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The LSS: Theory and Measurement

Gravitational collapse

Matter Perturbations in the Universe and their growth
The CMB: Brief desciption and results

Non-linear growth: Spherical collapse

Simulations

How to measure LSS,

Correlation function, power spectrum
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Observational effects. Random samples and other effects



We have treated the Universe as smooth.
But it contains structures!
Galaxies are not randomly distributed, but clustered

T1h

2dF Galaxy o X
Survey LSS -6‘0
measurement

h
y
. A " : ’ ;:.: .‘.1(‘.‘.' ’ .-- b ‘.,
"".
>
¥

&S

We are able to explain how this structure formed and evolved



LSS Formation and Evolution: General ldea

Generation of fluctuations: Quantum fluctuations of the inflaton become classic due to the
wild inflationary expansion. At the end of inflation the inflaton field decays into particles

Quantum fluctuations of the field = fluctuations in the number of particles = fluctuations in
the energy density

Inflation generates initial conditions, (Gaussian) i. e. seeds for the LSS: Gravity does the rest

Years after the Big Bang

e
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The properties of the initial fluctuations determine the properties of the LSS

Important point: Inflaton is a quantum field 2 We cannot predict the specific value of the
fluctuations, but only their statistical properties = Our predictions for the LSS are statistical



Summary of the formation and evolution of
structure in the Universe

Photons
freestream:
Inhomogeneities
turn into
103> s ~10° years anisotropies

Quantum Perturbation

FIuc.tuations Growth: Zreion Opr W

during Pressure. vs.

inflation Gravity Matter

V(D) Q,, Q, Q,, f, perturbations

grow into non-
linear structures
observed today



Fluctuations are small. We can use perturbation

theory gw/(n; 33) (77) T 59LW(77> :E)

= G
2 types of perturbations: metric perturbations, TLW (777 €L ) — TLW (77) + 5TLW (77: 33)

density perturbations
= @, 0pm, 0Py

Remember: Spacetime tells matter how to move,
matter tells spacetime how to curve
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Matter perturbations

Use newtonian gravity 2 Good approximation of general relativity in cosmology on scales well
inside the Hubble radius and when describing non-relativistic matter (for which the pressure P is
much less than the energy density p).

dp

Continuity 0—; — v y ([)V) 0
tuler — + (v-V)v = —Vp—Vo
5 T (v V) Vb= Ve

Poisson vzo = 47TG[).

These equatons are used in all cosmological N-body simulations of the non-linear growth of
structure

3 regimes:

0 << 1: linear theory

o ~ 1:need specific assumptions (i. e. spherical symmetry)

6 >> 1: non-linear regime. Solve numerically, simulations (also higher order perurbations)

In general: Universe is lumpy on small scales and smoother on large scales — consider
iInhomogeneities as a perturbation to the homogeneous solution



Matter perturbations
p— p(t)+op=p(t)(1+0)

P — P(t)+ 6P Linearizing the equation:

u—at)Hb)x+v . . 2_,
& = B(x.0) + 0. + 2Hb = dnGpod + 5V20

Using the Fourier transform, we can write egs. For the Fourier modes:

Slmt) = ) Op(t)e™®

k

o (t) = %/5(3@,1&) e FT Py

2 2
o
a/2

5& = QH&; — (47TGp()<t) = ) 5A:- For baryonic matter

5% + 2H5k — 47‘(‘Gpm(t)(5k =0 For dark matter



Matter perturbations

We can linearize this equation because ¢ is very small . The linear regime is very important:

* On all scales, primordial fluctuations were extremelly small, 6 << 1. The seeds of structure
formation were linear

* The linear stage of structure formation is a relatively long lasting one.

* One may always find large scales where the density and velocity perturbations are still linear.
Today, scales larger than ~10 h* Mpc behave linearly

« CMB measurements have established the linear density fluctuations at the recombination
era. By studying the linear structure growth, we are able to translate these into the
amplitude of fluctuations at the current epoch, and compare these predictions against the
measured LSS in the Galaxy distribution

(5(X, t) _ IO(X7 720 (_t)pO(t)



Matter perturbations

in a matter dominated Universe H = 3
3t
.. 4 . )
0+ —0 0=20
i 3t 3t2

0 :+ B(a)t™!

linear growth

0 = do(x)a



Matter perturbations

in a lambda dominated Universe 72 — Ae*nG
3

0+ 2H = 0

0 : + B(x)e 2!

frozen fluctuations



Matter perturbations

In a radiation dominated universe

ok + 2H 0y — 417G P, = 0

a o t1/? = H—l— %ﬁ
2t 3

H™ 20 +2H ' 0p = = Pm <K P

At most logarithmic growth during radiation domination.

