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Evolving Curves and Surfaces

e Propagate curve according to speed function v = F'n
e [’ depends on space, time, and the curve itself

e Surfaces in three dimensions



Geometry Representations

Explicit Geometry

e Parameterized boundaries

>

(z,y) = (2(s), y(s))

Implicit Geometry

e Boundaries given by zero level set

e

o(z,y) =0

@ D(x,y) <

o(z,y) >0



Explicit Techniques

e Simple approach: Represent curve explicitly by nodes 2 and lines

e Propagate curve by solving ODEs

Ao
dt

e Normal vector, curvature, etc by difference approximations, e.g.:

d.’I)(Z) aj(i‘i_l) — ag(i_l)

Y
Y

ds 20

e MATLAB Demo



Explicit Techniques - Drawbacks

e Node redistribution required, introduces errors
e No entropy solution, sharp corners handled incorrectly
e Need special treatment for topology changes

e Stability constraints for curvature dependent speed functions

Node distribution Sharp corners Topology changes



The Level Set Method

e Implicit geometries, evolve interface by solving PDEs

e Invented in 1988 by Osher and Sethian:

— Stanley Osher and James A. Sethian. Fronts propagating with
curvature-dependent speed: algorithms based on Hamilton-Jacobi
formulations. J. Comput. Phys., 79(1):12-49, 1988.

e Two good introductory books:

— James A. Sethian. Level set methods and fast marching methods.

Cambridge University Press, Cambridge, second edition, 1999.

— Stanley Osher and Ronald Fedkiw. Level set methods and dynamic

implicit surfaces. Springer-Verlag, New York, 2003.



Implicit Geometries

e Represent curve by zero level set of a function, ¢(x) = 0

® Special case: Signed distance function:
- [Vo| =1

— |@(x)| gives (shortest) distance from @ to curve




Discretized Implicit Geometries

e Discretize implicit function ¢ on background grid

e Obtain ¢(x) for general a by interpolation
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Geometric Variables

e Normal vector n (without assuming distance function):

_ Ve
|Vl

n

e Curvature (in two dimensions):

. Y8 _ Gud] — 20y0:0u + by
Vel (@2 + ¢2)3/2 |

e \Write material parameters, etc, in terms of ¢:

p(x) = p1+ (p2 — p1)0(o(x))

Smooth Heaviside function 6 over a few grid cells.



The Level Set Equation

e Solve convection equation to propagate ¢ = 0 by velocities v
Cbt + U - V§b = 0.

e Forv = Fn,usen = V¢/|V¢|and Vo - Vo = |V¢|? to obtain the

Level Set Equation
b+ F|Vo| = 0.

e Nonlinear, hyperbolic equation (Hamilton-Jacobi).



Discretization

e Use upwinded finite difference approximations for convection

e For the level set equation ¢, + F'|V¢| = 0:

ol = G + Aty (maX(F O)szk + min(F, O)Vwk)

17k

where

ijk = [maX(D_w¢%kv 0)* +m1n(D+x¢wk70)2+
maX(D y¢wk7 ) +m1n(D+y¢23k7 ) +
max (D~ ‘O 0)* 4+ min(D* " 0)2} 1/2,

1jk>



Discretization

and
v’;k — [mln(D qbwk? ) +maX(D+x¢wkvo)2+
mln(D ygbwk? ) +maX(D+y¢z3k7 )_|_
min(D ¢}, 0)° + max(D gL, 0)°] 2,

ijk>
e [ ~7 backward difference operator in the x-direction, etc
e For curvature dependent part of /', use central differences
e Higher order schemes available

e MATLAB Demo



Reinitialization

Large variations in V ¢ for general speed functions F’
Poor accuracy and performance, need smaller timesteps for stability
Reinitialize by finding new ¢ with same zero level set but [V | = 1

Different approaches:

1. Integrate the reinitialization equation for a few time steps

¢+ sign(@) (Vo] —1) =0

2. Compute distances from ¢ = 0 explicitly for nodes close to boundary,

use Fast Marching Method for remaining nodes



The Boundary Value Formulation

For ' > 0, formulate evolution by an arrival function 7’
T'(x) gives time to reach @ from initial I"

time * rate = distance gives the Eikonal equation:
IVT|FF=1, T=0onT.

Special case: /' = 1 gives distance functions




The Fast Marching Method

e Discretize the Eikonal equation |VT'|F' = 1 by

] 1/2

max(D;T,0)* + min(D; 5T, 0)? |

+max(D, }'T,0)? + min(D,}T, 0)? =
| +max(D;T,0)* +min(D;;T,0)*
or
] B ) , 712
max(D; T, =D T,0) |
—Y +y 2 —
+ maX(DijkT, —D T, 0) = Fr
|+ max(DET, —DT, 0)*




The Fast Marching Method

Use the fact that the front propagates outward

Tag known values and update neighboring I’ values (using the difference

approximation)
Pick unknown with smallest /" (will not be affected by other unknowns)
Update new neighbors and repeat until all nodes are known

Store unknowns in priority queue, O(n log n) performance for n nodes

with heap implementation



Applications






Structural Vibration Control

e Consider eigenvalue problem

—Au = Ap(x)u, r e € S p,
u =0, xr € 0f).

with
p1 forx ¢ S

plx) =
py forx € S.

e Solve the optimization
min \; or Ay subject to ||S|| = K.

S



Structural Vibration Control

e Level set formulation by Osher and Santosa:
— Finite difference approximations for Laplacian
— Sparse eigenvalue solver for solutions \;, u;

— Calculate descent direction d¢p = —v(x)|V ¢| with v(a) from shape

sensitivity analysis
— Find Lagrange multiplier for area constraint using Newton’s method

— Represent interface implicitly, propagate using level set method



Stress Driven Rearrangement Instabilities

e Epitaxial growth of InAs on a GaAs substrate, stress from misfit in lattices

e (Quasi-static interface evolution, descent direction for elastic energy and

surface energy

J¢
ot

e Level set formulation by Persson, finite elements for the elasticity

+ F(x)|Vo| =0, with F(x) = e(x) — ok(x)

Electron micrograph of defect-free InAs quantum dots



Stress Driven Rearrangement Instabilities

Initial Configuration

Final Configuration, o = 0.20




Stress Driven Rearrangement Instabilities

Initial Configuration

Final Configuration, o = 0.10




Stress Driven Rearrangement Instabilities

Initial Configuration

Final Configuration, o = 0.05




