Institutionen for medicin och vard
Avdelningen for radiofysik
Halsouniversitetet

The Linogram Algorithm and Direct
Fourier Method with Linograms

Paul R. Edholm

Department of Medicine and Care
Radio Physics
Faculty of Health Sciences



Series: Report / Institutionen for radiologi, Universitetet i Linkdping; 65
ISSN: 1102-1799
ISRN: LIU-RAD-R-065

Publishing year: 1991

© The Author(s)



1991-01-22 ISSN (348-7679

The Linogram Algorithm and Direct Fourier
Method with Linograms

Paul R. Edholm

Avdelningen f6r diagnostisk radiologi
Universitetet i Link&ping

REPORT
ULI-RAD-R~065



The Linogram Algorithm and Direct Fourier Method with Linograms

Paul R. Edholm

The conventional map of projection data will here be called the sinogram
map. Among the algorithms used with this map of data there are two of main
interest for this paper: the Filtered Back Projection (FBP) and the Direct
Fourier Method (DFM). FBP is the most popular algorithm used in commercial
CT machines although it is computationally expensive compared to the DFM.
The reason for its popularity is that FBP gives better pictures than the
DFM unless the latter is used with very careful interpolations.

In this paper another map of projection data will be presented, here called
the linogram map. The FBP may be implemented with this map in a
particularly simple way, here cglled the Linogram Algorithm (LA). In this
the back projection, which is so computationally expensive with the
sinogram map, can be reduced to a computationally inexpensive series of
FFT/s.

The DFM may also be implemented with the linogram map in a particular way
so that it turns out that the two methods FBP and the DFM are
computationally identical.

The LA has been described in [1-5]. In [4] a definition of linograms was
introduced, which is slightly different from the definition given in [1-3],
and leads to a somewhat simplified mathematical description of the
algorithm.

This text is an attempt to describe the Linogram Algorithm based on some of
the ideas in [4] and also such that the mathematical description is more

similar to the actual digital implementation.

The DFM method with linograms will also be presented. The two methods,
which are different conceptually, have a very similar structure. In both

the image is reconstructed without any interpolations.

Geometry., Let the object to be reconstructed be the function f: R? -+ R,
such that

0 for |x] > 1or |y| 21 (1)

£(%:¥) = {3 0 othervise .



In image reconstruction from projections it is necessary to specify line
integrals through the plane of the object, i.e. projecting rays in all
possible directions. A line through the object may be specified by two
coordinates., Based on the geometry of the detector array, the usual way is
to let the first coordinate define the length of the normal to the line
from the origin, and the second coordinate the angle from the x-axis to
this normal in the counterclockwise direction. If these coordinates are
(rp, ep), then the line through the (x,y)-plane has the eguation

= @ i 6 . 2
rp= X cos@ +y sin® (2)
All possible lines in the (x,y)-~plane may be specified in this way. In the
plane of the rectangular ccordinate system (r, ), each point defines a
line through the (x, y)-plane, (Fig 1) which may be written

X = r/(cos®) - y tan® {3)
The point (xp, yp) in the (x,y)-plane defines the sinusoid

L= X, cos® + p §in® (4)
in the (r,®)-plane. If we nov have chosen (xp,yg so that this point is on
the line (2) in the (x,y)-plane, the sinusoid (4) must pass through the
point (rp,ep), which represents all points on (2) (Fig 2). The other points

on this sinusoid define all other 1lines in the (x,y)-plane passing through
the point (xp,yp). This is seen by inserting (4) in (3)

b
It

(xp cos8 + yp sin®)/cos® - y tan®

or X

I

x5+ (yp - y¥) tan® . (5)
When © varies through the range n, the expression (5) describes all lines
in the (x,y)-plane passing through (xp,yp).

A line through the (x,y)-plane may be specified by a number of ways. Is it
possible to find another coordinate system, say (u, v}, in which, as
before, every point defines a line through the (x, y)-plane and also such
that the set of points defining all lines through a specific point (xp, yp)
instead of a sinusoid, forms a straight line in the (u, v)-plane?