1) The increased expansion rate due to the presence of a smooth component slows down the
growth of perturbations

2) There is no significant growth during the radiation dominated period

5k(t) — A+ Blnt



Matter perturbations
e Matter dominated case

) = ) 1 B(:L‘)t_l Linear growth
 Radiation dominated case

Op(t) = A+ Blnt No significant growth

e Lambda dominated case

) = + B(;U)e_2Ht Frozen fluctuations

® general case

0 = do(x)ag(a, 2mo)

g is constant at early times and scales as |/a at late times

for our cosmology, the action ended around z=0.5



Matter perturbations

2.2
Baryon photon fluid IN - k Cs
Jeans length and scales for collapse 6’f + ZH(Sk o 47TG/;O (t) - a2 5k

GRAVITY PRESSURE

Jeans Length: Both effects are equal —

; ; k a \/47TGp Jeans

2 k2 —
Czlz >4np, -> Oscillating solution J ag ; wavenumber
S
2 k2 J
“s<4mp, -> Perturbations grow 27 eans
a AJ

wavelength

ks

the perturbations grow exponentially (if no expansion) with time or oscillate as sound waves
depending on whether their wave number is greater than or less than the Jeans wave number

For k > k, we have sound waves, for k < k, we have collapse. The expansion adds a sort of friction
term on the left-hand side: The expansion of the universe slows the growth of perturbations
down.



Matter perturbations

CMB shows that at z~1100, perturbations are of the order 10~. If they

grow as & ~ t%3, then for z=0 they grow a factor of 1000, becoming of
the order 1%

Dark matter provides a solution. Perturbations in dark matter do not
couple to radiation and can be much larger tan gas (baryons)
perturbations without perturbing the CMB. By starting with much larger
perturbations, we can reach the 6 ~ 1 regime much earlier, allowing to
form the observed structures - LSS formation NEEDS dark matter!

It is useful to express the perturbation as (5(2) — 50D+ (z)

linear growth factor, D, (z)

1 5Q, [ da
D —
+H2) = 192 /Oa3H(a)3




Matter perturbations: Comparing the theory to the
observations

The current standard model of cosmology includes the inflation as
primordial perturbations generator. In any case, the initial perturbations
are Gaussian.

The density contrast 0 is a homogeneous, isotropic Gaussian random
field (Fourier modes are uncorrelated)

Its statistical properties are completely determined by 2 numbers: mean
and variance.

The variance is described in terms of a function called the POWER
SPECTRUM

(6

The initial power spectrum has the Harrison-Zel dovich form:
P(k) « k™s,ng~1 Spectral index

A

(E)(S*(E’)> — (27)*P(k)6p (E _ E)




Matter perturbations

These assumptioins have been very precisely verified in the CMB.
Spectral index can be related to some parameters of the inflationary field

The power spectrum is splitted into a linear and a non-linear part

P(k) = P, (k) + Py, (k)

The linear power spectrum corresponds to the linear overdensity field and is given by

P (t, k) = Ao k™ST*(k)D5(t)

Where D+(t) is the growth factor and T(k) is the transfer function and takes into account the
transformation from the density fluctuations from the primordial spectrum

Through the radiation domination epoch

Through the recombination epoch

To the post recombination power spectrum
And contains the messy physics of the evolution of density perturbations

It is computed by solving the Boltzmann equation for the primordial multicomponent cosmic
plasma numerically (for example, using CAMB (Lewis & Challinor 2011)).



T(k)

Transfer function and power spectrum
for several models:

Baryons CDM: Cold dark matter

= CDM |
HDM: Hot dark matter
- | MDM: mixed dark matter (cold+hot)
i | |
| | Primordial (Pock)
0.001 0.01 0.1 1 10
-1
k {Mpc'} 102
<
~ 104
106
0.001 0.01 0.1 1 10

k {Mpc'}
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Matter perturbations

The full power spectrum shape

LI I
large scales

lll'll

small scales -




Py(k) [(h~'Mpc)’]

Matter perturbations

Measured power spectrum for different cosmological tracers
Linear approximation
ACDM is a good description

Planck TT

Planck EE

Planck ¢¢

SDSS DR7 LRG

BOSS DR9 Ly-a forest
DES Y1 cosmic shear

o o

10 10° 102 10%
Wavenumber k [h Mpc™!]



