a solution to the differential equation

y′′ − ω2y � f (t), y(0) � y′(0) � 0,
for f continuous of exponential order on [0,∞).

6. Determine

(a) L−1
(

1

s
√
s + a

)
(b) L(eaterf√at)

(c) L(t erf√at).

7. Find

(a) L−1
(

e−s

√
s2 + 1

)
(b) L−1

(
1

s
√
s2 + a2

)
.

8. Evaluate
∫ 1

0
u− 1

2 (1− u)
1
2 du.

9. The modified Bessel function of order ν is given by Iν(t) �
i−νJν(it) � ∑∞

n�0 t
2n+ν/22n+νn!(n + ν)!. Show that

L(
I0(at)) � 1√

s2 − a2

(Re(s) > |a|).

10. Solve the following integral equations:

(a) x(t) � 1+
∫ t

0
cos(t − τ) x(τ) dτ

(b) x(t) � sin t +
∫ t

0
eτx(t − τ) dτ

(c) x(t) �
∫ t

0
(sin τ) x(t − τ) dτ

(d) te−at �
∫ t

0
x(τ) x(t − τ) dτ.

11. Solve the integro-differential equations



2.8. Steady-State Solutions 103

(a) x′(t)+
∫ t

0
x(t − τ) dτ � cos t, x(0) � 0

(b) sin t �
∫ t

0
x′′(τ) x(t − τ) dτ, x(0) � x′(0) � 0.

12. Solve the initial-value problem

y′′ − 2y′ − 3y � f (t), y(0) � y′(0) � 0.

2.8 Steady-State Solutions

Let us consider the general nth-order, linear, nonhomogeneous
differential equation with constant coefficients

y(n) + an−1y(n−1) + · · · + a1y
′ + a0y � f (t) (2.58)

for f ∈ L, and with initial conditions

y(0) � y′(0) � · · · � y(n−1)(0) � 0. (2.59)

To be more precise, we should really say

y(0+) � y′(0+) � · · · � y(n−1)(0+) � 0,
but we shall continue to employ the conventional notation of (2.59).
A solution of (2.58) satisfying (2.59) is called a steady-state

solution. By (2.22), proceeding formally,

L(
y(k)(t)

) � skL(
y(t)

)
, k � 0, 1, 2, . . . .

Thus, the Laplace transform of (2.58) is

(sn + an−1sn−1 + · · · + a1s + a0)L
(
y(t)

) � L(
f (t)

)
,

or

L(
y(t)

) � L(
f (t)

)
Q (s)

, (2.60)

where Q (s) � sn + an−1sn−1 + · · · + a1s + a0.
Suppose that

1
Q (s)

� L(
g(t)

)
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for some function g(t). Then

L(
y(t)

) � L(
f (t)

)L(
g(t)

)
� L[(f ∗ g)(t)]

and

y(t) �
∫ t

0
f (τ) g(t − τ) dτ �

∫ t

0
g(τ) f (t − τ) dτ. (2.61)

Since

Q (s)L(
g(t)

) � 1,
in other words,

(sn + an−1sn−1 + · · · + a1s + a0)L
(
g(t)

) � L(
δ(t)

)
,

we may consider g � g(t) to be the steady-state solution of

g(n) + an−1g(n−1) + · · · + a1g
′ + a0g � δ(t). (2.62)

This means that we can determine the solution y � y(t) via (2.61)
by first determining g � g(t) as a steady-state solution of (2.62).
In this case, g(t) is known as the impulsive response since we are
determining the response of the system (2.58) for f (t) � δ(t).

Example 2.44. Find the steady-state solution to

y′′ − y � f (t) � e2t

by first determining the response of the system to the Dirac delta
function.

For g′′ − g � δ(t),

s2L(g)− L(g) � 1,
namely,

L(g) � 1
s2 − 1 � 1/2

s − 1 − 1/2
s + 1 ,

so that

g(t) � 1
2
et − 1

2
e−t .
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By (2.61),

y(t) �
∫ t

0

(
1
2
eτ − 1

2
e−τ

)
e2(t−τ)dτ

� 1
2
e2t

∫ t

0
(e−τ − e−3τ) dτ

� 1
3
e2t − 1

2
et + 1

6
e−t .

This approach,while seemingly cumbersome, comes into its own
when the impulse response g(t) is not known explicitly, but only
indirectly by experimental means.
By the same token, it is also worthwhile to determine the re-

sponse of the steady-state system (2.58)/(2.59) to the unit step
function, u(t).
To this end, if f (t) � u(t), the (indicial) response h � h(t) satisfies

h(n) + an−1h(n−1) + · · · + a1h
′ + a0h � u(t),

h(0) � h′(0) � · · · � h(n−1)(0) � 0.
(2.63)

Moreover,

L(
h(t)

) � L(
u(t)

)
Q (s)

� 1
s Q (s)

.

Revisiting (2.60) with 1/Q (s) � sL(
h(t)

)
,

L(
y(t)

) � sL(
h(t)

)L(
f (t)

)
� L(

h′(t)
)L(

f (t)
) (

h(0) � 0)
� L[(h′ ∗ f )(t)].

Therefore,

y(t) �
∫ t

0
h′(τ) f (t − τ) dτ �

∫ t

0
f (τ) h′(t − τ) dτ. (2.64)

Once again we find that the steady-state solution of (2.58)/(2.59)
can be determined by a convolution of a particular function with the
input, f (t), in this case the steady-state solution h(t) of (2.63).
Note that in the preceding we could have witten

L(
y(t)

) � sL(
f (t)

)L(
h(t)

)
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� [L(
f ′(t)

) + f (0)
]L(

h(t)
)
,

and consequently

y(t) �
∫ t

0
f ′(τ) h(t − τ) dτ + f (0) h(t). (2.65)

This approach involving the convolution with the indicial response
is known as the superposition principle.

Example 2.45. For the steady-state problem in Example 2.44 and
f (t) � u(t),

s2L(
h(t)

) − L(
h(t)

) � L(
u(t)

) � 1
s
,

that is,

L(
h(t)

) � 1
s(s − 1)(s + 1) � −1

s
+ 1/2

s − 1 + 1/2
s + 1 ,

and

h(t) � −1+ 1
2
et + 1

2
e−t ,

h′(t) � 1
2
et − 1

2
e−t ,

the latter quantity being exactly the expression obtained for g(t) in
the previous example. Then

y(t) �
∫ t

0
h′(τ) f (t − τ) dτ

� 1
3
e2t − 1

2
et + 1

6
e−t ,

as before.

Let us go back to the polynomial Q (s) of (2.60) and suppose that
all of its roots α1, α2, · · · , αn are simple, so that we have the partial
fraction decomposition

1
Q (s)

�
n∑

k�1

Ak

s − αk
� L

(
n∑

k�1
Ake

αkt

)
.
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Putting this expression into (2.60) gives

L(
y(t)

) � L(
f (t)

)L
(

n∑
k�1

Ake
αkt

)
,

and so

y(t) �
∫ t

0
f (τ)

n∑
k�1

Ake
αk(t−τ)dτ

�
n∑

k�1
Ak

∫ t

0
f (τ)eαk(t−τ)dτ. (2.66)

Since

Ak � lim
s→αk

s − αk

Q (s)
,

we can write

Ak � lim
s→αk

s − αk

Q (s)− Q (αk)

� 1
Q ′(αk)

, k � 1, 2, . . . , n,

invoking l’Hôpital’s rule [Q ′(αk) �� 0 from Section 3.4 since the αks
are simple].
A fortiori (2.66) becomes

y(t) �
n∑

k�1

1
Q ′(αk)

∫ t

0
f (τ) eαk(t−τ)dτ, (2.67)

the Heaviside expansion theorem.

Exercises 2.8

1. Solve the following steady-state problems by first determining
the response of the system to the Dirac delta function and then
using equation (2.61):

(a) y′′ + y′ − 2y � 4e−t
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(b) y′′ − y � sin t
(c) y′′′ − 2y′′ − 5y′ + 6y � 2t.

2. Solve parts (a), (b), and (c) of Question 1 by first determining the
response of the system to the unit step function and then using
equation (2.64) or (2.65).

3. Solve parts (a), (b), and (c) of Question 1 directly by using the
Heaviside expansion theorem (2.67).

4. A mass attached to a vertical spring undergoes forced vibration
with damping so that the motion is given by

d2x

dt2
+ dx

dt
+ 2x � sin t,

where x(t) is the displacement at time t. Determine the
displacement at time t of the steady-state solution.

2.9 Difference Equations

A difference equation expresses the relationship between the values of
a function y(t) and the values of the function at different arguments,
y(t + h), h constant. For example,

y(t − 1)− 3y(t)+ 2y(t − 2) � et,

y(t + 1) y(t) � cos t
are difference equations, linear and nonlinear, respectively.
Equations that express the relationship between the terms of a

sequence a0, a1, a2, . . . are also difference equations, as, for example,

an+2 − 3an+1 + 2an � 5n (linear),

an+1 � 2a2n (nonlinear).

As we will see, the function and sequence forms are not as unrelated
as they may appear, with the latter easily expressed in terms of the
former. Both of the above linear forms are amenable to solution by
the Laplace transform method.
For further reading on difference equations, see Mickens [8].
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Example 2.46. Solve

y(t)− y

(
t − π

ω

)
� sinωt, y(t) � 0, t ≤ 0.

We compute

L
(
y

(
t − π

ω

))
�

∫ ∞

0
e−sty

(
t − π

ω

)
dt

�
∫ ∞

− π

ω

e−s(τ+ π

ω
)y(τ) dτ

(
τ � t − π

ω

)

� e−
πs

ω

∫ ∞

0
e−sτy(τ) dτ

� e−
πs

ω L(
y(t)

)
.

Therefore, taking the Laplace transform of both sides of the
difference equation,

L(
y(t)

) − e−
πs

ω L(
y(t)

) � ω

s2 + ω2
,

or

L(
y(t)

) � ω

(s2 + ω2)
(
1− e−

πs

ω

) ,
and

y(t) �
{
sinωt 2nπ

ω
< t <

(2n+1)π
ω

0 (2n+1)π
ω

< t <
(2n+2)π

ω

n � 0, 1, 2, . . . ,

the half–wave-rectified sine function given in Example 2.6.

In order to solve difference equations that are in sequence form,
the following result proves instrumental.

Example 2.47. f (t) � a[t], where [t] is the greatest integer ≤ t,
a > 0 (Figure 2.19). Then f (t) has exponential order (Exercises 2.9,
Question 1) and

L(
f (t)

) �
∫ ∞

0
e−stf (t) dt

�
∫ 1

0
e−sta0dt +

∫ 2

1
e−sta1dt +

∫ 3

2
e−sta2dt + · · ·
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t

�
�t�

�
�
� �

�

�
�
� �

�

�
�
� �

�O FIGURE 2.19

� 1− e−s

s
+ a(e−s − e−2s)

s
+ a2(a−2s − e−3s)

s
+ · · ·

� 1− e−s

s
(1+ ae−s + a2e−2s + · · ·)

� 1− e−s

s(1− ae−s)

(Re(s) > max(0, log a)
)
.

Let us then turn to the following type of difference equation.

Example 2.48. Solve

an+2 − 3an+1 + 2an � 0, a0 � 0, a1 � 1.
To treat this sort of problem, let us define

y(t) � an, n ≤ t < n + 1, n � 0, 1, 2, . . . .
Then our difference equation becomes

y(t + 2)− 3y(t + 1)+ 2y(t) � 0. (2.68)

Taking the Laplace transform, we first have

L(
y(t + 2)) �

∫ ∞

0
e−sty(t + 2) dt

�
∫ ∞

2
e−s(τ−2)y(τ) dτ (τ � t + 2)

� e2s
∫ ∞

0
e−sτy(τ) dτ − e2s

∫ 2

0
e−sτy(τ) dτ
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� e2sL(
y(t)

) − e2s
∫ 1

0
e−sτa0dτ − e2s

∫ 2

1
e−sτa1dτ

� e2sL(
y(t)

) − e2s
(
e−s − e−2s

s

)

� e2sL(
y(t)

) − es

s
(1− e−s),

since a0 � 0, a1 � 1.
Similarly,

L(
y(t + 1)) � esL(

y(t)
)
.

Thus the transform of (2.68) becomes

e2sL(
y(t)

) − es

s
(1− e−s)− 3esL(

y(t)
) + 2L(

y(t)
) � 0,

or

L(
y(t)

) � es(1− e−s)
s(e2s − 3es + 2)

� es(1− e−s)
s

(
1

es − 2 − 1
es − 1

)

� 1− e−s

s

(
1

1− 2e−s
− 1
1− e−s

)

� 1− e−s

s(1− 2e−s)
− 1− e−s

s(1− e−s)

� L(2[t])− L(1)
by Example 2.47. The solution is then given by

(
equating the

expressions for y(t)
)

an � 2n − 1, n � 0, 1, 2, . . . .
Checking this result: an+2 � 2n+2 − 1, an+1 � 2n+1 − 1, and so
(2n+2 − 1)− 3(2n+1 − 1)+ 2(2n − 1) � 2n+2 − 3 · 2n+1 + 2 · 2n

� 2 · 2n+1 − 3 · 2n+1 + 2n+1

� 0,
as desired.



2. Applications and Properties112

If in the preceding example the right-hand side had been
something other than 0, say

an+2 − 3an+1 + 2an � 3n, a0 � 0, a1 � 1,
it would have transpired that

L(
y(t)

) � L(2[t])− L(1)+ L(3[t])
e2s − 3es + 2

and

L(3[t])
e2s − 3es + 2 � 1− e−s

s(1− 3e−s)
1

e3s − 3es + 2

� es − 1
s(es − 3)(es − 2)(es − 1)

� es − 1
s

(
1
2

es − 1 − 1
es − 2 +

1
2

es − 3

)

� 1− e−s

s

(
1
2

1− e−s
− 1
1− 2e−s

+
1
2

1− 3e−s

)

� 1
2

L(1)− L(2[t])+ 1
2

L(3[t]).

Whence

an � 1
2
3n − 1

2
, n � 0, 1, 2, . . . .

Linear difference equations involving derivatives of the function
y(t) can also be treated by the Laplace transform method.

Example 2.49. Solve the differential-difference equation

y′′(t)− y(t − 1) � δ(t), y(t) � y′(t) � 0, t ≤ 0.
Similarly, as we saw in Example 2.46,

L(
y(t − 1)) � e−sL(

y(t)
)
.

Then transforming the original equation,

s2L(
y(t)

) − e−sL(
y(t)

) � 1,
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so that

L(
y(t)

) � 1
s2 − e−s

� 1

s2
(
1− e−s

s2

) (Re(s) > 0
)

�
∞∑
n�0

e−ns

s2n+2
(Re(s) > 1

)
. (2.69)

Observe that by (1.9) and (1.14)

L−1
(
e−ns

s2n+2

)
� un(t)

(t − n)2n+1

(2n + 1)!

�
{
(t−n)2n+1
(2n+1)! t ≥ n

0 t < n.
(2.70)

Hence by (2.69) and (2.70) and the linearity of L,

L(
y(t)

) � L
(
[t]∑
n�0

(t − n)2n+1

(2n + 1)!

)

and

y(t) �
[t]∑
n�0

(t − n)2n+1

(2n + 1)! .

Exercises 2.9

1. Show that the function

f (t) � a[t], t > 0,

has exponential order on [0,∞).
2. (a) Show that the function

f (t) � [t], t > 0,

has Laplace transform

L(
f (t)

) � 1
s(es − 1) � e−s

s(1− e−s)
.
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(b) Show that the solution to

y(t + 1)− y(t) � 1, y(t) � 0, t < 1,

is given by the function in part (a).
3. From the expression

e−s

s(1− ae−s)
� e−s

s
(1+ ae−s + a2e−2s + · · ·),

deduce that

f (t) � L−1
(

e−s

s(1− ae−s)

)
�




[t]∑
n�1

an−1 t ≥ 1
0 0 < t < 1,

and for a �� 1,

f (t) � L−1
(

e−s

s(1− ae−s)

)
� a[t] − 1

a − 1 .

4. Solve for an:

(a) an+2 − 7an+1 + 12an � 0 a0 � 0, a1 � −1
(b) an+2 − 7an+1 + 12an � 2n a0 � 0, a1 � −1
(c) an+1 + an � 1, a0 � 0, a1 � 1
(d) an+2 − 2an+1 + an � 0, a0 � 0, a1 � 1.

5. The Fibonacci difference equation is given by

an+2 � an+1 + an, a0 � 0, a1 � 1.
Deduce that

an � 1√
5

[(
1+ √

5
2

)n

−
(
1− √

5
2

)n]
, n � 0, 1, 2, . . . .

6. Solve

(a) y(t)+ y(t − 1) � et, y(t) � 0, t ≤ 0
(b) y′(t)− y(t − 1) � t, y(t) � 0, t ≤ 0.

7. Find an if

an+2 − 5an+1 + 6an � 4n + 2, a0 � 0, a1 � 1.



3
C H A P T E R

...........................................

Complex
Variable
Theory

In this chapter we present an overview of the theory of complex
variables, which is required for an understanding of the complex in-
version formula discussed in Chapter 4. Along the way, we establish
the analyticity of the Laplace transform (Theorem3.1) and verify the
differentiation formula (1.15) of Chapter 1 for a complex parameter
(Theorem 3.3).

3.1 Complex Numbers

Complex numbers are ordered pairs of real numbers for which the
rules of addition and multiplication are defined as follows: If z �
(x, y), w � (u, v), then

z + w � (x + u, y + v),

zw � (xu − yv, xv + yu).

With these operations the complex numbers satisfy the same arith-
metic properties as do the real numbers. The set of all complex
numbers is denoted by C.

115
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We identify (real) a with (a, 0) and denote i � (0, 1), which is
called the imaginary number. However, it is anything but imaginary
in the common sense of the word. Observe that

z � (x, y) � (x, 0)+ (0, y) � (x, 0)+ (y, 0)(0, 1) � x + yi � x + iy.

It is these latter two forms that are typically employed in the theory
of complex numbers, rather than the ordered-pair expression. But
it is worth remembering that the complex number x + iy is just the
ordered-pair (x, y) and that i � (0, 1). Moreover,

i2 � (0, 1)(0, 1) � (−1, 0) � −1,
which can also be expressed as i � √−1.
The real part of z � x+iy, writtenRe(z), is the real number x, and

the imaginary part, Im(z), is the real number y. The two complex
numbers z � x + iy, w � u + iv are equal if and only if x � u and
y � v, that is, their real and imaginary parts are the same.
The modulus (or absolute value) of z is |z| � r � √

x2 + y2, and
|zw| � |z| |w|. As with real numbers, the triangle inequality holds:

|z + w| ≤ |z| + |w|.
The conjugate of z � x + iy is given by z � x − iy (Figure 3.1). Thus,
z z � |z|2 and z + w � z + w, zw � z w.

x

y

O

�

z � x� iy � �x� y�

�z � x� iy

jzj � r

FIGURE 3.1
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Complex numbers can be depicted in a plane known as the com-
plex plane (Figure 3.1), also denoted by C. The x-axis is called the
real axis and the y-axis the imaginary axis. The complex number z
can also be thought of as a vector that makes an angle θ with the real
axis, and θ is called the argument of z, denoted by arg(z). Clearly,

x � r cos θ, y � r sin θ,

and

tan θ � y

x
.

Thus, we have

z � x + iy � r(cos θ + i sin θ),

the polar form of z.
If z � r(cos θ + i sin θ) and w � R(cos ϕ + i sin ϕ), then

zw � rR

[
(cos θ cos ϕ − sin θ sin ϕ)+ i(sin θ cos ϕ + cos θ sin ϕ)

]
� rR

[
cos(θ + ϕ)+ i sin(θ + ϕ)

]
.

In other words, the arguments are additive under multiplication.
Thus,

z2 � r2(cos 2θ + i sin 2θ),

and in general,

zn � [r(cos θ + i sin θ)]n � rn(cosnθ + i sin nθ),

which is known as De Moivre’s theorem.
The function ez is defined by

ez � ex+iy � ex(cos y + i sin y).

Setting x � 0 gives eiy � cos y + i sin y, and the expression (Euler’s
formula)

eiθ � cos θ + i sin θ, 0 ≤ θ < 2π,

represents any point on the unit circle |z| � 1 and leads to the
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remarkable expression eiπ � −1 (Figure 3.2).
In general, therefore, any complex number z � x+ iy � r(cos θ+

i sin θ) can be written as

z � r eiθ.

De Moivre’s theorem now reads

zn � (r eiθ)n � rneinθ.

If r eiθ � z � wn � Rneinϕ, then w � z1/n and

R � r
1
n , ϕ � θ + 2kπ

n
, k � 0,±1,±2, · · · .

