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Abstract

How many words—and which ones—are sufficient to define all other words? When dictionaries

are analyzed as directed graphs with links from defining words to defined words, they reveal a latent

structure. Recursively removing all words that are reachable by definition but that do not define any

further words reduces the dictionary to a Kernel of about 10% of its size. This is still not the small-

est number of words that can define all the rest. About 75% of the Kernel turns out to be its Core, a
“Strongly Connected Subset” of words with a definitional path to and from any pair of its words

and no word’s definition depending on a word outside the set. But the Core cannot define all the rest

of the dictionary. The 25% of the Kernel surrounding the Core consists of small strongly connected

subsets of words: the Satellites. The size of the smallest set of words that can define all the rest—
the graph’s “minimum feedback vertex set” or MinSet—is about 1% of the dictionary, about 15% of

the Kernel, and part-Core/part-Satellite. But every dictionary has a huge number of MinSets. The

Core words are learned earlier, more frequent, and less concrete than the Satellites, which are in turn

learned earlier, more frequent, but more concrete than the rest of the Dictionary. In principle, only

one MinSet’s words would need to be grounded through the sensorimotor capacity to recognize and

categorize their referents. In a dual-code sensorimotor/symbolic model of the mental lexicon, the

symbolic code could do all the rest through recombinatory definition.
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1. The representation of meaning

One can argue that the set of all the written words of a language constitutes the biggest

and richest digital database on the planet. Numbers and algorithms are just special cases

of words and sentences, so they are all part of that same global verbal database. Analog

images are not words, but even their digitized versions only become tractable once they

are sufficiently tagged with verbal descriptions. So in the end it all comes down to words.

But how are the meanings of words represented? There are two prominent representations

of word meaning: one is in our external dictionaries and the other is in our brains: our

“mental lexicon.” How are the two related?

2. The symbol grounding problem

We consult a dictionary in order to learn the meaning of a word whose meaning we

do not yet already know. Its meaning is not yet in our mental lexicon. The dictionary

conveys that meaning to us through a definition consisting of further words, whose mean-

ings we already know. If a definition contains words whose meanings we do not yet

know, we can look up their definitions too. But it is clear that meaning cannot be dic-

tionary look-up all the way down. The meanings of some words, at least, have to be
learned by some means other than dictionary look-up, otherwise word meaning is
ungrounded: just strings of meaningless symbols (defining words) pointing to meaningless

symbols (defined words). This is the “symbol grounding problem” (Harnad, 1990).

This paper addresses the question of how many words—and which words—have to be

learned (grounded) by means other than dictionary look-up so that all the rest of the

words in the dictionary can be defined either directly, using only combinations of those

grounded words, or, recursively, using further words that can themselves be defined using

solely those grounded words. Let us call those grounded words in our mental lexicon—
the ones sufficient to define all the others—a “Grounding Set.”

3. Category learning

The process of word grounding itself is the subject of a growing body of ongoing work on

the sensorimotor learning of categories, by people as well as by computational models

(Ashby &Maddox, 2011; Blondin Mass�e, Harnad, Picard, & St-Louis, 2013; De Vega, Glen-

berg, & Graesser, 2008; Harnad, 2005; Kang, 2014; Maier, Glage, Hohlfeld, & Rahman,

2014; Meteyard, Cuadrado, Bahrami, & Vigliocco, 2012; Pezzulo et al., 2012; Van der
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Velde, 2015). Here, we just note that almost all the words in any dictionary (nouns, verbs,

adjectives and adverbs) are “content” words,1 meaning that they are the names of categories
(objects, individuals, kinds, states, actions, events, properties, relations) of various degrees

of abstractness. The more concrete of these categories, and hence the words that name them,

can be learned directly through trial-and-error sensorimotor experience, guided by feedback

that indicates whether an attempted categorization was correct or incorrect. The successful

result of this learning is a sensorimotor category representation—that is, a feature-detector

that enables the learner to categorize sensory inputs correctly, identifying them with the right

category name (Ashby & Maddox, 2011; Folstein, Palmeri, Van Gulick, & Gauthier, 2015;

Hammer, Sloutsky, & Grill-Spector, 2015). A grounding set composed of such experientially

grounded words would then be enough (in principle, though not necessarily in practice) to

allow the meaning of all further words to be learned through verbal definition alone. It is only

the symbolic module of such a dual-code sensorimotor/symbolic system for representing

word meaning (Paivio, 2014) that is the object of study in this paper. But the underlying

assumption is that the symbolic code is grounded in the sensorimotor code.

4. Expressive power

Perhaps the most remarkable and powerful feature of natural language is the fact that

it can say anything and everything that can be said (Katz, 1978). There exists no lan-

guage in which you can say this, but not that. (Pick a pair of languages and try it out.)

Word-for-word translation may not work: You may not be able to say everything in the

same number of words, equally succinctly, or equally elegantly, in the same form. But
you will always be able to translate in paraphrase the propositional content of anything
and everything that can be said in any one language into any other language. (If you

think that you may still leave out anything that can be said, then just say it in any lan-

guage at all and it will prove to be sayable in all the others too; Steklis & Harnad, 1976.)

One counterintuition about this is that the language may lack the words: its vocabulary

may be insufficient: How can you explain quantum mechanics in the language of isolated

Amazonian hunter-gatherers? But one can ask the very same question about how you can

explain it to an American 6-year-old—or, for that matter, to an 18th-century physicist. And

the banal answer is that it takes time, and a lot of words, to explain—but you can always do

it, in any language. Where do all those missing words come from, if not from the same

language? We coin (i.e., lexicalize) words all the time, as they are needed, but we are

coining them within the same language; it does not become a different language every time

we add a new word. Nor are most of the new words we coin labels for unique new

experiences, like names for new colors (e.g., “ochre”) or new odors (“acetic”) that you have

to see or smell directly firsthand in order to know what their names refer to.

Consider the German word Schadenfreude, for example. There happens to be no single

word for this in English. It means “feeling glee at another’s misfortune.” English is

highly assimilative, so instead of bothering to coin a new English word (say, “misfor-

tune-glee,” or, more latinately, “malfelicity”) whose definition is “glee at another’s
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misfortune,” English has simply adopted Schadenfreude as part of its own lexicon. All it

needed was to be defined, and then it could be added to the English dictionary. The

shapes of words themselves are arbitrary, after all, as de Saussure (1911/1972) noted:

Words do not resemble the things they refer to.

So what it is that gives English or any language its limitless expressive power is its
capacity to define anything with words. But is this defining power really limitless? First, we

have already skipped over one special case that eludes language’s grasp, and that is new

sensations that you have to experience firsthand in order to know what they are—hence to

understand what any word referring to them means. But even if we set aside words for new

sensations, what about other words, like Schadenfreude? That does not refer to a new

sensory experience. We understand what it refers to because we understand what the words

“glee at another’s misfortune” refer to. That definition is itself a combination of words; we

have to understand those words in order to understand the definition. If we don’t understand

some of the words we can of course look up their definitions, too—but as we have noted, it

cannot be dictionary look-ups all the way down! The meanings of some words, at least

(e.g., “glee”) need to have been grounded in direct experience, whereas others (e.g., “an-

other” or “misfortune”) may be grounded in the meaning of words that are grounded in the

meaning of words . . . that are grounded in direct experience.

5. Direct sensorimotor grounding

How the meaning of a word referring to a sensation like “glee” can be grounded in

direct experience is fairly straightforward: It is much the same as teaching the meaning

of “ochre” or “acetic”: “Look (sniff): that’s ochre (acetic) and look (sniff) that’s not.”

“Glee” is likewise a category of perceptual experience. To teach someone which experi-

ence “glee” is, you need to point to examples that are members of the category “glee”

and examples that are not: “Look, that’s glee”—pointing to someone who looks and acts

and has reason to feel gleeful—and “Look, that’s not glee”—pointing2 to someone who

looks and acts and has reason to feel ungleeful (Harnad, 2005).

