The Learning Keyboard

Using the Xbox Kinect to Learn User Typing Behavior

Jonathan Ellithorpe
jdellit@stanford.edu

Abstract—The Learning Keyboard is a machine learning
system designed to guess what a user is typing solely by observing
their hand movements on a keyboard. The system trains on a
per-user basis using supervised learning, and generates feature
vectors on a per-word basis. We show that on datasets consisting
of more than 100 unique words the Learning Keyboard is able
to guess words with over 80% accuracy.

I. INTRODUCTION

Since the invention of the typewriter in the 1860s, key-
boards have been and remain to be the primary method of
character input for computers and various other devices. At
an abstract level, the keyboard is only a method to translate
actuation of the hands into a sequence of characters to be
input to the computer device. In light of this, and with modern
computer vision technology, we asked ourselves if the presence
of a physical keyboard was even necessary to achieve this very
basic goal. As a first step towards answering this question
we designed the Learning Keyboard system, whereby the
computer actually learns what the user is typing by observing
only the movement of the user’s hands. While the presence of
a physical keyboard is required for training, once trained the
keyboard is no longer needed for typing.

In this paper we describe our first efforts towards this goal,
including the setup of a data collection station for recording
a user’s typing and hand motions, the extraction of different
feature vectors from the data, and our performance results
using a multi-class classification support vector machine.

II. DATA COLLECTION

For collecting the needed data for training we setup a mon-
itoring station pictured in Figure 1. Suspended directly above
the laptop keyboard at a distance of roughly 70 centimeters
is a Kinect sensor equipped with an infrared camera, infrared
projector, and RGB camera. The desk space below is marked
off for consistent placement of the laptop with respect to the
camera above.

To pull the image data from the Kinect sensor we used
the open source OpenKinect driver for Mac [1]. The software
comes with a program “record” which dumps all video data
from the device to disk with a Unix time-of-day timestamp.
In the recorded depthmap images, each pixel value denotes
the distance of the object at that point in the image from the
camera. Figure 2 shows what the camera captures from its
viewpoint.

To capture key press information we wrote a small key-
logger using the TKinter library [2]. We log every keypress

Pearl Tan
pearltan @stanford.edu

Fig. 1: Data capture station

made by the user and tag it along with a Unix time-of-day
timestamp, which allows us to later sync up with the Kinect
video data.

Finally to simplify data processing and feature vector
extraction, for each data capture session we author a dictionary
file pre-defining the words to look for and extract out of
the data. In the future it would of course be possible to
automatically generate this dictionary file from the keylogging
data itself, but for now we use this method to manually control
which words are observed and learned on in the datasets.

III. FEATURE VECTOR EXTRACTION
A. Learning on Words, not Letters

For our first implementation of the system we decided to
extract feature vectors on a per word basis and not on a per
key basis, as might seem at first obvious to try. This decision
was the result of two simple observations. The first was that
single key presses along the homerow of the keyboard (asdfjkl)
were indistinguishable from each other given the resolution of

Fig. 2: Raw depth map capture from camera

depthmap data collected by the Kinect sensor (indeed, a single
keypress is a mere 2-3 millimeters of movement). Therefore,
learning would need to be done based on the whole position
of the hands. The second observation was that the position
of the hands during the press of a key is totally dependent
on the word being typed anyway, resulting in any given key
having as many feature vector “signatures” as there are words
that include that key. While learning on a per key basis may
nontheless still be worth a try, it is left as future work.

B. Image Data Preprocessing

Before extracting feature vectors for words from the col-
lected image data, we first run the images through a proproces-
sor. The preprocessor removes the background from the image
apart from the hands themselves (using a simple threshold
filter), and crops the image to include only the area covered by
the keyboard. Figure 3 shows an example of a preprocessed
image.