Shape of the matter power spectrum
. k" Large scales
P(k)oc k"T (k) « {

kn—?n 1112 k
The turnover scale is the one that enters the (K) Small scales

horizon at the epoch of matter-radiation equality 1098 Since structure grows slightly during
radiation era when potential decays

=IIIIIII T IIIIIIII T T T T T TTH

104 . 2 -1
] kpo =0.073C2 7" Mpc

1000 The shape of the power

spectrum is sensitive to
the matter density on
the Universe through the

cbl o\ position of the turnover
0.1 1 scale

P(k) (h-® Mpc?)

100 B




Neutrinos affect the large scale structure

My,
They do not participate in collapse for scales smaller than QI/ — O 02
The freestreaming scale ]_ ev
. vt (T/m)H!
oty — o~ Ot e
) a a
m,= 0.5 eV

This scale is ~0.02 Mpc?

e
for a1 eV neutrino. Power ﬂ&
on smaller scales is = 1000 k
suppressed 7 .
£ [
P
. ﬁ [
Even for a small neutrino 2% -
mass, a large impact on A 100 &
structure. The power C
spectrum is an excellent bl _
probe of neutrino masses 0.01 0.1 1

k (h Mpc?)
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One of the first and most important application of the perturbation theory and fluctuations
description is the study of the CMB anisotropies.

One of the main sources of information about cosmology

Measurements of the CMB provide the most precise results of the comological parameters up to
date (Galaxy surveys start to reach a similar precision level now)



Fluctuations in the baryon-photon plasma

Equation of motion for the baryon-photon fluid

8+ 8+ kRS, = — ok + 49" o' | H=al
 FIFRO TGN % 3T 1T R
T 1}
pressure gravity

Until "decoupling” at z~1100, there is a strong coupling between
electrons and photons, which behave like a single fluid.

Baryon to photon ratio Sound speed
R o 3 ﬁh - U 6 flhhg (a (.2 _ ]_
T 4p, 0\ 0.02)\1073 S 3(1+R)
For sub-horizon modes
before MRE ¢ <K Geq after MRE @ > Qeq
* gravitational potential small * grav. potential as external force
1 | 1_. 4_.
8 — ZV?%5, ~ 0 6! — V25, = —V*® = const

3 3 3



Calculation more complicated.
Need to take into account all the physics of the photon-electron plasma
Well-known physics = allows a precise prediction of the CMB power spectrum
The shape of the power spectrum has a lot of cosmological information

llllll I ] lllllll I L] lllllll

6 Total First peak —
SW

Doppler

4 [SW

{~200=6~1°
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Early Development
of the Universe

Before recombination
e Early Universe
e High temperature
— Electrons are free -,
— Light interacts with them

Bic BANG PLuUs TINIEST
FrRACTION OF A SECOND

(107%°)

Recombination

e Late Universe

e Lower temperature
—e- y p+ form hydrogen
— Light travels freely




Cosmic Microwave Background (CMB)

Thermal radiation from the f(, ‘.
atom formation period [ Fog 0
~380000 years after the BB [RERERSEE 5 &
. 13800 Myears ago!! s s.

Discovered in 1965 B
In 1992 Discovery of its non-
uniformity. Its small
anisotropies are the imprint of
the seeds of all the structure of
the Universe.

Can only see
surface of cloud

The most precise measurement where ight wes
of the cosmological parameters

The Cosmic Microwave Background Radiation's
"surfact of last scatter" is analogous to the
come fro m th e C M B light coming through the clouds to our
° eye on a cloudy day.
MAFP990053



) Wavelength [mm
The frequency spectrum is a 5 ' 1g [ .:;,,]57

perfect black body at 2.725K |

FIRAS data
2.725 K Blackbody

The Universe was in
thermodynamic equilibrium
before the recombination:

The collision rate was much
smaller than the expansion rate

(o)
-]
o

Intensity [MJy/sr]

Wavelength [cm]
1

¥ L] I'I'I'I LI L] L]
FIRAS data with 500 errorbars
Ground & Balloon Data
CN & ARCADEdata
— 2.725 K Blackbody

I i

r..fil Huilr )“

1 1
20

Residual




On the CN non-discovery

I m;.ﬂﬁ?ﬂ:'-'rw
oy

|Lowro .
(1)
1'»""'\#;-.4&,“'"
3874.8 38864 3890.2
Plate 3 of Adams (1941, ApJ, 93, 11-23)
Herzberg (1950) in Spectra of Diatomic Molecules, p 496:

“From the intensity ratio of the lines with K=0 and K=1 a
rotational temperature of 2.3° K follows, which has of
course only a very restricted meaning.”