What about the categories denoted by the words “another” and “misfortune”? These

are not direct, concrete sensory categories, but they still have examples in our direct sen-

sorimotor experience: “That’s you” and “that’s another” (i.e., someone else). “That’s

good fortune” and “that’s misfortune.” But it is more likely that higher-order, more

abstract categories like these would be grounded in verbal definitions composed of words

that each name already grounded categories, rather than being grounded in direct sensori-

motor experience (Aitchison, 2012; Huang & Eslami, 2013; Nesi, 2014; Summers, 1988).

6. Dictionary grounding

This brings us to the question that is being addressed in this paper: A dictionary pro-

vides an (approximate) definition for every word in the language. Aside from a small,
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fixed set of words whose role is mainly syntactic (“function words,” for example, articles,

particles, conjunctions), all the rest of the words in the dictionary are the names of

categories (“content words,” that is, nouns, verbs, adjectives, adverbs). How many content
words (i)—and which ones (ii)—need to be grounded already so that all the rest can be
learned from definitions composed only out of those grounded words? We think the

answer casts some light on how the meaning of words is represented—externally, in

dictionaries, and internally, in our mental lexicon—as well as on the evolutionary origin

and adaptive function of language for our species (Blondin Mass�e et al., 2013; Cangelosi

& Parisi, 2012).

7. Synopsis of findings

Before we describe in detail what we did, and how, here is a synopsis of what we

found: When dictionaries are represented as graphs, with arrows from each defining word

to each defined word, their graphs reveal a latent structure that had not previously been

identified or reported, as far as we know. Dictionaries have a special subset of words

(about 10%) that we have called their “Kernel” words. Fig. 1 illustrates a dictionary and

its latent structure using a tiny mini-dictionary graph (Picard et al., 2013) derived from

an online definition game that will be described later. A full-sized dictionary has the

same latent structure as this mini-dictionary, but with a much higher proportion of the

words (90%) lying outside the Kernel. Table 1 and Fig. 2 show the proportions for a

full-sized dictionary.

The dictionary’s Kernel is unique, and its words can define the remaining 90% of the

dictionary (the “Rest”). The Kernel is hence a grounding set. But it is not the smallest
grounding set. This smallest grounding subset of the Kernel—which we have called the

“Minimal Grounding Set” (“MinSet”)—turns out to be much smaller than the Kernel

(about 15% of the Kernel and 1% of the whole dictionary), but it is not unique: The Ker-

nel contains a huge number of different MinSets. Each of these is of the same minimum

size and each is able to define all the other words in the dictionary.

The Kernel also turns out to have further latent structure: About 75% of the Kernel

consists of a very big “strongly connected component” (SCC: a maximal subset of

words within which there is a definitional path to and from every pair of words). We

call this the Kernel’s (and hence the entire dictionary’s) “Core.” The remaining 25% of

the Kernel surrounding the Core consists of many tiny strongly connected components,

which we call the Core’s “Satellites.” It turns out that each MinSet is part Core and

part Satellite.

The words in these distinct latent structures also turn out to differ in their psycholin-

guistic properties: As we go deeper into the dictionary, from the 90% Rest to the 10%

Kernel, to the Satellites (1–4%) surrounding the Kernel’s Core, to the Core itself (6–9%),

the words turn out on average to be more frequently used and to have been learned at a

younger age. This is reflected in a gradient within the Satellite layer: The shorter a Satel-

lite word’s definitional distance (the number of definitional steps to reach it) from the
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Core, the more frequently it is used and the earlier it was learned. The average concrete-

ness of the words within the Core and the 90% of words that are outside the Kernel (i.e.,

the Rest) is about the same. Within the Satellite layer in between them, however, Kernel

words become more concrete the greater their definitional distance outward from the

Core. There is also a (much weaker) definitional distance gradient from the Kernel out-

ward into the 90% Rest of the dictionary for age and concreteness, but not for frequency.

We will now describe how this latent structure was discovered.

Fig. 1. Illustration of a dictionary graph using data for a tiny (but complete) mini-dictionary (Picard et al.,

2013) generated by our dictionary game (see text for explanation). Arrows are from defining words to defined

words. The entire mini-dictionary consists of just 32 words. Mini-dictionaries have all the latent structures of

full-sized dictionaries. The smallest ellipse is the Core. The medium-sized ellipse is the Kernel. The part of

the Kernel outside the Core is the Satellites. The part outside the Kernel is the Rest of the dictionary. There

are many MinSets, all part-Core and part-Satellites (only one MinSet is shown here, within the dotted lines).

In full-sized dictionaries the Rest is about 90% of the dictionary, but in the game mini-dictionaries the Kernel

is about 90% of the dictionary. The average Satellite-to-Core ratio in the Kernel for full-sized and mini-dic-

tionaries is about the same (3/7) (see Table 1), but within MinSets this ratio is reversed (2/5 for full dic-

tionaries and 5/2 for mini-dictionaries).
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8. Control vocabularies

Our investigation began with two small, special dictionaries—the Cambridge Interna-
tional Dictionary of English (47,147 words; Procter, 1995; henceforth Cambridge), and the

Longman Dictionary of Contemporary English (69,223 words; Procter, 1978; henceforth

Longman) (Table 1). These two dictionaries were created especially for people with limited

English vocabularies, such as non-native speakers; all words are defined using only a “con-

trol” vocabulary of 2,000 words that users are likely to know already. Our objective was to

analyze each dictionary as a directed graph (digraph) in which there is a link from each

defining word to each defined word. Each word in the dictionary should be reachable, either

directly or indirectly, via definitions composed of the 2,000-word control vocabulary.

A direct analysis of the graphs of Longman and Cambridge, however, revealed that

their underlying control-vocabulary principle was not faithfully followed: There turned

out to be words in each dictionary that were not defined using only the 2,000-word “con-

trol” vocabulary, and there were also words that were not defined at all. So we decided

to use each dictionary’s digraph (a directed graph with arrows pointing from the words in

each definition to the word they define) to work backwards in order to see whether we

could generate a genuine control vocabulary out of which all the other words could be

defined. (We first removed all undefined words.)

9. Dictionaries as graphs

Dictionaries can be represented as directed graphs D = (V, A) (digraphs). The vertices
(i.e. the members of v) are words and the arcs connect defining words to defined words,

that is, there is an arc from word u to word v if u is a word in the definition of v. More-

over, in a complete dictionary, every word is defined by at least one word, so we assume

Table 1

Number and percentage of word-meanings for each latent structure in each of the four dictionaries used (plus

averages for game-generated dictionaries). Based on using only the first word-meaning for each stemmatized

part of speech wherever there are multiple meanings (hence multiple words)

Cambridge Longman Webster WordNet

Game

Dictionaries

(Average)

Total word-meanings 47,147 69,223 248,466 132,477 182

First word-meanings 25,132 31,026 91,388 85,195 182

Rest 22,891 (91%) 28,700 (92%) 80,433 (88%) 75,393 (88%) 10.1 (7%)

Kernel 2,241 (9%) 2,326 (8%) 10,955 (12%) 9,802 (12%) 171.7 (93%)

Satellites 232 (1%) 540 (2%) 2,978 (3%) 3,410 (4%) 54.5 (29%)

Core 2,009 (8%) 1,786 (6%) 7,977 (9%) 6,392 (8%) 117.2 (64%)

MinSets 373 (1.48%) 452 (1.46%) 1,396 (1.53%) 1,094 (1.28%) 32.8 (18%)

Satellite-MinSets 59 (0.23%) 167 (0.54%) 596 (0.65%) 532 (0.62%) 20.6 (63%)

Core-MinSets 314 (1.25%) 285 (0.92%) 800 (0.88%) 562 (0.66%) 12.2 (37%)
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that there is no word without an incoming arc. A path is a sequence (v1, v2, . . ., vk) of ver-
tices such that (vi, vi+1) is an arc for i = 1, 2, . . ., k-1. A circuit is a path starting and end-

ing at the same vertex. A graph is called acyclic if it does not contain any circuits.

