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The LSS: Theory and Measurement

Gravitational collapse
Matter Perturbations in the Universe and their growth
The CMB: Brief desciption and results
Non-linear growth: Spherical collapse
Simulations

How to measure LSS, 
Correlation function, power spectrum
Galaxy bias
Observational effects. Random samples and other effects



We have treated the Universe as smooth.
But it contains structures!

Galaxies are not randomly distributed, but clustered

2dF Galaxy 
Survey LSS 

measurement

We are able to explain how this structure formed and evolved



The properties of the initial fluctuations determine the properties of the LSS

Important point: Inflaton is a quantum field→ We cannot predict the specific value of the
fluctuations, but only their statistical properties→ Our predictions for the LSS are statistical

LSS Formation and Evolution: General Idea
Generation of fluctuations: Quantum fluctuations of the inflaton become classic due to the
wild inflationary expansión. At the end of inflation the inflaton field decays into particles
Quantum fluctuations of the field→ fluctuations in the number of particles→ fluctuations in 
the energy density
Inflation generates initial conditions, (Gaussian)  i. e. seeds for the LSS: Gravity does the rest



Summary of the formation and evolution of
structure in the Universe

Quantum 
Fluctuations
during
inflation

Perturbation
Growth: 
Pressure. vs. 
Gravity Matter 

perturbations
grow into non-
linear structures
observed today

Photons
freestream: 
Inhomogeneities
turn into
anisotropies10-35 s ~105 years

V(φ) ΩM, Ωr, Ωb, fν

zreion, ΩΛ, w



Neutrinos

Fluctuations are small. We can use perturbation
theory

2 types of perturbations: metric perturbations, 
density perturbations

Remember: Spacetime tells matter how to move, 
matter tells spacetime how to curve



Matter perturbations

3 regimes:
δ << 1: linear theory

δ  ~  1: need specific assumptions (i. e. spherical symmetry)

δ >> 1: non-linear regime. Solve numerically, simulations (also higher order perurbations)

In general: Universe is lumpy on small scales and smoother on large scales – consider

inhomogeneities as a perturbation to the homogeneous solution

Continuity

Euler

Poisson

Use newtonian gravity→ Good approximation of general relativity in cosmology on scales well 
inside the Hubble radius and when describing non-relativistic matter (for which the pressure P is 
much less than the energy density ρ).

These equatons are used in all cosmological N-body simulations of the non-linear growth of 
structure



Using the Fourier transform, we can write eqs. For the Fourier modes:

For baryonic matter

For dark matter

Linearizing the equation:

Matter perturbations



Matter perturbations
We can linearize this equation because δ is very small . The linear regime is very important:

• On all scales, primordial fluctuations were extremelly small, δ << 1. The seeds of structure
formation were linear

• The linear stage of structure formation is a relatively long lasting one. 

• One may always find large scales where the density and velocity perturbations are still linear. 
Today, scales larger than ~10 h-1 Mpc behave linearly

• CMB measurements have established the linear density fluctuations at the recombination
era. By studying the linear structure growth, we are able to translate these into the
amplitude of fluctuations at the current epoch, and compare these predictions against the
measured LSS in the Galaxy distribution



Matter perturbations



Matter perturbations



In a radiation dominated universe

At most logarithmic growth during radiation domination. 
1) The increased expansión rate due to the presence of a smooth component slows down the

growth of perturbations
2) There is no significant growth during the radiation dominated period

0

Matter perturbations



• Matter dominated case

• Radiation dominated case

• Lambda dominated case

Frozen fluctuations

Linear growth

No significant growth

Matter perturbations



the perturbations grow exponentially (if no expansion) with time or oscillate as sound waves 
depending on whether their wave number is greater than or less than the Jeans wave number

For k > kJ we have sound waves, for k < kJ we have collapse. The expansion adds a sort of friction 
term on the left-hand side: The expansion of the universe slows the growth of perturbations 
down.

Baryon photon fluid
Jeans length and scales for collapse

GRAVITY PRESSURE

Jeans Length: Both effects are equal

𝑐2
𝑠
𝑘2

𝑎2
> 4πρ0 → Oscillating solution

𝑐2
𝑠
𝑘2

𝑎2
< 4πρ0 → Perturbations grow

Jeans 
wavenumber

Jeans 
wavelength

Matter perturbations



It is useful to express the perturbation as

CMB shows that at z~1100, perturbations are of the order 10-5. If they
grow as δ ~ t2/3 , then for z=0 they grow a factor of 1000, becoming of
the order 1%

Dark matter provides a solution. Perturbations in dark matter do not
couple to radiation and can be much larger tan gas (baryons) 
perturbations without perturbing the CMB. By starting with much larger
perturbations, we can reach the δ ~ 1 regime much earlier, allowing to
form the observed structures→ LSS formation NEEDS dark matter!

