The Laplacian in Polar Coordinates

Ryan C. Daileda

Trinity University
Partial Differential Equations
March 27, 2012

Physical motivation

Consider a thin elastic membrane stretched tightly over a circular frame. We take the radius of the frame to be a and assume that the edges of the membrane are fixed to the frame.

- Our goal is to mathematically model the vibrations in this "drum head."
- We center the membrane at the origin in the $x y$-plane and let

$$
u(x, y, t)=\begin{aligned}
& \text { deflection of membrane from equilibrium at } \\
& \text { position }(x, y) \text { and time } t
\end{aligned}
$$

as before.

- Neglecting any initial conditions for the time being, we find that we are faced with the boundary value problem

$$
\begin{array}{ll}
u_{t t}=c^{2} \nabla^{2} u, & x^{2}+y^{2}<a^{2} \\
u(x, y, t)=0, & x^{2}+y^{2}=a^{2} \tag{2}
\end{array}
$$

- Picture:

Separation of Variables?

Our eventual goal is to solve this problem (with appropriate initial conditions) using separation of variables and superposition.

As it stands, this is quite difficult. If we set

$$
u(x, y, t)=X(x) Y(y) T(t)
$$

then,

- the heat equation quickly reduces to the familiar separated equations for X, Y and T;
- however, because the boundary is given by $x^{2}+y^{2}=a^{2}$ (as opposed to simply $x=0, x=a$, etc. in the rectangular case), it is not clear how to decouple the boundary conditions.

Polar coordinates

To alleviate this problem, we will switch from rectangular (x, y) to polar (r, θ) spatial coordinates:

$$
\begin{aligned}
& x=r \cos \theta, \\
& y=r \sin \theta \\
& x^{2}+y^{2}=r^{2}
\end{aligned}
$$

This requires us to express the rectangular Laplacian

$$
\nabla^{2} u=u_{x x}+u_{y y}
$$

in terms of derivatives with respect to r and θ.

The chain rule

For any function $f(r, \theta)$, we have the familiar tree diagram and chain rule formulae:

$$
\begin{gathered}
\frac{\partial f}{\partial x}=\frac{\partial f}{\partial r} \frac{\partial r}{\partial x}+\frac{\partial f}{\partial \theta} \frac{\partial \theta}{\partial x} \\
\frac{\partial f}{\partial y}=\frac{\partial f}{\partial r} \frac{\partial r}{\partial y}+\frac{\partial f}{\partial \theta} \frac{\partial \theta}{\partial y} \\
\text { or } \\
f_{x}=f_{r} r_{x}+f_{\theta} \theta_{x} \\
f_{y}=f_{r} r_{y}+f_{\theta} \theta_{y}
\end{gathered}
$$

First take $f=u$ to obtain

$$
u_{x}=u_{r} r_{x}+u_{\theta} \theta_{x}
$$

Now differentiate with respect to x again and use the product rule to get

$$
u_{x x}=u_{r} r_{x x}+\left(u_{r}\right)_{x} r_{x}+u_{\theta} \theta_{x x}+\left(u_{\theta}\right)_{x} \theta_{x} .
$$

Applying the chain rule with $f=u_{r}$ and then with $f=u_{\theta}$ yields

$$
\begin{aligned}
u_{x x} & =u_{r} r_{x x}+\left(u_{r r} r_{x}+u_{r \theta} \theta_{x}\right) r_{x}+u_{\theta} \theta_{x x}+\left(u_{\theta r} r_{x}+u_{\theta \theta} \theta_{x}\right) \theta_{x} \\
& =u_{r} r_{x x}+u_{r r} r_{x}^{2}+2 u_{r \theta} r_{x} \theta_{x}+u_{\theta} \theta_{x x}+u_{\theta \theta} \theta_{x}^{2}
\end{aligned}
$$

An entirely similar computation using y instead of x also gives

$$
u_{y y}=u_{r} r_{y y}+u_{r r} r_{y}^{2}+2 u_{r \theta} r_{y} \theta_{y}+u_{\theta} \theta_{y y}+u_{\theta \theta} \theta_{y}^{2}
$$