Define a line in the x,y-plane as
) (6)

vhere (up, vp) is a gpecific point in the (u, v)-plane (Fig 3). The points
in the (u,v)-plane defines all possible lines through the (x,y)-plane

X=u-yv . (7)

Assume that our previous point, (xp, yp), is a point somewhere on the line
(6), then

u = xp + ypv , (8)
is a straight line through the (u, v)-plane (Fig 4). As we have chosen
(xp,yp) to be on the line (6) in the (x,y)-plane, the line (8) in the
(u,v)-plane must pass through (up, vp), vhich represents all points on
(6). The other points on this line define all other lines in the (x, y)-
plane passing through (xp, yp).

This may be seen by inserting (8) in (7).

~
H]

(xp + ypv) -y
or

"
]

Xy ¥ (yp -y)v . | (9)

¥hen v varies from -= to ®, the expression (9) describes all lines in the
(x,y)-plane passing through (xp, yp).

There is a kind of symmetry between the (x,y) and the (u,v) systems as is
seen by (6) and (8). A point in one system defines a line in the other.

Sinograms and Linograms. When projection data, in the form of line

integrals through a function f(x,y), are mapped in the (r,®)-coordinates,
where data for a point in the object form the sinusoid (4), this map is
usually called a sinogram [6], and it may be denoted p(r,®) and defined as

@

p(r,Q) = I f(rcos® - tsin®, rsin€ + tcos@)dt (10)

-



If the projection data instead are mapped in the {(u,v) coordinates where
data for a point in the object form the straight line (8), this map will be
called a linogram analogous to the term sinogram [1].

Why linograms instead of sinograms? Well, in the most popular algorithm,
called filtered back projection, the projection data are first subjected to
a filtration of their spatial frequencies and then "back projected". This
is a somewhat unprecise expression. The mathematical definition is that
each point in the object is reconstructed by making an integration of the
filtered projection data representing all line integrals through the point

in question.

In the sinogram case we then have to do an integration along a sinusoid for
each point, but in the linogram case this integration i1s along a straight
line. This may be a simpler operation, and as we will see later, the use of
linograms allows us to replace the computationally expensive back
projection by a series of fast Fourier transforms.

The relation between the coordinates for the sinogram (r,®) and the

linogram (u,v) are

u r
= (1) or U= Cose
© = arctan v, v = tan®

Linograms. A linogram mapping all lines through f(x,y) has to have a range

in v from @ to =, corresponding to a range of n for © in the sinogram.
In order to have a finite range for v we are going to use two finite

linograms.

The first will be called g, (u, v) and contains projection data of f(x, y)
for the range - 1 £ v < 1.

The second will be called g, (u, v) and is achieved by first rotating the
object clockwise the angle % and then taking projections of it for the
range - 1 € v < 1, exactly as for g6 (u, v).

From the two linograms two partial images will be reconstructed, fo (x, ¥)
and f£,(x, y). The final image is formed by first rotating f,(x,y)
counterclockwise the angle n/2 and then adding it to fo(x,y).



Let Q define a counterclockwise rotation the angle n/2 of a function
f:R? > R around the origin so that

[0 £] (%, y) = £ (-y, %),
{o°§1 (x, y) = £ (x, y) and (11)
Q7 £] (x, ¥) = £ (y, -x).

For any 2-dimensional function f we use, respectively, F[llé, F[2]£ and F,f
to denote the Fourier transform of f with respect to its first variable,
the Fourier transform of f with respect to its second variable, and the
two-dimensional Fourier transform of f. Variables in the spatial domain are
represented by small letters and in the Fourier domain by capital letters.

In the following expressiong, k is an index assuming the two values O
and 1. The range of v is limited to -1 € v < 1. The two linograms o and g,
are then defined by

+2]

g, (W,v) = f [0°XE] (u-yv,y) dy ; k=0,1; -1 € v < 1. (12).