Fig. 3: Preprocessed depth map

C. Extraction Mechanism

To build a feature vector for the occurence of a typed word,
we first find the start and end times for the typing of that word
in the keylogging data, and then use those times to splice out
the recording of that word in the preprocessed depth map video
stream. The result is a set of frames for the word that are then
processed to generate a set of features describing the hand
motions captured in the frames. In the next section we describe
the three different types of feature vectors that we designed,
and explore their performance in a support vector machine in
the Results section.

IV. FEATURE VECTORS

In this section we describe the types of feature vectors that
we developed and tested.

A. Edge Detector Type

For this type of feature vector we used the Canny [3] edge
detector as implemented in the OpenCV library to turn the
depth map data for a given frame of a given word into an edge
map. The edge maps for all frames are then added together to
produce a single frame for that word. See Figure 4 for an
example. Our reasoning for using such a feature vector was
that the superimposition of edge maps results in an image that
seems to capture the motion of the hands during the typing of
a word.

(a) No Downsampling (b) Downsampled

Fig. 4: Edge Detector Type Feature Vector

(a) No Downsampling (b) Downsampled

Fig. 5: Sum Type Feature Vector

(a) No Downsampling

(b) Downsampled

Fig. 6: Average Type Feature Vector

The downside of this approach, however, was that since the
resulting image in our implementation of the system was too
large (225x95) to use in an SVM (to allow the computation to
run fast enough), downsampling was required. Figure 4b shows
the result of downsampling, and we can see that the image
no longer seems to capture the “movement” of the hands. In
the section on Results we see how downsampling affects the
performance of an SVM on this type of feature vector.

B. Sum Type

This feature vector is much simpler than the Edge Detector
type and just adds up the images from the frames captured for a
given word. Since the background of all the depthmap images
is black after preprocessing, and since the image is 8-bit
greyscale, adding the images together results in an image that

is bright white wherever the hands had moved to, producing
a type of “snow angel” effect. Our logic in using this style of
feature vector was therefore that the SVM may be able to use
such “area-coverage” of the hands during the typing of a word
as a clear signature of what word was typed. See Figure 5 for
an example.

C. Average Type

This feature vector is the same as the sum type feature
vector except that we take an average at the last step. Taking
an average has the effect of revealing the amount of time the
fingers have spent on various parts of the keyboard, which is
lost in the sum type feature vector due to greyscale images
having a 255 pixel value cap. See Figure 6 for an example of
this type of feature vector.

V. LEARNING MODEL

Since the problem at hand was fundamentally a supervised
learning problem with multi-class classifcation on words, we
decided to use an off-the-shelf support vector machine called
LIBSVM [4]. We chose default parameter settings, with the
exception of using a linear kernel instead of the default radial
kernel. All data in the Results section was generated using
LIBSVM version 3.14 with these settings.

VI. RESULTS
A. Datasets

To evaluate the performance of our feature vector types we
captured four datasets described below, in order of increasing
complexity, on which to test them.

1) “Plumpy Databases” Dataset: Our first dataset con-
sisted only of the words “plumpy” and “databases”. These
words are typed solely by the right and left hands respectively
(and so are easily distinguishable in the feature space).

2) “Charlie Samson” Dataset: Our second dataset also
consisted of only two words, “charlie” and “samson”, but this
time each requires both hands to type (making them harder to
tell apart in the feature space).

3) “Jumping Fox” Dataset: Our third dataset consisted of
the 8 unique word sentence “the quick brown fox jumps over
the lazy dog”, and covers every letter of the alphabet.

4) “Night Before Christmas” Dataset: Twas was the
largest dataset that we collected, and consists of typing the
first 4 stanzas of “The Night Before Christmas” poem by
Clement Clark Moore. These stanzas contain a total of 114
unique words (166 words in all).

B. Comparing Performance

To compare the performance of our different feature vector
types, for each type and for each dataset above we generated a
training set consisting of 10 samples for every unique word in
the dataset. We then fed these training examples to the SVM
for leave-one-out cross validation and recorded the results,
shown in Figure 7. Note that for computational tractability
we used a downsampling factor of 6 on our images to reduce
the length of the resulting feature vectors from 21,375 to 555.