Matter perturbations



Matter perturbations: Comparing the theory to the
observations

The current standard model of cosmology includes the inflation as 
primordial perturbations generator. In any case, the initial perturbations

are Gaussian. 
The density contrast δ is a homogeneous, isotropic Gaussian random

field (Fourier modes are uncorrelated)
Its statistical properties are completely determined by 2 numbers: mean 

and variance.
The variance is described in terms of a function called the POWER 

SPECTRUM

The initial power spectrum has the Harrison-Zel´dovich form: 
𝑃 𝑘 ∝ 𝑘𝑛𝑆, nS ~1 Spectral index



These assumptioins have been very precisely verified in the CMB.
Spectral index can be related to some parameters of the inflationary field

The power spectrum is splitted into a linear and a non-linear part

𝑃 𝑘 = 𝑃𝐿 𝑘 + 𝑃𝑁𝐿 𝑘

The linear power spectrum corresponds to the linear overdensity field and is given by

𝑃𝐿 𝑡, 𝑘 = 𝐴0 𝑘
𝑛𝑆𝑇2(𝑘)𝐷+

2(𝑡)

Where D+(t) is the growth factor and T(k) is the transfer function and takes into account the
transformation from the density fluctuations from the primordial spectrum

Through the radiation domination epoch
Through the recombination epoch
To the post recombination power spectrum

And contains the messy physics of the evolution of density perturbations

It is computed by solving the Boltzmann equation for the primordial multicomponent cosmic
plasma numerically (for example, using CAMB (Lewis & Challinor 2011)). 

Matter perturbations



Baryons
CDM

HDM MDM
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Transfer function and power spectrum
for several models:

CDM: Cold dark matter
HDM: Hot dark matter
MDM: mixed dark matter (cold+hot)



Matter perturbations

The full power spectrum shape



Matter perturbations
Measured power spectrum for different cosmological tracers

Linear approximation
ΛCDM is a good description



Shape of the matter power spectrum

The shape of the power
spectrum is sensitive to
the matter density on
the Universe through the
position of the turnover
scale

The turnover scale is the one that enters the
horizon at the epoch of matter-radiation equality



This scale is ~0.02 Mpc-1

for a 1 eV neutrino. Power
on smaller scales is

suppressed

Even for a small neutrino 
mass, a large impact on

structure. The power
spectrum is an excellent

probe of neutrino masses

Neutrinos affect the large scale structure

They do not participate in collapse for scales smaller than
The freestreaming scale



The Cosmic Microwave Background radiation (CMB)

One of the first and most important application of the perturbation theory and fluctuations
description is the study of the CMB anisotropies. 

One of the main sources of information about cosmology

Measurements of the CMB provide the most precise results of the comological parameters up to
date (Galaxy surveys start to reach a similar precisión level now) 



Fluctuations in the baryon-photon plasma



Calculation more complicated. 
Need to take into account all the physics of the photon-electron plasma

Well-known physics→ allows a precise prediction of the CMB power spectrum
The shape of the power spectrum has a lot of cosmological information



Before recombination
• Early Universe
• High temperature

– Electrons are free
– Light interacts with them

Recombination
• Late Universe
• Lower temperature

– e- y p+ form hydrogen
– Light travels freely



Cosmic Microwave Background (CMB)

Thermal radiation from the
atom formation period

~380000 years after the BB  
or…. 13800 Myears ago!! 

Discovered in 1965
In 1992 Discovery of its non-

uniformity. Its small
anisotropies are the imprint of
the seeds of all the structure of

the Universe.

The most precise measurement
of the cosmological parameters

come from the CMB.



The frequency spectrum is a 
perfect black body at 2.725K

The Universe was in 
thermodynamic equilibrium 
before the recombination:
The collision rate was much 
smaller than the expansion rate



Slide from Ned Wright



β = -0.007 ± 0.027

CMB Temperature . vs . z

COBE

SZ Effect

CO Molecule lines

C atom lines

arXiv:1012.3164 [astro-ph]



Slide from
Ned Wright



DT  = 3.355 mK

DT  = 18 µK

Dipole anisotropy from the Earth
movement

Solar System: v  =  368 ± 2 km/s
Towards the constellation of 

Leo





From May 2009 to October 2013
Much more precise tan previous

Able to measure polarization
Arrived at L2 in July 2009.
Final results in july 2018.

