The LICOX® System

Brain Tissue Oxygen Monitoring System

Product Presentation

NS1581-09/07

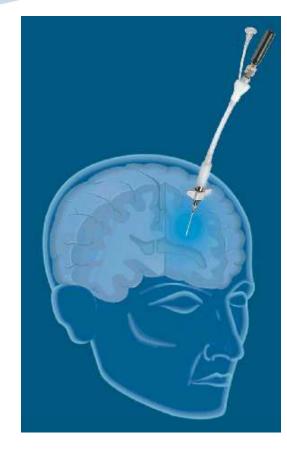
What is the LICOX[®] system?

- Measures interstitial brain tissue oxygenation (P_{bt}O₂) in mmHg and brain temperature (°C)
- Probe inserted approximately 35mm below the dura into the white matter of the brain
- P_{bt}O₂ used in conjunction with current ICP/CPP monitoring methods

Who needs the LICOX[®] system?

- Patients at risk for developing cerebral hypoxia or ischemia
 Head trauma patients
- > Aneurysm patients
- Subarachnoid hemorrhage patients
- Stroke patients

 $\ensuremath{\textcircled{}^\circ}$ 2007 Dr. Marcos Tatagiba. Reprinted with permission.


When is the LICOX[®] system placed?

- Within the first 24-48 hours of injury
 - The sooner cerebral hypoxia is detected, the better secondary injury can be prevented
- Generally, when an ICP catheter is required, a LICOX[®] probe should be considered

How is the LICOX[®] system placed?

- Can be either *bolted* or *tunneled*
- Can be placed independently or with an ICP catheter
- Requires minimal additional effort
- Does not need to be zeroed prior to placement, SMART card is included with each O₂ probe with all calibration data
- Monitor need not be present when placing in the OR

Where is the LICOX[®] system placed?

- Placement is up to clinical discretion
- The idea is to prevent SECONDARY injury by ensuring living tissue is receiving adequate oxygen
- LICOX[®] probe can be placed in either the injured side or non-injured side of brain
- Should not be placed directly into a lesion

What are the probe options?

• BOLTED

- Double Lumen Camino[®] ICP channel and LICOX[®] PMO catheter channel (IP2P)
- TUNNELED
- Licox[®] PMO combined oxygen and temperature catheter (IT2)
- Probe kits come with required drill bits and other accessories

How accurate are the probes?

Oxygen Accuracy:
> P_{bt}O₂ 0-20 mmHg accuracy is ± 2 mmHg
> P_{bt}O₂ 21-50 mmHg accuracy is ± 10%
> P_{bt}O₂ 51-150 mmHg accuracy is ± 13%

Temperature Accuracy: ± 0.2 °C

What about the nursing staff?

- Simple monitor set-up and use
- The monitor displays a digital oxygen and temperature reading
- Alarms are managed through a connection to the bedside monitor

What is a "normal" reading?

- Normal: 25-35 mmHg
- Risk of death increases
 - -< 15 mmHg for 30 minutes</p>
 - < 10 mmHg for 10 minutes
- $P_{bt}O_2 < 5 \text{ mmHg}$ - high mortality
- $P_{bt}O_2 \le 2mmHg$ neuronal death¹

1- Bardt T, Unterberg A, et al. Monitoring of brain tissue PO2 in traumatic brain injury: effect of cerebral hypoxia on outcome. *Acta Neurochirurgica*.1998;71(Suppl):153-156.

How is patient outcome affected?

- Its been found:
 - Head injured patients who undergo aggressive therapy to maintain ICP/CPP at normal levels still experience periods of severe brain hypoxia¹
 - Interventions previously thought to improve tissue oxygenation may improve ICP and CPP but actually decrease $P_{bt}O_2^2$

 Bardt T, Unterberg A, et al. Monitoring of brain tissue PO2 in traumatic brain injury: effect of cerebral hypoxia on outcome. *Acta Neurochirurgica*.1998;71(Suppl):153-156.
 Zauner A, Doppenberg E, et al. Extended neuromonitoring: new therapeutic opportunities? *Neurological Research*. 1998;20(Suppl 1):85-90.

How is patient outcome affected?

- The $P_{bt}O_2$ number can provide:
 - Notification of hypoxic episodes
 - Independent predictors of unfavorable outcome and death¹
 - Treatments to maintain $P_{bt}O_2$ correspond to more favorable patient outcomes²

 Zauner A, Doppenberg E, et al. Extended neuromonitoring: new therapeutic opportunities? *Neurological Research*. 1998;20(Suppl 1):85-90.
 Valadka A, Gopinath S, et al. Relationship of brain tissue PO2 to outcome after severe head injury. *Critical Care Medicine*. 1998;26(9):1576-1581.

Is the LICOX[®] system cost-efficient?