10. Grounding sets

Let U 9 V be any subset of words and let u be some given word. We are interested

in computing all words that can be learned through definitions composed only of words

Fig. 2. Overall pattern for average psycholinguistic differences (age of acquisition, concreteness, frequency)

between words in latent structures revealed by the analysis of the dictionary digraph. The pattern is the same for

all four dictionaries analyzed but the image is not drawn to scale: for exact numbers and percentages see Table 1

and Figs. 3 and 7. MinSets are part Core and part Satellite. Core + Satellites = Kernel [~10%]. Outside the Ker-

nel is the Rest [~90%]). Core words are more frequent (blue) and learned younger (orange) than the Rest of the

dictionary. Within the Kernel’s Satellite layer, this difference increases gradually as definitional distance from

the Core increases. Outside the Kernel, for age, the difference decreases gradually (but weakly) as definitional

distance from the Kernel increases; frequency remains uniform. For concreteness (green), it is the Satellite layer

that is more concrete than the Core. This difference increases gradually as definitional distance from the Core

increases within the Satellite layer of the Kernel. Outside the Kernel, concreteness is at first equal to the Core

and then increases gradually (but weakly) as definitional distance from the Kernel increases.
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in U. This can be stated recursively as follows: We say that u is definable from U if

all predecessors of u either belong to U or are definable from U. The set of words that

can be defined from U is denoted by Def(U). In particular, if Def (U)∪U = V, then U
is called a grounding set of D. Intuitively, a set U is a grounding set if, provided we

already know the meaning of each word in U, we can learn the meaning of all the

remaining words just by looking up the definitions of the unknown words (in the right

order).

Grounding sets are equivalent to well-known sets in graph theory called feedback
vertex sets (Festa, Pardalos, and Resende 1999). These are sets of vertices U that cover
all circuits; that is, for any circuit c, there is at least one word of c belonging to U. It is
rather easy to see this. On the one hand, if there exists a circuit of unknown words, then

there is no way to learn any of them by definition alone. On the other hand, if every cir-

cuit is covered, then the graph of unknown words is acyclic, which means that the mean-

ing of at least one word can be learned—a word having no unknown predecessor

(Blondin Mass�e et al., 2008)).

Clearly, every dictionary D has many grounding sets. For example, the set of all words

in D is itself a grounding set. But how small can grounding sets be? In other words, what

is the smallest number of words you need to know already in order to be able to learn

the meaning of all the remaining words in D through definition alone? These are the Min-

imal Grounding Sets (MinSets) mentioned earlier (Fomin, Gaspers, Pyatkin & Razgon,

2008). It is already known that finding a minimum feedback vertex set in a general

digraph is NP-hard (Karp, 1972), which implies that finding MinSets is also NP-hard.

Hence, it is highly unlikely that one will ever find an algorithm that solves the general

problem without taking an exponentially long time. However, because some real dic-

tionary graphs are relatively small and also seem to be structured in a favorable way, our

algorithms are able to compute their MinSets.

11. Kernel

As a first step, we observed that in all dictionaries analyzed so far there exist many

words that are never used in any definition. These words can be removed without chang-

ing the MinSets. This reduction can be done iteratively until no further word can be

removed without leaving any word undefinable from the rest. The resulting subgraph is

what we called the dictionary’s (grounding) Kernel. Each dictionary’s Kernel is unique,

in the sense that every dictionary has one and only one Kernel. The Kernels of our two

small dictionaries, Longman and Cambridge, turned out to amount to 8% and 7% of the

dictionary as a whole, respectively. We have since extended the analysis to two larger

dictionaries, Merriam-Webster (248,466 words; Webster, 2006; henceforth Webster) and

WordNet (132,477 words; Fellbaum, 2010) whose Kernels are both 12% of the dictionary

as a whole (Table 1).
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12. Core and satellites

Next, since we are dealing with directed graphs, we can subdivide the words according

to their strongly connected components (SCCs). Two words u and v are strongly connected
if there exists a path from u to v as well as a path from v to u. SCCs are hence maximal

sets of words with a definitional path to and from any pair of their words. There is a well-

known algorithm in graph theory that computes all the SCCs very efficiently (Tarjan,

1972). Sources are SCCs in which no word’s definition depends on a word outside the

SCC (no incoming arcs from other SCCs). The Kernel of each of the four dictionary

graphs turns out to contain an SCC much larger than all the others. One would intuitively

expect the Kernel’s Core (defined as the union of Sources) to be that largest SCC. And so

it is in two of the four dictionaries we analyzed. But because of the algorithm we used in

preprocessing our dictionaries, in the other two dictionaries the Core consists of the largest

SCC plus a few extra (small) SCCs. We think those small extra SCCs are just an artifact

of the preprocessing. In any case, for each of the four dictionaries, the Core amounts to

65%–90% of the Kernel or about 6.5–9.0% of the dictionary as a whole. The SCCs that

are inside the Kernel but outside the Core are called Satellites; collectively these make up

the remaining 10–35% of the Kernel or about 1.0%–3.5% of the whole dictionary.

13. Definitional distance from the kernel: The K-hierarchy

Another potentially informative graph theoretic property is the “definitional distance”

of any given word from the Kernel or from the Core in terms of the number of arcs sepa-

rating them. We define these two distance hierarchies as follows. First, for the Kernel

hierarchy, suppose K is the Kernel of a dictionary graph D. Then, for any word u, we
define its distance recursively as follows:

1 dist (u) = 0, if u is in K;
2 dist (u) = 1 + max{dist(v):v is a predecessor of u}, otherwise.

In other words, to compute the distance between K, as origin, and any word u in the

rest of D, we compute the distances of all words defining u and add one. This distance is

well defined, because K is a grounding set of D and hence the procedure cannot cycle

because every circuit is covered. The mapping that relates every word to its distance from

the Kernel is called the K-hierarchy.

14. Definitional distance from the core: the C-hierarchy

The second metric is slightly more complicated but based on the same idea. Let D be

the directed graph of a dictionary, and D0 be the graph obtained from D by merging each

SCC into a single vertex. The resulting graph is acyclic. We can then compute the
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distance of any word from the Core (the vertex corresponding to the biggest of the

merged SCCs of the Kernel) as follows:

1 dist (u) = 0, if u is in a source vertex of D0;
2 dist (u) = 1 + max{dist(v):v is a predecessor of w for some w in the same SCC as

u}, otherwise.

The words in the merged vertices of the Core have no predecessor and constitute the

origin of the C-hierarchy. Like the K-hierarchy, the C-hierarchy is well defined because

D0 is acyclic.

15. MinSets

We have computed the Kernel K, Core C, and Set of satellites S as well as the K-hier-
archy and the C-hierarchy for four English dictionaries: two smaller ones—(a) Longman’s

Dictionary of Contemporary English (Longman, 47,147 words), (b) Cambridge’s Interna-

tional Dictionary of English (Cambridge, 69,223 words)—and two larger ones—(c) Mer-

riam-Webster (Webster, 248,466 words), (d) WordNet (132,477 words). Because of

polysemy (multiple meanings),3 there can be more than one word with the same word-

form (lexeme). As an approximation, for each stemmatized word-form we used only the

first (and most frequent) meaning for each part of speech of that word-form (noun, verb,

adjective, adverb). (This reduced the total number of words by 53% for Cambridge, 49%

for Longman, 37% for Webster, and 65% for WordNet.) The sizes of their respective

Kernels turned out to be between 8% of the whole dictionary for the smaller dictionaries

and 12% for the larger dictionaries. The Kernel itself varied from 10% Satellite and 90%

Core for the two small dictionaries to 35% Satellite and 65% Core for the two large dic-

tionaries (Table 1).