Planck: The most recent satellite



Final results
released on 17 

july 2018

Highest
precisión 

confirmation
of ΛCDM



Statistical Properties

Expansion in spherical
harmonics (Fourier 
transform on the sphere)
Quantifies clustering at 
different scales
T0 = 2.726K
ΔT(θ,φ) = T(θ,φ) – T0



Spherical Harmonics:

l=1

by Matthias Bartelmann



by Matthias Bartelmann

l=2



by Matthias Bartelmann

l=3



by Matthias Bartelmann

l=4



by Matthias Bartelmann

l=5



by Matthias Bartelmann

l=6



by Matthias Bartelmann

l=7



by Matthias Bartelmann

Higher l means smaller scales; l~π/θ

l=8



by Matthias Bartelmann

Example of a map reconstruction
l=1



by Matthias Bartelmann

l=1 + l=2



by Matthias Bartelmann

l = 1 - 3



by Matthias Bartelmann

l= 1- 4



by Matthias Bartelmann

l= 1- 5



by Matthias Bartelmann

l= 1 - 6



by Matthias Bartelmann

l= 1 – 7



by Matthias Bartelmann

l= 1 - 8



by Matthias Bartelmann

Very high l



by Matthias Bartelmann

Original map



3 zones in the power spectrum

There is a characteristic scale , θ~1o



Planck .vs. ΛCDM



PLANCK 2018

26.6 %

4.9 %

68.5 %



Spherical collapse, non-linear evolution

New concept: HALO

Halos are the sef-gravitating systems in the Universe
Peaks in the density field above δC

Sites for Galaxy formation (gastrophysics, virialization)
halos are non-linear peaks in the dark matter density field whose selfgravity has 

overcome the Hubble expansion



Spherical model: Overdense sphere→ closed sub-universo

3 epochs:

1) Turnaround: Sphere breaks away from the general expansión and reaches a maximum radius
(at θ = π, t = π B)
Density enhancement ρ/< ρ > ~ 5.55 and δ~ (3/20)(6 π)2/3 ~ 1.06

2) Collapse: Sphere will collapse to a singularity at θ = 2 π  (in reality it virializes due to non-
gravitational physics)

3) Virialization: Interactions→ Convert kinetic energy of collapse into random motions, V=-2K
Density enhancement at collapse: ρ/< ρ > ~ 178;  δC ~ 1.686

Spherical collapse, non-linear evolution

Solve with the development
angle (Scaled conformal time 
η) as the parameter

density perturbation
within the sphere







To quantify this distributions, define the mass function: Number of halos with a mass
above some threshold

Many formulae:

Press & Schechter 1974
Sheth & Tormen 1999, 2001
Jenkins et al 2001
Reed et al 2005
Warren at al 2005

X refers to cosmological model
and halo finder

Mass function is parameterized in 
terms of fluctuations in the mass field

Press-Schechter:
The fraction of mass in halos >M 
→ the fraction of volume with
density above threshold δC

δC = 1.686



Non- linear growth and N-body simulations
Numerical N-body simulations are the best tool to understand the nature of non-linear 
dynamics, and to test methods and compare with observations.

Simulations use dark matter halos and evolve them using only gravity, evolving into a 
nonlinear gravitational clustering

Galaxies are included in dark matter halos using semi-analitical and phenomenological
methods, and matching them to observations (reproduce clustering, bias…)

z=18.3 
0.21 Gyr

z=5.7 
1.0 Gyr

z=1.4 
4.7 Gyr

z=0 
13.6 Gyr











How to measure the Large Scale Structure of
the Universe



How to measure LSS: Characterizing structure

If one Galaxy has comoving coordinate x, then the probability of finding
another Galaxy in the vicinity of x is not random. They are correlated.

Consider two comoving points x and y. If <n> is the average number density of
galaxies,  probability of finding a Galaxy in the volumen element dV around x is

P1 = <n> dV

In practice, asume dV is small so that P1<<1 and the probability of finding >1 
galaxies in dV is negligible

The probability of finding a Galaxy in dV around x and finding a Galaxy in dV
around y is

P2 = (<n> dV)^2 [1+ ξG(x,y)]

If the probabilities were uncorrelated, P2 = P1
2. Because they are correlated

include an extra term ξG(x,y), which is the correlation function



Many methods:

• The Spatial Correlation Function
• The Angular Correlation Function
• Power spectrum
• Counts in Cells
• Void Probability Functions
• Higher order statistics

2pt-correlation function or power spectrum are the
main observables to study the structure of the

universe

How to measure LSS: Characterizing structure

Random Distribution Clustered Distribution

How can we distinguish between
a random and a clustered

distribution?