Due to periodicity we need take only the values k � 0, 1, · · · , n − 1
to obtain the n distinct roots of z:

z
1
n � r

1
n ei(

θ+2kπ
n
).

For example, the four fourth roots of unity (z � 1) are given by
z
1
4 � ei(

0+2kπ
4 ), k � 0, 1, 2, 3,
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that is,

z1 � 1, z2 � ei
π

2 � i, z3 � eiπ � −1, z4 � ei
3π
2 � −i.

Exercises 3.1

1. If z � 1+ 2i, w � 2− i, compute

(a) 2z + 3w (b) (3z)(2w)

(c)
3
z

+ 2
w
.

2. Find the modulus, argument, real and imaginary parts of

(a) (1+ i)3 (b)
1− i

1+ i

(c)
1

(1− i)2
(d)

4+ 3i
2− i

(e) (1+ i)30.

3. Write the complex numbers in Question 2, parts (a) and (d), in
polar form.

4. Show that if z is a complex number, then

(a) z + z � 2Re(z)
(b) z − z � 2i Im(z)
(c) |Re(z)| ≤ |z|, |Im(z)| ≤ |z|.

5. Prove by mathematical induction that

|z1 + z2 + · · · + zn| ≤ |z1| + |z2| + · · · + |zn|, n ≥ 2.
You may assume it is already valid for n � 2.

6. Show that ∣∣∣∣ z − a

1− a z

∣∣∣∣ < 1
if |z| < 1 and |a| < 1. (Hint: |w|2 � ww.)
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7. Determine the region in the z-plane denoted by

(a) |z − i| < 1 (b) 1 ≤ |z| ≤ 2

(c)
π

2
< arg(z) <

3π
2
, |z| < 1.

8. Write in the form x + iy

(a) ei
π

4 (b) e2nπi, n � 0,±1,±2, . . .

(c) e(2n−1)πi, n � 0,±1,±2, . . . (d) ei
5π
3 .

9. Compute all the values of

(a) 4
√−1 (b) 3

√
i

(c) 5
√
1+ i.

3.2 Functions

A complex-valued function w � f (z) of a complex variable assigns
to each independent variable z one or more dependent variables w.
If there is only one such value w, then the function f (z) is termed
single-valued; otherwise f (z) ismultiple-valued. Complex-valued func-
tions are in general assumed to be single-valued unless otherwise
stated. For z � x + iy and w � u + iv, one can write

w � f (z) � u(x, y)+ iv(x, y),

where u � u(x, y), v � v(x, y) are real-valued functions—the real and
imaginary parts of f (z).
For example,

f (z) � z2 � (x2 − y2)+ 2ixy,
g(z) � ez � ex cos y + i ex sin y,

h(z) � c � a + ib (a, b, c constants)

are all (single-valued) complex functions.
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Complex functions are mappings from a domain in the z-plane
to the range in the w-plane. For example, the exponential function
w � ez � exeiy maps the z-plane in such a way that each horizontal
strip of width 2π is mapped onto the entirew-plane minus the origin
(Figure 3.3). A vertical line at x in one of these strips maps to a circle
of radius ex in the w-plane. Note that when x � 0, then e2nπi � 1,
n � 0, ±1, ±2, . . ., and zn � 2nπi, n � 0, ±1, ±2, . . . are the only
points that map to w � 1. Likewise zn � (2n − 1)πi are the only
points that map to w � −1.
Functions related to the exponential function are as follows:

sin z � eiz − e−iz

2i
; cos z � eiz + e−iz

2
;

tan z � sin z
cos z

; cot z � cos z
sin z

;

sinh z � ez − e−z

2
; cosh z � ez + e−z

2
;

tanh z � sinh z
cosh z

(
z �� (n − 1

2 )πi
)
; coth z � cosh z

sinh z
(z �� nπi);

sech z � 1
cosh z

(
z �� (n − 1

2 )πi
)
; csch z � 1

sinh z
(z �� nπi);

for n � 0, ±1, ±2, . . . .
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Some useful identities include

sinh(z ± w) � sinh z coshw ± cosh z sinhw,
cosh(z ± w) � cosh z coshw ± sinh z sinhw,

and, for z � x + iy,

sinh z � cos y sinh x + i sin y cosh x,

cosh z � cos y cosh x + i sin y sinh x.

An example of a multiple-valued complex function is the inverse
of the exponential function, namely the logarithm function

log z � log |z| + i arg(z)+ 2nπi, n � 0,±1,±2, . . . , 0 ≤ arg(z) < 2π
which maps for each value of n the complex plane minus the origin
onto the horizontal strips as in Figure 3.3 with the roles of the z- and
w-planes reversed.
We call

w � Log z � log |z| + i arg(z), 0 ≤ arg(z) < 2π,
the principal logarithm. By removing the nonnegative real axis (a
branch cut) from the domain, Log z, as well as each of the branches,

log z � log |z| + i arg(z)+ 2nπi, n � 0,±1,±2, . . . ,
for each fixed n, becomes single-valued and analytic.
Another multiple-valued function is

w � z
1
n � r

1
n ei(

θ+2kπ
n
), k � 0, 1, . . . , n − 1,

which has n branches (one for each value of k) that are single-valued
analytic for 0 < θ < 2π, r > 0, having again removed the non-
negative real axis. In particular, when n � 2, w � √

z has two
branches:

w1 � r
1
2 eiθ/2;

w2 � r
1
2 ei(θ/2)+π � −w1.

We can even take a branch cut removing the nonpositive real axis so
that w1 and w2 are (single-valued) analytic on −π < θ < π, r > 0.
For the preceding multiple-valued functions, after one complete

circuit of the origin in the z-plane, we find that the value ofw shifts to
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another branch. Because of this property, z � 0 is termed a branch
point. The branch point can be a point other than the origin; the
function w � √

z − 1 has a branch point at z � 1.
Analytic Functions. The notions of limit and continuity are es-
sentially the same for complex functions as for real functions. The
only difference is that whenever z → z0 in a limit, the value of the
limit should be independent of the direction of approach of z to z0.
Regarding the derivative, we say that a complex function f (z) de-
fined on a domain (connected open set) D is differentiable at a point
z0 ∈ D if the limit

df

dz
(z0) � f ′(z0) � lim

z→z0

f (z)− f (z0)
z − z0

exists.
If f (z) is differentiable at all points of some neighborhood |z −

z0| < r, then f (z) is said to be analytic (holomorphic) at z0. If f (z) is
analytic at each point of a domain D, then f (z) is analytic in D. Since
analytic functions are differentiable, they are continuous.
Differentiation of sums, products, and quotients of complex func-

tions follow the same rules as for real functions. Moreover, there are
the familiar formulas from real variables,

d

dz
zn � n zn−1,

d

dz
ez � ez,

d

dz
Logz � 1

z

(
0 < arg(z) < 2π

)
,

and so forth.

Cauchy–Riemann Equations. For an analytic function f (z) �
u(x, y) + iv(x, y), the real and imaginary parts u and v cannot be
arbitrary functions but must satisfy a special relationship known as
the Cauchy–Riemann equations:

ux � vy; uy � −vx. (3.1)

These arise from the fact that

f ′(z0) � ux(z0)+ ivx(z0), (3.2)
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letting z → z0 along a line parallel to the real axis in computing the
derivative, and

f ′(z0) � vy(z0)− i uy(z0), (3.3)

letting z → z0 along a line parallel to the imaginary axis. Equating
the real and imaginary parts of (3.2) and (3.3) gives (3.1).
One consequence of (3.1) is that a nonconstant analytic function

f � u + iv cannot have v ≡ 0 (that is, f is a real-valued function),
for the Cauchy–Riemann equations would imply u ≡ constant, a
contradiction.
Equally important is the partial converse:
If f (z) � u(x, y)+ iv(x, y) is defined in a domain D and the partial

derivatives ux, uy, vx, vy are continuous and satisfy the Cauchy–Riemann
equations, then f (z) is analytic in D.
Let us make use of this result to show that the Laplace transform

is an analytic function.

Theorem 3.1. Let f (t) be piecewise continuous on [0,∞) and of
exponential order α. Then

F(s) � L(
f (t)

)
is an analytic function in the domain Re(s) > α.

Proof. For s � x + iy,

F(s) �
∫ ∞

0
e−stf (t) dt �

∫ ∞

0
e−(x+iy)tf (t) dt

�
∫ ∞

0
e−xt(cos yt − i sin yt) f (t) dt

�
∫ ∞

0
(e−xt cos yt) f (t) dt + i

∫ ∞

0
(−e−xt sin yt) f (t) dt

� u(x, y)+ iv(x, y).

Now consider∣∣∣∣
∫ ∞

t0

∂

∂x
(e−xt cos yt) f (t) dt

∣∣∣∣ �
∣∣∣∣
∫ ∞

t0

(−te−xt cos yt) f (t) dt
∣∣∣∣

≤
∫ ∞

t0

te−xt|f (t)| dt
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≤ M

∫ ∞

t0

e−(x−α−δ)tdt (δ > 0)

≤ M

x − α − δ
e−(x−α−δ)t0 ,

where δ > 0 can be chosen arbitrarily small. Then for x ≥ x0 >

α (and hence x ≥ x0 > α + δ), the right-hand side can be made
arbitrarily small by taking t0 sufficiently large, implying that the
integral

∫ ∞
0 (∂/∂x) (e

−xt cos yt) f (t) dt converges uniformly inRe(s) ≥
x0 > α.
Likewise, the integral

∫ ∞
0 (∂/∂y)(−e−xt sin yt) f (t) dt converges

uniformly in Re(s) ≥ x0 > α.
Because of this uniform convergence, and the absolute conver-

gence of L(f ), by Theorem A.12 we can differentiate under the
integral sign, that is to say,

ux �
∫ ∞

0

∂

∂x
(e−xt cos yt) f (t) dt

�
∫ ∞

0
(−t e−xt cos yt) f (t) dt,

vy �
∫ ∞

0

∂

∂y
(−e−xt sin yt) f (t) dt

�
∫ ∞

0
(−t e−xt cos yt) f (t) dt,

and so ux � vy. In a similar fashion the reader is invited to show that
uy � −vx. The continuity of these partial derivatives follows from
Theorem A.2 applied to the function g(t) � −t f (t) and taking the
real and imaginary parts.
Thus, the Cauchy–Riemann conditions are satisfied and F(s) �

u(x, y) + iv(x, y) is an analytic function in the domain Re(s) > α,
since any such point s will lie to the right of a vertical line at some
x0 > α. �

Remark 3.2. In general, if f ∈ L, then F(s) is analytic in some
half-plane, Re(s) > x0 (cf. Doetsch [2], Theorem 6.1).

In view of the foregoing discussion, let us verify the following
formula proved in Chapter 1 for a real parameter s (Theorem 1.34).
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Theorem 3.3. If f is piecewise continuous on [0,∞) of order α and
has Laplace transform F(s), then

dn

dsn
F(s) � L(

(−1)ntnf (t)), n � 1, 2, 3, . . . (Re(s) > α).

Proof. Writing F(s) � u(x, y) + iv(x, y), where u, v are as in the
preceding theorem, we have by (3.2)

F ′(s) � ux + ivx

�
∫ ∞

0
(−t e−xt cos yt) f (t) dt + i

∫ ∞

0
(t e−xt sin yt) f (t) dt

�
∫ ∞

0
−t(e−xt cos yt − i e−xt sin yt) f (t) dt

�
∫ ∞

0
−t e−stf (t) dt

� L( − t f (t)
)
.

Repeated application of this procedure gives the formula. �

The real and imaginary parts of an analytic function f � u+ivnot
only satisfy the Cauchy–Riemann equations, but taking the second
partial derivatives [which we can do since f (z) has derivatives of all
orders; see formula (3.7)], we find that

�u � uxx + uyy � 0, (3.4)

and likewise for v. Since the second partial derivatives are also con-
tinuous, both u and v are harmonic functions, satisfying the Laplace
equation (3.4), and � is the Laplace operator. Here v is called the
harmonic conjugate of u and vice versa.

Exercises 3.2

1. Show that

(a) ez � 1 if and only if z � 2nπi, n � 0,±1,±2, . . .
(b) ez � −1 if and only if z � (2n + 1)πi, n � 0,±1,±2, . . ..
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2. Compute

(a) Log(−1) (b) Log(−ei)

(c) Log
(
1+ i

1− i

)
.

3. We define the principal value of zw by

zw � ewLog z � e
w

(
log|z|+i arg(z)

)
.

Find the principal value of

(a) (i)i (b) (−1) 1π

(c) (1+ i)(1+i).

4. Show that

(a)
d

dz
cos z � − sin z

(b)
d

dz
cosh z � sinh z

(c)
d

dz
tanh z � sech2z (

z �� (n − 1
2 )πi

)
.

5. Show that

(a) sinh(z ± w) � sinh z coshw ± cosh z sinhw
(b) cosh(z ± w) � cosh z coshw ± sinh z sinhw.

6. Show that for z � x + iy

(a) sinh z � cos y sinh x + i sin y cosh x
(b) cosh z � cos y cosh x + i sin y sinh x.

7. Prove that the functions f (z) � z and g(z) � |z| are nowhere
analytic.

8. (a) Show that the function

u(x, y) � x3 − 3xy2 + xy

is harmonic in C .
(b) Show that the function

v(x, y) � 3x2y − y3 − x2

2
+ y2

2
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is harmonic in C and that f � u + iv is analytic in C ,
where u is given in part (a).

9. If f (z) is analytic, show that

∂2

∂x2
|f (z)|2 + ∂2

∂y2
|f (z)|2 � 4|f ′(z)|2.

10. Show that if f � u+ iv is an analytic function and v ≡ constant,
then f ≡ constant.

3.3 Integration

Integrals of complex-valued functions are calculated over certain
types of curves in the complex plane. A parametric representation
of a continuous curve C: z(t) � x(t) + iy(t), α ≤ t ≤ β, is smooth if
z′(t) is continuous for α ≤ t ≤ β and z′(t) �� 0 for α < t < β.
A contour C is just a continuous curve that is piecewise smooth,

that is, there is a subdivision α � t0 < t1 < · · · < tn � β and z � z(t)
is smooth on each subinterval [tk−1, tk], k � 1, · · · , n. The point z(α)
is the initial point, z(β) is the terminal point, and, if z(α) � z(β), C is
closed. (See Figure 3.4.) If C does not cross itself, it is called sim-
ple. Simple, closed contours (see Figure 3.5) enjoy both properties
and form an important class of curves. The positive direction along a
simple, closed contour C keeps the interior of C to the left, that is,
the curve is traversed counterclockwise. If ∞ is an interior point,
however, the positive direction is clockwise, with∞ on the left.

x

y

z���

z���O

FIGURE 3.4
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The reason for being so particular about the choice of curves
is that for a continuous, complex-valued function f (z) defined on a
contour C, the (Riemann) integral of f (z) over C can be defined as∫

C

f (z) dz �
∫ β

α

f
(
z(t)

)
z′(t) dt (3.5)

since the right-hand integral exists. This is so because the integrand
is piecewise continuous. In view of (3.5), many of the standard
rules for integration carry over to the complex setting. One rule
in particular is worth singling out:

−
∫
C

f (z) dz �
∫

−C

f (z) dz,

where −C represents the contour C traversed in the opposite
direction to that of C.
Furthermore, if C1, C2, . . . , Cn are disjoint contours, we define∫
C1+C2+···+Cn

f (z) dz �
∫
C1

f (z) dz +
∫
C2

f (z) dz + · · · +
∫
Cn

f (z) dz.

If f (z) is continuous on contour C, then we can write∣∣∣∣
∫
C

f (z) dz
∣∣∣∣ �

∣∣∣∣
∫ β

α

f
(
z(t)

)
z′(t) dt

∣∣∣∣ ≤
∫ β

α

∣∣f (z(t))∣∣ |z′(t)| dt

�
∫
C

|f (z)| |dz|,

where ∫
C

|dz| �
∫ β

α

|z′(t)| dt �
∫ β

α

√
[x′(t)]2 + [y′(t)]2 dt
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� length of C � LC.

Thus, if |f (z)| ≤ M on C,∣∣∣∣
∫
C

f (z) dz
∣∣∣∣ ≤

∫
C

|f (z)| |dz| ≤ MLC.

This type of estimate will be useful in the sequel.

Example 3.4. Let C: z � a + r eit, 0 ≤ t < 2π (Figure 3.6). Then
dz � ir eitdt and ∫

C

dz

z − a
�

∫ 2π

0

ir eitdt

r eit
� 2πi.

Note that the function being integrated, f (z) � 1/(z − a), is analytic
in C − {a}, but not at the point z � a.

In what follows, it is advantageous to consider our underlying do-
main in which we shall be integrating over closed contours, to “not
contain any holes,” unlike in the preceding example. To be more
precise, we say that a domain D is simply connected if for any two
continuous curves in D having the same initial and terminal points,
either curve can be deformed in a continuous manner into the other
while remaining entirely in D. The notion of a continuous deforma-
tion of one curve into another can be made mathematically precise,
but that need not concern us here (cf. Ahlfors [1]).
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For example, the complex plane C is simply connected, as is
any disk, and so is the domain C − {nonnegative real axis}. On the
other hand, C − {a} is not simply connected, nor is the annulus
A � {z : 1 < |z| < 2}, nor the domain D in Figure 3.7.
This brings us to the cornerstone of complex variable theory:

Cauchy’s Theorem. Let f (z) be analytic in a simply connected domain
D. Then for any closed contour C in D,∫

C

f (z) dz � 0.

One important consequence is that for any two points z1, z2 ∈ D

(simply connected) and f (z) analytic,∫ z2

z1

f (z) dz

does not depend on the contour path of integration from z1 to z2,
since the integral from z1 to z2 over contour C1, followed by the
integral from z2 to z1 over another contour C2, gives by Cauchy’s
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theorem ∫
C1+C2

f (z) dz � 0

(Figure 3.8). Consequently,∫
C1

f (z) dz �
∫

−C2

f (z) dz,

and we say that the integral of f (z) is independent of path.
This means that the integral∫ z2

z1

f (z) dz

can be evaluated in the manner of a real integral, that is, the integral
has the value g(z2)− g(z1), where g(z) is any antiderivative of f (z),
namely, g′(z) � f (z).

Example 3.5. The integral ∫ iπ

−iπ

dz

z

can be computed by taking any contour C lying in the left half-plane
that connects the points −iπ and iπ (Figure 3.9). Therefore,∫ iπ

−iπ

dz

z
� Log z

∣∣∣iπ−iπ
� Log(iπ)− Log(−iπ)

� log |iπ| + i arg(iπ)− log | − iπ| − i arg(−iπ)

� −iπ.
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Cauchy Integral Formula. Let f (z) be analytic within and on a
simple, closed contour C. If z0 is any point interior to C, then

f (z0) � 1
2πi

∫
C

f (z) dz
z − z0

, (3.6)

taking the integration along C in the positive direction.

The hypothesis means that f (z) is analytic on a slightly larger
region containing C and its interior.
Furthermore, the nth derivative of f (z) at z � z0 is given by

f (n)(z0) � n!
2πi

∫
C

f (z) dz
(z − z0)n+1 , n � 0, 1, 2, . . . . (3.7)

For n � 0 we have the Cauchy integral formula.
Example 3.6. Evaluate ∫

C

ezdz

z2 + 1 ,

where C : |z| � 2 is taken in the positive direction.
Taking a partial fraction decomposition and the Cauchy integral

formula, we find∫
C

ez

z2 + 1 dz � 1
2i

∫
C

ez

z − i
dz − 1

2i

∫
C

ez

z + i
dz
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� 1
2i
2πi ei − 1

2i
2πie−i

� π(ei − e−i).

If f (z) is analytic within and on a circle C : |z − z0| � R, and
M � max|z|�R |f (z)|, then from (3.7) we have for n � 0, 1, 2, . . .

|f (n)(z0)| ≤ n!
2π

∫
C

|f (z)| |dz|
|z − z0|n+1 ≤ n!

2π
· M

Rn+1 · 2πR

� Mn!
Rn

.

The condition |f (n)(z0)| ≤ Mn!/Rn is known as Cauchy’s inequality.
If M bounds all values of |f (z)|, z ∈ C, namely f (z) is bounded,

as well as analytic in C, then letting R → ∞ in Cauchy’s inequality
with n � 1 gives f ′(z0) � 0. Since in this case z0 is arbitrary, f ′(z) � 0
for all z ∈ C, implying f ≡ constant in C by the Cauchy–Riemann
equations. We have established the following result.

Liouville’s Theorem. Any bounded analytic function in C is
constant.

As an application, suppose that f (z) � u(z)+ iv(z) is analytic in
C with u(z) > 0, z ∈ C. Then the analytic function

F(z) � e−f (z)

satisfies |F(z)| � e−u(z) < 1 in C, and Liouville’s theorem implies
F(z) ≡ constant. Whence f (z) ≡ constant.