The RHS represents line integrals through f(x,y), where x has been replaced
by {u-yv) according to (7).

The filter. The linograms defined by (12) cannot be used directly for
reconstruction, they have first to he filtered,

We will now try to find hov to make a proper filtration of the spatial
frequencies of the projection data in the linogram. As a preliminary we
will first make an l1-dimensional Fourier transform of 8y in the first

variable

1]

rl g ) v, v = g (o, v 2T Mau (13)

Insert (12) in (13)

n

t*l g1 (u, v fijm “e] (uye, ¥) dy } e Mau L)



Change variabel from u to x

u - yv

X
. d—-—& —
{ u=x+yv ' du 1 (13)

[

[F[I]gk} U, v) = J { J [0°%F] (x, y) dy } 12M U (xeyv) g

- J f [0KE] (%, y) e 127 U (x4¥V) guqy, (16)

The LHS of (16) is a 1-D Fourier transform of 8y in the first variable and
the RHS of (16) represents a 2-D Fourier transform of f({x,y). The exponent
for e contains the expression U(x+yv) which is.the inner product of the two
vectors (U, Uv) and (x,y). For a constant v, the RHS of (15) is thus an
expression for the line

i

X =

in the 2-dimensional Fourier transform of f(x,y).This means that
[t] -k
[F* “g 1 (U, v) = [F,Q "] (U, Uv). (18)
This is the "projection slice theorem" stated in linogram form.
For the moment we leave (18) and start at another end, namely the
selfevident fact that
@ izn(x,y)(X,Y)
£(x,y) = I I [F,f] (X,Y) e dx dy, (19)

i.e. if we make an inverse Fourier transform of the Fourier transform of

f{x,y), of course we regain £(x,y).

Change from coordinates (X,Y) to polar coordinates (R,©) in the Fourier
domain. The usual integration in © from 0 to 2n is replaced by the
equivalent range from -n/4 to 7n/4.

7/4n @ i2n(x,y){Rcos@,Rsin®)
£(x,y) = I M J [F,f] (R cos®, R sin@)e IR| d R de. (20)
-1 4}



If R in (20) with the integration between 0 and « is permitted to be
negative and is integrated from -« to « it is sufficient with an
integration of © from 0 to n, that is in (20)

7/4n = /4n o
I I is replaced by f .
-1’4 Yo -4 Yoo

Divide the angular range for © in the two ranges.

£ 0< and <0< % . (21)

]

=
=

For each range we will make an inverse transformation of F,f, each
incomplete and resuliting in a partial image fk(x,y). For the second range
in (21) we will rotate f(x,y) clockwise using the operator Q defined in
{(11). The two partial images will be denoted fo(x,y) and £,(x,y) and are
defined by

/4 = i2n(x,y){(Rcos®, Rsin@®)

£, (x,y) = j f [F,07%f] (Rcos®; Rsin®)e [R| d R d8,  (22)

/4

When the two partial images are added together the result will be a

complete image of f(x,y).

1 K n/4 .= & i2n(x,y)(Rcos®,Rein®)
f(x,y) = L Q f [F,Q@ "f] (Rcos®, Rsin®)e |R]d R de. (23)
k=0 =p/4 V-w
or,
1 x
£(x,y) =k20 [Q7E 1 (x,¥). (24)

Note that the two fk(x,y); k=0,1 are not subject to the same limitations as
defined for f(x,y) in (1).

We now change the variables on the RHS of (22) from polar coordinates to
the Cartesian coordinates used in (18), so that U = R co0s® and v = tan®.
From this follows that



Uv = R sine, 7(1%537 - cos® and 777y = sine. (25)

We than have dU v(l+v?) = dR and T%%? = de,

so that |U} dU dv = |R] dR de.