There went Herzberg's [second] Nobel Prize.
Slide from Ned Wright




CMB Temperature .vs . 2

b

=

arXiv:1012.3164 [astro-ph]

B =-0.007 % 0.027

A

COBE

SZ Effect

2.0 2.5

CO Molecule lines

C atom lines

3.0




A Big Media Splash in 1992:

25 April 1992

Prof. Stephen Hawking of Cambridge University,
not usually noted for overstatement, said: “It is the
discovery of the century, if not of all time.”

Slide from
Ned Wright




AT =3.355 mK

AT =18 pK

Dipole anisotropy from the Earth
movement

VELOCITY COMPONENTS OF THE OBSERVED CMB DIPOLE
Solar System:v = 368 + 2 km/s
“\Towards the constellation of

—— SN

ENUS o

a  ANDROMEDA
G—Nx
\4:' KMZEC
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Planck: The most recent satellite
From May 2009 to October 2013
Much more precise tan previous

Able to measure polarization
Arrived at L2 in July 2009.
Final results in july 2018.

. -
e .




The Cosmic Microwave Background as seen by Planck and WMAP

A Final results
& released on 17
july 2018

Highest
precision
confirmation
of ACDM

Planck



Statistical Properties

Expansion in spherical
harmonics (Fourier
transform on the sphere)
Quantifies clustering at
different scales
T,=2.726K

AT(G,CI)) = T(e,d)) I



Spherical Harmonics:

by Matthias Bartelmann




by Matthias Bartelman
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Higher | means smaller scales; I~mt/6
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Example of a map reconstruction
=1

by Matthias Bartelman



by Matthias Bartelmann




by Matthias Bartelmann




= 1- 4
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by Matthias Bartelmann




|=1-5

by Matthias Bartelmann



=1-6

by Matthias Bartelmann




=1-7

by Matthias Bartelmann




=1-8

by Matthias Bartelmann




Very high |

by Matthias Bartelmanmn




Original map

by Matthias Bartelmann




3 zones in the power spectrum

There is a characteristic scale, 6~1°

10" 107 10°
Spherical harmonic number ell ~ 180/60



Planck .vs. ACDM
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PLANCK 2018

Dark Matter 26.6 %

Dark Energy 68.5 %




Spherical collapse, non-linear evolution
New concept: HALO

Halos are the sef-gravitating systems in the Universe
Peaks in the density field above o,
Sites for Galaxy formation (gastrophysics, virialization)
halos are non-linear peaks in the dark matter density field whose selfgravity has
overcome the Hubble expansion

halo halo




Spherical collapse, non-linear evolution

Spherical model: Overdense sphere €= closed sub-universo
Friedmann equation in a closed universe 1/9
0= Hyn(Q,, —1)Y

Solve with the development
angle (Scaled conformal time
n) as the parameter

1 da _ -2\ 1/2
EE - HU (Q?na' ’ =+ (1 o Qﬂl)a 2)

r(@) = A(l—cosf) A=reQ2,/2(Q, —1)
t@) = B0 —sint) B=H;'Q,,/2(Q,, —1)*?

_ 2/3
5 Pm — Pm _ 3 <6f) / density perturbation

P - % E within the sphere

3 epochs:

1) Turnaround: Sphere breaks away from the general expansion and reaches a maximum radius
(at@=m, t =m B)
Density enhancement p/< p >~ 5.55 and &~ (3/20)(6 m)?/3 ~ 1.06

2) Collapse: Sphere will collapse to a singularity at 6 = 2 it (in reality it virializes due to non-
gravitational physics)

3) Virialization: Interactions =2 Convert kinetic energy of collapse into random motions, V=-2K
Density enhancement at collapse: p/< p >~ 178; 6.~ 1.686



Gravitational collapse

Colapsed region
(a galaxy)
overdense region
Initial
seed

Expansion (Hubble flow)

time



turn-

non-linear CO”EI.PSE the overdensity for
around linear theory is
de ~ 1.69
perturbation
> T e
'O | 8 &~ 178
S diin=1.69 P
B, 2 - _
. virial equilibrium
universe 5 g
' 55*8%4 =178
Pmax x
~ D.D -
p a’

Scale faCtO r universe expands by 2%?

less dense by factor of 4



To quantify this distributions, define the mass function: Number of halos with a mass
above some threshold