Exercises 3.3

1. Compute the value of the following integrals over the given
contour C traversed in the positive direction:

(a)
∫
C

dz

z + 1, C : |z − 1| � 3

(b)
∫
C

zdz, C : |z| � 1
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(c)
∫
C

zdz, C :

x

y

i

O �

FIGURE E.8

(d)
∫
C

z

z2 + 1 dz, C : |z + i| � 1

(e)
∫
C

ezdz, C is the perimeter of the square with vertices at

z � 1+ i, z � −1+ i, z � −1− i, z � 1− i

(f)
∫

dz

z4 + 1, C : |z| � 2

(g)
∫
C

(cosh z + z2)
z(z2 + 1) dz, C : |z| � 2

(h)
∫
C

2z4 + 3z2 + 1
(z − πi)3

dz, C : |z| � 4.

2. Compute the value of the following integrals:

(a)
∫ iπ/2

−iπ/2

dz

z
(b)

∫ iπ

iπ/2
zezdz.

3. Let C be the arc of the circle from z � R to z � −R that lies in
the upper half-plane. Without evaluating the integral, show that∣∣∣∣

∫
C

eimz

z2 + a2
dz

∣∣∣∣ ≤ πR

R2 − a2
(m > 0).

4. (a) Using the Cauchy integral formula, show that

f (a)− f (b) � a − b

2πi

∫
|z|�R

f (z)
(z − a)(z − b)

dz,

for f (z) analytic in C , |a| < R, |b| < R.
(b) Use the result of part (a) to give another proof of Liouville’s

theorem.
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5. Let f (z) be analytic in the disk |z| ≤ 3 and suppose that |f (z)| ≤ 5
for all values of z on the circle |z − 1| � 2. Find an upper bound
for |f (4)(0)|.

6. Suppose that f (z) is analytic in C and satisfies

|f (z)| ≥ 1
10
, z ∈ C .

Prove that f (z) ≡ constant.
7. Suppose that f (z) is analytic in C and satisfies

|f (z)| ≤ |ez|, z ∈ C .

Show that f (z) � cez for some constant c.

3.4 Power Series

A power series is an infinite series of the form

∞∑
n�0

an(z − z0)n � a0 + a1(z − z0)+ a2(z − z0)2 + · · · , (3.8)

where z is a complex variable and z0, a0, a1, . . . are fixed complex
numbers.
Every power series (3.8) has a radius of convergence R, with

0 ≤ R ≤ ∞. If R � 0, then the series converges only for z � z0. When
0 < R < ∞, the series converges absolutely for |z − z0| < R and
uniformly for |z− z0| ≤ R0 < R. The series diverges for |z− z0| > R.
When R � ∞, the series converges for all z ∈ C. The value of R is
given by

R � 1

lim
n→∞

n
√|an|

or by

R � lim
n→∞

∣∣∣∣ an

an+1

∣∣∣∣
whenever this limit exists.
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Example 3.7.

(a)
∞∑
n�0

nzn R � lim
n→∞

n

n + 1 � 1.

(b)
∞∑
n�0

zn

n!
R � lim

n→∞
(n + 1)!

n!
� ∞.

(c)
∞∑
n�0

n!zn R � lim
n→∞

n!
(n + 1)! � 0.

The circle |z − z0| � R, when 0 < R < ∞, is called the circle of
convergence.

Two power series,

f (z) �
∞∑
n�0

an(z − z0)n, g(z) �
∞∑
n�0

bn(z − z0)n,

that converge in a commondisk |z−z0| < R can be added, subtracted,
multiplied, and divided according to these rules:

• f (z)± g(z) �
∞∑
n�0
(an ± bn)(z − z0)n, |z − z0| < R;

• f (z) g(z) �
∞∑
n�0

cn(z − z0)n, |z − z0| < R,

where

cn �
n∑

k�0
akbn−k, n � 0, 1, 2, . . . ;

• f (z)
g(z)

�
∞∑
n�0

cn(z − z0)n, |z − z0| < r ≤ R,

for g(z) �� 0 in |z − z0| < r, and cn satisfies the recursive relation

cn � an − c0bn − c1bn−1 − · · · − cn−1b1
b0

(
g(z0) � b0 �� 0).

A most significant feature of power series is that:

A power series represents an analytic function inside its circle of
convergence.
Moreover, the converse is true:
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If f (z) is analytic in a disk |z − z0| < R, then f (z) has the Taylor
series representation

f (z) �
∞∑
n�0

f (n)(z0)
n!

(z − z0)n (3.9)

at each point z in the disk.
The coefficients

an � f (n)(z0)
n!

are known as Taylor coefficients.
For example, the function f (z) � cosh z has the representation

cosh z �
∞∑
n�0

z2n

(2n)!
(z0 � 0),

where an � f (n)(0)/n! � 1/n! (n even), an � 0 (n odd).
Suppose that f (z) is not analytic in a complete disk but only in an

annular regionA bounded by two concentric circlesC1 : |z−z0| � R1
and C2 : |z − z0| � R2, 0 < R1 < R2 (Figure 3.10). We will assume
that f (z) is analytic on C1 and C2 as well, hence on a slightly larger

x

y

z�

R�

R�

C�

C�

A

O

FIGURE 3.10
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region. Then for each z ∈ A, we have the Laurent series representa-
tion

f (z) �
∞∑
n�0

an(z − z0)n +
∞∑
n�1

bn

(z − z0)n
, (3.10)

where

an � 1
2πi

∫
C2

f (ζ) dζ
(ζ − z0)n+1 , n � 0, 1, 2, . . . , (3.11)

bn � 1
2πi

∫
C1

f (ζ) dζ
(ζ − z0)−n+1 , n � 1, 2, 3, . . . , (3.12)

and integration over C1 and C2 is in the positive direction.
This representation is a generalization of the Taylor series, for

if f (z) were analytic within and on C2, then all the bns are zero by
Cauchy’s theorem since the integrands are analytic within and on
C1. Furthermore,

an � f (n)(z0)
n!

, n � 0, 1, 2, . . .
by (3.7).

Example 3.8. Let us determine the Laurent series representation
of the function

f (z) � 1
(z − 1)(z + 2)

in the annulus 1 < |z| < 2.
First, by partial fractions we have

1
(z − 1)(z + 2) � 1

3(z − 1) − 1
3(z + 2) .

Since the geometric series
∞∑
n�0

βn � 1+ β + β2 + · · ·

converges for |β| < 1 to the value 1/(1− β), and as we have in fact,
|1/z| < 1 and |z/2| < 1, it follows that

1
z − 1 � 1

z
(
1− 1

z

) � 1
z

∞∑
n�0

1
zn
,
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1
z + 2 � 1

2
(
1+ z

2

) � 1
2

∞∑
n�0
(−1)n z

n

2n
.

Hence

1
(z − 1)(z + 2) � 1

3

∞∑
n�0

1
zn+1 − 1

3

∞∑
n�0

(−1)nzn
2n+1 , 1 < |z| < 2.

This is the form of a Laurent series representation, and since the
Laurent expansion is unique, we are done.

Singularities. A singularity (singular point) z0 of a function f (z) is
a point at which f (z) is not analytic, but any open disk about z0,
|z − z0| < R, contains some point at which f (z) is analytic. We say
that z0 is an isolated singularity (isolated singular point) if f (z) is not
analytic at z0 but is analytic in a punctured disk, 0 < |z − z0| < R,
of z0.
For example,

f (z) � 1
(z − 1)2(z + 2)

has isolated singularities at z � 1, z � −2. On the other hand,

g(z) � 1

sin
( 1
z

)
has isolated singularities at zn � 1/nπ, n � ±1,±2, . . . . The origin is
also a singularity of g(z) but not an isolated one since no punctured
disk about z � 0 is free of singular points.
In this text we are concerned only with isolated singularities, of

which there are three types.
If z0 is an isolated singularity of f (z), then we have the Laurent

series representation (3.10)

f (z) �
∞∑
n�1

bn

(z − z0)n
+

∞∑
n�0

an(z − z0)n (3.13)

valid in some punctured disk 0 < |z − z0| < R.

(i) If bn � 0 for all n, then for z �� z0 (3.13) becomes

f (z) �
∞∑
n�0

an(z − z0)n.
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Setting f (z0) � a0 makes f (z) analytic at z0, and z0 is termed
a removable singularity.
For example, the function

f (z) � sin z/z �
∞∑
n�0
(−1)nz2n/(2n + 1)! (z �� 0)

has a removable singularity at z � 0 if we set f (0) � 1.
(ii) If all but finitely many bns are zero, say bn � 0 for all

n > m ≥ 1 and bm �� 0, then

f (z) � b1

z − z0
+ b2

(z − z0)2
+ · · · + bm

(z − z0)m
+

∞∑
n�0

an(z − z0)n.

(3.14)
In this case, we say that z0 is a pole of order m of f (z). Ifm � 1,
then z0 is a simple pole of f (z).
As an illustration,

f (z) � ez

z3
� 1

z3
+ 1

z2
+ 1
2!z

+ 1
3!

+ · · · (|z| > 0)

has a pole of order 3 at z � 0. From the Laurent representation
(3.13), it is readily deduced that

f (z) has a pole of order m at z0 if and only if

f (z) � h(z)
(z − z0)m

,

where h(z) is analytic at z0, h(z0) �� 0.
Thus, the function

f (z) � 1
z2 + 1 � 1

(z − i)(z + i)

is seen to have simple poles at z � ±i.
A function that is analytic except for having poles is called
meromorphic.

(iii) If an infinite number of bns are not zero in (3.13), then z0 is
an essential singularity of f (z).
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The function

f (z) � e
1
z � 1+ 1

z
+ 1
2!z2

+ 1
3!z3

+ · · · + 1
n!zn

+ · · · (|z| > 0)
has an essential singularity at z � 0.
Residues. For a function f (z) with an isolated singularity at z0 and
Laurent series representation

f (z) �
∞∑
n�1

bn

(z − z0)n
+

∞∑
n�0

an(z − z0)n

in 0 < |z − z0| < R, the coefficient b1, according to (3.12), is given
by

b1 � 1
2πi

∫
C

f (ζ) dζ

for C : |z − z0| � r < R. This coefficient is very special because
of its integral representation and is termed the residue of f (z) at z0,
abbreviated by Res(z0).
In the event f (z) has a pole of order m at z0, the algorithm

Res(z0) � b1 � 1
(m − 1)! limz→z0

dm−1

dzm−1 [(z − z0)mf (z)] (3.15)

permits the easy determination of the residue. When z0 is a simple
pole (i.e., m � 1), we have

Res(z0) � lim
z→z0
(z − z0) f (z). (3.16)

This latter case can often be treated as follows. Suppose that

f (z) � p(z)
q(z)

,

where p(z) and q(z) are analytic at z0, p(z0) �� 0, and q(z) has a
simple zero at z0, whence f (z) has a simple pole at z0. Then q(z) �
(z − z0)Q (z), Q (z0) �� 0, and q′(z0) � Q (z0), implying

Res(z0) � lim
z→z0
(z − z0)

p(z)
q(z)

� lim
z→z0

p(z)
q(z)−q(z0)

z−z0

� p(z0)
q′(z0)

. (3.17)
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On the other hand, if q(z0) � 0 and q′(z0) �� 0, then

q(z) � q′(z0)(z − z0)+ q′′(z0)
2!

(z − z0)2 + · · ·
� (z − z0)Q (z),

where Q (z0) � q′(z0) �� 0. That is, we have shown that z0 is a simple
zero of q(z), hence a simple pole of f (z).

Example 3.9. The function

f (z) � e(z
2)

(z − i)3

has a pole of order 3 at z � i. Therefore,

Res(i) � 1
2!
lim
z→i

d2

dz2
[(z − i)3f (z)] � 1

2
lim
z→i

d2

dz2
e(z

2)

� lim
z→i
[2z2e(z

2) + e(z
2)] � −1

e
.

Example 3.10. For

f (z) � eaz

sinh z
� 2eaz

ez − e−z
� p(z)

q(z)
,

the poles of f (z) are the zeros of sinh z, that is, where ez � e−z, and
so e2z � 1, implying z � zn � nπi, n � 0,±1,±2, . . .. Since p(zn) �� 0
and

q′(zn) � enπi + e−nπi � (−1)n · 2 �� 0,
the poles zn of f (z) are simple. Thus,

Res(zn) � p(zn)
q′(zn)

� (−1)neanπi, n � 0,±1,±2, . . . .

The reason for computing residues is the following:

Cauchy Residue Theorem. Let f (z) be analytic within and on a
simple, closed contour C except at finitely many points z1, z2, . . . , zn lying
in the interior of C (Figure 3.11). Then∫

C

f (z) dz � 2πi
n∑
i�1
Res(zi),

where the integral is taken in the positive direction.
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x
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O

C

z�

zn

z�

FIGURE 3.11

Example 3.11. Evaluate ∫
C

eaz

cosh z
dz

for C : |z| � 2 in the positive direction.
Write

f (z) � eaz

cosh z
� p(z)

q(z)
.

Then cosh z � (ez + e−z)/2 � 0 when ez � −e−z (i.e., e2z � −1), so
that

z � zn � (
n − 1

2

)
πi, n � 0,±1,±2, . . . .

Now, p(zn) �� 0 with

q′(zn) � e(n− 1
2 )πi − e−(n− 1

2 )πi

2
� (−1)n+1i �� 0,

so that all the poles zn of f (z) are simple. Furthermore, only z1 �
(π/2)i and z0 � (−π/2)i lie interior to C. Hence,

Res(z1) � p(z1)
q′(z1)

� ea
π

2 i

i
,

Res(z0) � p(z0)
q′(z0)

� e−a π

2 i

−i
.

Therefore, ∫
C

eaz

cosh z
dz � 2π

[
ea

π

2 i − e−a π

2 i
]

� 4πi sin
(aπ
2

)
.
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Exercises 3.4

1. Determine the radius of convergence of the following series:

(a)
∞∑
n�0

(−1)nzn
n2 + 1 (b)

∞∑
n�0

3nzn

(2n + 1)!

(c)
∞∑
n�1

n(z − i)n

n + 1 (d)
∞∑
n�0

(−1)nzn
22n(n!)2

.

2. Compute the Taylor series about z0 � 0 for the following
functions and determine the radius of convergence:

(a) e(z
2) (b) sinh z

(c)
1
1− z

(d) log(1+ z).

3. Let f (z) be analytic in C with Taylor series

f (z) �
∞∑
n�0

anz
n.

If |f (z)| ≤ M(r) on |z| � r, show that

|an| ≤ M(r)
rn

, n � 0, 1, 2, . . . .

(Note: This is another version of Cauchy’s inequality.)
4. Determine the nature of the singularities of the following
functions:

(a)
1

z(z2 + 1)2 (b)
e(z

2)

z3

(c) sin
1
z

(d)
1+ cosπz
1− z

.

5. Write down the first three terms of the (Taylor/Laurent) series
representation for each function:

(a)
z

sin z
(b)

1
z sinh z
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(c)
sinh

√
z√

z cosh
√
z
.

6. Find the Laurent series expansion (in powers of z) of

f (z) � 1
z(z + 1)(z − 3)

in the, regions:

(a) 0 < |z| < 1 (b) 1 < |z| < 3

(c) |z| > 3.
7. Find all the poles of the following functions and compute their
residues:

(a)
z

z2 + a2
(b)

1
z(1+ eaz)

(c)
sin z
z3
.

8. Evaluate the following integrals over the contour C taken in the
positive direction:

(a)
∫
C

1− ez

z2
dz, C : |z| � 1

(b)
∫
C

cos z
z2 + 1 dz, C : |z| � 2

(c)
∫
C

cot z dz, C : |z| � 4

(d)
∫
C

1+ ez

1− ez
dz, C : |z| � 1

(e)
∫
C

dz

z2(z + 2)(z − 1) , C : |z| � 3.

9. Evaluate the integral∫
C

eiπz

2z2 − 5z − 3 , C : |z| � 2

(taken in the positive direction) by using the

(i) Cauchy integral formula
(ii) method of residues.
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3.5 Integrals of the Type
∫∞
−∞ f (x)dx

Much of the complex variable theory presented thus far has been to
enable us to evaluate real integrals of the form∫ ∞

−∞
f (x) dx.

To this end, we transform the problem to a contour integral of
the form ∫

�R

f (z) dz,

where �R is the contour consisting of the segment [−R, R] of the real
axis together with the semicircle CR : z � R eiθ, 0 ≤ θ ≤ π (Figure
3.12).
Suppose that f (z) is analytic in the complex place C except at

finitely many poles, and designate by z1, z2, . . . , zn the poles of f (z)
lying in the upper half-plane. By choosing R sufficiently large, z1,
z2, . . . , zn will all lie in the interior of �R. Then by the Cauchy residue
theorem,

2πi
n∑
i�1
Res(zi) �

∫
�R

f (z) dz

�
∫ R

−R

f (x) dx +
∫
CR

f (z) dz.

If we can demonstrate that

lim
R→∞

∫
CR

f (z) dz � 0,

x

y

R

�R RO

CR

z � Rei�

zn
z�

z�

FIGURE 3.12
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then we can deduce that the solution to our problem is given by∫ ∞

−∞
f (x) dx � lim

R→∞

∫ R

−R

f (x) dx � 2πi
n∑
i�1
Res(zi). (3.18)

Example 3.12. Evaluate∫ ∞

−∞

dx

(x2 + a2)(x2 + b2)
, b > a > 0.

Let

f (z) � 1
(z2 + a2)(z2 + b2)

,

and consider ∫
�R

f (z) dz,

where �R is the contour in Figure 3.12. For R sufficiently large, the
simple poles of f (z) at the points ai and bi will be interior to �R.
Then by (3.16)

Res(ai) � lim
z→ai

z − ai

(z − ai)(z + ai)(z2 + b2)

� 1
(2ai)(b2 − a2)

,

Res(bi) � lim
z→bi

z − bi

(z2 + a2)(z − bi)(z + bi)

� 1
(a2 − b2)(2bi)

,

and

2πi
(
Res(ai)+ Res(bi)) � π

ab(a + b)
.

Moreover, onCR, z � R eiθ, |dz| � |iR eiθdθ| � Rdθ, with |z2+a2| ≥
|z|2 − |a|2 � R2 − a2, |z2 + b2| ≥ R2 − b2, and so∣∣∣∣

∫
CR

dz

(z2 + a2)(z2 + b2)

∣∣∣∣ ≤
∫ |dz|

|z2 + a2| |z2 + b2|
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≤
∫ π

0

Rdθ

(R2 − a2)(R2 − b2)

� πR

(R2 − a2)(R2 − b2)
→ 0

as R → 0.
Consequently, by the Cauchy residue theorem,

π

ab(a + b)
�

∫ R

−R

dx

(x2 + a2)(x2 + b2)
+

∫
CR

dz

(z2 + a2)(z2 + b2)
,

and letting R → ∞,∫ ∞

−∞

dx

(x2 + a2)(x2 + b2)
� π

ab(a + b)
.

This example illustrates all the salient details, which will be
exploited further in the next chapter.

Exercises 3.5

Use the methods of this section to verify the following integrals.

1.
∫ ∞

−∞

dx

x2 + x + 1 � 2π√
3
.

2.
∫ ∞

0

dx

x4 + x2 + 1 � π
√
3
6
.

3.
∫ ∞

0

x2dx

1+ x4
� π

√
2
4
.

4.
∫ ∞

0

dx

(x2 + 1)(x2 + 4)2 � 5π
288
.

5.
∫ ∞

0

cos x
x2 + a2

dx � πe−a

2a
.

[Hint: For this type of problem, consider the function

f (z) � eiz

z2 + a2
,
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and observe that on the x-axis

Ref (z) � Re
(

eix

x2 + a2

)
� cos x

x2 + a2
.

Now proceed as before.]

6.
∫ ∞

0

x sinmx
x2 + a2

dx � π

2
e−am, a > 0.

[Hint: Consider the function

f (z) � zeimz

z2 + a2
,

so that on the x-axis,

Imf (z) � x sinmx
x2 + a2

.

Also, you will need the inequality sin θ ≥ 2θ/π, for 0 ≤ θ ≤ π/2.]

7.
∫ ∞

0

dx

xn + 1 �
π
n

sin
(
π
n

) , n ≥ 2.

[Hint: Consider
∫
C

(
dz/(zn + 1))whereC is the contour in Figure

E.9.]

x

y

O R

Re��i�n

FIGURE E.9
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C H A P T E R

...........................................