Generally we want to 
measure how a distribution 
deviates from the Poisson 

case



2 posible measurements:
Spatial correlation function ξ(r,z) (clustering in 3D)
Angular correlation function w(θ,z) (projected sky)

Excess of probability with respect to a uniform distribution to find two galaxies
separated by r or θ

dP = n (1+ ξ(r,z)) dV ; ξ(r,z) > -1 ; ξ(r,z) → 0 when r→ꝏ

Statistical
Homogeneity

Definition of the correlation
function

ξ(r1, r2) = < δ(r1) δ(r2)> = 

=     ξ(r1-r2)  

=     ξ(|r1-r2|)

Statistical
Isotropy

In practice: the correlation function is calculated by counting the number of pairs around 
galaxies in a sample volume and comparing with a Poisson distribution

How to measure LSS: Characterizing structure



w(θ) = (DD/RR) – 1              Natural 

w(θ) = (2DD/DR) – 1           Standard

w(θ) = (DD-2DR+RR)/RR Landy-Szalay

w(θ) = 4(DDxDR)/(DR2-1)   Hamilton

Compare the data with a homogeneous randomly distributed (no clustering) distribution of
points, that has the same spatial sampling as galaxies

Estimators of the Correlation Function

DD(r) number of pairs data-data 
RR(r) number of pairs random-random
DR(r) number of pairs data-random

Using the random sample one can take into
account practical difficulties like the partial
covering of the sky with observations or the
different depth of the observations for
different points in the sky

How to measure LSS: Characterizing structure



Comparing measurements to theory: The correlation function is the Fourier transform
of the power spectrum
The power spectrum and correlation function contain the same information; accurate 
measurement of each give the same constraints on cosmological models.

How to measure LSS: Characterizing structure



Since ξ(r) is independent of the r direction, the angular integrals can be calculated:

How to measure LSS: Characterizing structure



Same
2pt, 

different
3pt 

functions

The correlation function (or the power spectrum) contains the full statistical
information only for Gaussian distributions.

This is the 2-point correlation function.

Higher order statistics to obtain more information: 3, 4 … points correlations
functions (instead of pairs, consider triangles, quadrangles…) → non-Gaussianity

How to measure LSS: Characterizing structure



To measure the correlation function, we need a catalog of objects (usually galaxies)

2 main kinds of catalogs:
Spectroscopic: Obtain the spectrum for a selected group of galaxies. This gives an accurate
determination of the redshift, and allows to measure the full spatial distribution

photometric: Obtain images in different colors for all the objects. This gives a not so precise 
determination of the redshift (photometric redshift or photoz). Measure the angular (projected) 
distribution of galaxies for several redshift intervals.

We can define angular quantities that behave like the full spatial ones:
Angular correlation function (w(θ,z)), angular power spectrum Cl

How to measure LSS: Characterizing structure



How to measure LSS: Characterizing structure



How to measure LSS: Characterizing structure
Difficulties: Biasing. We observe galaxies, not dark matter. 

How well do galaxies trace the underlying perturbations in the matter?

Correlation function depends on galaxy properties: Brighter, more massive galaxies have a larger 
bias than fainter, lower mass galaxies

The different clustering properties of these galaxies tell us something about how they form

Use these dependencies in the data analysis to obtain information about bias and control 
systematic errors

SDSS Data
Zehavi et al., ApJ 630 

(2005) 1-27



The galaxies we observe do not perfectly trace the underlying
mass distribution in the universe (i.e., light does not trace mass)

Expect galaxies to be found preferentially in the most prominent
high-mass peaks

Galaxies form
above this linemass/density

threshold

Fluctuations
in DM

How to measure LSS: Galaxy Bias



Express fluctuations in the number of observed 
galaxies in terms of fluctuations in the mass 
density times biasing factor:

linear bias
(in general,more complicated)

In general, bias b >= 1

Bias depends on the properties of the selected
Galaxy sample

δGalaxies = b δMatter

How to measure LSS: Galaxy Bias



How do we compile these galaxy samples?

I. Obtaining multi-colour images of a large area of the sky

II. Create a catalogue and then select the sources over 
some range of brightness (and perhaps using some other 
criteria)

III. Measure redshifts for sources (to add third dimension)

How to measure LSS: Characterizing structure



How to measure LSS: Characterizing structure

Example:
Galaxy 

density map
for DES 
Science

Verification
data 

(Benchmark
Sample)

ra (degrees)

d
ec

(d
eg

re
es

)



How to measure LSS: Characterizing structure
Survey conditions maps that can affect the clustering of galaxies



How to measure LSS: Characterizing structure
Measured correlation functions

M. Crocce et al.,
MNRAS 455 (2015) 4301-4324



How to measure LSS: Characterizing structure

From the previous analysis one can obtain the Galaxy bias and its evolution with the redshift



Of course, there are other techniques as well for quantifying
clustering:

Counts In Cells -- Divide the Space into Discrete Grid Points
“Cells” and Calculate the Variation in the # of Sources per Grid
Point

Void Probability Function -- Probability of Finding Zero Galaxies
in a Volume of Radius R

Higher order statistics – 3pt correlation functions

We will not describe them in this course

How to measure LSS: Other Techniques



For next sessions: How to do cosmology with the
correlation function

Baryon acoustic oscillations

Redshift space distortions

Other probes and combinations



Non-linear regime

Redshift space distortions

Baryon Acoustic Oscillations

Linear theory

Non-linear theory

Simulations