If we add these expressions and collect like terms we get

$$
\begin{aligned}
\nabla^{2} u= & u_{x x}+u_{y y} \\
= & u_{r}\left(r_{x x}+r_{y y}\right)+u_{r r}\left(r_{x}^{2}+r_{y}^{2}\right)+2 u_{r \theta}\left(r_{x} \theta_{x}+r_{y} \theta_{y}\right) \\
& +u_{\theta}\left(\theta_{x x}+\theta_{y y}\right)+u_{\theta \theta}\left(\theta_{x}^{2}+\theta_{y}^{2}\right) .
\end{aligned}
$$

If we differentiate the relationship $x^{2}+y^{2}=r^{2}$ with respect to x and then y we get

$$
2 x=2 r r_{x} \longrightarrow r_{x}=\frac{x}{r} \longrightarrow r_{x x}=\frac{r-x r_{x}}{r^{2}}=\frac{r^{2}-x^{2}}{r^{3}}=\frac{y^{2}}{r^{3}}
$$

and

$$
r_{y}=\frac{y}{r}, \quad r_{y y}=\frac{x^{2}}{r^{3}},
$$

so that

$$
r_{x x}+r_{y y}=\frac{y^{2}+x^{2}}{r^{3}}=\frac{1}{r} \quad \text { and } \quad r_{x}^{2}+r_{y}^{2}=\frac{x^{2}+y^{2}}{r^{2}}=1
$$

We now differentiate $\tan \theta=\frac{y}{x}$ with respect to x and then y to get
$\sec ^{2} \theta \theta_{x}=-\frac{y}{x^{2}} \longrightarrow \theta_{x}=-\frac{y \cos ^{2} \theta}{x^{2}}=-\frac{y}{r^{2}} \longrightarrow \theta_{x x}=\frac{2 y}{r^{3}} r_{x}=\frac{2 x y}{r^{4}}$,
$\sec ^{2} \theta \theta_{y}=\frac{1}{x} \longrightarrow \theta_{y}=\frac{\cos ^{2} \theta}{x}=\frac{x}{r^{2}} \longrightarrow \theta_{y y}=\frac{-2 x}{r^{3}} r_{y}=-\frac{2 x y}{r^{4}}$,
so that

$$
\theta_{x x}+\theta_{y y}=\frac{2 x y}{r^{4}}+\frac{-2 x y}{r^{4}}=0, \quad \theta_{x}^{2}+\theta_{y}^{2}=\frac{y^{2}+x^{2}}{r^{4}}=\frac{1}{r^{2}},
$$

and

$$
r_{x} \theta_{x}+r_{y} \theta_{y}=\frac{-x y}{r^{3}}+\frac{y x}{r^{3}}=0
$$

Conclusion

We finally obtain

$$
\begin{aligned}
u_{x x}+u_{y y}= & u_{r}\left(r_{x x}+r_{y y}\right)+u_{r r}\left(r_{x}^{2}+r_{y}^{2}\right)+2 u_{r \theta}\left(r_{x} \theta_{x}+r_{y} \theta_{y}\right) \\
& +u_{\theta}\left(\theta_{x x}+\theta_{y y}\right)+u_{\theta \theta}\left(\theta_{x}^{2}+\theta_{y}^{2}\right) \\
= & \frac{1}{r} u_{r}+u_{r r}+0+0+\frac{1}{r^{2}} u_{\theta \theta}
\end{aligned}
$$

which we summarize as follows.

Theorem

The Laplacian in polar coordinates is given by

$$
\nabla^{2} u=u_{r r}+\frac{1}{r} u_{r}+\frac{1}{r^{2}} u_{\theta \theta} .
$$

Example

Use polar coordinates to show that the function $u(x, y)=\frac{y}{x^{2}+y^{2}}$ is harmonic.

We need to show that $\nabla^{2} u=0$. This would be tedious to verify using rectangular coordinates. However, in polar coordinates we have

$$
u(r, \theta)=\frac{r \sin \theta}{r^{2}}=\frac{\sin \theta}{r}
$$

so that

$$
u_{r}=-\frac{\sin \theta}{r^{2}}, \quad u_{r r}=\frac{2 \sin \theta}{r^{3}}, \quad u_{\theta \theta}=\frac{-\sin \theta}{r}
$$

and thus

$$
\nabla^{2} u=u_{r r}+\frac{1}{r} u_{r}+\frac{1}{r^{2}} u_{\theta \theta}=\frac{2 \sin \theta}{r^{3}}-\frac{\sin \theta}{r^{3}}-\frac{\sin \theta}{r^{3}}=0 .
$$