Complex
Inversion
Formula

The complex inversion formula is a very powerful technique for
computing the inverse of a Laplace transform, f (t) � L−1(F(s)). The
technique is based on the methods of contour integration discussed
in Chapter 3 and requires that we consider our parameter s to be a
complex variable.
For a continuous function f possessing a Laplace transform, let us

extend f to (−∞,∞) by taking f (t) � 0 for t < 0. Then for s � x+ iy,

L(
f (t)

) � F(s) �
∫ ∞

0
e−stf (t) dt

�
∫ ∞

−∞
e−iyt

(
e−xtf (t)

)
dt

� F(x, y).

In this form F(x, y) represents the Fourier transform of the func-
tion g(t) � e−xtf (t). The Fourier transform is one of the most useful
tools in mathematical analysis; its principal virtue is that it is readily
inverted.
Towards this end,we assume that f is continuous on [0,∞), f (t) �

0 for t < 0, f has exponential order α, and f ′ is piecewise continuous
on [0,∞). Then by Theorem 1.11, L(

f (t)
)
converges absolutely for

151



4. Complex Inversion Formula152

Re(s) � x > α, that is,∫ ∞

0
|e−stf (t)| dt �

∫ ∞

−∞
e−xt|f (t)| dt < ∞, x > α. (4.1)

This condition means that g(t) � e−xtf (t) is absolutely integrable, and
we may thus invoke the Fourier inversion theorem (Theorem A.14),
which asserts that g(t) is given by the integral

g(t) � 1
2π

∫ ∞

−∞
eiytF(x, y) dy, t > 0.

This leads to the representation for f ,

f (t) � 1
2π

∫ ∞

−∞
exteiytF(x, y) dy, t > 0. (4.2)

Transforming (4.2) back to the variable s � x + iy, since x > α is
fixed, we have dy � (1/i) ds and so f is given by

f (t) � 1
2πi

∫ x+i∞

x−i∞
etsF(s) ds � lim

y→∞
1
2πi

∫ x+iy

x−iy

etsF(s) ds. (4.3)

Here the integration is to be performed along a vertical line at x > α

(Figure 4.1). The expression (4.3) is known as the complex (or
Fourier–Mellin) inversion formula, and the vertical line at x is known
as the Bromwich line. In order to calculate the integral in (4.3) and
so determine the inverse of the Laplace transform F(s), we employ
the standard methods of contour integration discussed in Chapter 3.
To wit, take a semicircle CR of radius R and center at the origin.

Then for s on the Bromwich contour �R � ABCDEA of Figure 4.2,

1
2πi

∫
�R

etsF(s) ds � 1
2πi

∫
CR

etsF(s) ds + 1
2πi

∫
EA

etsF(s) ds. (4.4)

O � x

FIGURE 4.1
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O � x

A�x � iy�

E�x� iy�

��

��

RCR

C

B

D

FIGURE 4.2

Since F(s) is analytic for Re(s) � x > α, all the singularities of F(s),
such as they are, must lie to the left of the Bromwich line. For a pre-
liminary investigation, let us assume that F(s) is analytic in Re(s) < α

except for having finitely many poles z1, z2, . . . , zn there. This is typical
of the situation when, say

F(s) � P(s)
Q (s)

,

where P(s) and Q (s) are polynomials.
By taking R sufficiently large, we can guarantee that all the

poles of F(s) lie inside the contour �R. Then by the Cauchy residue
theorem,

1
2πi

∫
�R

etsF(s) ds �
n∑

k�1
Res(zk), (4.5)

where Res(zk) is the residue of the function etsF(s) at the pole s � zk.
Note that multiplying F(s) by ets does not in any way affect the status
of the poles zk of F(s) since ets �� 0. Therefore, by (4.4) and (4.5),

n∑
k�1
Res(zk) � 1

2πi

∫ x+iy

x−iy

etsF(s) ds + 1
2πi

∫
CR

etsF(s) ds. (4.6)
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In what follows, we prove that when

lim
R→∞

∫
CR

etsF(s) ds � 0,

and then by letting R → ∞ in (4.6), we obtain our desired
conclusion:

f (t) � lim
y→∞

1
2πi

∫ x+iy

x−iy

etsF(s) ds �
n∑

k�1
Res(zk). (4.7)

This formula permits the easy determination of the inverse function
f . Let us then attend to the contour integral estimation.

∫
CR

etsF(s) ds → � as R → ∞. An examination of the table of
Laplace transforms (pp. 210–218) shows that most satisfy the growth
restriction

|F(s)| ≤ M

|s|p , (4.8)

for all sufficiently large values of |s|, and some p > 0.
For example, consider

F(s) � s

s2 − a2
� L−1(cosh at).

Then

|F(s)| ≤ |s|
|s2 − a2| ≤ |s|

|s|2 − |a|2 ,

and for |s| ≥ 2|a|, we have |a|2 ≤ |s|2/4, so that |s|2 − |a|2 ≥ 3|s|2/4,
giving

|F(s)| ≤ 4/3|s| (|s| ≥ 2|a|).

Observe that under the condition (4.8), F(s)→ 0 as |s| → ∞.
Consider again the contour �R as given in Figure 4.2. Any point

s on the semicircle CR is given by s � R eiθ, θ1 ≤ θ ≤ θ2. Thus,
ds � iR eiθdθ and |ds| � Rdθ.

Lemma 4.1. For s on CR, suppose that F(s) satisfies

|F(s)| ≤ M

|s|p , some p > 0, all R > R0.
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Then

lim
R→∞

∫
CR

etsF(s) ds � 0 (t > 0).

Proof. For points s � R eiθ on CR, |ets| � etR cos θ. Therefore, for R
sufficiently large so that all the poles of F(s) are interior to �R, F(s)
will be continuous on CR with |F(s)| ≤ M/Rp for all large R. Hence
on the circular arcBCD,∣∣∣∣

∫
BCD

estF(s) ds
∣∣∣∣ ≤

∫
BCD

|ets| |F(s)| |ds|

≤ M

Rp−1

∫ 3π
2

π

2

eRt cos θdθ. (4.9)

At this stage substitute θ � ϕ + (π/2), which results in∣∣∣∣
∫
BCD

estF(s) ds
∣∣∣∣ ≤ M

Rp−1

∫ π

0
e−Rt sin ϕdϕ

� 2M
Rp−1

∫ π

2

0
e−Rt sin ϕdϕ, (4.10)

the latter equality being a consequence of sin ϕ’s being symmetric
about ϕ � π/2, for 0 ≤ ϕ ≤ π.
In order to obtain a bound for the last integral, consider the graph

of y � sin ϕ, 0 ≤ ϕ ≤ π/2 (Figure 4.3). The line from the origin to the
point (π/2, 1) has slope m � 2/π < 1, and thus the line y � (2/π)ϕ
lies under the curve y � sin ϕ, that is,

sin ϕ ≥ 2
π
ϕ, 0 ≤ ϕ ≤ π

2 .

�

y

O

��
�
� ��

y �sin�

y � ��

�

FIGURE 4.3
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Consequently, (4.10) yields∣∣∣∣
∫
BCD

etsF(s) ds
∣∣∣∣ ≤ 2M

Rp−1

∫ π

2

0
e−

2Rtϕ
π dϕ

� 2M
Rp−1

π

−2Rt
[
e−

2Rtϕ
π

] π

2

0

� Mπ

Rpt
(1− e−Rt)

→ 0 as R → ∞.

Over the arcAB, we have |ets| ≤ etx � c for fixed t > 0, and the
length of AB, �(AB), remains bounded as R → ∞, so that∣∣∣∣

∫
AB

etsF(s) ds
∣∣∣∣ ≤ cM�(AB)

Rp
→ 0

as R → ∞. Here we have taken x to be the value through which the
Bromwich line passes, as in Figure 4.2.
Likewise, ∣∣∣∣

∫
DE

etsF(s) ds
∣∣∣∣ → 0 as R → ∞.

As a consequence, we have our desired conclusion:

lim
R→∞

∫
CR

etsF(s) ds � 0. �

Remarks 4.2.

i. We could have replaced the growth condition (4.8) with

|F(s)| ≤ εR,

where εR → 0 asR → ∞, uniformly for s onCR. For example,

F(s) � log s
s

does satisfy this latter condition but not (4.8).
ii. If cR is any subarc of CR, say given by π/2 ≤ θ′

1 ≤ θ ≤ θ′
2 ≤

3π/2, then ∫ θ′
2

θ′
1

eRt cos θdθ ≤
∫ 3π

2

π

2

eRt cos θdθ
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as the integrand is positive. Since the right-hand integral fea-
tures in (4.9) and is ultimately bounded above by a quantity
that tends to zero as R → 0, we deduce that

lim
R→∞

∫
cR

etsF(s) ds � 0.

iii. Sometimes it is advantageous to use parabolas or other
contours instead of semicircles (see Example 4.9).

Summarizing the result claimed in (4.7):

Theorem 4.3. Suppose that f is continuous and f ′ piecewise continu-
ous on [0,∞), with f of exponential order α on [0,∞). If F(s) � L(

f (t)
)
,

for Re(s) � x > α, also satisfies the growth condition

|F(s)| ≤ M

|s|p , p > 0,

for all |s| sufficiently large and some p
(
or condition (i) above

)
, and if

F(s) is analytic in C except for finitely many poles at z1, z2, . . . , zn, then

f (t) � 1
2πi

∫ x+i∞

x−i∞
etsF(s) ds �

n∑
k�1
Res(zk), (4.11)

where Res(zk) is the residue of the function etsF(s) at s � zk.

In view of the properties of the inverse Fourier transform
(Theorem A.14), we have the next result.

Corollary 4.4. If f is only piecewise continuous on [0,∞), then the
value returned by the complex inversion formula (4.11) is

f (t+)+ f (t−)
2

at any jump discontinuity t > 0.

Remark. The preceding theorem and corollary can be shown to
hold under less restrictive conditions on f (see Doetsch [2], Theorem
24.4), so that functions such as f (t) � 1/√t are not excluded by the
inversion process. Essentially, the Laplace transform of f should
converge absolutely and f should be of “bounded variation” in a
neighborhood of the point t > 0 in question.
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Example 4.5.

F(s) � 1
s(s − a)

.

Then F(s) has a simple pole at s � 0 and s � a, and |F(s)| ≤ M/|s|2
for all |s| sufficiently large, say |F(s)| ≤ 2/|s|2 if |s| ≥ 2|a|. Moreover,

Res(0) � lim
s→0 s e

tsF(s)

� lim
s→0

ets

s − a
� −1

a
,

Res(a) � lim
s→a
(s − a) etsF(s)

� lim
s→a

ets

s
� eat

a
.

Whence

f (t) � 1
a
(eat − 1).

Of course, F(s) could have been inverted in this case using partial
fractions or a convolution.

Example 4.6.

F(s) � 1
s(s2 + a2)2

� 1
s(s − ai)2(s + ai)2

.

Then F(s) has a simple pole at s � 0 and a pole of order 2 at s � ±ai.
Clearly, |F(s)| ≤ M/|s|5 for all |s| suitably large.

Res(0) � lim
s→0 s e

tsF(s) � lim
s→0

ets

(s2 + a2)2
� 1

a4
.

Res(ai) � lim
s→ai

d

ds

(
(s − ai)2etsF(s)

)

� lim
s→ai

d

ds

(
ets

s(s + ai)2

)

� it

4a3
eiat − eiat

2a4
.
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Res(−ai) � lim
s→−ai

d

ds

(
(s + ai)2etsF(s)

)
� lim

s→−ai

d

ds

(
ets

s(s − ai)2

)

� −it e−iat

4a3
− e−iat

2a4
.

Therefore,

Res(0)+ Res(ai)+ Res(−ai) � 1
a4

+ it

4a3
(eiat − e−iat)

− 1
2a4
(eiat + e−iat)

� 1
a4

(
1− a

2
t sin at − cos at

)
� f (t).

Example 4.7.

F(s) � P(s)
Q (s)

,

where P(s) and Q (s) are polynomials (having no common roots) of
degree n and m, respectively, m > n, and Q (s) has simple roots at
z1, z2, . . . , zm. Then F(s) has a simple pole at each s � zk, and writing

F(s) � ans
n + an−1sn−1 + · · · + a0

bms
m + bm−1sm−1 + · · · + b0

(an, bm �� 0)

� an + an−1
s

+ · · · + a0
sn

sm−n

(
bm + bm−1

s
+ · · · + b0

sm

) ,
it is enough to observe that for |s| suitably large,∣∣∣an + an−1

s
+ · · · + a0

sn

∣∣∣ ≤ |an| + |an−1| + · · · + |a0| � c1,∣∣∣∣bm + bm−1
s

+ · · · + b0

sm

∣∣∣∣ ≥ |bm| − |bm−1|
|s| − · · · − |b0|

|s|m ≥ |bm|
2

� c2,

and thus

|F(s)| ≤ c1/c2

|s|m−n
.



4. Complex Inversion Formula160

Hence by (3.17),

Res(zk) � ezktP(zk)
Q ′(zk)

, k � 1, 2, . . . , m,

and

f (t) �
m∑
k�1

P(zk)
Q ′(zk)

ezkt.

This is equivalent to the formulation given by (1.20).

Infinitely Many Poles. Suppose that F(s) has infinitelymany poles
at

{
zk
}∞
k�1 all to the left of the line Re(s) � x0 > 0, and that

|z1| ≤ |z2| ≤ · · · ,
where |zk| → ∞ as k → ∞. Choose a sequence of contours �n �
Cn ∪ [x0 − iyn, x0 + iyn] enclosing the first n poles z1, z2, . . . , zn as in
Figure 4.4. Then by the Cauchy residue theorem,

1
2πi

∫
�n

etsF(s) ds �
n∑

k�1
Res(zk),

where as before, Res(zk) is the residue of etsF(s) at the pole s � zk.
Hence

n∑
k�1
Res(zk) � 1

2πi

∫ x0+iyn

x0−iyn

etsF(s) ds + 1
2πi

∫
Cn

etsF(s) ds.

x

y

O

x� � iyn

x��iyn

x�

z�
z�

zn

Cn

FIGURE 4.4
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Once again, if it can be demonstrated that

lim
n→∞

∫
Cn

etsF(s) ds � 0, (4.12)

whereby |yn| → ∞, then we achieve the representation

f (t) � 1
2πi

∫ x0+i∞

x0−i∞
etsF(s) ds �

∞∑
k�1
Res(zk). (4.13)

Example 4.8. Find

L−1
(

1
s(1+ eas)

)
, a > 0.

The function

F(s) � 1
s(1+ eas)

has a simple pole at s � 0. Moreover, 1+ eas � 0 gives

eas � −1 � e(2n−1)πi, n � 0,±1,±2, . . . ,

implying that

sn � ( 2n−1
a

)
πi, n � 0,±1,±2, . . . ,

are poles of F(s).
For G(s) � 1+ eas, G′(sn) � −a �� 0, which means that the poles

sn are simple. Furthermore,

Res(0) � lim
s→0 s e

tsF(s) � 1
2
,

Res(sn) � etsn

[s(1+ eas)]′
∣∣∣
s�sn

� etsn

a sne
asn

� − et(
2n−1
a
)πi

(2n − 1)πi .
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x

y

O x�

�n�i

��n�i

Rn
Cn

s�plane

O � �

��plane

�

FIGURE 4.5

Consequently,

sum of residues � 1
2

−
∞∑

n�−∞

1
(2n − 1)πi e

t( 2n−1
a
)πi

� 1
2

− 2
π

∞∑
n�1

1
(2n − 1) sin

( 2n−1
a

)
πt.

(4.14)

Finally, letCn be the semicircle given by s � Rn e
iθ, withRn � 2nπ/a.

To make the subsequent reasoning simpler, let us take a � 1. Then
the circles Cn cross the y-axis at the points s � ±2nπi. (See Figure
4.5.) We wish to consider what happens to the points s on Cn under
the mapping H(s) � 1+ es.

(i) In the region 0 < x ≤ x0 and s on Cn, the image points ζ �
H(s) � 1+exeiy all lie to the right and slightly below the point
ζ � 2, for y sufficiently close to 2nπ, that is, for n sufficiently
large. (Notice that as n increases, the circles Cn flatten out so
that y � Im(s) approaches 2nπ from below.) Hence

|1+ es| ≥ 2
for 0 ≤ x ≤ x0.

(ii) For s on Cn with Re(s) � x < 0, the values of the function
H(s) � 1+ exeiy lie inside the circle |ζ − 1| � 1. As the value
of y � Im(s) goes from 2nπ down to (2n − 1)π, the images



4. Complex Inversion Formula 163

spiral half a revolution with modulus

|1+ es| ≥ 1+ e2nπ cos ϕ cos(2nπ sin ϕ) > b > 0,

for x � 2nπ cos ϕ, y � 2nπ sin ϕ.
As y � Im(s) goes from (2n − 1)π down to (2n − 2)π, the
imagesH(s) spiral away from the origin half a revolution. For
y < 0, it is the same story but spiraling outward.

Summarizing, the preceding shows that

|H(s)| � |1+ es| ≥ c > 0

for some c, for all s on Cn, and likewise for |1+ eas|. Consequently,

|F(s)| ≤ c−1

|s| ,

s on Cn, n sufficiently large. It follows that

lim
n→∞

∫
Cn

etsF(s) ds � 0

in view of Lemma 4.1. The key here is that the contours Cn should
straddle the poles.
We conclude that

f (t) � L−1
(

1
s(1+ eas)

)
� 1
2

− 2
π

∞∑
n�1

1
(2n − 1) sin

(
2n − 1

a

)
πt,

as given by (4.14), at the points of continuity of f .

Remark. It should be observed that (4.14) is the Fourier series
representation of the periodic square-wave function considered in
Example 2.5. There we deduced that this function had Laplace trans-
form F(s) � 1/s(1+ eas). Note also that at the points of discontinuity,
t � na, the series (4.14) gives the value 1/2 (Figure 4.6).
Other useful inverses done in a similar fashion are (0 < x < a)

L−1
(
sinh x

√
s

s sinh a
√
s

)
� x

a
+ 2

π

∞∑
n�1

(−1)n
n

e−n2π2t/a2 sin
nπx

a
, (4.15)

L−1
(
cosh x

√
s

s cosh a
√
s

)
�1+ 4

π

∞∑
n�1

(−1)n
2n − 1e

−(2n−1)2π2t/4a2 cos
(
2n − 1
2a

)
πx.

(4.16)
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t

f�t�

O

�

�

�

a �a �a �a FIGURE 4.6

In the following example it is more appropriate to use parabolas
instead of semicircles for the contours.

Example 4.9.

F(s) � coth
√
s√

s
� e

√
s + e−

√
s

√
s(e

√
s − e−

√
s)
.

Setting

e
√
s − e−

√
s � 0

leads to

e2
√
s � 1,

implying

2
√
s � 2nπi, n � ±1,±2, . . . ,

and so

sn � −n2π2, n � 1, 2, 3, . . .
are simple poles of F(s) since (e

√
s − e−

√
s)′
∣∣
s�sn

� (−1)n/nπi �� 0.
When n � 0, F(s) also has a simple pole at s0 � 0 because
e
√
s + e−

√
s

√
s(e

√
s − e−

√
s)

�
(
1+ √

s + s
2! + · · ·) + (

1− √
s + s

2! − · · ·)√
s
[(
1+ √

s + s
2! + · · ·) − (

1− √
s + s

2! − · · ·)]
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x

y

��n� ��
�
�� �n��� O x�

s

Pn

FIGURE 4.7

� 1+ s
2! + · · ·

s + s2

3! + · · ·

� 1
s

+ 1
3

+ positive powers of s terms.

Let us consider the curve Pn in Figure 4.7 given by that part of
the parabola

s � (
τ + i

(
n + 1

2

)
π
)2

�
(
τ2 − (

n + 1
2

)2
π2

)
+ i2τ

(
n + 1

2

)
π

� x + iy,

for x � Re(s) < x0 (x0 > 0) and τ a real parameter. Note that when
τ � 0,

x � − (
n + 1

2

)2
π2, y � 0.

The advantage in taking this particular curve is that for s on Pn,

coth
√
s � eτ+i(n+ 1

2 )π + e−τ−i(n+ 1
2 )π

eτ+i(n+ 1
2 )π − e−τ−i(n+ 1

2 )π

� eτ − e−τ

eτ + e−τ
� tanh τ.

Hence,

|F(s)| � | tanh τ|∣∣τ + i
(
n + 1

2

)
π
∣∣
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≤ 1(
n + 1

2

)
π

� εn → 0

as n → ∞ (uniformly) for s on Pn. By Exercises 4, Question 4, we
conclude that

lim
n→∞

∫
Pn

etsF(s) ds � 0 (t > 0).

Regarding the residues, we have

Res(0) � 1,

Res(−n2π2) � lim
s→−n2π2

(s + n2π2)ets
coth

√
s√

s

� lim
s→−n2π2

ets√
s

· lim
s→−n2π2

s + n2π2

tanh
√
s

� lim
s→−n2π2

ets√
s

· lim
s→−n2π2

1
1
2
√
s
sech2

√
s

� 2e−n2π2t .