As noted earlier, computing the MinSets is much more difficult than computing K, C,
or S (in our current state of knowledge), because the problem is NP-hard. (Note that the

most difficult part consists of computing MinSets for the Core, which can be further

reduced by a few simple operations.) This problem can be modeled as an integer linear

program whose constraints correspond to set-wise minimal circuits in the dictionary

graph. The number of these constraints is huge but one can “add” constraints as they are

needed. For the two “small” dictionaries (Longman and Cambridge), we were able to use

CPLEX, a powerful optimizer, to compute a few MinSets (although not all of them,

because there are a very large number of MinSets). For Webster and WordNet, the Min-

Sets that we obtained after several days of computation were almost optimal.4

These analyses answered our first question about the size of the MinSet for these four

dictionaries (373 and 452 words for the small dictionaries; 1,396 and 1,094 for the larger

ones; about 1% for each dictionary). But because, unlike a dictionary’s unique Kernel, its

MinSets are not unique, a dictionary has a vast number of MinSets, all within the Kernel,

all the same minimal size, but each one different in terms of which combination of Core

and Satellite words it is composed of. The natural question to ask now is whether the
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words contained in these latent components of the dictionary, identified via their graph

theoretic properties—the MinSets, Core, Satellites, Kernel, and the rest of the dictionary

—differ from one another in any systematic way that might give a clue as to the function

(if any) of the different latent structures identified by our analysis.

16. Psycholinguistic correlates of dictionary latent structure

A number of databases have been compiled that index various psycholinguistic proper-

ties of words. We used three of them: For word frequency, we used the SUBTLEXUS

Corpus, which has been found to be more reliable than the widely used Kucera and Fran-

cis (1967) word frequency norms (Brysbaert & New, 2009). Raw frequencies range from

1 to over 2 million, with an average of 669 and with about 1% of the values over 5,000.

For our goal of determining the average frequency for different sets of words, instead of

using raw frequency, we used the Lg10WF metric (log10(FREQcount + 1)) to reduce the

effect of extreme values. For concreteness, the Brysbaert, Warriner, and Kuperman

(2014) concreteness ratings for 40,000 common English word lemmas were used. For age

of acquisition, we used the Kuperman, Stadthagen-Gonzalez, and Brysbaert (2012) age-

of-acquisition ratings for 30,000 English words.

We tested whether the words in the latent components we identified in dictionary

graphs differed systematically in frequency, concreteness or age of acquisition. Our over-

all pattern of findings (for all four dictionaries) is illustrated in Fig. 2, which shows the

latent structures of the dictionary: the 90% Rest and the 10% Kernel, and within it the

Core surrounded by its Satellites. Shown also is one MinSet (just one of many); all Min-

Sets are part Core and part Satellite.

Based on the data for word frequency (blue), concreteness (green) and age of acquisi-

tion (orange) from the psycholinguistic databases, the words in the Core for all four dic-

tionaries are more frequent and learned younger than the Satellite words, which are in

turn more frequent and younger than the Rest of the dictionary. The Satellites are more

concrete than the Core or the Rest. The average values for each of the psycholinguistic

variables in each of the latent substructures are shown in Fig. 3. The pattern is the same

for all four dictionaries. Because the results are based on the entire population of each

dictionary graph, no statistical tests were done. All differences would be highly signifi-

cant because the number of words in each dictionary is so large. The effects themselves,

however, are not very strong; there are clearly many other factors underlying these vari-

ables aside from the dictionary latent structures.

The effect size for each of the pairwise differences in Fig. 3 is shown in Fig. 4. Note

that the biggest effect size tends to be for frequency. This may be because the psycholin-

guistic database coverage for frequency is complete5 for all the words in all three latent

structures, Core, Satellites and Rest, whereas the coverage for age and concreteness var-

ies, especially for the two larger dictionaries (Fig. 5). It is possible that the effect sizes

for age and concreteness would have been larger, especially for the larger dictionaries, if

the database coverage had been more complete. It is likely that the incompleteness of the
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Fig. 3. Average age, concreteness, and frequency of words in Core, Satellites, Kernel, and Rest. The pattern

is the same for all four dictionaries: The Core is youngest and most frequent, then the Satellites, then

the Rest. The Satellites are more concrete than the Core and the Rest, which are about equal (but see the

gradients in Fig. 7).
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data for age and concreteness is itself an indirect effect of word frequency: Age and con-

creteness data are lacking for the less frequent words:6

“Because ratings are only useful for well known words, we used a cut-off score of
85% known. In practice, this meant that not more than 4 participants out of the aver-
age of 25 raters indicated they did not know the word well enough to rate it. This left
us with a list of 37,058 words and 2,896 two-word expressions (i.e., a total of 39,954
stimuli)” (Brysbaert et al., 2014).

This introduces a frequency bias into our analysis, because less frequently used words

are less likely to have ratings for their concreteness and age of acquisition. This fre-

quency bias could either be (a) not significantly affecting our results, (b) spuriously

inducing or inflating them or (c) spuriously reducing them (Fig. 4). However, given that

the psycholinguistic correlation patterns do not differ qualitatively across the dictionaries

despite variations in their psycholinguistic coverage, we think (b) is least likely. All

three variables—age, concreteness, and frequency—are intercorrelated (frequency/age: r

= �0.59; frequency/concreteness: r = 0.16; age/concreteness: r = �0.38). Given this,

Fig. 4. Effect size and direction for the principal comparisons among Core, Satellites, Kernel, and Rest for

age, concreteness, and frequency, for each of the four dictionaries. Note that the effect size for frequency

tends to be the largest, then age, then concreteness.
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and the relatively large effect size of word frequency, we tested whether our correla-

tions with age and with concreteness would persist if we partialled out the correlation

with frequency. This would test whether two of our three psycholinguistic variables

were really all just reflecting the third: frequency. Fig. 6 shows that the effects still

remain relatively large even when we control for the strongest variable (frequency). The

Fig. 5. Percentage of words in Core, Satellites and Rest for which psycholinguistic data were available for

age and concreteness for each of the four dictionaries. (Frequency data not shown because they are at 100%

for all dictionaries.) Note that the percentage of available data is lower for the two bigger dictionaries, and

decreases from the Core to the Satellites to the Rest.
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question of the direction of causality, however, cannot be resolved definitively from the

available data.

17. Definitional distance gradients

Alongside the main effects—the average differences in frequency, age, and concrete-

ness between the Core, Satellites and the Rest—our analysis also revealed two kinds of

graded effects.

The upper part of Fig. 7 shows the gradient for the K-Hierarchy, which is the defini-

tional distance from the Kernel to the words in the Rest of the dictionary (i.e., the num-

ber of definitional steps to reach a word starting from the Kernel). The first step in this

gradient from distance level 0 (the Kernel) to level 1 corresponds roughly to the main

effects in Fig. 3: For frequency, there is a decrease from level 0 to 1 for all four dic-

tionaries; then frequency is flat for all but Cambridge. For age there is an increase from

level 0 to 1 (i.e., level 1 words are “older”—i.e., learned later—than the Kernel) for all

four dictionaries, which then descends slightly for all but WordNet. For concreteness,

Fig. 6. Effect size and direction for the principal comparisons among Core, Satellites, Kernel and Rest for

age, concreteness and frequency, for each of the four dictionaries when correlation with frequency is

removed. Age and concreteness effects are reduced considerably (cf. Fig. 4), especially for the bigger dic-

tionaries, in which the psycholinguistic database coverage for age and frequency was lower for the less

frequent words (cf. Fig. 7).
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there is a decrease (i.e., becoming more abstract) from 0 to 1, and then a gradual

increase. Aside from the first step, from 0 to 1, the K-Hierarchy curves are hard to inter-

pret because not only do the words at each succeeding distance level become fewer

(Table 1) and less frequent, but the psycholinguistic database coverage for age (orange)

and concreteness (green) is incomplete, especially for the two bigger dictionaries (Fig. 8,

left), many of whose rarer words are scientific, biological, and technical terms.