1 T T IIII||| T T T TTTTT T IIIIIIII T T II\IIIl T T IIIIII| T T T TT1T
0.1 g«%
g % Press-Schechter:

— 0.01 3 M 2 The fraction of mass in halos >M
I& 107° 3 3 -2 the fraction of volume with
= 107*[ < density above threshold o,

< E "%

—_ 10_5 - N“/".(\‘« ]

ER % 3 5.=1.686

32 _7§E _ Man(Ma Z) ?

g 1077k flo,z; X) = — | o 55, 52
10 f poamo | Jlo PS) = 2 exp(=55)
10-9 = X refers to cosmological model :

E .
10710 : and h?lo f'”def T BT BT BTN Y
10'® 10t 10" 10 10 10 10'°
M [h M) Many formulae:

, b2 (2) , , Press & Schechter 1974

oc° (M, z) = 5 /k P(k)W=(k; M)dk Sheth & Tormen 1999, 2001
Jenkins et al 2001

Mass function is parameterized in Reed et al 2005

terms of fluctuations in the mass field Warren at al 2005



Non- linear growth and N-body simulations

Numerical N-body simulations are the best tool to understand the nature of non-linear
dynamics, and to test methods and compare with observations.

Simulations use dark matter halos and evolve them using only gravity, evolving into a
nonlinear gravitational clustering

Galaxies are included in dark matter halos using semi-analitical and phenomenological
methods, and matching them to observations (reproduce clustering, bias...)
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How to measure LSS: Characterizing structure

If one Galaxy has comoving coordinate x, then the probability of finding
another Galaxy in the vicinity of x is not random. They are correlated.

Consider two comoving points x and y. If <n> is the average number density of
galaxies, probability of finding a Galaxy in the volumen element dV around x is

P, =<n>dV

In practice, asume dV is small so that P,<<1 and the probability of finding >1
galaxies in dV is negligible

The probability of finding a Galaxy in dV around x and finding a Galaxy in dV
aroundy is

P, =(<n>dV)"2 [1+ &(x,y)]

If the probabilities were uncorrelated, P, = P,2. Because they are correlated
include an extra term §;(x,y), which is the correlation function



How to measure LSS: Characterizing structure

Many methods:

e The Spatial Correlation Function
e The Angular Correlation Function

® Power spectrum

e Counts in Cells

e Void Probability Functions
e Higher order statistics

Generally we want to

measure how a distribution
deviates from the Poisson

case
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Random Distribution

Clustered Distribution

How can we distinguish between
a random and a clustered
distribution?

2pt-correlation function or power spectrum are the

main observables to study the structure of the

universe




How to measure LSS: Characterizing structure

2 posible measurements:
Spatial correlation function &(r,z) (clustering in 3D)
Angular correlation function w(8,z) (projected sky)

Excess of probability with respect to a uniform distribution to find two galaxies
separated by ror 6

dP =n (1+ &(r,z)) AV ; &(r,z) > -1; é(r,z) 2 O when r=> @

Definition of the correlation
function

Statistical
Homogeneity

§(r1, r2) = < 8(r1) §(r2)> =

¢(r1-r2)
Statistical

= §(lr1-r2|) «— I'sotropy

In practice: the correlation function is calculated by counting the number of pairs around
galaxies in a sample volume and comparing with a Poisson distribution



How to measure LSS: Characterizing structure

Compare the data with a homogeneous randomly distributed (no clustering) distribution of
points, that has the same spatial sampling as galaxies

Estimators of the Correlation Function

w(8) = (DD/RR) — 1 Natural

w(8) = (2DD/DR) — 1 Standard

av,

w(0) = (DD-2DR+RR)/RR Landy-Szalay

w(8) = 4(DDxDR)/(DR?-1) Hamilton

DD(r) number of pairs data-data
RR(r) number of pairs random-random
DR(r) number of pairs data-random

A
LAY
L
kY \
|

Radius 6
Using the random sample one can take into VW /| V Q
account practical difficulties like the partial i
covering of the sky with observations or the N
different depth of the observations for ‘ & ‘ 0

different points in the sky

VW e Q



How to measure LSS: Characterizing structure

Comparing measurements to theory: The correlation function is the Fourier transform
of the power spectrum

The power spectrum and correlation function contain the same information; accurate
measurement of each give the same constraints on cosmological models.