Finally,

f (t) � L−1(F(s))
�

∞∑
n�0
Res(−n2π2)

� 1+ 2
∞∑
n�1

e−n2π2t (t > 0).

What facilitated the preceding calculation of the inverse trans-
form was the judicious choice of the parabolas Pn. Herein lies the
difficulty in determining the inverse of a meromorphic function
F(s) that has infinitely many poles. The curves Cn must straddle
the poles, yet one must be able to demonstrate that F(s) → 0 (uni-
formly) for s on Cn as n → ∞. This task can be exceedingly difficult
and may sometimes be impossible. It is tempting for practitioners
of this technique, when F(s) has infinitely many poles, not to ver-
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ify (4.12) for suitable Cn. This leaves open the possibility that the
resulting “inverse” function, f (t), is incorrect.

Remark 4.10. There aremany other variations where F(s) involves
the quotient of hyperbolic sines and hyperbolic cosines. See Doetsch
[2], pp. 174–176, for further machinations involved with showing∫
Cn
etsF(s) ds → 0 as n → ∞ via Lemma 4.1. Notwithstanding our

preceding caveat, we will assume in Chapter 5 that
∫
Cn
etsF(s) ds → 0

as n → ∞ where required.

Branch Point. Consider the function

F(s) � 1√
s
,

which has a branch point at s � 0. Although the inverse Laplace
transform of F(s) has already been considered in (2.5), it is instruc-
tive to apply the methods of the complex inversion formula in this
case.
Consider the contour CR � ABCDEFA, whereAB and EF are arcs

of a circle of radius R centered at O and CD is an arc γr of a circle of
radius r also with center O (Figure 4.8).

O x�

A�x� � iy�

F �x� � iy�

R

rB C

DE

CR

�r

FIGURE 4.8
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For w � √
s we take a branch cut along the nonpositive real axis

with −π < θ < π and consider a (single-valued) analytic branch
of w. Then F(s) � 1/

√
s is analytic within and on CR so that by

Cauchy’s theorem ∫
CR

ets√
s
ds � 0.

Whence

0 � 1
2πi

∫ x0+iy

x0−iy

ets√
s
ds + 1

2πi

∫
AB

ets√
s
ds + 1

2πi

∫
BC

ets√
s
ds

+ 1
2πi

∫
γr

ets√
s
ds + 1

2πi

∫
DE

ets√
s
ds + 1

2πi

∫
EF

ets√
s
ds. (4.17)

For s � R eiθ lying on the two arcs AB and EF , we have

|F(s)| � 1

|s| 12
,

so that by Remark 4.2, part (ii), coupled with the argument used in
the proof of Lemma 4.1 to treat the portions of these arcs from A to
x � 0 and from x � 0 to F , we conclude that

lim
R→∞

∫
AB

ets√
s
ds � lim

R→∞

∫
EF

ets√
s
ds � 0.

For s � r eiθ on γr ,∣∣∣∣
∫
γr

ets√
s
ds

∣∣∣∣ ≤
∫ −π

π

etr cos θ

r
1
2

rdθ

� r
1
2

∫ −π

π

etr cos θdθ → 0

as r → 0 since the integrand is bounded.
Finally, we need to consider the integrals along BC and DE. The

values of these integrals converge to the values of the corresponding
integrals when BC and DE are the upper and lower edges, respec-
tively, of the cut along the negative x-axis. So it suffices to compute
the latter. For s on BC, s � x eiπ,

√
s � √

x eiπ/2 � i
√
x, and when s
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goes from −R to −r, x goes from R to r. Hence∫
BC

ets√
s
ds �

∫ −r

−R

ets√
s
ds � −

∫ r

R

e−tx

i
√
x
dx

� 1
i

∫ R

r

e−tx

√
x
dx. (4.18)

Along DE, s � x e−iπ,
√
s � √

x e−
iπ

2 � −i
√
x, and∫

DE

ets√
s
ds �

∫ −R

−r

ets√
s
ds � −

∫ R

r

e−tx

−i
√
x
dx

� 1
i

∫ R

r

e−tx

√
x
dx. (4.19)

Combining (4.18) and (4.19) aftermultiplying each by 1/2πi gives

1
2πi

∫
BC

ets√
s
ds + 1

2πi

∫
DE

ets√
s
ds � − 1

π

∫ R

r

e−tx

√
x
dx.

Letting R → ∞ and r → 0 in (4.17) yields

0 � 1
2πi

∫ x0+i∞

x0−i∞

ets√
s
ds − 1

π

∫ ∞

0

e−tx

√
x
dx;

in other words,

f (t) � L−1
(
1√
s

)
� 1
2πi

∫ x0+i∞

x0−i∞

ets√
s
ds

� 1
π

∫ ∞

0

e−tx

√
x
dx.

To compute this latter integral, observe that by Example 2.1

�
( 1
2

) �
∫ ∞

0

e−u

√
u
du � √

π.

Setting u � tx, du � tdx and

√
π �

∫ ∞

0

e−tx

√
t
√
x
tdx � √

t

∫ ∞

0

e−tx

√
x
dx.

Therefore,

f (t) � 1
π

(√
π√
t

)
� 1√

πt
,
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in accordance with (2.5).
Another useful example involving a branch point that arises in

the solution of certain partial differential equations (see Section 5.1)
is the determination of

L−1
(
e−a

√
s

s

)
, a > 0.

As in the preceding example, s � 0 is a branch point. Thus we can
use the same contour (Figure 4.8) and approach in applying the
complex inversion formula.
For w � √

s we take a branch cut along the nonpositive real axis
and consider the (single-valued) analytic branch w1 � √|s|eiθ/2 with
positive real part.
Again, F(s) � e−a

√
s/s is analytic within and on CR so that∫

CR

etse−a
√
s

s
ds �

∫
CR

ets−a
√
s

s
ds � 0.

Thus,

0 � 1
2πi

∫ x0+iy

x0−iy

ets−a
√
s

s
ds + 1

2πi

∫
AB

ets−a
√
s

s
ds

+ 1
2πi

∫
BC

ets−a
√
s

s
ds + 1

2πi

∫
γr

ets−a
√
s

s
ds

+ 1
2πi

∫
DE

ets−a
√
s

s
ds + 1

2πi

∫
EF

ets−a
√
s

s
ds. (4.20)

For s � R eiθ on the two circular arcsAB and EF , w1 � √
s �√

Reiθ/2 and

|F(s)| �
∣∣∣∣∣e

−a
√
s

s

∣∣∣∣∣ � e−a
√
R cos θ/2

|s| <
1
|s| ,

and so as in the preceding example,

lim
R→∞

∫
AB

ets−a
√
s

s
ds � lim

R→∞

∫
EF

ets−a
√
s

s
ds � 0.

For s on the line segments BC and DE, again we take them to be
the respective upper and lower edges of the cut along the negative
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axis. If s lies on BC, then s � xeiπ,
√
s � i

√
x, and when s goes from

−R to −r, x goes from R to r. Therefore,∫
BC

ets−a
√
s

s
ds �

∫ −r

−R

ets−a
√
s

s
ds �

∫ r

R

e−tx−ai
√
x

x
dx. (4.21)

Along DE, similarly s � xe−iπ,
√
s � −i

√
x implying∫

DE

ets−a
√
s

s
ds �

∫ R

r

e−tx+ai
√
x

x
dx. (4.22)

Combining (4.21) and (4.22) after multiplying each by 1/2πi yields

1
2πi

∫ R

r

e−tx(eai
√
x − e−ai

√
x)

x
dx � 1

π

∫ R

r

e−tx sin a
√
x

x
dx. (4.23)

Letting r → 0 and R → ∞ in (4.23), we obtain the integral

1
π

∫ ∞

0

e−tx sin a
√
x

x
dx. (4.24)

In Section 2.7 we introduced the error function

erf(t) � 2√
π

∫ t

0
e−x2dx.

It can be shown that the integral in (4.24) can be written in terms of
the error function (see Theorem A.13), that is,

1
π

∫ ∞

0

e−tx sin a
√
x

x
dx � erf

(
a

2
√
t

)
;

we shall use use latter expression.
Finally, for s � r eiθ on γr , we can take the integration from π to

−π,

1
2πi

∫
γr

ets−a
√
s

s
ds � 1

2πi

∫ −π

π

etre
iθ−a

√
reiθ/2 ireiθdθ

reiθ

� − 1
2π

∫ π

−π

etre
iθ−a

√
reiθ/2dθ → − 1

2π

∫ π

−π

dθ

� −1
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for r → 0.We have used here the uniform continuity of the integrand
to pass the limit inside the integral.∗

Whence, letting r → 0, R → ∞ in (4.20) gives

0 � 1
2πi

∫ x0+i∞

x0−i∞

ets−a
√
s

s
ds + erf

(
a

2
√
t

)
− 1; (4.25)

in other words,

f (t) � L−1
(
e−a

√
s

s

)
� 1
2πi

∫ x0+i∞

x0−i∞

ets−a
√
s

s
ds

� 1− erf
(

a

2
√
t

)
. (4.26)

The function

erfc(t) � 1− erf(t)
is called the complementary error function, and so we have by (4.26)

L−1
(
e−a

√
s

s

)
� erfc

(
a

2
√
t

)
. (4.27)

∗Since for fixed a, t,

f (r, θ) � etre
tθ−a

√
reiθ/2

is continuous on the closed rectangle 0 ≤ r ≤ r0, −π ≤ θ ≤ π, it is uniformly
continuous there. Hence for ε > 0, there exists δ � δ(ε) > 0 such that

|f (r, θ)− f (r ′, θ′)| < ε whenever |(r, θ)− (r ′, θ′)| < δ.

In particular,

|f (r, θ)− f (0, θ)| < ε whenever 0 < r < δ.

Then ∣∣∣∣
∫ π

−π

f (r, θ) dθ −
∫ π

−π

f (0, θ) dθ
∣∣∣∣ ≤

∫ π

−π

|f (r, θ)− f (0, θ)| dθ < 2πε,

that is,

lim
r→0

∫ π

−π

f (r, θ) dθ �
∫ π

−π

lim
r→0

f (r, θ) dθ �
∫ π

−π

f (0, θ) dθ.
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Exercises

1. Using the method of residues (Theorem 4.3), determine the
function f (t) if the Laplace transform F(s) is given by

(a)
s

(s − a)(s − b)
(a �� b) (b)

s

(s − a)3

(c)
s

(s2 + a2)2
(d)

s2 + a2

(s2 − a2)2

(e)
s3

(s2 + a2)3
.

2. Show that

L−1
(

1
s2 cosh s

)
� t + 8

π2

∞∑
n�1

(−1)n
(2n − 1)2 sin

(
2n − 1
2

)
πt.

3. Verify formulas (4.15) and (4.16). [You do not have to verify that

lim
n→∞

∫
Cn

etsF(s) ds � 0.]

4. Show that if Pn is the parabola given in Example 4.9 and |F(s)| ≤
1/

(
n + 1

2

)
π → 0 uniformly on Pn as n → ∞, then

lim
n→∞

∫
Pn

etsF(s) ds � 0 (t > 0).

[Hint: For x > 0, i.e., τ2 >
(
n + 1

2

)2
π2, show that

|ds| �
√
(dx)2 + (dy)2 ≤ √

2 dx,

and hence,∫
Pn(x>0)

|ets| |F(s)| |ds| → 0 as n → ∞.

For x < 0, i.e., τ2 <
(
n + 1

2

)2
π2, show that

|ds| ≤ 2√2
(
n + 1

2

)
π dτ,
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and hence ∫
Pn(x<0)

|ets| |F(s)| |ds| → 0 as n → ∞.

In this case, one also requires the fact that∫ m

0
eτ
2−m2dτ → 0 as m → ∞.]

5. Using the complex inversion formula, show that

L−1
(
1
sν

)
� sin νπ

π

�(1− ν)
t1−ν

, ν > 0

Hence by (2.2) deduce the formula

�(ν)�(1− ν) � π csc νπ.

(Note: For ν � 1/2, this is the branch point example.)
6. Determine L(

erfc(
√
t)
)
.



5
C H A P T E R

...........................................

Partial
Differential
Equations

Partial differential equations, like their one-variable counterpart,
ordinary differential equations, are ubiquitous throughout the sci-
entific spectrum. However, they are, in general, more difficult to
solve. Yet here again, we may apply the Laplace transform method
to solve PDEs by reducing the initial problem to a simpler ODE.
Partial differential equations come in three types. For a function

of two variables u � u(x, y), the general second-order linear PDE has
the form

a
∂2u

∂x2
+ 2b ∂2u

∂x ∂y
+ c

∂2u

∂y2
+ d

∂u

∂x
+ e

∂u

∂y
+ fu � g, (5.1)

where a, b, c, d, e, f , g may depend on x and y only. We call (5.1)

elliptic if b2 − ac < 0,
hyperbolic if b2 − ac > 0,
parabolic if b2 − ac � 0.

Example 5.1.

(i) The heat equation
∂u

∂t
� c

∂2u

∂x2

is parabolic.

175
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(ii) The wave equation

∂2u

∂t2
� a2

∂2u

∂x2

is hyperbolic.
(iii) The Laplace equation

∂2u

∂x2
+ ∂2u

∂y2
� 0

is elliptic.

Laplace Transform Method. We consider the function u � u(x, t),
where t ≥ 0 is a time variable. Denote byU(x, s) the Laplace transform
of u with respect to t, that is to say

U(x, s) � L(
u(x, t)

) �
∫ ∞

0
e−stu(x, t) dt.

Here x is the “untransformed variable.”

Example 5.2.

L(ea(x+t)) � eax

s − a
.

We will assume that derivatives and limits pass through the
transform.

Assumption (1).

L
(
∂u

∂x

)
�

∫ ∞

0
e−st ∂

∂x
u(x, t) dt

� ∂

∂x

∫ ∞

0
e−stu(x, t) dt

� ∂

∂x
U(x, s). (5.2)

In other words, “the transform of the derivative is the derivative of
the transform.”

Assumption (2).

lim
x→x0

∫ ∞

0
e−stu(x, t) dt �

∫ ∞

0
e−stu(x0, t) dt, (5.3)
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that is,

lim
x→x0

U(x, s) � U(x0, s).

In (5.2) it is convenient to write

∂

∂x
U(x, s) � d

dx
U(x, s) � dU

dx
,

since our parameter s can be treated like a constant with respect
to the differentiation involved. A second derivative version of (5.2)
results in the expression

L
(
∂2u

∂x2

)
� d2U

dx2
.

Note that in the present context the derivative theorem (2.7)
reads

L
(
∂u

∂t

)
� sL(

u(x, t)
) − u(x, 0+)

� s U(x, s)− u(x, 0+).

The Laplace transform method applied to the solution of PDEs
consists of first applying the Laplace transform to both sides of
the equation as we have done before. This will result in an ODE
involving U as a function of the single variable x.
For example, if

∂u

∂x
� ∂u

∂t
, (5.4)

then

L
(
∂u

∂x

)
� L

(
∂u

∂t

)
,

implying

d

dx
U(x, s) � s U(x, s)− u(x, 0+). (5.5)

The ODE obtained is then solved by whatever means avail them-
selves. If, say, u(x, 0+) � x for equation (5.4), we find that the general
solution is given by

U(x, s) � c esx + x

s
+ 1

s2
. (5.6)
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PDE problems in physical settings come with one or more boundary
conditions, say for (5.4) that

u(0, t) � t. (5.7)

Since the boundary conditions also express u as a function of t, we
take the rather unusual step of taking the Laplace transform of the
boundary conditions as well. So for (5.7)

U(0, s) � L(
u(0, t)

) � 1
s2
.

Feeding this into (5.6) gives c � 0 so that

U(x, s) � x

s
+ 1

s2
.

Since this is the transform of the desired function u(x, t), inverting
gives the solution to (5.4) and (5.7) [(and u(x, 0+) � x]:

u(x, t) � x + t.

This simple example illustrates the basic techniques involved in
solving partial differential equations.

In what follows we will demonstrate the utility of the Laplace
transform method when applied to a variety of PDEs. However, be-
fore proceeding further, we require two more inverses based upon
(4.27):

L−1
(
e−a

√
s

s

)
� erfc

(
a

2
√
t

)
, a > 0.

Theorem 5.3.

(i) L−1(e−a
√
s) � a

2
√
π t3

e−a2/4t (a > 0).

(ii) L−1
(
e−a

√
s

√
s

)
� 1√

π t
e−a2/4t (a > 0).

Proof. (i) Applying the derivative theorem to (4.27) and noting
that erfc

(
a/2

√
t
) → 0 as t → 0+, we have

L
(
d

dt
erfc

(
a

2
√
t

))
� e−a

√
s,
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that is,

L
(

a

2
√
π t3

e−a2/4t
)

� e−a
√
s, (5.8)

as desired.
For (ii), we differentiate (5.8) with respect to s,

d

ds
L
(

a

2
√
π t3

e−a2/4t
)

� −a e−a
√
s

2
√
s

,

and by Theorem 1.34,

L
(

− at

2
√
π t3

e−a2/4t
)

� −a e−a
√
s

2
√
s

,

which after cancellation gives (ii). �

Example 5.4. Solve the boundary-value problem

x
∂y

∂x
+ ∂y

∂t
+ ay � bx2, x > 0, t > 0, a, b constants, (5.9)

y(0, t) � 0, y(x, 0+) � 0.
Setting L(

y(x, t)
) � Y(x, s) and taking the Laplace transform of both

sides of (5.9) give

xYx(x, s)+ s Y(x, s)− y(x, 0+)+ a Y(x, s) � bx2

s
,

that is,

x
dY

dx
+ (s + a)Y � bx2

s
,

or
dY

dx
+ (s + a)

x
Y � bx

s
(s > 0).

Solving this first-order ODE using an integrating factor gives

Y(x, s) � bx2

s(s + a + 2) + cx−(s+a) (x > 0, s > −a).

Taking the Laplace transform of the boundary condition y(0, t) � 0
gives

Y(0, s) � L(
y(0, t)

) � 0,
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and thus c � 0. Therefore,

Y(x, s) � bx2

s(s + a + 2) ,

and inverting,

y(x, t) � bx2

a + 2(1− e−(a+2)t)

by Example 2.40.

One-Dimensional Heat Equation. The heat flow in a finite or
semi-infinite thin rod is governed by the PDE

∂u

∂t
� c

∂2u

∂x2
,

where c is a constant (called the diffusivity), and u(x, t) is the temper-
ature at position x and time t. The temperature over a cross-section
at x is taken to be uniform. (See Figure 5.1.) Many different scenar-
ios can arise in the solution of the heat equation; we will consider
several to illustrate the various techniques involved.

Example 5.5. Solve

∂2u

∂x2
� ∂u

∂t
, x > 0, t > 0, (5.10)

for

(i) u(x, 0+) � 1, x > 0,

O x

FIGURE 5.1
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(ii) u(0, t) � 0, t > 0,
(iii) lim

x→∞ u(x, t) � 1.
Taking the Laplace transform of (5.10) yields

d2U

dx2
� s U − u(x, 0+) � s U − 1. (5.11)

Transforming the boundary conditions (ii) and (iii) gives

U(0, s) � L(
u(0, t)

) � 0,
lim
x→∞U(x, s) � lim

x→∞ L(
u(x, t)

) � L(
lim
x→∞ u(x, t)

) � 1
s
.

Now (5.11) is an ODE whose solution is given by

U(x, s) � c1 e
√
sx + c2 e

−√
s x + 1

s
.

The boundary condition limx→∞ U(x, s) � 1/s implies c1 � 0, and
U(0, s) � 0 implies

U(x, s) � 1
s

− e
√
s x

s
.

By (4.26),

u(x, t) � erf
(

x

2
√
t

)
� 2√

π

∫ x/2
√
t

0
e−u2 du.

Direct calculation shows that u(x, t) indeed satisfies (5.10) and that
the initial and boundary conditions are satisfied [cf. (2.49)].

Example 5.6. Solve

∂2u

∂x2
� ∂u

∂t
, x > 0, t > 0,

for

(i) u(x, 0+) � 0,
(ii) u(0, t) � f (t), t > 0,
(iii) lim

x→∞ u(x, t) � 0.
The transformed equation is

d2U

dx2
− s U � 0,



5. Partial Differential Equations182

whose solution is given by

U(x, s) � c2 e
−√

s x

in view of condition (iii). By (ii),

U(0, s) � L(
f (t)

) � F(s),

so that c2 � F(s) and

U(x, s) � F(s)e−
√
sx.

Invoking Theorem 5.3 (i) and the convolution theorem 2.39, we have

u(x, t) �
∫ t

0

x

2
√
π τ3

e−x2/4τf (t − τ) dτ.