The lower part of Fig. 7 shows the gradient for the C-Hierarchy, which is the defini-

tional distance from the Core for words in the Satellite layer (i.e., the number of defini-

tional steps to reach a Satellite word starting from the Core). Here, the gradients are

consistent for all four dictionaries and all three psycholinguistic variables: They are

descending (less frequent) for frequency, rising (getting older) for age, and rising (getting

more concrete) for concreteness. Here too the number of words diminishes at each dis-

tance level (Table 2), but for the two larger dictionaries there is a particularly marked

decrease in database coverage for age (orange) and frequency (Fig. 8, left). This very vis-

ible negative correlation between definitional distance from the Core within the Satellite

layer and psycholinguistic database coverage is probably due to the decline of word fre-

quency with definitional distance from the Core within the Satellite layer (Fig. 7, lower,

Fig. 7. Average age, concreteness, and frequency at each level of the definitional distance hierarchy starting

from the Kernel through the Rest of the dictionary (K-Hierarchy, above), and within the Kernel, starting from

the Core through the Satellites (C-Hierarchy, below), for each of the four dictionaries. K-Hierarchy: for age

there is a big increase from the Kernel to level 1 and then a slight decrease at higher levels; for concreteness

a slight decrease from K to 1, then slight increase; for frequency a big decrease from K to 1, then mostly flat.

C-Hierarchy: increases for age and concreteness and decreases for frequency. All effects are stronger in the

smaller dictionaries. The thick red lines show that the pattern is the same when considering only those words

that occur at the same level (intersection) in both bigger dictionaries. The thin red lines show the pattern for

words that occur at the same level in both smaller dictionaries.
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blue. The red lines show the same effects when we analyze words that are present at the

same level (intersection) in both large dictionaries (thick red line) and (separately) words

that are present in both smaller dictionaries (thin red line).

18. Core and satellite components of the MinSets

Because it takes so long to compute MinSets, even for the two small dictionaries, we

do not have many of them yet; and for the two large dictionaries we so far only have one

approximate MinSet each. Every MinSet is part-Core and part-Satellites. Some Kernel

words are in all MinSets, some in no MinSet and the other words are in between. A natu-

ral question to ask is: What is the difference between the words in these two subcompo-

nents of every MinSet? We have calculated the average age, frequency and concreteness

of the Core words versus the Satellite words in the Kernel as a whole. But because we

have only a small sample of all the possible MinSets, we do not have the corresponding

averages across the Core and Satellite words occurring within the MinSets. Their compo-

sition may be different: our calculations had shown that there are some Core and Satellite

words that appear in every MinSet, some that appear in no MinSet, and the frequency

probably varies for the words in between. We therefore used Monte Carlo simulations to

compare the average age, frequency and concreteness of the Core words versus the Satel-

lite words within our actual sample of MinSets against pseudo-MinSets generated from

randomly selected Core and Satellite words. Comparing the words in the Core component

Fig. 8. Percentage of words at each level of the definitional distance hierarchy starting from the Kernel

through the Rest of dictionary (K-Hierarchy, left), and, only within the Kernel, starting from the Core through

the Satellites (C-Hierarchy right), for which psycholinguistic data were available for age and concreteness for

each of the four dictionaries. (Frequency data not shown because they are at 100% for all dictionaries.) Note

that the percentage of available data is lower for the two bigger dictionaries, and that within the Satellite

layer it decreases with increasing definitional distance from the Core in the C-Hierarchy.
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Fig. 9. Comparing average age, concreteness, and frequency of words in MinSets and equal-sized random

subsets of the Core (left) and the Satellites (right) for each of the four dictionaries. In all four dictionaries the

average MinSets are younger, more concrete, and more frequent than random Core words and older (except

for Cambridge), more concrete and less frequent than random Satellite words.
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of each MinSet with equal-sized random sets of Core words, and comparing the words in

the Satellite component of each MinSet with equal-sized random sets of Satellite words

shows this effect: For all four dictionaries, the Core component of the MinSet is more

frequent, younger and more concrete than its random counterparts, and the Satellite com-

ponent is older, more concrete and less frequent (Fig. 9). (This effect was confirmed by t
tests (p < .001) for the two smaller dictionaries, for which we had enough MinSets

(n = 20 and 19 for Cambridge and Longman, respectively). Because we were only able

to compute one MinSet each for the two larger dictionaries, we could not do t tests, but
their pattern of results was the same as for the small dictionaries.) The Core/Satellite pat-

tern is hence even more pronounced within the MinSets than in the Kernel as a whole.

Comparing the Core, Satellites, and Rest in terms of parts of speech again points to

the Satellite layer, which has more nouns and fewer adjectives, adverbs, and verbs than

the Core or the Rest in all four dictionaries (Fig. 10). This may be a hint of some sort of

functional complementarity between Core and Satellites. Our digraphs and computations

treat definitions as if they were just unordered strings of stemmatized content words’ first

meanings, ignoring syntax and even part of speech—yet definitions themselves are all

subject/predicate propositions. The next step in further work will be to look into this for-

mal black box, at the words themselves. There are very many words in the Core and the

Satellites, and very many potential MinSets within each Kernel. To get a clearer idea of

what the functional role of Core and Satellite words might be in making up a MinSet, we

are now examining the actual words themselves (rather than just their psycholinguistic

correlates), as well as the actual definitions of which they are each a part, beginning with

the words in individual mini-dictionaries generated by players in an online dictionary

game (which will be briefly described in the next section of this paper).

Fig. 10. Percentage of parts of speech in the Core, Satellites, and Rest for each of the four dictionaries. Note

that the percentage of both nouns and adjectives is higher in the Satellite layer, whereas the percentage of

verbs and adverbs is lower.
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19. Discussion

19.1. Word association graphs

Graph theoretic analysis has been used in other approaches to investigating how words

are represented in the mental lexicon. Vitevitch (2008) has analyzed the phonological rep-

resentations of words. Phonological representations are not semantic but share with dic-

tionary definitions the property that they too are combinatory. In addition, the phonetic,

phonemic, and articulatory properties of words have been shown to influence word recog-

nition and retrieval in the lexical decision task (Barber, Otten, Kousta, & Vigliocco,

2013). Variants of this task, in which subjects must quickly decide whether or not a series

of letters is a word, have been widely used to study the representation of meaning in the

mental lexicon (Aitchison, 2012).

Word association graphs have also been derived from a number of different measures

of word-word association, including synonymy (Pilehvar & Navigli, 2015), semantic simi-

larity (De Deyne, Navarro, & Storms, 2015; De Deyne & Storms, 2008), word co-occur-

rence frequency (e.g., Latent Semantic Analysis; Landauer & Dumais, 1997; Jones,

Willits, Dennis, & Jones, 2015), and people’s free associations to words (Nelson, McE-

voy, & Schreiber, 2004).

The relation between the definitional links in dictionary-definition graphs and the asso-

ciative links in word association graphs is ripe for further investigation. The underlying

idea of an associative approach to the representation of meaning in the mental lexicon is

that word meanings consist of word nodes and their pattern of interconnections in a net-

work (Van Rensbergen, Storms, & De Deyne, 2015). The connections in a dictionary

graph are definitional. There are defined words and defining words. The defining words

point to the defined words. That relation is like a subject/predicate statement (although

our analysis so far ignores syntax and function words, treating the defining content words

as an unordered vector): The subject is simple (the word to be defined, e.g., “apple”) and

the predicate is compound and complex (the words that define the subject, e.g., “round

red fruit”).

The other important property peculiar to word-definition graphs is their minimal
grounding sets (MinSets). An associative model of word meaning is ungrounded, in that

there is no connection between the words and their referents; there are only connections

between words and words. Words are just arbitrary symbols, and meaning is assumed to

reside somehow in the words’ patterns of interconnections. It is important to note, how-

ever, that dictionaries (and dictionary graphs) are ungrounded too, in that all they con-

tain is words and the definitional links between them. A way in which this vicious circle

of symbols can be broken, however, is if the words in a MinSet (actually or potentially—
since there are many alternative potential Minsets, just as there are many alternative

potential bases for an N-dimensional vector space) are connected to their referents
directly in some other way, so that their meaning is not just a pattern of connections

within the dictionary graph.
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(Continuous N-dimensional vector spaces have an infinite number of potential bases,

but N is always their minimal size. For a discrete, finite dictionary graph, its number of

potential grounding MinSets is not infinite, but it is still very large—with N [the cardinal-

ity of the graph’s minimum feedback vertex sets] being their minimal size.)

