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The Linogram Algorithm and Direct Fourier Method with Linograms

Paul R. Edholm

The conventionai map of projection data will here be called the sinogram

map. Among the algorithms used with this map of data there are two of main

interest for this paper: the Filtered Back Projection (FBP) and the Direct

Fourier Method (DFM). FBP is the most popular algorithm used in commercial

eT machines although it is computationally expensive compared to the DFM.

The reason for its popularity is that FBP gives better pictures than the

DFM uniess the lat ter is used with very careful interpolations.

In this paper another map of projection data will be presented, here called

the linogram map. The FBP may be implemented with this map in a

particularly simple way, here called the Linogram Algorithm (LA). In this

the back projection, which is so computationally expensive with the

sinogram map, can be reduced to a computationally inexpensive series of
FFT's.

The DFM may also be implemented with the linogram map in a particular way

so that it turns out that the two methods FBP and the DFM are
computationally identical.

The LA has been described in [1-5]. In [4] a definition of linograms was

introduced, which is slightly different from the definition given in [1-3],
and leads to a somewhat simplified mathematical description of the

algorithm.

This text is an attempt to describe the Linogram Algorithm based on some of

the ideas in [4] and also such that the mathematical description is more
similar to the actual digital implementation.

The DFM method with linograms will also be presented. The two methods,

which are different conceptually, have a very similar structure. In both

the image is reconstructed without any interpolations.

Geometry. Let the object to be reconstructed be the function f: R2 ~ R,

such that

1

f(x,y) _ { O for lxi ~ 1 or lyl ~ 1
- ~ O otherwise (1)



In image reconstruction from projections it is necessary to specify line
integrals through the plane of the object, i.e. projecting rays in all

possible directions. A line through the object may be specified by two

coordinates. Based on the geometry of the detector array, the usual way is

to let the first coordinate define the length of the normal to the line

from the origin, and the second coordinate the angle from the x-axis to

this normal in the counterclockwise direction. If these coordinates are

(rp' ep)' then the line through the (x,y)-plane has the equation

2

(2)

All possible lines in the (x,y)-plane may be specified in this way. In the

plane of the rectangular coordinate system (r, e), each point defines a

line through the (x, y)-plane, (Fig 1) which may be written

x = r/(cose) - y tane

The point (xp' yp) in the (x,y)-plane defines the sinusoid

r = xp cose + yp sine

(3)

(4)

in the (r,e)-plane. If we now have chosen (xp,y3 so that this point is on

the line (2) in the (x,y)-plane, the sinusoid (4) must pass through the

point (rp,ep)' which represents all points on (2) (Fig 2). The other points
on this sinusoid define all other lines in the (x,y)-plane passing through

the point (xp,yp)' This is seen by inser ting (4) in (3)

x = (xp cose + yp sine)/cose - y tane

or x = xp + (Yp - y) tana (5)

~hen e varies through the range n, the expression (5) describes all lines

in the (x,y)-plane passing through (xp,yp)'

A line through the (x,y)-plane may be specified by a number of ways. Is it

possible to find another coordinate system, say (u, v), in which, as

before, every point defines a line through the (x, y)-plane and also such

that the set of points defining all lines through a specific point (xp' yp)

instead of a sinusoid, forms a straight line in the (u, v)-plane?



Define a line in the x,y-plane as

where (u , v ) is a specific point in the (u, v)-plane (Fig 3). The pointsp p
in the (u,v)-plane defines all possible lines through the (x,y)-plane

x = u - yv (7)

Assume that our previous point, (x , y ), is a point somewhere on the linep p
(6), then

3

u = x + y vp p (8)

is a straight line through the (u, v)-plane (Fig 4). As we have chosen

(xp,yp) to be on the line (6) in the (x,y)-plane, the line (8) in the

(u,v)-plane must pass through (up' vp)' which represents all points on
(6). The other points on this line define all other lines in the (x, y)­

plane passing through (xp' yp)'

This may be seen by inserting (8) in (7).

x =
or

(9)

When v varies from -~ to ~, the expression (9) describes all lines in the

(x,y)-plane passing through (xp' yp)'

There is a kind of symmetry between the (x,y) and the (u,v) systems as is

seen by (6) and (8). A point in one system defines a line in the other.

Sinograms and Linograms. When projection data, in the form of line

integrals through a function f(x,y), are mapped in the (r,e)-coordinates,

where data for a point in the object form the sinusoid (4), this map is

usually called a sinogram [6], and it may be denoted p(r,e) and defined as

p(r,e) = J f(rcose - tsine, rsine + tcose)dt (10)



If the projection data instead are mapped in the (u,v) coordinates where

data for a point in the object form the straight line (8), this map will be

called a linogram analogous to the term sinogram [l].