Making the substitution σ2 � x2/4τ, we find that

u(x, t) � 2√
π

∫ ∞

x/2
√
t

e−σ2 f

(
t − x2

4σ2

)
dσ,

which is the desired solution.

Example 5.7. Solve

∂2u

∂x2
� ∂u

∂t
, 0 < x < �, t > 0,

for

(i) u(x, 0+) � u0,

(ii)
∂

∂x
u(0, t) � 0 (i.e., left end insulated),

(iii) u(�, t) � u1.

Taking the Laplace transform gives

d2U

dx2
� s U − u0.

Then

U(x, s) � c1 cosh
√
sx + c2 sinh

√
s x + u0

s
,

and by (ii), c2 � 0, so that
U(x, s) � c1 cosh

√
s x + u0

s
.
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We find by (iii) that

U(�, s) � u1

s
� c1 cosh

√
s � + u0

s
,

and so

c1 � u1 − u0

s cosh
√
s �

.

Therefore,

U(x, s) � (u1 − u0) cosh
√
s x

s cosh
√
s �

+ u0

s
.

Taking the inverse by (4.16) gives

u(x, t) � u0 + (u1 − u0)L−1
(
cosh

√
s x

s cosh
√
s �

)

� u1 + 4(u1 − u0)
π

∞∑
n�1

(−1)n
(2n − 1) e

−(2n−1)2π2 t/4�2

× cos
(
2n − 1
2�

)
πx.

Example 5.8. Solve

∂2u

∂x2
� ∂u

∂t
, 0 < x < 1, t > 0,

for

(i) u(x, 0+) � f (x),
(ii) u(0, t) � 0, t > 0,
(iii) u(1, t) � 0, t > 0.
Therefore,

d2U

dx2
− s U � −f (x).

Here we solve this ODE by the Laplace transform method as well.
To this end, let Y(x) � U(x, s). Then Y(0) � U(0, s) � 0, Y(1) �
U(1, s) � 0. Setting a2 � s, we obtain

σ2L(Y)− σY(0)− Y ′(0)− a2L(Y) � −L(f ) � −F(σ),
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that is,

L(Y) � Y ′(0)
σ2 − a2

− F(σ)
σ2 − a2

.

Inverting gives

Y(x) � U(x, s) � Y ′(0) sinh ax
a

− 1
a

∫ x

0
f (u) sinh a(x − u) du

� Y ′(0) sinh
√
s x√

s
− 1√

s

∫ x

0
f (u) sinh

√
s(x − u) du.

Now, Y(1) � 0, implying

Y ′(0) � 1
sinh

√
s

∫ 1

0
f (u) sinh

√
s(1− u) du.

Thus,

U(x, s) �
∫ 1

0
f (u)

sinh
√
s x sinh

√
s(1− u)√

s sinh
√
s

du

−
∫ x

0
f (u)

sinh
√
s(x − u)√
s

du.

We can write
∫ 1
0 � ∫ x

0 + ∫ 1
x
and use the fact from Section 3.2 that

sinh(z ± w) � sinh z coshw ± cosh z sinhw.
Then

U(x, s) �
∫ x

0
f (u)

[
sinh

√
s x sinh

√
s(1− u)√

s sinh
√
s

− sinh
√
s(x − u)√
s

]
du

+
∫ 1

x

f (u)
sinh

√
s x sinh

√
s(1− u)√

s sinh
√
s

du

�
∫ x

0
f (u)

sinh
√
s(1− x) sinh

√
s u√

s sinh
√
s

du

+
∫ 1

x

f (u)
sinh

√
s x sinh

√
s(1− u)√

s sinh
√
s

du.
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To determine the inverse we use the complex inversion formula.
When it is applied to the first integral we have

1
2πi

∫ x0+i∞

x0−i∞
ets

{∫ x

0
f (u)

sinh
√
s(1− x) sinh

√
s u√

s sinh
√
s

du

}
ds � � Res.

There are simple poles in this case at s0 � 0 and sn � −n2 π2,
n � 1, 2, 3, . . . (see Example 4.9).

Res(0) � lim
s→0 s

∫ x

0
f (u)

sinh
√
s(1− x) sinh

√
s u√

s sinh
√
s

du � 0.
Res(−n2π2)

� lim
s→−n2π2

(s + n2π2)ets
∫ x

0
f (u)

sinh
√
s(1− x) sinh

√
s u√

s sinh
√
s

du

� lim
s→−n2π2

s + n2π2

sinh
√
s

· lim
s→−n2π2

ets
∫ x

0
f (u)

sinh
√
s(1− x) sinh

√
s u√

s
du

� 2e−n2π2t

∫ x

0
f (u)

sinh[(nπi)(1− x)] sinh(nπi)u
cosh(nπi)

du

� 2e−n2π2t

∫ x

0
f (u)

sin[nπ(1− x)] sin nπu
− cosnπ du,

where we have used the properties from Section 3.2 (for z � x + iy)

sinh z � cos y sinh x + i sin y cosh x,

cosh z � cos y cosh x + i sin y sinh x

to obtain the last equality.
Therefore,

∑
Res � 2

∞∑
n�1

e−n2π2t

(∫ x

0
f (u) sin nπu du

)
sin nπx.

Similarly, the inverse of the second integral is given by

2
∞∑
n�1

e−n2π2t

(∫ 1

x

f (u) sin nπu du
)
sin nπx.
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Finally,

u(x, t) � 2
∞∑
n�1

e−n2π2t

(∫ 1

0
f (u) sin nπu du

)
sin nπx.

The same result is obtained when we solve this problem by the
separation-of-variables method.

One-Dimensional Wave Equation. The wave motion of a string
initially lying on the x-axis with one end at the origin can be
described by the equation

∂2y

∂t2
� a2

∂2y

∂x2
, x > 0, t > 0

(Figure 5.2). The displacement is only in the vertical direction and
is given by y(x, t) at position x and time t. The constant a is given
by a � √

T/ρ, where T is the tension on the string and ρ its mass
per unit length. The same equation happens to describe the longi-
tudinal vibrations in a horizontal beam, where y(x, t) represents the
longitudinal displacement of a cross section at x and time t.

Example 5.9. Solve

∂2y

∂t2
� a2

∂2y

∂x2
, x > 0, t > 0,

for

(i) y(x, 0+) � 0, x > 0,

x

y

O

y�x� t�

FIGURE 5.2
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(ii) yt(x, 0+) � 0, x > 0,
(iii) y(0, t) � f (t)

(
f (0) � 0),

(iv) lim
x→∞ y(x, t) � 0.

The transformed equation becomes

s2Y(x, s)− s y(x, 0+)− ∂

∂t
y(x, 0+) � a2

d2Y

dx2
,

that is,

d2Y

dx2
− s2

a2
Y � 0.

Solving,

Y(x, s) � c1e
(s/a)x + c2e

−(s/a)x.

Since y(x, t)→ 0 as x → ∞, then c1 � 0 and
Y(x, s) � c2e

−(s/a)x.

By condition (iii), Y(0, s) � L(
f (t)

) � F(s), so that c2 � F(s), and

Y(x, s) � F(s) e−(s/a)x.

Inverting via the second translation theorem (1.31) gives

y(x, t) � u x

a
(t)f

(
t − x

a

)
,

or

y(x, t) �
{
f
(
t − x

a

)
t ≥ x

a

0 t < x
a
.

Thus, the string remains at rest until the time t � x/a, after which
it exhibits the same motion as the end at x � 0, with a time delay of
x/a.

Example 5.10. Solve

∂2y

∂t2
� ∂2y

∂x2
, 0 < x < �, t > 0,

for

(i) y(0, t) � 0, t > 0,
(ii) y(�, t) � a, t > 0,
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(iii) y(x, 0+) � 0, 0 < x < �,
(iv) yt(x, 0+) � 0, 0 < x < �.

By transforming the equation we obtain

d2Y

dx2
− s2Y � 0,

whose solution is given by

Y(x, s) � c1 cosh sx + c2 sinh sx.

Then 0 � Y(0, s) � c1 and Y(x, s) � c2 sinh sx. Moreover,

Y(�, s) � a

s
� c2 sinh s�

and c2 � a/s sinh s�. Thus,

Y(x, s) � a sinh sx
s sinh s�

.

This function has simple poles at sn � nπi/�, n � 0,±1,±2, . . ..

Res(0) � lim
s→0 s e

ts a sinh sx
s sinh s�

� a lim
s→0

x cosh sx
� cosh s�

� ax

�
.

For n � ±1,±2, · · ·,

Res
(
nπi

�

)
� a lim

s→ nπi

�

(
s − nπi

�

)
ets sinh sx
s sinh s�

� a lim
s→ nπi

�

(
s − nπi

�

)
sinh s�

· lim
s→ nπi

�

ets sinh sx
s

� a

� cosh nπi

enπi t/� sinh nπix
�

nπi/�

� a

nπ
(−1)nenπi t/� sin nπx

�
.
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Therefore,

y(x, t) �
∑

Res � ax

�
+

∞∑
n�−∞
n ��0

(−1)n a

nπ
enπi t/� sin

nπx

�

� ax

�
+ 2a

π

∞∑
n�1

(−1)n
n

sin
nπx

�
cos

nπt

�
,

by the complex inversion formula.

Exercises

1. Solve the boundary-value problem

∂y

∂x
+ 1

x

∂y

∂t
� t, x > 0, t > 0,

y(x, 0+) � x, y(0, t) � 0.
2. Solve the following heat equations.

(a)
∂2u

∂x2
� ∂u

∂t
, x > 0, t > 0,

(i) u(x, 0+) � 0, x > 0,
(ii) u(0, t) � δ(t), t > 0,
(iii) lim

x→∞ u(x, t) � 0.

(b)
∂2u

∂x2
� ∂u

∂t
, x > 0, t > 0,

(i) u(x, 0+) � u0, x > 0,
(ii) u(0, t) � u1, t > 0,
(iii) lim

x→∞ u(x, t) � u0.

(c)
∂2u

∂x2
� ∂u

∂t
, 0 < x < 1, t > 0,

(i) u(x, 0+) � 0, 0 < x < 1,
(ii) u(0, t) � 0, t > 0,
(iii) u(1, t) � 1, t > 0.
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(d)
∂2u

∂x2
� ∂u

∂t
, 0 < x < �, t > 0,

(i) u(x, 0+) � ax, 0 < x < � (a constant),
(ii) u(0, t) � 0, t > 0,
(iii) u(�, t) � 0, t > 0.

3. Solve the following wave equations.

(a)
∂2y

∂t2
� ∂2y

∂x2
, 0 < x < 1, t > 0,

(i) y(x, 0+) � sin πx, 0 < x < 1,
(ii) y(0, t) � 0, t > 0,
(iii) y(1, t) � 0, t > 0,
(iv) yt(x, 0) � 0, 0 < x < 1.

(b)
∂2y

∂t2
� ∂2y

∂x2
, 0 < x < 1, t > 0,

(i) y(x, 0+) � 0, 0 < x < 1,
(ii) y(1, t) � 1, t > 0,
(iii) yx(0, t) � 0, t > 0,
(iv) yt(x, 0+) � 0, 0 < x < 1.

(c)
∂2y

∂t2
� ∂2y

∂x2
, 0 < x < 1, t > 0,

(i) y(x, 0+) � 0, 0 < x < 1,
(ii) y(0, t) � 0, t > 0,
(iii) y(1, t) � 0, t > 0,
(iv) yt(x, 0+) � x, 0 < x < 1.

(d)
∂2y

∂t2
� ∂2y

∂x2
, 0 < x < 1, t > 0, for

(i) y(x, 0+) � f (x), x > 0,
(ii) y(0, t) � 0, t > 0,
(iii) y(1, t) � 0, t > 0,
(iv) yt(x, 0+) � 0, 0 < x < 1.

(Note: This problem is similar to Example 5.8.)
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4. Solve the boundary-value problem

∂2y

∂t2
� ∂2y

∂x2
− sin πx, 0 < x < 1, t > 0,

for

(i) y(x, 0+) � 0, 0 < x < 1,
(ii) y(0, t) � 0, t > 0,
(iii) y(1, t) � 0, t > 0,
(iv) yt(x, 0+) � 0, 0 < x < 1.

5. A “fundamental solution” to the heat equation satisfies

∂u

∂t
� a2

∂2u

∂x2
, x > 0, t > 0, a > 0,

for

(i) u(x, 0+) � δ(x), x > 0,

(iv)
∂

∂x
u(0, t) � 0, t > 0,

(iii) lim
x→∞ u(x, t) � 0.

Solve for u(x, t). (See Exercises 2.5, Question 7.)



Appendix

The sole integral used in this text is the Riemann integral defined
as follows.
Let

� � {a � t0 < t1 < · · · < tn � b}

be a partition of the interval [a, b]. Let f be a function defined on
[a, b] and choose any point xi ∈ [ti−1, ti], i � 1, · · · , n. The sum

n∑
i�1

f (xi)(ti − ti−1)

is called a Riemann sum. Denote by ‖�‖ � max1≤i≤n(ti − ti−1).
The function f is said to beRiemann integrable if there is a number

Iab such that for any ε > 0, there exists a δ > 0 such that for each
partition � of [a, b] with ‖�‖ < δ, we have

∣∣∣∣∣
n∑
i�1

f (xi)(ti − ti−1)− Iab

∣∣∣∣∣ < ε,

193
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for all choices of xi ∈ [ti−1, ti], i � 1, · · · , n. The value Iab is the
Riemann integral of f over [a, b] and is written as

Iab �
∫ b

a

f (t) dt.

It is worth noting that if f is Riemann integrable on [a, b], it is
bounded on [a, b]. Moreover, every continuous function on [a, b] is
Riemann integrable there.
In order to see just how dangerous it can be to pass a limit inside

an integral without sound justification, consider the following.

Example A.1. Let {fn} be a sequence of functions defined on [0, 1]
by

fn(t) �




4n2t 0 ≤ t ≤ 1
2n

−4n2t + 4n 1
2n

< t <
1
n

0
1
n

≤ t ≤ 1

(Figure A.1). Since fn(0) � 0, limn→0 fn(0) � 0. Moreover, for t > 0
and n > 1/t, fn(t) � 0, implying

lim
n→0 fn(t) � 0, t ∈ [0, 1].

t

�

�n

�
�

n

f�

fn

O �

�n FIGURE A.1
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By construction, ∫ 1

0
fn(t) dt � 1,

so that limn→∞
∫ 1
0 fn(t) dt � 1. On the other hand,∫ 1

0
lim
n→∞ fn(t) dt �

∫ 1

0
0 dt � 0.

In Theorem 3.1 it was shown that the Laplace transform of a
piecewise continuous function of exponential order is an analytic
function. A necessary ingredient in that proof was that the Laplace
transform be continuous.

Theorem A.2. If f is a piecewise continuous function, and∫ ∞

0
e−stf (t) dt � F(s)

converges uniformly for all s ∈ E ⊆ C, then F(s) is a continuous function
on E, that is, for s → s0 ∈ E,

lim
s→s0

∫ ∞

0
e−stf (t) dt �

∫ ∞

0
lim
s→s0

e−stf (t) dt � F(s0).

Proof. By the uniform convergence of the integral, given ε > 0
there exists some t0 such that for all τ ≥ t0,∣∣∣∣

∫ ∞

τ

e−stf (t) dt
∣∣∣∣ < ε, (A.1)

for all s ∈ E.
Now consider∣∣∣∣
∫ ∞

0
e−stf (t) dt −

∫ ∞

0
e−s0tf (t) dt

∣∣∣∣ �
∣∣∣∣
∫ ∞

0
(e−st − e−s0t)f (t) dt

∣∣∣∣
≤

∫ t0

0
|e−st − e−s0t| |f (t)| dt +

∣∣∣∣
∫ ∞

t0

(e−st − e−s0t)f (t) dt
∣∣∣∣ .

In view of (A.1), the second integral satisfies∣∣∣∣
∫ ∞

t0

(e−st − e−s0t)f (t) dt
∣∣∣∣ ≤

∣∣∣∣
∫ ∞

t0

e−stf (t) dt
∣∣∣∣ +

∣∣∣∣
∫ ∞

t0

e−s0tf (t) dt
∣∣∣∣

< ε + ε � 2ε.
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For the first integral,∫ t0

0
|e−st − e−s0t| |f (t)| dt ≤ M

∫ t0

0
|e−st − e−s0t| dt

since f is piecewise continuous, hence bounded on [0, t0]. Finally,
|e−st − e−s0t| can be made uniformly small for 0 ≤ t ≤ t0 and s

sufficiently close to s0,∗ say

|e−st − e−s0t| < 1
M t0

ε.

Hence ∫ t0

0
|e−st − e−s0t| |f (t)| dt < ε,

and so

lim
s→s0

∫ ∞

0
e−stf (t) dt �

∫ ∞

0
e−s0tf (t) dt. �

A more subtle version of the preceding result which was used in
the proof of the terminal-value theorem (2.36) is the following.

Theorem A.3. Suppose that f is piecewise continuous on [0,∞) and
L(
f (t)

) � F(s) exists for all s > 0, and
∫ ∞
0 f (t) dt converges. Then

lim
s→0+

∫ ∞

0
e−stf (t) dt �

∫ ∞

0
f (t) dt.

Proof. Since
∫ ∞
0 f (t) dt converges, given ε > 0, fix τ0 sufficiently

large so that ∣∣∣∣
∫ ∞

τ0

f (t) dt
∣∣∣∣ < ε

2
. (A.2)

Next consider∣∣∣∣
∫ ∞

0
f (t) dt −

∫ ∞

0
e−stf (t) dt

∣∣∣∣ �
∣∣∣∣
∫ ∞

0
(1− e−st)f (t) dt

∣∣∣∣
≤

∫ τ0

0
(1− e−st)|f (t)| dt +

∫ ∞

τ0

(1− e−st)|f (t)| dt.

∗We are using the fact that the function g(s, t) � e−st is uniformly continuous on a
closed rectangle.
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For the first integral, since f is piecewise continuous it is bounded
on [0, τ0], say |f (t)| ≤ M. Then∫ τ0

0
(1− e−st)|f (t)| dt ≤ M

∫ τ0

0
(1− e−st) dt

� M(sτ0 + e−sτ0 − 1)
s

→ 0

as s → 0+ by an application of l’Hôpital’s rule. Thus the first integral
can be made smaller than ε/2 for s sufficiently small.
For the second integral∫ ∞

τ0

(1− e−st)|f (t)| dt ≤
∫ ∞

τ0

|f (t)| dt < ε

2

by (A.2). Therefore,∣∣∣∣
∫ ∞

0
f (t) dt −

∫ ∞

0
e−stf (t) dt

∣∣∣∣ < ε

for all s sufficiently small, proving the result. �

Corollary A.4. Suppose that f satisfies the conditions of the derivative
theorem (2.7), L(

f ′(t)
) � F(s) exists for all s > 0, and limt→∞ f (t)

exists. Then

lim
s→0+

∫ ∞

0
e−stf ′(t) dt �

∫ ∞

0
f ′(t) dt.

Proof. Note that f ′ is piecewise continuous on [0,∞) and as we
have shown in the proof of Theorem 2.36 [namely, equation (2.47)],
the existence of limt→∞ f (t) implies that

∫ ∞
0 f ′(t) dt converges. The

result now follows from the theorem. �

Even though a function is only piecewise continuous, its integral
is continuous.

Theorem A.5. If f is piecewise continuous on [0,∞), then the function

g(t) �
∫ t

0
f (u) du

is continuous on [0,∞).
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t

f�t�

O t� t� � h

f

FIGURE A.2

Proof. Assume that t0 is a point of discontinuity of f (Figure
A.2). Then for h > 0,

g(t0 + h)− g(t0) �
∫ t0+h

t0

f (u) du. (A.3)

Since f is piecewise continuous, f is bounded on (t0, t0 + h), say
|f | < M there. Thus we find that∣∣∣∣

∫ t0+h

t0

f (u) du
∣∣∣∣ < M

∫ t0+h

t0

du � Mh → 0 (A.4)

as h → 0. In view of (A.3), we obtain

lim
h→0+

g(t0 + h) � g(t0).

Similarly,

lim
h→0−

g(t0 + h) � g(t0)

for t0 > 0.
If t0 is a point of continuity of f , the proof is the same. �

The justification of applying the Laplace transform method to
solving ODEs is aided by the fact that the solution will be continuous
of exponential order and thus possess a Laplace transform.