The size, N, of the MinSet is hence the smallest number of words that would need to

be connected to their referents in this other way in order to generate meaning in what

would then be a dual-code representation of word meaning in the mental lexicon. Our

paper analyzes only the verbal (symbolic) code. The other code in which this verbal code

must be grounded is a sensorimotor one, consisting of feature-detectors (inborn as well as

learned) that can detect in their sensorimotor input the members of the category referred

to by each (directly grounded) word (Barsalou, 1999, 2010; Harnad, 1990, 2011).

19.2. Dual-code models of mental representation

Dual-code models began with the work of Alan Paivio (1971, 1986, 2014). The origi-

nal idea was simply that we think in both words and pictures. But the connection between

a picture and what it is a picture of is almost as ungrounded as the connection between a

word and what the word is about—almost, because a picture can resemble its referent,

whereas (except for onomatopoeia) a word cannot. But resemblance is not enough for the

perceptual recognition of the referent, especially when the referent is a category (e.g.,

“fruit”) rather than an individual (this particular apple, “Alvin,” now) and the category’s

members vary on many dimensions: The features that distinguish the members from the

non-members can be complex and non-obvious.

What is needed in order to ground either pictures or words in their referents is a mech-

anism that can recognize sensorimotor categories. Modeling the capacity for the learning,

recognition, and representation of sensorimotor categories has become a rich and fertile

field (Ashby & Maddox, 2011; De Vega et al., 2008; Folstein et al., 2015; Lupyan, 2012;

Maier et al., 2014; Meteyard et al., 2012; Pezzulo et al., 2012). In a dual-coding sensori-

motor/symbolic model it is the sensorimotor module that needs to connect words to their

referents. What our findings suggest is that it need not connect them all, nor even most of
them: In principle (though not necessarily in practice), only the words in one MinSet

would need to be connected directly to their referents by the sensorimotor module: All

other words could then be formally encoded by the symbolic module via words alone,

through the recombinatory expressive power of language, in the form of definitions, com-

posed of those directly grounded MinSet words.

Steyvers and Tenenbaum’s important study in 2005 found that word association graphs

tend to be small-world graphs consisting of a minority of highly connected central nodes

fanning out into many less highly connected peripheral nodes, and that the words in the

central nodes tend to be the ones that are more frequent and acquired earlier. They

showed that as an associative net grows, the earlier nodes turn into the ones with many

connections. This pattern would fit the growth of an individual speaker’s vocabulary

across time or the growth of the vocabulary of a language across time.
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Our analysis of definitional depth in a dictionary-graph—from the periphery to the

Kernel to the Satellites to the Core, with each MinSet turning out to be part-Satellite and

part-Core—shows that the words in a dictionary-graph become increasingly frequent and

young with increasing depth as we move inward toward the dictionary’s Core (Fig. 2).

This finding parallels Steyvers and Tenenbaum’s finding that words are increasingly fre-

quent and younger toward the central nodes in their associative graphs. Our interpretation

that our grounding MinSets are learned earlier is consistent with Steyvers and

Tenenbaum’s interpretation that their central words are learned earlier. Later studies will

examine the extent to which the same words are involved in both kinds of graph.

As noted, a definitional network can be more than just an associative network: If it is

also one of the two interconnected modules in a dual-coding sensorimotor/symbolic repre-

sentation of meaning in the mental lexicon, then the internal representation of word
meaning itself is more than just associative. The difference resides in the functional role

of a MinSet in a dictionary graph. Each MinSet is a (potential) generator of the meaning

of all the rest of the words in the dictionary, via formal definitional connections alone.

Hence, in principle, none of the rest of the words need to be grounded directly in their

referents: They can instead inherit their grounding indirectly, via the formal definitional

connections—on condition that the words in the generator MinSet have been grounded
by the sensorimotor module. The meanings of the words in the MinSet need to have been

learned previously via direct sensorimotor experience rather than via definition. That is

why those words are younger: not just because they were learned first but because they

acquired their meaning in a fundamentally different way.

Of course it is not only unlikely but almost certainly false that it will turn out to be as

neat and simple as the following: First, (a) one MinSet of word meanings of size N is

learned from direct inductive experience (internally implemented by sensorimotor feature-

detectors that allow each category member to be reliably assigned to its category and

hence to the word that names it). Then (b) every other content word in the language, and

the category it refers to, is learned indirectly via purely verbal definitions consisting of

re-combinations of the directly grounded words of the MinSet (along with any further

words reached from them indirectly via definition).

What is more realistic than (a) and (b) is to assume that the growth of the mental lexi-

con continues to be hybrid sensorimotor/symbolic throughout a speaker’s lifespan, with

some later direct sensorimotor experience complementing and reinforcing the acquisition

of new meanings alongside verbal instruction whenever it is needed or makes learning

and understanding easier.

But what cannot be hybrid is the initialization of this dual representational system:

Some words first have to be grounded directly through sensorimotor experience; then

those words can go on to ground further word learning, either via whatever new words

they can define symbolically by recombination, or via hybrid sensorimotor/symbolic

learning.

Semantic and syntactic “bootstrapping” occurs when children learn the meaning of

words from written or spoken context (Gleitman & Landau, 1994). Dictionaries simply

define words: all words. Being told in words what a word refers to (just as being shown,
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by pointing, what a word refers to) is importantly different from inferring, from context,

what the word might refer to (bootstrapping), though the two may work hand in hand:

Dictionaries sometimes provide examples of the use of the defined word in context, but

that is by way of supplementing the definition: The user is not expected to “bootstrap” to

the meaning from just the example of its use in context.

What really comes first, before words or even language itself, is categories themselves.
A category need not be given a name. To categorize is simply to do the right thing with

the right kind of thing (Cohen & Lefebvre, 2005). With language, the right thing to do

might be to name (or describe) the category; but pre-verbally it can be anything that

needs to be done with the members of the category, and not-done with the non-members:

approaching, avoiding, eating, mating-with, manipulating, etc., based on the sensorimotor

features (affordances) that afford doing the right thing (Montesano, Lopes, Bernardino, &

Santos-Victor, 2008; Y€ur€uten, S�ahin, & Kalkan, 2013).

So in our view the mental lexicon is itself hybrid—a dual-code representational system

consisting of learned sensorimotor feature (affordance) detectors for the grounding words

(and any later hybrid words) plus recombinatory and purely symbolic (i.e., verbal) defini-

tions and descriptions for the referents of the words that are learned through words alone.

No doubt the words in such a dual-code mental lexicon will have associative properties

too, based on similarities in sound, meaning and context of use, but meaning itself cannot

consist of word-word associations all the way down, for the same reason it cannot consist

of words all the way down. Linguistic symbols have to be grounded in their real-world

referents.

19.3. Frequency, concreteness, and age of acquisition

Frequency is the most objective of the three psycholinguistic variables we have tested

so far, but it is also the least specific (and its measurement is complicated by factors such

as the type/token distinction, polysemy, and familiarity). Age of acquisition (AoA) is

much more specific, but less objective: It is very hard to get data on the age at which

children actually first hear and understand particular words, whereas retrospective adult

estimates about this could be influenced by many complicating factors. AoA nevertheless

seems to be a reasonably reliable parameter.

Frequency and AoA are highly correlated (younger words are more frequent), so one

of the big challenges is to try to disentangle them and interpret the difference. Brysbaert,

Van Wijnendaele, and De Deyne (2000) showed that age effects are more sensitive to the

semantic (meaning) properties of words than to their word-form frequency (lexical or

phonological) properties, with younger-learned words being processed faster for meaning

than older-learned words. This accords with the symbol-grounding interpretation of our

dictionary findings: The Kernel is younger than the words in the rest of the dictionary;

and within the Kernel, the Core is youngest, with words getting younger and younger the

shorter their definitional distance from the Core. Brysbaert’s finding that the speed of pro-

cessing of a word’s meaning is influenced by how early it was learned rather than just

how frequent it is in the language reinforces our finding of the primacy of the Satellite
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and Core words in the encoding of meaning in dictionaries. It also accords with Steyvers

and Tenenbaum’s (2005; Tenenbaum, Kemp, Griffiths, & Goodman, 2011) finding that

the earliest nodes of a semantic network are the most strongly connected ones.