The “Plumpy Databases” two word dataset turned out to
pose no challenge to any of the three feature vector types. The
single handed typing of the two words came through clearly for
each, all of which scored a perfect accuracy. When increasing
the degree of complexity with “multi-hand-typed” words in
the “Charlie Samson” dataset, however, we see performance
begin to drop. Surprisingly, though, this reduced accuracy is
held at 95% even when we increase the number of unique
words to 8 in the “Jumping Fox” dataset, despite the fact that
we are maintaining our 10 samples / word restriction for all
datasets. We notice that the Edge Detector type feature vector
begins to suffer in performance, however, and takes an even
bigger hit when increasing the unique word count to 114 in the
“Night Before Christmas” dataset. It’s here that the different
feature vector types’ strength as a signal for a given word
starts to become apparent. The Sum type shows itself to be
an even better signature than the Edge Detector type, while
the Average type leads the ranks, validating its preservation
of time information as a useful quality and strong indicator of
which word was typed.

The floundering Edge Detector feature vector was a curi-
ousity to us since we had assumed from the start that it would
be the best feature set. Our first suspicion was that downsam-
pling may have been taking a greater toll on its performance
compared to the other feature vector types, but this question
was put to rest when we observed the performance of each
type with zero downsampling (shown in Figure 8). Though
we still don’t know the reason for its lagging performance,
perhaps variability in the resulting superimposed edge map is
a factor here. Further analysis on this is left for future work.

Figure 8 also helped to answer our questions about the
effects of downsampling in general on the performance of our
feature vectors. Surprisingly, little performance was lost with
our chosen “default” downsampling factor of 6. Beyond this,
however, we see accuracy begins to fall off as more and more
information is lost. It is interesting to note, however, that even
with a downsampling factor of 24 (that is, a 24x24 = 576 factor
reduction in the number of pixels, down to a tiny 9x7 image),
we can still do roughly 50x better than random guessing on
the “Night Before Christmas” dataset (random guessing gives
us an accuracy of 1/114, while using the Average type feature
vector we achieve 50/114). In other words, there’s still a lot
of information about the original 21,375 pixels packed into
the downsampled 27. This observation leads us to believe
that other feature set reduction methods, such as PCA, may
yield even better results than those we achieved having chosen
downsampling rather arbitrarily.

Even so, with simple downsampling, our roughly 80%
accruacy on a 114 word dataset with a downsampling factor of
6 and only 10 samples per word was very surprising. On our
datasets, however, we noted something a little bit simplistic
about them, which was that despite having so many unique
words, these words were always typed in the same order.
For instance in the “Night Before Christmas” dataset, the
poem was typed 10 times, and always from start to finish.
Hence a word like “night” is always preceeded by “the” and
succeeded by “christmas”. Therefore if there were to be any
effect of neighboring words on the typing of the word “night”,
our dataset would not be capturing that at all. To explore
the question of “neighbor effects” on word typing, we typed

100

90

80

Accuracy

70

60

Charlie Samson
Dataset

Dataset Title

Plumpy Databases
Dataset

B Edge Detection
Type Feature
Vector (Type
03)

B Sum Type
Feature Vector
(Type 02)

[Average Type
Feature Vector
(Type 01)

Jumping Fox
Dataset

Night Before
Christmas Dataset

Fig. 7: Feature vector performance comparison across datasets

90

70

50

Accuracy

30

10

B Edge Detection
Type Feature
Vector
Accuracy
(Type 03)

B Sum Type
Feature Vector
Accuracy
(Type 02)

[Average Type
Feature Vector
Accuracy
(Type 01)

4 8 12

16 20

Downsampling Factor

Fig. 8: Effects of downsampling on the "Night Before Christmas” dataset

the “Night Before Christmas” poem backwards (... christmas
before night the twas”) and used it as a testing set against the
original forward typed dataset, treated as a training set. The
results are shown in Figure 9 and reveal clearly that indeed the
hands type words differently depending on what word comes
before and what word comes after. Still, though, in the best

case we measured with the Averaging type feature vector, we
were able to achieve roughly 65% accuracy, giving us hope that
there is some significant amount of information still contained
in the feature vectors that is independent of neighboring words.
Exploring this, too, is left for future study.