When these changes are inserted in (23) we get

® K iZ2n(x,y)(U,Uv)
£ (x,Y) = jll f [F,0"%E] (U, uv)e [U]du dv. (26)

Compare (26) and (18). The difference between the RHS in 18 and the
integrand on the RHS in (26) is that the latter is multiplied by the factor
|U}. This then constitutes the necessary filtration of the spatial
frequencies in the projection data. Define

1 -
el g 1 0,y = [F078E1 (U,Uw) JulwCIuD), -1 < v <1 (27)
so that the two linograms g’k(u,v) consist of properly filtrated data.

W(]U[) is a band-limiting function.

The linogram algorithm. We are now ready to derive the algorithm. Insert
(27) in (26)

1 = i2nxU
feon) = [ ] g wweau e, (28)

and perform the inverse transform in U. We then have

fk(x:Y) = Jllg'k (u,v) dv . (29)

Change from variabel u to x according to (15).

fk(x,y) = Jllg’k (x+yv,v) dv . (30)

For a constant y-value the LHS is a line through fk(x,y) parallel to the x-
axis and the RHS is a set of parallel line integrals through the filtered



linogram (Fig 5). This may be regarded as a parallel projection of the
filtered linogram. We can then use the projection theorem as follows.

A Fourier transform of fk(x,y) in the first variable may be expressed as

[1] o ~i2n Xx
e 1,y - j_wfk(x,y)e dx.
Now insert (30) on the RHS,
[] ® -i2n Xx
Fe = [ [ ey oyvimav e dx (31)
L

As gkis zero for |v] > 1 so is g'y+ We can then extend the limits of
integration for v to infinity. Change variabel from x to u according to
(15).

el e 1 k) - J J g/ (u,v) e 2MRUTgy gy (32)

The BHS represents a 2-dimensional Fourier transform of g’k (u,v). The
exponent for e contains X(u-yv), which may be regarded as the inner product

of the two vectors

(X, -yX) and (u,v). (33)
We then have that

['] '

[F fk] (X,y) = [F, g k] (X,-yX). (34)
Note the similarity between (34) and (18).
Ve said that (18) was an expression for the celehrated projection slice
theorem, which states that the Fourier transform of a projection of a
function is to be found as a central line in the 2-dimensional Fourier
transform of the function.
In (34) we have that the Fourier transform of a line in the function,

parallel to the x-axis, is to be found as a central line in the 2-
dimensional Fourier transform of the filtrated linogram to the function.



Note also that in the 2-dimensional Fourier transform

[Fzg’k]V(U,V) ve have that,

{v

X
_yX .

nmn

The image fk(x,y) stands in a similar relation to gi {u,v), as gk(u,v) to
fk(X:Y)'

From (34) we get

-] iZ2rn xX
B0oy) = [ [Fagry ] (% y0e X, (35)

which says that a line in £, (x,y) parallel to the x-axis, i.e. with a fixed
k i-e.

y-value, is reconstructed by performing an inverse Fourier transform of the

values along the line

V - X (36)

in the 2-dimensional Fourier transform of the filtered linogram g’k(u,v).
The final reconstructed image of the object f(x,y) is acquired by
rotating £,(x,y) and adding it to fo(x,y) according to (24), It is repeated

here,

i
Exy) = &I ] () (37)
k=0
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Some comments on implementation

A description of how to‘implement the linogram method is given in [2] and a
comprehensive description of how to implement linograms with the slightly
different definition treated here and in [4] is given in [4]. In [4] the
result from different kinds of band limiting filters, W(U), were compared
with each other and with the results from filtered back projection. For
this purpose several phantoms were used. All experiments were simulated
with the program package SNARK77. In [4] is also given an excellent
description of this program package by which phantoms and a number of
different projections and reconstruction methods may be simulated.