The question of the causal role of frequency is still an open one. There is no doubt that

frequency is correlated with grounding—the Core words are the most frequent ones, then

the Satellites, then the Rest. The frequency gradient within the Satellite layer also follows

this pattern; and there is no detectable frequency gradient in the rest of the dictionary

even though the frequency database is 100% complete. It may well be that some words

are learned earlier because they are more frequent in the language: But why are they

more frequent in the language? Frequency is undeniably the strongest of the psycholin-

guistic correlates of the latent structures of the dictionary. But its causal role must be

explained by something other than frequency: It cannot be frequency all the way down,

any more than it can be definitions all the way down.

Concreteness/abstractness is more problematic because it can mean so many different

things. At bottom, it can mean the difference between physical objects, like tables, plants

and animals, and their properties, such as hard, green, or fast. Properties are more abstract

than the objects of which they are the properties, but properties can themselves have

properties, such as texture, color, or speed, and so on, in a rising hierarchy of higher-

order properties. If higher-order properties were its only dimension, abstractness/concrete-

ness would be straightforward (except for parts, composite properties, and intransitive

properties), but another dimension of concreteness is the sensorimotor one: The closer

something is to something that can be perceived directly with the senses, the more

concrete we consider it. That means that “shape,” a third-order property (apple, round,

shape), is more concrete than “quark,” a first-order object (but imperceptible). Moreover,

both objects and properties of any order can have emotional associations (reflected in

other neural correlates as well), which would again make them more concrete (in the

sensorimotor sense), no matter how abstract they were (in the property-hierarchy sense).

The lexical decision task (of deciding whether or not a string of letters is a word) had

at first seemed to indicate that concrete words are recognized faster than abstract ones.

But Kousta and coworkers have found that when other variables are controlled, certain

abstract words are recognized faster because they have emotional associations (Kousta,

Vigliocco, Vinson, Andrews, & Del Campo, 2011; Barber et al., 2013; Vigliocco et al.,

2014; cf. Paivio, 2013). This raises the question of what it is that we mean by “concrete”

versus “abstract” (Borghi and Binkofski (2014). As noted, abstract has at least two dis-

tinct senses: (a) an ontic, object-centered sense, in which individual physical objects are

concrete and their hierarchy of higher-order properties becomes increasingly abstract; and

(b) a sensorimotor, subject-centered sense, in which both objects and properties become

more concrete the more palpable they or their properties are to our senses. In this second

sense, emotions and emotional associations, being sensory, would be concrete rather than

abstract.

Kousta et al.’s finding that (some) abstract words can reverse the reaction time advan-

tage of concrete over abstract words in the lexical decision task because of their emo-

tional connotations may well be related to the multidimensionality of our judgments of
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concreteness/abstractness. What is not clear yet is the relationship between performance

in the lexical decision task and how meaning differences between words (as opposed to

the difference between words and non-words) are perceived or mentally represented. The

C-hierarchy of definitional distance we found radiating from the Core outward through

the Satellite layer may help cast some light on how meaning differences are represented,

because it is in this hierarchy that the concreteness effect seems to be concentrated. But

this will only become testable in the individual mini-dictionaries that are currently being

generated in our dictionary game, rather than the full-sized lexicographers’ dictionaries,

which are a composite product originating from the many individual mental lexicons of

many different individual lexicographers.

19.4. Other psycholinguistic variables

Any evidence that can distinguish word frequency from the other psycholinguistic vari-

ables can be important in trying to make causal interpretations. Comparing word fre-

quency data with data in which people simply indicate whether or not they know a word

will be very useful (Brysbaert, Stevens, Mandera, & Keuleers, 2016; Keuleers, Stevens,

Mandera, & Brysbaert, 2015). Brysbaert calls this new variable, which correlates only .50

with word frequency, word prevalence (“knowledge of the word in the crowd”) and sug-

gests (personal communication) that “one would expect all words of the Core to be

known, whereas the Satellites may contain more specialized knowledge.”

If, as is likely, the familiarity of a word depends on the expertise or some other char-

acteristic of subpopulations, then that too needs to be taken into account (Della Rosa,

Catrical�a, Vigliocco, & Cappa, 2010; Vinson, Ponari, & Vigliocco, 2014). Dictionaries

tend to be generic, but there is scope for investigating specialized technical dictionaries,

glossaries and “ontologies” separately in their own right as well as for using psycholin-

guistic data derived from their corresponding expert subpopulations rather than generic

psycholinguistic data. This pertains to human performance studies rather than to graph-

theoretic analyses of dictionaries per se. It is also likely to become increasingly important

in our work on the dictionary game.

Another promising new variable based on estimating how a word was learned (whether

from direct sensorimotor experience or verbally) rather than just when it was learned

(although the two are of course correlated) is Mode-of-Acquisition (Della Rosa et al.,

2010; Connell and Lynott (2012), Dellantonio, Mulatti, Pastore, & Job, 2014; Brysbaert

et al., 2014). Sensorimotor experience is sensory as well as motor; it includes anything

that is experienced—that is, felt—via any modality, whether the usual five “external”

senses or the interoceptive ones, such as proprioception, kinesthesia, or emotion (Barsalou,

Simmons, Barbey, & Wilson, 2003; Frak, Nazir, Goyette, Cohen, & Jeannerod, 2010;

Guan, Meng, Yao, & Glenberg, 2013; Montesano et al., 2008; Vigliocco et al., 2014).

Mode-of-acquisition may well prove to be at least as relevant to our dictionary analyses

as the three variables we have analyzed, but it is unfortunately not yet available for

enough words to be useable in the present study.
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20. Conclusions

What we have learned from the graph theoretic analysis of dictionaries so far is that

someone who knows the meaning of a grounding set of as few as 373 words—for a small

dictionary of 25,132 words (first meanings only) or 1,396 words for a larger dictionary of

91,388 words (first meanings)—could in principle learn the (first) meanings of all the rest

of the words in the dictionary through definition alone. It does not follow of course that

this is the way we actually do learn the meanings of all the rest of the words. If the

grounding set is learned through direct sensorimotor experience, it is probable that a lot

of later words are learned in a hybrid way, through a combination of direct experience

and verbal definition (or description, instruction, or explanation). Most of our categories

are not lexicalized at all and are described (rather than defined) by ad hoc verbal descrip-

tions: There is no dictionary entry for “things that are bigger than a breadbox,” for exam-

ple, nor for “things that I saw last Tuesday”—nor even (in most people’s vocabularies)

for “feeling glee at another’s misfortune.” But even the words in ad hoc verbal descrip-

tions of unlexicalized categories have to be grounded, just as dictionary definitions have

to be. So that’s back to the grounding set.

20.1. Language and propositions

One can equally well ask: “Why couldn’t the meanings of all words be learned

through direct sensorimotor grounding?” First of all, if it really were possible to learn the

meaning of every word through direct sensorimotor experience, then why bother to have

words at all? Presumably it is to transmit what one of us has learned (say, via direct

experience) to another who has not. Here, we cannot avoid considering the question of

the nature of language itself, and its adaptive value for our species. No other species

speaks (in any modality, including gesture). What do other species lack, and what has

ours gained, for having evolved the capacity for language? It is the ability to say anything

and everything that can be said: the ability to express every possible proposition.

Most of what we say (even questions and commands) consists of subject/predicate

propositions. Some propositions are “deictic,” which means that they point to the immedi-

ate sensorimotor here-and-now: “She is here.” Deictic terms are all function words, which

were excluded from our dictionary analysis. We were only interested in content words,

which, as noted, are the names of categories, and make up almost all the words in the

dictionary. “Apples are red” is a simple subject/predicate proposition, very much like

most of what we say (including this very sentence). The proposition could be formalized

as stating that “apples” are a member (or a subset) of “things that are red.” It could be

the reply to someone asking either “What color are apples?” or “What things are red?”