Why linograms instead of sinograms? Well, in the most popular algorithm,

called filtered back projection, the projection data are first subjected to

a filtration of their spatial frequencies and then "back projected". This

is a somewhat unprecise expression. The mathematical definition is that

each point in the object is reconstructed by making an integration of the

filtered projection data representing all line integrals through the point

in question.

In the sinogram case we then have to do an integration along a sinusoid for

each point, but in the linogram case this integration is along a straight

line. This may be a simpler operation, and as we will see later, the use of

linograms allows us to replace the computationally expensive back

projection by a series of fast Fourier transforms.

The relation between the coordinates for the sinogram (r,a) and the

linogram (u,v) are

4

u =

{

r =

a =

u
OJ(l+v Z )

arctan v, or
r

cosa
v = tana

Linograms. A linogram mapping all lines through f(x,y) has to have arange

in v from - ~ to ~, corresponding to a range of n for e in the sinogram.

In order to have a finite range for v we are going to use two finite

linograms.

The first will be called go (u, v) and contains projection data of f(x, y)

for the range - 1 ~ v < 1.

The second will be called g. (u, v) and is achieved by first rotating the

object c10ckwise the angle ~ and then taking projections of it for the

range - 1 ~ v < 1, exactly as for go (u, v).

From the two linograms two partial images will be reconstructed, f o (x, y)

and f.(x, y). The final image is formed by first rotating f.(x,y)

counterclockwise the angle n/2 and then adding it to fo(x,y).
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Let Q define a counterclockwise rotation the angle n/2 of a function
f:R' ~ R around the origin so that

1
[Q f] (x, y) = f (-y, x),

[Q0f] (x, y) = f (x, y) and (11)
_I

[Q f] (x, y) = f (y, -x).

For any 2-dimensional function ! we use, respectively, F[I]!, F[']! and F,!

to denote the Fourier transform of ! with respect to its first variable,

the Fourier transform of ! with respect to its second variable, and the

two-dimensional Fourier trans form of !. Variables in the spatial domain are

represented by small letters and in the Fourier domain by capital letters.

expressions, k is an index assuming the two values O
of v is limited to -1 ~ v < 1. The two linograms g and glo

In the following

and 1. The range
are then defined by

gk (u,v)
a>

J [Q-kf] (u-yv,y) dy k=O,l; -1 ~ v < 1.
-'"

(12).

The RHS represents line integrals through f(x,y), where x has been replaced

by (u-yv) according to (7).

The filter. The linograms defined by (12) cannot be used directly for

reconstruction, they have first to be filtered.

We will now try to find how to make a proper filtration of the spatial

frequencies of the projection data in the linogram. As a preliminary we

will first make an l-dimensional Fourier trans form of gk in the first
variable

[F[1]gk1 (U, v) r .= gk (u, v) e-12n Uudu (13)
-'"

Insert (12) in (13)

[F[I]g ] (U, v) ri r -k } -i2n Uu . (14)= _ _~Q f] (u-yv, y) dy e duk



Change variabel from u to x

6

{

X = u

u = x

- yv

+ yv
dx
du = 1 (15)

The LHS of (16) is a l-D Fourier trans form of gk in the first variable and

the RHS of (16) represents a 2-D Fourier trans form of f(x,y). The exponent

for ~ contains the expression U(x+yv) which is the inner product of the two
vectors (U, Uv) and (x,y). For a constant v, the RHS of (15) is thus an

expression for the line

{
X = U
Y = Uv,

in the 2-dimensional Fourier trans form of !(x,y).This means that

(17)

(18)

This is the "projection slice theorem" stated in linogram form.

For the moment we leave (18) and start at another end, namely the

selfevident fact that

'"
f(x,y) = JJ[F 2 f]

-'"

i2Jl(x,y) (X, Y)
(X,Y) e dX dY, (19)

i.e. if we make an inverse Fourier trans form of the Fourier transform of

f(x,y), of course we regain f(x,y).

Change from coordinates (X,Y) to polar coordinates (R,e) in the Fourier

domain. The usual integration in e from O to 2Jl is replaced by the

equivalent range from -Jl/4 to 7Jl/4.