Theorem A.6. For the nth-order, linear, nonhomogeneous ordinary
differential equation

any
(n) + an−1y(n−1) + · · · + a0y � f (t), (A.5)

a0, a1, . . . , an constants, if f (t) is continuous on [0,∞) and of exponential
order, then any solution is also continuous on [0,∞) of exponential order.
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Proof. We give the proof for n � 2 as the proof for higher-order
equations follows similarly.
For

ay′′ + by′ + cy � f (t),

the general solution yh to the corresponding homogeneous equation
ay′′ + by′ + cy � 0 is given by

yh � c1y1 + c2y2,

where y1, y2 are two linearly independent solutions (of the
homogeneous equation) of the prescribed form (cf., e.g.,Zill [16])

(i) em1t, em2t,
(ii) emt, t emt,
(iii) eat cos bt, eat sin bt.

Since each of these terms has exponential order, yh does also and
is continuous on [0,∞).
A particular solution yp of (A.5) can be found by the method of

variation of parameters (Zill [16]). Here yp takes the form

yp � u1y1 + u2y2,

where

u′
1 � −y2f (t)

aW(y1, y2)
, u′

2 � y1f (t)
aW(y1, y2)

,

and W(y1, y2) is the Wronskian

W(y1, y2) �
∣∣∣∣∣ y1 y2y′
1 y

′
2

∣∣∣∣∣ � y1y
′
2 − y′

1y2 �� 0.

In cases (i), (ii), (iii),W(y1, y2) can be determined and seen to be of
the formMeβt and hence so isW−1(y1, y2). Since the product of func-
tions of exponential order also have exponential order [Exercises
1.4, Question 1(ii)], we conclude that u′

1 and u′
2 have exponential

order and are continuous on [0,∞). The same holds for u1 and u2 by
Remark 2.11 and likewise for yp.
Finally, the general solution of (A.5), given by

y � yh + yp,

is continuous and has exponential order, as desired. �
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Remark. Let us show that for n � 2, the Laplace transformmethod
is indeed justified in solving (A.5) under the conditions stipulated.
In fact, not only is y � yh + yp continuous and of exponential order
on [0,∞), but so is

y′ � y′
h + y′

p � y′
h + (u′

1y1 + u1y
′
1 + u′

2y2 + u2y
′
2),

and hence also y′′ � (1/a)(f (t)− by′ − cy
)
. The hypotheses of The-

orem 2.12 are clearly satisfied, and the Laplace transform method
can be applied.
In general, the continuity of

y(t), y′(t), . . . , y(n−1)(t)

for t > 0 is a basic a priori requirement of a unique solution to (A.5)
(see Doetsch [3], p. 78).

A useful result in dealing with partial fraction decompositions is
the following

Theorem A.7 (Fundamental Theorem of Algebra). Every polyno-
mial of degree n,

p(z) � anz
n + an−1zn−1 + · · · + a1z + a0, an �� 0,

with complex coefficients, has exactly n roots in C, with the roots counted
according to multiplicity.

Corollary A.8. Any two polynomials of degree n that are equal at
n + 1 points are identically equal.

This is so because the difference of the two polynomials is itself
a polynomial of degree n and therefore can vanish at n points only
unless it is identically the zero polynomial, in which case all the
coefficients must be zero. Thus the two polynomials have identical
coefficients.
The Riemann–Stieltjes integral was introduced in Section 2.5 in

order to deal with the Laplace transform of the Dirac distribution.
It enjoys properties similar to those of the conventional Riemann
integral.
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Theorem A.9.

(i) If
∫ b

a
fdϕ1 and

∫ b

a
fdϕ2 both exist, and ϕ � ϕ1 + ϕ2, then f is

(Riemann–Stieltjes) integrable with respect to ϕ and∫ b

a

fdϕ �
∫ b

a

fdϕ1 +
∫ b

a

fdϕ2.

(ii) If
∫ b

a
f1dϕ and

∫ b

a
f2dϕ both exist and f � f1 + f2, then f is

integrable with respect to ϕ and∫ b

a

fdϕ �
∫ b

a

f1dϕ +
∫ b

a

f2dϕ.

(iii) If
∫ b

a
fdϕ exists, then for any constant c,∫ b

a

(cf )dϕ � c

∫ b

a

fdϕ.

(iv) If
∫ c

a
fdϕ and

∫ b

c
fdϕ exist, a < c < b, then

∫ b

a
fdϕ exists and∫ b

a

fdϕ �
∫ c

a

fdϕ +
∫ b

c

fdϕ.

The proofs are a natural consequence of the definition of the
Riemann–Stieltjes integral.

Theorem A.10. If f, ϕ, ϕ′ are continuous on [a, b], then
∫ b

a
fdϕ exists

and ∫ b

a

f (t) d ϕ(t) �
∫ b

a

f (t) ϕ′(t) dt.

Proof. Given ε > 0, we need to show that∣∣∣∣∣
n∑
j�1

f (xj)[ϕ(tj)− ϕ(tj−1)]−
∫ b

a

f (t) ϕ′(t) dt

∣∣∣∣∣ < ε (A.6)

for� � maxj(tj−tj−1) sufficiently small. By themean-value theorem,
we can express the left-hand side as

n∑
j�1

f (xj)[ϕ(tj)− ϕ(tj−1)] �
n∑
j�1

f (xj) ϕ′(ξj)(tj − tj−1) (A.7)

for some ξj ∈ [tj−1, tj]. The right-hand side is nearly what we require.
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Since f is continuous on [a, b], let |f (t)| ≤ M, t ∈ [a, b]. Now ϕ′ is
continuous on [a, b] and hence uniformly continuous there. Conse-
quently, there exists some δ > 0 such that whenever |ξj − xj| < δ, it
follows that

|ϕ′(ξj)− ϕ′(xj)| < ε

2M(b − a)
. (A.8)

Since fϕ′ is Riemann integrable, for any suitably fine subdivision of
[a, b], with � < δ, we have∣∣∣∣∣

n∑
j�1

f (xj) ϕ′(xj)(tj − tj−1)−
∫ b

a

f (t) ϕ′(t) dt

∣∣∣∣∣ < ε

2
. (A.9)

From (A.8) we get∣∣∣∣∣
n∑
j�1

f (xj)[ϕ′(ξj)− ϕ′(xj)](tj − tj−1)

∣∣∣∣∣
<

n∑
j�1

M

∣∣∣∣ ε

2M(b − a)
(tj − tj−1)

∣∣∣∣ � ε

2
. (A.10)

Finally, taking (A.9) and (A.10) together, with ξj, xj ∈ [tj−1, tj], and
with the triangle inequality, gives∣∣∣∣∣

n∑
j�1

f (xj) ϕ′(ξj)(tj − tj−1)−
∫ b

a

f (t) ϕ′(t) dt

∣∣∣∣∣ < ε.

In view of (A.7), we have established (A.6). �

In order to reverse the order of integration, as in Theorem 1.37,
we use the next result.

Theorem A.11. If f (x, t) is continuous on each rectangle a ≤ x ≤ b,
0 ≤ t ≤ T, T > 0, except for possibly a finite number of jump disconti-
nuities across the lines t � ti, i � 1, . . . , n, and if

∫ ∞
0 f (x, t) dt converges

uniformly for all x in [a, b], then∫ b

a

∫ ∞

0
f (x, t) dt dx �

∫ ∞

0

∫ b

a

f (x, t) dx dt.
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Proof. From the theory of ordinary integrals we have∫ τ

0

∫ b

a

f (x, t) dx dt �
∫ b

a

∫ τ

0
f (x, t) dt dx,

implying∫ ∞

0

∫ b

a

f (x, t) dx dt � lim
τ→∞

∫ b

a

∫ τ

0
f (x, t) dt dx. (A.11)

For the other integral∫ b

a

∫ ∞

0
f (x, t) dt dx �

∫ b

a

∫ τ

0
f (x, t) dt dx +

∫ b

a

∫ ∞

τ

f (x, t) dt dx.

(A.12)
Since

∫ ∞
0 f (x, t) dt converges uniformly, given any ε > 0, there exists

T > 0 such that for all τ ≥ T∣∣∣∣
∫ ∞

τ

f (x, t) dt
∣∣∣∣ < ε

b − a
,

for all x in [a, b]. Hence for τ ≥ T,∣∣∣∣
∫ b

a

∫ ∞

τ

f (x, t) dt dx
∣∣∣∣ < ε,

that is,

lim
τ→∞

∫ b

a

∫ ∞

τ

f (x, t) dt dx � 0.

Letting τ → ∞ in (A.12),∫ b

a

∫ ∞

0
f (x, t) dt dx �

∫ ∞

0

∫ b

a

f (x, t) dx dt

via (A.11). �

Note that the hypotheses are satisfied by our typical integrand
e−xtf (t), where f is piecewise continuous of exponential order.
The following general theorem tells when taking the derivative

inside an integral such as the Laplace integral, is justified.

Theorem A.12. Suppose that f (x, t) and ∂/∂x f (x, t) are continuous
on each rectangle a ≤ x ≤ b, 0 ≤ t ≤ T, T > 0, except possibly for a
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finite number of jump discontinuities across the lines t � ti, i � 1, . . . , n,
and of the two integrals

F(x) �
∫ ∞

0
f (x, t) dt and

∫ ∞

0

∂

∂x
f (x, t) dt;

the first one converges and the second one converges uniformly. Then

d

dx
F(x) �

∫ ∞

0

∂

∂x
f (x, t) dt (a < x < b).

Proof. Let

G(u) �
∫ ∞

0

∂

∂u
f (u, t) dt.

Then G is continuous as in the proof of Theorem A.2 and employing
Theorem A.11 gives∫ x

a

G(u) du �
∫ x

a

∫ ∞

0

∂

∂u
f (u, t) dt du

�
∫ ∞

0

∫ x

a

∂

∂u
f (u, t) du dt

�
∫ ∞

0
[f (x, t)− f (a, t)] dt

� F(x)− F(a).

Therefore,

d

dx
F(x) � G(x) �

∫ ∞

0

∂

∂x
f (x, t) dt. �

A consequence of the preceding theorem which was useful in
Chapter 4 follows.

Theorem A.13.

1
π

∫ ∞

0

e−tx sin a
√
x

x
dx � erf

(
a

2
√
t

)
, t > 0.

Proof. Denote the left-hand side by y(a, t), so that by setting x � u2,

y(a, t) � 2
π

∫ ∞

0

e−tu2 sin au
u

du.
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In view of TheoremA.12 we can differentiate under the integral sign
so that

∂y

∂a
� 2

π

∫ ∞

0
e−tu2 cos(au) du � 2

π
Y(a, t). (A.13)

Now,

Y(a, t) �
∫ ∞

0
e−tu2 cos(au) du � e−tu2 sin au

a

∣∣∣∣∣
∞

0

+ 2t
a

∫ ∞

0
e−tu2u sin(au) du

� −2t
a

∂Y

∂a
,

or
∂Y

∂a
� − a

2t
Y,

where Y(0, t) � √
π/2

√
t by (2.49). Solving gives

Y(a, t) �
√
π

2
√
t
e−

a2

4t .

Therefore, by (A.13),

∂y

∂a
� 1√

πt
e−

a2

4t ,

and since y(0, t) � 0,

y(a, t) � 1√
πt

∫ a

0
e−

w2

4t dw

� 2√
π

∫ a/2
√
t

0
e−u2du

� erf
(

a

2
√
t

)
,

since we substituted u2 � w2/4t. �

Theorem A.14 (Fourier Inversion Theorem). Suppose that f and
f ′ are piecewise continuous on (−∞,∞), that is, both are continu-
ous in any finite interval except possibly for a finite number of jump
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discontinuities. Suppose further that f is absolutely integrable, namely,∫ ∞

−∞
|f (t)| dt < ∞.

Then at each point t where f is continuous,

f (t) � 1
2π

∫ ∞

−∞
eiλtF(λ) dλ, (A.14)

where

F(λ) �
∫ ∞

−∞
e−iλtf (t) dt

is the Fourier transform of f . At a jump discontinuity t, the integral in
(A.14) gives the value

f (t+)+ f (t−)
2

.

For a proof of this exceptionally important result, see for example,
Jerri [6], Theorem 2.14.
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Tables

Laplace Transform Operations

F(s) f (t)

c1F1(s)+ c2F2(s) c1f1(t)+ c2f2(t)

F(as) (a > 0)
1
a
f

(
t

a

)

F(s − a) eatf (t)

e−asF(s) (a ≥ 0) ua(t)f (t − a)

s F(s)− f (0+) f ′(t)

s2F(s)− s f (0+)− f ′(0+) f ′′(t)

snF(s)− sn−1f (0+)− sn−2f ′(0+) f (n)(t)

− · · · − f (n−1)(0+)

F(s)
s

∫ t

0
f (τ) dτ

F ′(s) −t f (t)

F (n)(s) (−1)ntnf (t)∫ ∞

s

F(x) dx
1
t
f (t)

F(s)G(s)
∫ t

0
f (τ) g(t − τ) dτ

lim
s→∞ s F(s) lim

t→0+
f (t) � f (0+)

lim
s→0 s F(s) lim

t→∞ f (t)

209
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Table of Laplace Transforms

F(s) f (t)

1 δ(t)

1
s

1

1
s2

t

1
sn

(n � 1, 2, 3, . . .) tn−1

(n − 1)!
1
sν

(ν > 0)
tν−1

�(ν)

(s − 1)n
sn+1 (n � 0, 1, 2, . . .) Ln(t) � et

n!
dn

dtn
(tne−t)

Laguerre polynomials

1
s − a

eat

1
s(s − a)

1
a
(eat − 1)

1
(s − a)(s − b)

(a �� b)
eat − ebt

a − b

s

(s − a)(s − b)
(a �� b)

a eat − b ebt

a − b

s

(s − a)2
(1+ at) eat

a

s2 + a2
sin at

s

s2 + a2
cos at

a

(s − b)2 + a2
ebt sin at

s − b

(s − b)2 + a2
ebt cos at
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F(s) f (t)

a

s2 − a2
sinh at

s

s2 − a2
cosh at

a

(s − b)2 − a2
ebt sinh at

s − b

(s − b)2 − a2
ebt cosh at

1
(s2 + a2)2

1
2a3
(sin at − at cos at)

s

(s2 + a2)2
1
2a
(t sin at)

s2

(s2 + a2)2
1
2a
(sin at + at cos at)

s3

(s2 + a2)2
cos at − 1

2 at sin at

s2 − a2

(s2 + a2)2
t cos at

1
(s2 − a2)2

1
2a3
(at cosh at − sinh at)

s

(s2 − a2)2
1
2a
(t sinh at)
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F(s) f (t)

s2

(s2 − a2)2
1
2a
(sinh at + at cosh at)

s3

(s2 − a2)2
cosh at + 1

2 at sinh at

s2 + a2

(s2 − a2)2
t cosh at

ab

(s2 + a2)(s2 + b2)
(a2 �� b2)

a sin bt − b sin at
a2 − b2

s

(s2 + a2)(s2 + b2)
(a2 �� b2)

cos bt − cos at
a2 − b2

s2

(s2 + a2)(s2 + b2)
(a2 �� b2)

a sin at − b sin bt
a2 − b2

s3

(s2 + a2)(s2 + b2)
(a2 �� b2)

a2 cos at − b2 cos bt
a2 − b2

ab

(s2 − a2)(s2 − b2)
(a2 �� b2)

b sinh at − a sinh bt
a2 − b2

s

(s2 − a2)(s2 − b2)
(a2 �� b2)

cosh at − cosh bt
a2 − b2

s2

(s2 − a2)(s2 − b2)
(a2 �� b2)

a sinh at − b sinh bt
a2 − b2

s3

(s2 − a2)(s2 − b2)
(a2 �� b2)

a2 cosh at − b2 cosh bt
a2 − b2
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F(s) f (t)

a2

s2(s2 + a2)
t − 1

a
sin at

a2

s2(s2 − a2)
1
a
sinh at − t

1√
s

1√
π t

1√
s + a

e−at

√
π t

1

s
√
s + a

1√
a
erf(

√
at)

1√
s + a + √

s + b

e−bt − e−at

2(b − a)
√
π t3

1
s
√
s

2

√
t

π

1
(s − a)

√
s

1√
a
eat erf

√
at

1√
s − a + b

eat
(
1√
π t

− b eb
2t erfc(b

√
t)
)

1√
s2 + a2

J0(at)

1√
s2 − a2

I0(at)

(
√
s2 + a2 − s)ν√
s2 + a2

(ν > −1) aνJν(at)

(s − √
s2 − a2)ν√

s2 − a2
(ν > −1) aνIν(at)

1
(s2 + a2)ν

(ν > 0)
√
π

�(ν)

(
t

2a

)ν− 1
2

Jν− 1
2
(at)

1
(s2 − a2)ν

(ν > 0)
√
π

�(ν)

(
t

2a

)ν− 1
2

Iν− 1
2
(at)
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F(s) f (t)

(
√
s2 + a2 − s)ν (ν > 0)

νaν

t
Jν(at)

(s − √
s2 − a2)ν (ν > 0)

νaν

t
Iν(at)

√
s − a − √

s − b
1

2t
√
π t
(ebt − eat)

e−a/s

√
s

cos 2
√
at√

π t

e−a/s

s
√
s

sin 2
√
at√

π a

e−a/s

sν+1
(ν > −1)

(
t

a

)ν/2

Jν(2
√
at)

e−a
√
s

√
s

(a > 0)
e−a2/4t

√
π t

e−a
√
s (a > 0)

a

2
√
π t3

e−a2/4t

e−a
√
s

s
(a > 0) erfc

(
a

2
√
t

)

e−k
√
s2+a2

√
s2 + a2




0 0 < t < k

J0(a
√
t2 − k2) t > k

e−k
√
s2−a2

√
s2 − a2




0 0 < t < k

I0(a
√
t2 − k2) t > k
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F(s) f (t)

e−as (a > 0) δa(t)

e−as

s
(a > 0) ua(t)

es
2/4 erfc

s

2
2√
π
e−t2

1
s(eas − 1) � e−as

s(1− e−as)

[
t

a

]
([t] : greatest integer ≤ t)

1
s(es − a)

� e−s

s(1− ae−s)
(a �� 1) a[t] − 1

a − 1
es − 1

s(es − a)
� 1− e−s

s(1− ae−s)
a[t]

1
s(1− e−as)

t

f�t�

�

�

�

�

a �a �a �aO

1
s(1+ e−as)

t

f�t�

�

a �a �a �aO

1
s(1+ eas)

t

f�t�

a �a �a �a �aO

�

1− e−as

s(eas + e−as)

t

f�t�

a �a

�a �a

�aO

�

��
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F(s) f (t)

(1− e−as)
s(1+ e−as)

� 1
s
tanh

as

2

t

f�t�

�

a �a �a �aO

��

1− e−as

as2(1+ e−as)
� 1

as2
tanh

as

2
t

f�t�

�

a �a �a �aO

1− (1+ as)e−as

as2(1− e−2as)
t

f�t�

�

a �a �a �aO

ω

(s2 + ω2)(1− e−π s/ω)
t

f�t�

O �
�

��
�

��
�

�

ω

s2 + ω2

(
1+ e−π s/ω

1− e−π s/ω

)
� ω

s2 + ω2
coth

π s

2ω
t

f�t�

O ��
�

��
�

�
�

�

log
(
s + a

s + b

)
e−bt − e−at

t

−(log s + γ)
s

(γ: Euler constant) log t
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F(s) f (t)

log s
s

−(log t + γ)

log
(
s2 + a2

s2 + b2

)
2
t
(cos bt − cos at)

tan−1
(a
s

) 1
t
sin at

sinh xs
s sinh as

x

a
+ 2

π

∞∑
n�1

(−1)n
n

sin
nπx

a
cos

nπt

a

sinh xs
s cosh as

4
π

∞∑
n�1

(−1)n−1

2n − 1 sin
(
2n − 1
2a

)
πx sin

(
2n − 1
2a

)
πt

cosh xs
s sinh as

t

a
+ 2

π

∞∑
n�1

(−1)n
n

cos
nπx

a
sin

nπt

a

cosh xs
s cosh as

1+ 4
π

∞∑
n�1

(−1)n
2n − 1 cos

(
2n − 1
2a

)
πx cos

(
2n − 1
2a

)
πt

sinh xs
s2 sinh as

xt

a
+ 2a

π2

∞∑
n�1

(−1)n
n2

sin
nπx

a
sin

nπt

a

sinh xs
s2 cosh as

x + 8a
π2

∞∑
n�1

(−1)n
(2n − 1)2 sin

(
2n − 1
2a

)
πx cos

(
2n − 1
2a

)
πt

cosh xs
s2 sinh as

1
2a

(
x2 + t2 − a2

3

)
− 2a

π2

∞∑
n�1

(−1)n
n2

cos
nπx

a
cos

nπt

a

cosh xs
s2 cosh as

t + 8a
π2

∞∑
n�1

(−1)n
(2n − 1)2 cos

(
2n − 1
2a

)
πx sin

(
2n − 1
2a

)
πt

sinh x
√
s

sinh a
√
s

2π
a2

∞∑
n�1
(−1)nne−n2π2t/a2 sin

nπx

a
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F(s) f (t)

cosh x
√
s

cosh a
√
s

π

a2

∞∑
n�1
(−1)n−1(2n − 1)e−(2n−1)2π2t/4a2 cos

(
2n − 1
2a

)
πx

sinh x
√
s√

s cosh a
√
s

2
a

∞∑
n�1
(−1)n−1e−(2n−1)2π2t/4a2 sin

(
2n − 1
2a

)
πx

cosh x
√
s√

s sinh a
√
s

1
a

+ 2
a

∞∑
n�1
(−1)ne−n2π2t/a2 cos

nπx

a

sinh x
√
s

s sinh a
√
s

x

a
+ 2

π

∞∑
n�1

(−1)n
n

e−n2π2t/a2 sin
nπx

a

cosh x
√
s

s cosh a
√
s

1+ 4
π

∞∑
n�1

(−1)n
2n − 1e

−(2n−1)2π2t/4a2 cos
(
2n − 1
2a

)
πx

sinh x
√
s

s2 sinh a
√
s

xt

a
+ 2a

2

π3

∞∑
n�1

(−1)n
n3

(1− e−n2π2t/a2) sin
nπx

a

cosh x
√
s

s2 cosh a
√
s

x2 − a2

2
+ t − 16a

2

π3

∞∑
n�1
(−1)n
(2n − 1)3 e

−(2n−1)2π2t/4a2cos
(
2n − 1
2a

)
πx



Answers to Exercises

Exercises 1.1.