This already has most of the features of asking the question “What does ‘apple’ mean?”

or “What is an ‘apple’?” and then learning from an interlocutor or from a dictionary that

(to a first approximation) “An apple is a round, red fruit.”
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So far, all these categories (“apple, “red,” “fruit”) could have been learned either from

a verbal description/definition or from direct sensorimotor experience: They are all pretty

concrete, and they could all be learned early, fairly quickly, and without any particular

risk. “Goodness,” “truth, and “beauty” are becoming more abstract—although “that’s

good (true, beautiful)” and “that’s not good (true, beautiful)” could be learned from posi-

tive and negative examples through direct experience too. Learning what “quark”or

“quiddity” mean nonverbally, from direct experience, would be quite a bit harder, and the

meaning of “peekaboo-unicorn” (“a one-horned horse that vanishes without a trace when-

ever either senses or an instrument are aimed at it”) would be impossible to learn directly

via the senses, whereas its verbal definition is just as well grounded as the definition of

apple.

20.2. Category learning: The hard and easy way

Now suppose the category that someone lacks is not “apples” but “toadstools,” and

that the person is starving, and the only thing available to eat is edible mushrooms or poi-

sonous toadstools that look very much like the edible mushrooms. Being told, by some-

one who knows, that “The striped gray mushrooms are poisonous toadstools” could save

someone a lot of time (and possibly their life) by making it unnecessary to find out

through direct trial-and-error experience which kind is which.

And that, in a nutshell, is our hypothesis about the nature and adaptive value of lan-

guage (Blondin Mass�e et al., 2013): Language makes it possible to learn new categories

by word of mouth, by recombining already grounded category names into propositions

defining/describing new categories, instead of having to learn them the hard way, from

direct experience. But to make it possible to learn by word of mouth, some words, at least,

still have to be grounded in direct experience. The grounding would need to occur earlier,

before the grounded words could be used to define and transmit further categories. And

because grounding is sensorimotor, the grounding words would tend to be more concrete.7

There is no reason to expect the grounding words to be unique and identical for every-

one. The minimal grounding set of any individual’s mental lexicon might be like the

basis set of an N-dimensional vector space. The basis can generate every point in the vec-

tor space, but it is not unique: Just a set of N linearly independent points with the prop-

erty that linear combinations of them can generate any and every point in the vector

space. But, because people share a lot of common experiences, and because this is in turn

reflected in the vocabulary of their language, there is nevertheless reason to expect that

some words will be part of many people’s grounding vocabularies; so those words would

be spoken and written more frequently (see the frequency curves as well as the red curves

for intersections in Fig. 7).

This hypothesis is certainly not entailed by our findings on the greater frequency of

Kernel words, the earlier age of acquisition of Core words, the greater concreteness of

Satellite words, or the multiplicity of MinSets. But if the hypothesis were correct, it

would help make sense of some of these findings: Not all. It remains a puzzle why

Kernel words in the Satellite layer become increasingly concrete but also older and less
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frequent, the greater their definitional distance from the Core. We will not understand that

until we get a better idea of the complementary role of Core words and Satellite words in

making up a MinSet. But even for our two smallest dictionaries there are still very many

words in their Kernels (over 2,000), and they have very many different MinSets (each of

c. 400 words each). So we are currently also generating tiny dictionaries by means of an

online dictionary game:8

The participant is given a word, asked to define it, and then to define the words used

to define it, and so on, until all the words used have been defined. This yields dictionaries

with an average size of about 200 words, 90% of them in the Kernel, and with MinSets

of about 30 words, two-thirds of them Satellite words and one-third Core words (which is

a reversal of our observed ratio for the full-size dictionaries) (Table 1). We hope that

these much smaller dictionaries generated by individuals will turn out to reflect the way

meanings are represented in the mental lexicon and will allow us to get a better idea of

the complementary roles played by Core and Satellite words in jointly making up a Min-

Set. We also hope that this article will encourage “crowd-sourcing” the analysis of dic-

tionary graphs for further psycholinguistic variables as well as in further languages.9

20.3. Language evolution

Symbol grounding concerns not only the origin of the words acquired during a speak-

er’s lifetime but also the origin of words themselves, in the evolution (both biological

and historical) of language (Monaghan, 2014; Pagel, Atkinson, & Meade, 2007). There

may turn out to be a relation between word origins and the psycholinguistic correlates of

Core, Satellite and MinSet words. Language may have begun concretely, with sensorimo-

tor categorization, pantomime and gesture (Blondin Mass�e et al., 2013; Cangelosi & Par-

isi, 2012; Harnad, 2011; Steklis & Harnad, 1976) and some of this may still be reflected

in language acquisition and vocabulary today. But that question is still speculative and

awaits the outcome of dictionary analyses across other languages.

What is certain is that it is human language that has not only generated the biggest

and richest digital database on the planet, far bigger than what our species could have

generated by sensorimotor means alone; but it is also language (of which computation is

just a subset) that has generated the means to derive meaning from all those data—on

condition that those minimal means, at least, are grounded in the kinds of sensorimotor

capacities and experience that we share with all other species on the planet.

Notes

1. Content or Open Class words are growing in all spoken languages all the time. In

contrast, Function or Closed Class words like if, off, is, or his are few and fixed,

with mostly a formal or syntactic function: Our study considers only content words.

Definitions are treated as unordered strings of content words, ignoring function
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words, syntax and polysemy (i.e., multiple meanings, of which we use only the first

and most common meaning for each word-form).

2. Wittgenstein had some cautions about the possibility of grounding words for pri-

vate experiences because there would be no basis for correcting errors. But thanks

to our “mirror neurons” and our “mind-reading” capacity, we are adept at inferring

most private experiences from their accompanying public behavior, and reasonable

agreement on word meaning can be reached on the basis of common experience

together with these observable behavioral correlates (Apperly, 2010). Because of

the “other-minds problem”—that is, because the only experiences you can have are

your own—there is no way to know for sure whether private experiences accompa-

nied by the same public behavior are indeed identical experiences. These subtleties

do not enter into the analyses we are doing in this paper. Word meaning is in any

case not exact but approximate in all fields other than formal mathematics and

logic. Even observable, empirical categories can only be defined or described pro-

visionally and approximately: Like a picture or an object, an experience is always

worth more than a thousand (or any number) words (Harnad, 1987).

3. Once the problem of polysemy is solved for both defined and defining words, the

analysis described in this paper can be applied to each unique word/meaning pair

instead of just to the first meaning of each defined word.

4. This is yet another approximation in an analysis that necessitated many approxima-

tions: ignoring syntax and word order, using only the first meaning, and finding

only something close to the MinSet for the biggest dictionaries. Despite all these

approximations and potential sources of error, systematic and interpretable effects

emerged from the data.

5. Words in our four dictionaries that had no values for SUBTELXus’ frequencies

were assigned frequency value zero. The SUBTELXus frequency data were col-

lected on a corpus used as the reference database; zero means the word never

occurred in that corpus.

6. Brysbaert (personal communication) has noted that “Dictionaries contain many

words not known to most humans. This is particularly the case for Webster and

WordNet, of which nearly half the words refer to chemical or biological science

words (types of plants, animals, tissues).. . . For many of these words, there are no

values for concreteness or Age of Acquisition. However, certainly for concreteness

the main reason is that the raters do not know the words. Only experts are able to

rate these.”

7. As noted, however, there are some conceptual problems with the notion of con-

creteness (Borghi & Binkofski, 2014), and hence also with judgments of concrete-

ness: To name a kind, like “apple,” rather than just a unique individual on a

unique occasion, is already to abstract.

8. Readers are invited to try their hand at generating a few mini-dictionaries at http://

lexis.uqam.ca:8080/dictGame. It will deepen their understanding and appreciation

of the nature of a dictionary and their own individual mental lexicon as well as

many of the points discussed in this paper.
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9. We have made available the Core, Satellites, Kernels, and Rests for all four dic-

tionaries for use by other researchers in the supplementary material.
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