7/4Jl '"
f(x,y) = J J

-Jl/4 o

i2Jl(x,y) (Rcose,Rsine)
[F 2 f] (R cose, R sine)e IRI d R de. (20)



If R in (20) with the integration between O and 00 is permitted to be
negative and is integrated from _00 to 00 it is sufficient with an

integration of 0 from O to n, that is in (20)

7

r3/4n
is replaced by J

-~4

Divide the angular range for 0 in the two ranges.

and (21)

For each range we will make an inverse transformation of F,i, each

incomplete and resulting in a partial image fk(x,y). For the second range

in (21) we will rotate f(x,y) clockwise using the operator O defined in

(11). The two partial images will be denoted f (x,y) and f,(x,y) and areo
defined by

i2n(x,y)(Rcos0, Rsin0)-k[F,O fl (Rcos0; Rsin0)e IRI d R de, (22)

When the two partial images are added together the result will be a

complete image of f(x,y).

1 k n/4 00 k
f(x,y) • E O J J [F,O- fl (Rcose,

k.O -n/4 _00

or,

i2n(x,y)(Rcose,Rsine)
Rsine)e IRld R de. (23)

(24)

Note that the two fk(x,y); k.O,l are not subject to the same limitations as

defined for f(x,y) in (1).

We now change the variables on the RHS of (22) from polar coordinates to

the Cartesian coordinates used in (18), so that U • R cose and v • tane.

From this follows that



Uv ~ R sina, 1 V
l(l+v') ~ cosa and l(l+v') ~ sina. (25)

8

Ve than have dU l(l+v') ~ dR and dv
l+v' ~ de,

so that jUl dU dv ~ IRI dR de.

Vhen these changes are inserted in (23) we get

t '" k i2Jt(x,y)(U,Uv)
fk(x,y) ~ J [F,Q- fl (U, Uv)e IUldU dy.

-1 _'"

Compare (26) and (18). The difference between the RHS in 18 and the

integrand on the RHS in (26) is that the latter is multiplied by the

IUI. This then constitutes the necessary filtration of the spatial

frequencies in the projection data. Define

(26)

factor

(27)

so that the two linograms g'k(u,v) consist of properly filtrated data.

V(!U!) is a band-limiting function.

The linogram algorithm. Ve are now ready to derive the algorithm. Insert

(27) in (26)

i2nxU
(U,v)e dU dY, (28)

and perform the inverse transform in U. Ve then have

Change from variabel u to x according to (15).

fk(x,y) ~ t g'k (x+yv,v) dv
-1

(29)

(30)

For a constant y-value the LHS is a line through fk(x,y) paralIeI to the x­

axis and the RHS is a set of paralIeI line integrals through the filtered



linogram (Fig 5). This may be regarded as aparallel projection of the

filtered linogram. Ve can then use the projection theorem as follows.

A Fourier transform of fk(x,y) in the first variable may be expressed as

9

-i2n Xx
dx.

Now inser t (30) on the RHS.

['I J'" t[F fkl (X,y) = g'k
-'" -1

-i2n Xx
(x+yv,v)dv e dx (31)

As gkis zero for lvi > 1 so is
integration for v to infinity.

(15).

g'k' Ve can then extend the
Change variabel from x to u

limi ts of

according to

= J'" J'" g'k (u,v) e-i2nX(u-yv)dv du
_CD _00

(32)

The RHS represents a 2-dimensional Fourier transform of g'k (u,v). The

exponent for ~ cofitains X(u-yv), which may be regarded as the inner product
of the two vectors

(X, -yX) and (u,v). (33)

Ve then have that

(34)

Note the similarity between (34) and (18).

Ve said that (18) was an expression for the celebrated projection slice
theorem, which states that the Fourier transform of a projection of a

function is to be found as a central line in the 2-dimensional Fourier

transform of the function.

In (34) we have that the Fourier trans form of a line in the function,

paraliei to the x-axis, is to be found as a central line in the 2­

dimensional Fourier trans form of the filtrated linogram to the function.



Note also that in the 2-dimensional Fourier transform

[F 2g'k l (U,V) we have that,

{
U = X
V = -yX.

The image fk(x,y) stands in a similar relation to gk (u,v), as gk(u,v) to

fk(x,y).

From (34) we get

10

i2n xX
(X, -yX)e dX, (35)

which says that a line in fk(x,y) paralIeI to the x-axis, i.e. with a fixed
y-value, is reconstructed by performing an inverse Fourier transform of the
values along the line

V = -yX (36)

in the 2-dimensional Fourier transform of the filtered linogram g'k(u,v).

The final reconstructed image of the object f(x,y) is acquired by

rotating f,(x,y) and adding it to fo(x,y) according to (24). It is repeated
here.