100 Ml Edge Detection Type

Feature Vector (Type
85 03)
B Sum Type Feature

>
E Vector (Type 02)
§ 7 Average Type Feature
< Vector (Type 01)
) I.
40
NBC LOOCV Testing on

Backwards NBC
Testing Method

Fig. 9: The “Neighboring Words” Effect

VII. FUTURE WORK

There are many avenues to explore for future work with
the Learning Keyboard. First, the “neighboring words” effect
needs to be investigated with the hope of developing feature
vectors that are able to extract out the neighbor independent
aspects of word typing. One idea with respect to this might be
to throw away a few video frames at the beginning and end
of the typing of a word, leaving only the motion of the hands
that occurred in the middle of the word. This may work well
for long words, but short words like a’ and 'I’ may require
other techniques.

Secondly, the present implementation of the system does
not support the “delete” key, in the sense that if a word is
mistyped, partially deleted, and then finished correctly, the
system treats that as an unknown word and throws it out of
the collected data. To make the Learning Keyboard a useable
system for real data entry, a method for handling corrected
words would be required.

Lastly, and also towards making the system practically
usable, a method for parsing out words from the depth map
stream without any a-priorio knowledge of keypresses would
be required. Presently the system parses out words from the
datastream, and hands these segments one word at a time to the
SVM prediction system to guess which word was typed... but
in reality such a Learning Keyboard would need to first guess
where words are being typed in the video stream (perhaps by
detecting presses to the spacebar), and then guessing which
word was typed based on the spliced video.

Beyond these, there are many exciting avenues of future
exploration including tuning various aspects of the system,
using PCA instead of downsampling, making the system
independent of camera placement, and even seeing if it would
be possible for a machine to learn what a user is typing without
ever seeing keylog data (that is, use unsupervised learning
algorithms along with marchov models of typed words to
make accurate estimates of what the user is typing). For spy
applications it may not be critical to know precisely word for
word what the user typed, but rather to understand the general
meaning of their typed message.

VIII. CONCLUSION

With an Xbox Kinect, an open source image processing
library, and an off-the-shelf support vector machine we were

able to successfully make a first attempt at building the
Learning Keyboard and show some interesting first results,
including over 80% accuracy on a 114 unique word dataset
with 10 samples per word. Though the simplification was made
that words were typed in the same order each time, we were
able to show with some initial findings that our chosen feature
vectors still maintained an information component that was
indepdent of neighboring words, and gives us hope that there
may be other feature vector generating schemes that better
minimize the “Neighboring Words” effect. We believe that with
larger datasets, better tuned feature vectors, and perhaps an
attempt at tuning the default SVM parameters for LIBSVM,
we should be able to achieve even better results than these.
Perhaps one day the Learning Keyboard or machine learning
techniques like the ones used here will indeed be able to make
the presence of a physical keyboard a mere memory of the past,
but a story told to grandchildren.

“Twas the night before Christmas and all through the house,
not a keyboard was clacking, not even a mouse”.
ACKNOWLEDGMENTS
We would like to thank Chris Lengerich for providing

useful advice for this project.

REFERENCES

[11 OpenKinect driver for Mac, http://openkinect.org/wiki/Main_Page
[2] TKinter library http://wiki.python.org/moin/TkInter

[3] Canny http://docs.opencv.org/doc/tutorials/imgproc/imgtrans/canny_detector/canny_de

[4] Chang, Chih-Chung and Lin, Chih-Jen, LIBSVM: A library for
support vector machines ~ ACM Transactions on Intelligent Sys-
tems and Technology, 2:27:1-27:27,2011. Software available at
http://www.csie.ntu.edu.tw/ cjlin/libsvm.