. 1 .
= Zéked"x Ok = —/ 5(x)e” " d
Vv
k

1 /
(Okdw) = 5 [ dae™ f da'e =" (5(x)5(x))
1 . 1./
= 7 [ dlael f dlre” P (5(x)0(x + 1))
1 w (k—K/
= 73 dre—k 'fg(r)/d%e%(kk)"‘

1 . 1
_ Vékk//ddre_”’k'rﬁ(r) = 751(1(’13(1{)?



How to measure LSS: Characterizing structure

Since §(r) is independent of the r direction, the angular integrals can be calculated:

27 s o0 _
(k) / Ao / sin 0o / drr2g, (r)e i s
0 0 0

— 27 /OO drr*&,(r) /W df sin fe T cos?
0 0

00 1 vkr
— 9 2 / —x
W/O drr 59(7‘)—7;]{70 dxe

—ikr
o0 sin(kr)
— 47?/0 d’r’erg(?") T




How to measure LSS: Characterizing structure

Same
2pt,
different
3pt
functions

The correlation function (or the power spectrum) contains the full statistical
information only for Gaussian distributions.

This is the 2-point correlation function.

Higher order statistics to obtain more information: 3, 4 ... points correlations
functions (instead of pairs, consider triangles, quadrangles...) 2 non-Gaussianity



How to measure LSS: Characterizing structure

To measure the correlation function, we need a catalog of objects (usually galaxies)

2 main kinds of catalogs:
Spectroscopic: Obtain the spectrum for a selected group of galaxies. This gives an accurate
determination of the redshift, and allows to measure the full spatial distribution

photometric: Obtain images in different colors for all the objects. This gives a not so precise
determination of the redshift (photometric redshift or photoz). Measure the angular (projected)
distribution of galaxies for several redshift intervals.

We can define angular quantities that behave like the full spatial ones:
Angular correlation function (w(8,z)), angular power spectrum C,

w(O) = [ dzd(z1) [ dezdlz) €(ri 2)

0 0
z = (21 +22)/2  r=+x(21)? 4 x(22)? = 2x(21)x(22) cos §

x(2) = — /z &
Ho Jo /Qum(1+2)3 + Qa(1 + 2)30+w)




Non-trivial to compare observation to theory

The observables, d,, are complicated functionals of the
easy-to-predict linear matter density field, o,.

Cc’.L 1 5NL T}égal




Difficulties: Biasing. We observe galaxies, not dark matter.
How well do galaxies trace the underlying perturbations in the matter?
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Correlation function depends on galaxy properties: Brighter, more massive galaxies have a larger
bias than fainter, lower mass galaxies

The different clustering properties of these galaxies tell us something about how they form




How to measure LSS: Galaxy Bias

The galaxies we observe do not perfectly trace the underlying
mass distribution in the universe (i.e., light does not trace mass)

Expect galaxies to be found preferentially in the most prominent
high-mass peaks

IR RN N T

Galaxies form
above this line

mass/density
threshold

Fluctuations
in DM




How to measure LSS: Galaxy Bias

Express fluctuations in the number of observed
galaxies in terms of fluctuations in the mass
density times biasing factor:

_ linear bias
6Galaxies — b 6I\/Iatter

(in general,more complicated)

In general, biasb >=1

Bias depends on the properties of the selected
Galaxy sample



How to measure LSS: Characterizing structure

How do we compile these galaxy samples?
l. Obtaining multi-colour images of a large area of the sky

ll. Create a catalogue and then select the sources over
some range of brightness (and perhaps using some other
criteria)

I1l. Measure redshifts for sources (to add third dimension)
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How to measure LSS: Characterizing structure

Survey conditions maps that can affect the clustering of galaxies

PSF FWHM (g band)
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How to measure LSS: Characterizing structure

Measured correlation functions
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How to measure LSS: Characterizing structure

From the previous analysis one can obtain the Galaxy bias and its evolution with the redshift

- Linear bias
- DES-SV bench—mark sample (i<22.5) }

i
O
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g } BPZ (template)

- - § TPZ (machine learning)
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How to measure LSS: Other Techniques

Of course, there are other techniques as well for quantifying
clustering:

Counts In Cells -- Divide the Space into Discrete Grid Points
“Cells” and Calculate the Variation in the # of Sources per Grid

Point

Void Probability Function -- Probability of Finding Zero Galaxies
in a Volume of Radius R

Higher order statistics — 3pt correlation functions

We will not describe them in this course
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For next sessions:. How to do cosmology W|th the
.correlatlon functlon |

Baryon acoustic oscillations
Redshift space distortions -

Other probes and combina’gions
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