An important feature in the implementation is the two-dimensional Fourier
transform of the filtered linogram. The first transform in the u-direction
can easily be done by FFT of the Linogram. The filtration is then performed
by multiplying with |U|. If now the transform in the v-direction also is
done by FFT we would get a rectangular grid of points as in Fig 6a. From
{36) and (1) we see that only points lying in the sectors defined by

V=-yX ; Iyl €1, (38)

are relevant and from these we would have to interpolate in order to get
the points shown in fig 6b. For small values of X there are then very few
points to interpolate from. The points in fig 6b, however, can be
calculated exactly and without interpolation by doing a DFT and this in
turn can be calculated by the so called chirp-z-transform (CZT) [7], which
performs the DFT at the cost of 3 FFT’s.

By the use of CZT it is thus possible to implement the linogram method
without any kind of interpolation.
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Direct Fourier methods

These are methods in which the image is reconstructed from its two-
dimensional Fourier transform by two inverse FFT'’s.

The two-dimensional Fourier transform for the image is derived from the
one-dimensional Fourier transforms of the projections of the object,
utilizing the "projection slice theorem". This theorem says that when a
parallel projection is Fourier transformed in its first variable, it is
equal to a line through the origin of the two-dimensional Fourier transform
of the image. When projection data are in the sinogram form defined in (10)
they may be denoted p(r,©). Here r is the coordinate along the axis
perpendicular to the rays. For sinograms the projection slice theorem is

expressed as
(Fl'1p] (R,8) = [F,£] (R cos®, R sin®) . (39)

For linograms this theorem has already been stated as (18), it is repeated
here

1
el g1 vy = 1m0 U, uny
As X = U, we can rewrite this as

i g 1 v

[Fﬁfk] (X, Xxv) . (40)
When data for the LHS in the two expressions (39) and (40) are known for
points in a rectangular array, the RHS represents these points on radial

lines through the origin.

In the sinogram case the points representing the RHS of (39) lie on a polar

grid with equal increments in © between the radial lines and equal

increments in R between the points on the radial lines.

This polar grid represents points in the two-dimensional Fourier transform
of the image but the image cannot be calculated directly from this grid.
First we have to change it into a rectangular grid of points and this is
done by interpolation from the polar grid. The image can then be
reconstructed by a sequence of two one-dimensional inverse FFT’s, one
parallel to the X-axis and the other to the Y-axis.



A crucial step is the interpolation from polar to rectangular coordinates.
A simple bilinear interpolation is not sufficient to achieve a good result.
More correct interpolations [8], [9] give results comparable to those
performed by filtered back projection.

In the linogram case, for each of the two linograms, the points

representing the RHS of (40), form a pattern similar to the grid in fig 6b.
The radial lines do not have equal increment in © but in v, which
represents tan®. On the radial lines the points lie on equal increment in
the X-coordinate so that the points lie on straight lines parallel to the

Y-axis.

The two grids {szk] (X,Xv) can be combined in one grid by rotating the
grid [F,f,] (X,Xv) the angle n/2,

1 1o%F,E ] (x,xv) .
k=0

We would then have a grid as in fig 7. This grid represent points in the
two~dimensional Fourier transform of the complete image. As in the ginogram
case a rectangular grid may be interpolated. The image may then be
reconstructed by two FFT’s as in the sinogram case.

A better way, however, would be to reconstruct each partial image fk from
its own partial grid by doing a two-dimensional inverse Fourier transform
of it.

If the discrete points representing [szk] (X,Xv) were a perfect
rectangular grid in (¥,Y)-space, we could have used an inverse FFT
algorithm two times, first in the direction of one of the axes than in the
direction of the other in order to calculate fk(x,y). Now this is not the
case because even though the X-coordinateg for the points conform to the
grid lines in a rectangular grid, the Y-coordinates do not. In order to do
the inverse transform in the Y-direction we have to do a DFT. But this can
be achieved by the chirp-z-transform mentioned on p. 10 [7] at the cost of
3 FFT's.

By this transform it is possible to calculate the correct values for

13



1
[F[ ]fk] (X,y), without interpolation. We then have to start with the
filtered linograms defined in (27) and here restated. As the Fourier
variable U is equal to X, U is replaced with X.

rU g 1 vy = FU g 1 kv 13 W) (41)
k ! k ! !