1. (a)
4
s2

(b)
1

s − 2
(c)

2s
s2 + 9 (d)

1
s

− s

s2 + ω2

(e) − 1
(s − 2)2 (f)

1
s2 − 2s + 2

(g)
e−as

s
(h)

ω(1+ e−πs/ω)
s2 + ω2

(i)
2
s

− 2e
−s

s
+ e−(s−1)

s − 1

2. (a)
1
s

(
e−s

s
− 1

s
+ 1

)
(b)

1
s2
(1− e−s)2

Exercises 1.3.

1. f (t) is continuous except at t � −1.
2. g(t) is continuous on R\{0}, and also at 0 if we define g(0) � 0.

219
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3. h(t) is continuous on R\{1}, with a jump discontinuity at t � 1.

4. i(t) is continuous on R.

5. j(t) is continuous on R\{0}.
6. k(t) is continuous on R\{0}, with a jump discontinuity at t � 0.

7. l(t) is continuous except at the points t � a, 2a, 3a, . . ., where it
has a jump discontinuity.

8. m(t) is continuous except at the points t � a, 2a, 3a, . . ., where it
has a jump discontinuity.

Exercises 1.4.

1. (i) c1f1 + c2f2 is piecewise continuous, of order max(α, β).
(ii) f · g is piecewise continuous, of order α + β.

Exercises 1.5.

1. (a) Yes. No.

Exercises 1.6.

1.
2
s2

+ 3
(s − 2) + 12

s2 + 9

3. (a)
s2 − 2ω2

s(s2 − 4ω2) (b)
2ω2

s(s2 − 4ω2)

4.
3s − 4
s2 − 4

5.
∞∑
n�0

(−1)nω2n
s2n+1 � s

s2 + ω2
,

∞∑
n�0

(−1)nω2n+1

s2n+2 � ω

s2 + ω2

6.
2ω2

s(s2 + 4ω2) ,
s2 + 2ω2

s(s2 + 4ω2)

7. log
(
1+ 1

s

)

8.
∞∑
n�1

(−1)n+1

2n

(ω
s

)2n � 1
2
log

(
1+ ω2

s2

)
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9. No.

Exercises 1.7.

2. (a) N(t) �
{
1 t � 0
0 t �� 0

(There are many other examples.)
(d) f (t) ≡ 0 is the only continuous null function.

3. (b) f (t) �
∞∑
n�0

una(t).

Exercises 1.8.

1. (a)
3

(s − 2)2 + 9 (b)
2

(s + ω)3

(c) 2t2e4t (d)

√
2

(s − 7)2 − 2
(e) 12 e

−t sin 2t

(f) e−3t
(
cosh(2

√
2 t)− 3

2
√
2
sinh(2

√
2 t)

)

(g)
(cos θ)(s + a)− (sin θ)ω

(s + a)2 + ω2

(h) e−t(1− t)

2. (a)
e−2(s−a)

s − a
(b)

s

(s2 + 1) e
−πs/2 (c)

s

s2 + 1 e
−πs

3. (a) 12 u2(t)(t − 2)2 (b) E − ua(t) cos(t − a)

(c)
1√
2
uπ(t) sinh

(√
2(t − π)

)

Exercises 1.9.

1. (a)
s2 + ω2

(s2 − ω2)2
(b)

2ωs
(s2 − ω2)2

(c)
2s(s2 − 3ω2)
(s2 + ω2)3

(d)
2ω(2s2 − ω2)
(s2 + ω2)3
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3. (a)
2
t
(cos bt − cos at) (b)

sin t
t

4.
a e−a2/4t

2t
√
πt

Exercises 1.10.

1. (a)
eat − ebt

a − b
(b) 13 e

−t + 1
6 e

t/2

(c) −1+ et + t2et (d)
1

b2 − a2
(cos at − cos bt)

(e)
1

a2 + b2
(cosh bt − cos at) (f) 52 + 2t + t2

2 − 3et + 1
2 e
2t

(g) 32 e
−t + 5

4 t e
−t − 3

2 cos t + 1
4 sin t − 1

4 t sin t

(h) 14 − 5
4 e
3t + 23

20 e
4t − 3

20 e
−t

2. The answer for both parts (a) and (b) is
a sinh at

(a2 − b2)(a2 − c2)
+ b sinh bt
(b2 − a2)(b2 − c2)

+ c sinh ct
(c2 − a2)(c2 − b2)

.

Exercises 2.1.

2. (a)
√
π

2
(b) 2 (c) −2√π (d)

4
√
π

3

3. (a)
√
π√

s − 3 (b)
u2(t)√
π(t − 2)

(c)
2√
π
t1/2eat (d) e−t

(e)
∞∑
n�1

(−1)n+1t2n−1

n(2n − 1)! � 2
(
1− cos t

t

)

(f)
√
π

2s3/2

Exercises 2.2.

1. (a)
1

s(1+ e−as)
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(b)
1
s

(
1− e−as

1+ e−as

)
� 1

s
tanh

as

2

(c)
1− e−as − as e−as

a s2(1− e−2as)

(d)
1
as2

(
1− e−as

1+ e−as

)
� 1

as2
tanh

as

2

2.
1

s(1+ e−as)

3. f (t) � u(t)+ 2∑∞
n�1(−1)nuna(t)

F(s) � 1
s
tanh

as

2

4. F(s) � 1
s

∞∑
n�0
(−1)n(e−as(2n+1) − e−2as(n+1))

f (t) �
∞∑
n�0
(−1)n(u(2n+1)a(t)− u2a(n+1)(t)

)

Graph of f (t) :
t

f�t�

a �a

�a �a

�aO

�

��

Exercises 2.3.

5. (a)
6ω3

(s2 + 9ω2)(s2 + ω2)

(b)
s(s2 + 7ω2)

(s2 + 9ω2)(s2 + ω2)

6. Use induction.

7. f (t) � e[t+1]2 , where [t] � greatest integer ≤ t.

Exercises 2.4.

1. (a) y � − 1
2 (e

t + cos t − sin t)
(b) y � et

( 1
2 t
2 − 1

2 t + 1
4

) + 7
4 e

−t
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(c) y � 1
3 sin t − 1

6 sin 2t + cos 2t
(d) y � − 1

4 t e
t + 13

16 e
3t + 19

16 e
−t

(e) y � − 1
170 cos t − 13

170 sin t − 1
30 e

t − 8
85 e

−4t + 2
15 e

−2t

(f) y � t − 1+ 2e−t − u1(t)[t − 2+ e−t+1]
(g) y � 1

2 [t sin t + uπ(t)(t − π) sin(t − π)]
(h) y � 1

2 cos t + 1
4 e

−t + 1
4 e

t

2. (a) y � (−1/2λ)t cos λt + cos λt + π sin λt
(b) y � t/λ2 + cos λt + (

1/λ + 1/λ3) sin λt.
3. (a) I(t) � (E0/R)+ (I0 − E0/R) e−Rt/L

(b) t

I�t�

O

I�

E��R

4. I(t) � (E0/R)−
(
(E0/R)+ AR/(L2ω2 + R2)

)
e−Rt/L

+(
AR/(L2ω2 + R2)

)
cosωt + (

ALω/(L2ω2 + R2)
)
sinωt

5. I(t) � 3
10 sin t + 1

10 cos t − 3
2e

−t + 12
5 e

−2t

6. (a) x(t) � e−2t + e−t

y(t) � e−2t − e−t

(b) x(t) � t + sin t
y(t) � t + cos t

(c) x(t) � t + e−t − 1
y(t) � e−t − t

7. (a) y(t) � −1+ Ct

(b) y(t) � t + C t2

(c) y(t) � C

∞∑
n�0

(−1)ntn+1

(n + 1)!n!
(d) y(t) � t e−t

Exercises 2.5.

1. y(t) � e2t√
2
sinh

√
2 t

2. x(t) � (1/√km) sin
(√

k/m t

)
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3. I(t) � (1/L)e−Rt/L

4. x(t) � t e−t

Exercises 2.6.

1. (a) 0 (b) f (0+) �
{
1 if n � 0
0 if n > 0

(c) a − b

2. (a) 0 (b) 1

Exercises 2.7.

1. (a) 13 (e
t − e−2t) (b) 1− cos t (c) t − sin t

(d) 1
32 (2t − 1)+ e−4t

32 (2t + 1)
(e) 18 (t sin t − t2 cos t)

6. (a) (1/
√
a) erf(

√
at) (b)

√
a

(s − a)
√
s

(c)
√
a(3s + 2a)
2s2(s + a)3/2

7. (a) u1(t) J0(t − 1) (b)
∞∑
n�0

(−1)na2nt2n+1

22n(2n + 1)(n!)2
8. π/2

10. (a) 1+ 2√
3
sin

(√
3
2 t

)
et/2

(b) − 1
5 cos t + 3

5 sin t + 1
5 e
2t

(c) 0
(d) e−at

11. (a) 1
2 (sin t + t cos t)

(b) Same as for 7(b) with a � 1
12. 1

4

∫ t

0 (e
3τ − e−τ) f (t − τ) dτ

Exercises 2.8.

1. (a) 23 e
t + 4

3e
−2t − 2e−t (b) 14 e

t − 1
4 e

−t − 1
2 sin t

(c) − 1
3e

t + 1
30 e

−2t + 1
45e

3t + 1
3 t + 5

18



Answers to Exercises226

4. 12 e
−t/2

(
cos

√
7
2

t − 1√
7
sin

√
7
2

t

)
+ 1
2 (sin t − cos t)

Exercises 2.9.

4. (a) an � 3n − 4n (b) an � 1
2 (2

n − 4n)
(c) an � 1

2 [1− (−1)n] (d) an � n

6. (a) y(t) � ∑[t]
n�0(−1)net−n (b) y(t) � ∑[t]

n�0 (t − n)n+2/(n + 2)!
7. an � 4+ 2n − 7 · 2n + 3n+1

Exercises 3.1.

1. (a) 8+ i (b) 24+ 18i (c) 75 − 4
5 i

2. (a) |(1+ i)3| � 2√2, arg
(
(1+ i)3

) � 3π/4
Re

(
(1+ i)3

) � −2, Im
(
(1+ i)3

) � 2
(b)

∣∣∣∣1− i

1+ i

∣∣∣∣ � 1, arg
(
1− i

1+ i

)
� 3π
2

Re
(
1− i

1+ i

)
� 0, Im

(
1− i

1+ i

)
� −1

(c)
∣∣∣∣ 1
(1− i)2

∣∣∣∣ � 1
2
, arg

(
1

(1− i)2

)
� π

2

Re
(

1
(1− i)2

)
� 0, Im

(
1

(1− i)2

)
� 1
2

(d)
∣∣∣∣4+ 3i
2− i

∣∣∣∣ � √
5, arg

(
4+ 3i
2− i

)
� tan−1(2)

Re
(
4+ 3i
2− i

)
� 1, Im

(
4+ 3i
2− i

)
� 2

(e) |(1+ i)30| � 215, arg
(
(1+ i)30

) � 3π
2

Re
(
(1+ i)30

) � 0, Im
(
(1+ i)30

) � 215.
3. (a) (1+ i)3 � 2√2 ei 3π4 (d) (4+ 3i)/(2− i) � √

5 ei tan
−1(2)
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7. (a) |z − i| < 1

x

y

i

O

(b) 1 ≤ |z| ≤ 2

x

y

O

(c)
π

2
< arg(z) <

3π
2
, |z| < 1

x

y

O

8. (a) ei
π

4 � 1/√2+ i/
√
2 (b) 1 (n � 0,±1,±2, . . .)

(c) −1 (n � 0,±1,±2, . . .) (d) (1/2)− (√3/2) i
9. (a) 4

√−1 � ei
π

4 , ei
3π
4 , ei

5π
4 , ei

7π
4

(b) 3
√
i � ei

π

/
6, ei

5π
6 , ei

9π
6 � −i

(c) 5
√
1+ i � 10

√
2 ei

π

20 , 10
√
2 ei

9π
20 , 10

√
2 ei

17π
20 , 10

√
2 ei

25π
20 , 10

√
2 ei

33π
20

Exercises 3.2.

2. (a) iπ (b) 1+ i (3π/2)

(c) iπ/2

3. (a) e−π/2 (b) ei

(c) (1+ i)e−π/4ei log
√
2

Exercises 3.3.

1. (a) 2πi (b) 2πi (c) 0
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(d) iπ (e) 0 (f) 0

(g) 2πi(2− cos 1) (h) πi(−24π2 + 6)
2. (a) −iπ (b)

(
1+ (π/2)) + i(1− π)

5. |f (4)(0)| ≤ 120
6. Look at 1/f (z).
7. Look at f (z)/ez.

Exercises 3.4.

1. (a) R � 1 (b) R � ∞
(c) R � 1 (d) R � ∞

2. (a) ez
2 � ∑∞

n�0 z
2n/n!, R � ∞

(b) sinh z � ∑∞
n�0 z

2n+1/(2n + 1)!, R � ∞
(c) 1/(1− z) � ∑∞

n�0 z
n, R � 1

(d) log(1+ z) � ∑∞
n�0 (−1)nzn+1/(n + 1), R � 1

4. (a) z � 0 (simple pole)
z � ±i (poles of order 2)

(b) z � 0 (pole of order 3)
(c) z � 0 (essential singularity)
(d) z � 1 (removable singularity)

5. (a) 1+ z2

6 + 7z4

360 (b) 1
z2

− 1
6 + 7z2

360

(c) 1− z
3 + 2z2

15

6. (a) − 1
3z + 1

4

∑∞
n�0(−1)nzn − 1

4

∑∞
n�0 z

n/3n+2

(b) − 1
3z + 1

4

∑∞
n�0 (−1)n/zn+1 − 1

4

∑∞
n�0 z

n/3n+2

(c) − 1
3z + 1

4

∑∞
n�0 (−1)n/zn+1 + 1

12

∑∞
n�0 3

n/zn+1

7. (a) Res(±ia) � 1/2
(b) Res(0) � 1/2

Res
(
(2n − 1)

a
πi

)
� i

(2n − 1)π n � 0,±1,±2, . . .

(c) Res(0) � 0
8. (a) −2πi (b) 0 (c) 6πi
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(d) −4πi (e) 0

9. −2π
7

Exercises 4.

1. (a)
(
1/(a − b)

)
(a eat − b ebt) (b) eat

( 1
2 at

2 + t
)

(c) 1
2a t sin at (d) t cosh at

(e) 1
8a (3t sin at + at2 cos at)

6. 1/
√
s + 1(√s + 1+ 1)

Exercises 5.

1. y(x, t) � x(t − 1+ 2e−t)

2. (a) u(x, t) � (x/2√πt3) e−x2/4t

(b) u(x, t) � u0 + (u1 − u0) erfc
(
x/2

√
t

)
(c) u(x, t) � x + (2/π) ∑∞

n�1
(
(−1)n/n) e−n2π2t sin nπx

(d) u(x, t) � (2a�/π) ∑∞
n�1

(
(−1)n+1/n

)
e−n2π2t/�2 sin(nπx/�)

3. (a) y(x, t) � sin πx cosπt
(b) y(x, t) � 1+ (4/π)∑∞

n�1
(−1)n
2n−1 cos

( 2n−1
2

)
πx cos

( 2n−1
2

)
πt

(c) y(x, t) � (2/π2) ∑∞
n�1

(
(−1)n+1/n2

)
sin nπx sin nπt

(d) y(x, t) � 2∑∞
n�1

(∫ 1
0 f (u) sin nπu du

)
sin nπx cosnπt

4. y(x, t) � (
(sin πx)/π2

)
(cosπt − 1)

5. u(x, t) � (1/a√πt)e−x2/4a2t
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Analytic functions, 123
Argument, 117
Asymptotic values, 88

Bessel function, 72, 97, 213, 214
Beta function, 96
Boundary-value problems, 64
Branch
cut, 122
point, 123, 167

Bromwich
line, 152
contour, 152

Cauchy
inequality, 134, 145
integral formula, 133
residue theorem, 143
–Riemann equations, 123
theorem, 131

Circle of convergence, 137
Closed (contour), 128

Complex
inversion formula, 151
numbers, 115
plane, 117

Complementary error function,
172

Conjugate, 116
Continuity, 8
piecewise, 10

Contour, 128
Convergence, 2, 6
absolute, 6
uniform, 7, 20

Cycloid, 101

De Moivre’s theorem, 117
Derivative theorem, 54
Difference equations, 108
Differential equations, 59
Differentiation
of Laplace transform, 31
under the integral sign, 203

231
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Diffusivity, 180
Divergence, 2
Dirac operator, 74, 210, 215

Electrical circuits, 68, 83
Elliptic equations, 175
Equation of motion, 85
Error function, 95
Euler
constant, 44, 47
formula, 3, 117

Excitation, 61
Exponential order, 12

Fibonacci equation, 114
First translation theorem, 27
Forcing function, 61
Fourier
inversion formula, 205
series, 163
transform, 151

Full–wave–rectified sine, 51, 216
Fundamental theorem of

algebra, 200
Functions (complex-valued),

120

Gamma function, 41
General solutions, 63
Greatest integer ≤ t, 109, 113,

215

Half–wave–rectified sine, 50,
216

Harmonic
function, 126
conjugate, 126

Heat equation, 175, 180
Heaviside
expansion theorem, 107

function, 25, 79, 215
Hyperbolic
equations, 175
functions, 121

Impulsive response, 104
Imaginary
axis, 117
number, 116
part, 116

Independence of path, 132
Indicial response, 105
Infinite series, 17, 44
Initial
point, 128
-value theorem, 88

Input, 61
Integral equations, 98
Integrals, 66
Integration, 33, 128
Integro-differential equations,

67

Jump discontinuity, 8

Kirchoff’s voltage law, 68

Laplace
operator, 126
transform (definition), 1, 78
transform method, 60, 176
transform tables, 210
–Stieltjes transform, 78

Laurent series, 139
Lerch’s theorem, 24
Linearity, 16
Liouville’s theorem, 134
Logarithm, 122, 216, 217

Mechanical system, 84
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Meromorphic function, 141
Modified bessel function, 102,

213, 214
Modulus, 116
Multiple-valued function, 120

Null function, 26

One-dimensional
heat equation, 180
wave equation, 186

Order (of a pole), 141
Ordinary differential equations,

59
with polynomial coefficients,

70
Output, 61

Parabolic equations, 175
Partial
differential equations, 175
fractions, 35

Partition, 75, 193
Periodic functions, 47
Positive direction, 128
Polar Form, 117
Pole, 141
Power series, 136
Principal logarithm, 122

Radius of convergence, 136
Real part, 116
Residue, 38, 142
Response, 61
Riemann
integrable, 193
integral, 194

–Stieltjes integral, 75, 201
Roots
of unity, 118
of a complex number, 118

Second translation theorem, 29
Simple
contour, 128
pole, 38, 141

Simply connected, 130
Sine integral, 67
Single-valued functions, 120
Singularities
essential, 141
pole, 141
removable, 141

Smooth (contour), 128
Square–wave, 49, 215
Steady-state solutions, 103
Systems of differential

equations, 65
Superposition principle, 106

Tautochrone, 100
Taylor
coefficients, 138
series, 138

Terminal
point, 128
-value theorem, 89

Translation theorems, 27

Uniqueness of inverse, 23
Unit step function, 24, 79, 215

Wave equation, 176, 186