- Added costs the Licox[®] system are justified by significantly improved outcomes
- Implementation of new protocols using P_{bt}O₂
 - Improve patient care¹
 - Better utilize resources¹
 - Probable reduction of
 - Ventilator days^{1,2}
 - ICU days^{1,2}
 - Overall hospital days^{1,2}

 Spain D, McIlvoy L, Fix S, et al. Effect of clinical pathway for severe traumatic brain injury on resource utilization. *The Journal of Trauma*. 1998;45(1):101-105.
 Simons R, Eliopoulos V, Laflamme D, Brown D. Impact on process of trauma care delivery 1 year after introduction of trauma program in a provincial trauma center. *The Journal of Trauma*. 1999;46(5):811-816.

11/2/2007 NeuroSciences

How is the LICOX[®] system different than a Jugular Venous Bulb?

- Jugular bulb oximetry, SjvO₂, measures oxygen saturation of venous blood
 - Measures global oxygen reduction
 - Cannot identify regional cerebral ischemia
 - may lead to secondary injury^{1,2}

1. Clay H. Validity and reliability of the SjO2 catheter in neurologically impaired patients: A critical review of the literature. *Journal of Neuroscience Nursing*. 2000;32(4):194-203.

2. Mayberg T, Lam A. Jugular bulb oximetry for the monitoring of cerebral blood flow and metabolism. *Neurosurgery Clinics of North America*. 1996;7(4):755-765.

How is LICOX[®] different than a Jugular Venous Bulb?

- $SjvO_2$ measurements are shown to be unreliable
 - Good quality data are only obtained about 50% of the placement time^{1,2,3}
 - SjvO₂ is difficult to use in children due to small vein size⁴

Clay H. Validity and reliability of the SjO2 catheter in neurologically impaired patients: A critical review of the literature. *Journal of Neuroscience Nursing*. 2000;32(4):194-203.
 Kiening K, et al. Monitoring of cerebral oxygenation in patients with severe head injuries: Brain tissue PO2 versus jugular vein oxygen saturation. *Journal of Neurosurgery*. 1996;85:751-757

3. Meixensberger J. et al. Multimodality hemodynamic neuromonitoring - Quality and consequences for therapy of severely head injurted patients. *Acta Neurochirugica*. 1998;71(Suppl):260-262.

4. Palmer S, et al. The impact on outcomes in a community hospital setting of using the AANS traumatic brain injury guidelines. *The Journal of Trauma*. 2001;50(4):657-664.

A few institutions that have published clinical studies with the LICOX[®] systems:

- Mission Hospital
 - Mission Viejo, CA
- Harborview
 - Seattle, WA
- Creighton University
 - Omaha, NE
- University of Pennsylvania Hospital
 - Philadelphia, PA

Thank you for your time!

Please contact us anytime should you have any further questions.

References

Bardt T, Unterberg A, et al. Monitoring of brain tissue PO2 in traumatic brain injury: effect of cerebral hypoxia on outcome. *Acta Neurochirurgica*.1998;71(Suppl):153-156.

Clay H. Validity and reliability of the SjO₂ catheter in neurologically impaired patients: A critical review of the literature. *Journal of Neuroscience Nursing*. 2000;32(4):194-203.

Mayberg T, Lam A. Jugular bulb oximetry for the monitoring of cerebral blood flow and metabolism. *Neurosurgery Clinics of North America*. 1996;7(4):755-765.

Kiening K, et al. Monitoring of cerebral oxygenation in patients with severe head injuries: Brain tissue PO2 versus jugular vein oxygen saturation. *Journal of Neurosurgery*. 1996;85:751-757

Meixensberger J. et al. Multimodality hemodynamic neuromonitoring-Quality and consequences for therapy of severely head injurted patients. *Acta Neurochirugica*. 1998;71(Suppl):260-262.

Palmer S, et al. The impact on outcomes in a community hospital setting of using the AANS traumatic brain injury guidelines. *The Journal of Trauma*. 2001;50(4):657-664.

Prasad S. et al. Cerebral oxygenation in major pediatric trauma: Its relevance to trauma severity scores and outcomes. Paper presented at: 35th Annual Meeting of the American Pediatric Surgical Associtation; May 27-30, 2004; Ponte Vedra Beach, Fla.

Simons R, Eliopoulos V, Laflamme D, Brown D. Impact on process of trauma care delivery 1 year after introduction of trauma program in a provincial trauma center. *The Journal of Trauma*. 1999;46(5):811-816.

Spain D, McIlvoy L, Fix S, et al. Effect of clinical pathway for severe traumatic brain injury on resource utilization. *The Journal of Trauma*. 1998;45(1):101-105.

Stiefel, M., et al. Reduced mortality rate in patients with severe traumatic brain injury treated with brain tissue oxygen monitoring. *J Neurosurg*. 2005;103:805-811.

Valadka A, Gopinath S, et al. Relationship of brain tissue PO2 to outcome after severe head injury. *Critical Care Medicine*. 1998;26(9):1576-1581.

Zauner A, Doppenberg E, et al. Extended neuromonitoring: new therapeutic opportunities? *Neurological Research*. 1998;20(Suppl 1):85-90.