The filtered linogram (the LHS of 41) is then remapped as grid points in

the two-dimensional Fourier transform of fk.
(1.,
Iszk} (X,vX) = [F ‘g’ 1 () . (42)

The next step is to use the CZT to do an inverse DFT in the second

variable.
(1 [2]-1
[F* 5.1 X,y = [ (FF 7)) Ff 1 (X,vX) (43)
We can then calculate fk(x,y) by doing an inverse FFT in the first

variable. The complete image is then calculated by (24).

Comparison between the Linogram method (LM) and the Direct Fourier Method

with Linograms (DFM). In both methods the steps are the same up to the

stage where we have filtered linograms which are Fourier transformed in the
1
first variable, i.e. [F[ ]g'k] (X, v).

From this point they take different routes (Fig 8) and arrive at the same

result, namely a partial image Fourier transformed in its first variable,
1

e FUg ) x, .

In both methods all operations are only in the second variable, which is
transformed from v to y. The first variable is all the time X.

In the LM a Fourier transform of the linogram in the v-coordinate is
carried out by CZT, which changes this coordinate into V, expressed as
-yX. A multiplication of this coordinate with (-1/X) is then performed,
which gives the desired result.

In the DFM the linogram is first remapped into the Z-dimensional Fourier
trangform of the partial image. The v-coordinate is multiplied with X which

14
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changes it into Y. An inverse Fourier transform by CZT in this coordinate

then gives the desired result.

Although the two methods are conceptually different the calculations are
practically identical. Both methods arrive at exactly the same result and

no interpolations are performed.

This is clear from the following. Assume that we only compute one column in
IFll]fk} (X,¥), (i.e. in the following X < 1 and is a constant). Call this
sequence of values I{y). It is computed from a corresponding column of
values in {F[llg'k} (¥X,v) (with the same constant X). Call this sequence

L{v).

In the Linogram method we make a forward Fourier transform into a new
sequence [Fzg'k] (X,V). Ve do not, however, compute this sequence for
integer values of V but at the fractional values for which V = -yX

o

T~

—

|

: Z. -lzzfﬂn
[Bgi (X, yX)=N1 2 L(v)e'?" ¥
ﬁ=N,,'3
Nt P
Nt Y L() 2 2y
a=ft

The "remapping" of the LHS into I (y) consists in letting the second
variable assume integer values. As the LHS in fact only is a sequence

of values, it can directly be accepted as I (y).

The "remapping step" is therefore only a conceptual step. It is no step in

the calculations. So we have that



In the Direct Fourier method we start with a similar conceptual "remapping
step" by considering the sequence L{v) to be values at the fractional

coordinate points Y = vX, in [szk] (X,vX).

Ve then do an inverse Fourier transform of this sequence resulting in I (y)

N-l

I(y) N Z [szk](x vX)e

2

izm va

-

H-

i
12::”""
12 L
. L(v)e

ﬂ=—2

Thus the calculations are exactly the same for both methods.

16
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Fig 5. The row of points in fk(x,y) parallel to the x-axis are

reconstructed by a parallel projection of g’ (u,v).
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Fig 6. a) The resulting grid if the Fourier transform in the v-direction is
performed by FFT. b) The grid of points needed for the reconstruction. This
grid can be achieved without interpolation by CZT.

Fig 7. The grid resulting from a remapping and combination of the two
1
(el gy x,v.
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[5 1] (X, vX) [FJ(X, ¢)

Fig 8. Pictorial comparison of the different routes taken by the Linogram
Method and the Direct Fourier Method with linograms. Both start from a
filtered and Fourier transformed linogram (upper left) and end at a partial
image Fourier transformed in its first variable (lower right)., The Linogram
Method goes via the 2-D Fourier transformed linogram (upper right), the
Direct Fourier Method via the 2-D Fourier transformed image (lower left).
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