(37)



Some comments on implementation

A description of how to implement the linogram method is given in [2] and a

comprehensive description of how to implement linograms with the slightly

different definition treated here and in [4] is given in [4]. In [4] the

result from different kinds of band limiting filters, W(U), were compared

with each other and with the results from filtered back projection. For

this purpose several phantoms were used. All experiments were simulated
with the program package SNARK77. In [4] is also given an excellent

description of this program package by which phantoms and a number of

different projections and reconstruction methods may be simulated.

An important feature in the implementation is the two-dimensional Fourier

transform of the filtered linogram. The first trans form in the u-direction

can easily be done by FFT of the Linogram. The filtration is then performed
by multiplying with IU/. If now the trans form in the v-direction also is

done by FFT we would get a rectangular grid of points as in Fig 6a. From

(36) and (1) we see that only points lying in the sectors defined by

11

v = - yX lyl ~ 1, (38)

are relevant and from these we would have to interpolate in order to get
the points shown in fig 6b. For small values of X there are then very few

points to interpolate from. The points in fig 6b, however, can be

calculated exactly and without interpolation by doing a DFT and this in

turn can be calculated by the so called chirp-z-transform (CZT) [7], which

performs the DFT at the cost of 3 FFT's.

By the use of CZT it is thus possible to implement the linogram method
without any kind of interpolation.



Direct Fourier methods

These are methods in which the image is reconstructed from its two­

dimensional Fourier transform by two inverse FFT's.

The two-dimensional Fourier trans form for the image is derived from the

one-dimensional Fourier trans forms of the projections of the object,

utilizing the "projection slice theorem". This theorem says that when a

paralIeI projection is Fourier transformed in its first variable, it is

equal to a line through the origin of the two-dimensional Fourier transform

of the image. When projection data are in the sinogram form defined in (10)

they may be denoted p(r,e). Here E is the coordinate along the axis
perpendicular to the rays. For sinograms the projection slice theorem is

expressed as

[F[ 'lpl (R,e) = [F 2 fl (R cose, R sine) (39)

For linograms this theorem has already been stated as (18), it is repeated

here
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As X = U, we can rewrite this as

(40)

When data for the LHS in the two expressions (39) and (40) are known for

points in a rectangular array, the RHS represents these points on radial

lines through the origin.

In the sinogram case the points representing the RHS of (39) lie on a polar

grid with equal increments in e between the radial lines and equal

increments in R between the points on the radial lines.

This polar grid represents points in the two-dimensional Fourier transform

of the image but the image cannot be calculated directly from this grid.

First we have to change it into a rectangular grid of points and this is

done by interpolation from the polar grid. The image can then be

reconstructed by a sequence of two one-dimensional inverse FFT's, one

paralIeI to the X-axis and the other to the Y-axis.



A crucial step is the interpolation from polar to rectangular coordinates.

A simple bilinear interpolation is not sufficient to achieve a good result.

More correct interpolations [B], [9] give results comparable to those
performed by filtered back projection.

In the linogram case, for each of the two linograms, the points

representing the RHS ,of (40), form apattern similar to the grid in fig 6b.

The radial lines do not have equal increment in e but in v, which

represents tana. On the radial lines the points lie on equal increment in

the X-coordinate so that the points lie on straight lines pa,allel to the

Y-axis.

The two grids [F 2 fk] (X,Xv) can be combined in one grid by rotating the

grid [F 2f,] (X,Xv) the angle n/2.

We would then have a grid as in fig 7. This grid represent points in the
two-dimensional Fourier transform of the complete image. As in the sinogram

case a rectangular grid may be interpolated. The image may then be

reconstructed by two FFT's as in the sinogram case.

A better way, however, would be to reconstruct each partial image f k from

its own partiaI grid by doing a two-dimensional inverse Fourier transform

of it.

If the discrete points representing [F 2 fk] (X,Xv) were a perfect

rectangular grid in (X,Y)-space, we could have used an inverse FFT

algorithm two times, first in the direction of one of the axes than in the

direction of the other in order to calculate fk(x,y). Now this is not the
case because even though the X-coordinates for the points conform to the

grid lines in a rectangular grid, the Y-coordinates do not. In order to do

the inverse transform in the Y-direction we have to do a DFT. But this can

be achieved by the chirp-z-transform mentioned on p. 10 [7] at the cost of

3 FFT's.

By this transform it is possible to calculate the correct values for

13



[F[l]fk] (X,y), without interpolation. We then have to start with the

filtered linograms defined in (27) and here restated. As the Fourier
variable U is equal to X, U is replaced with X.

The filtered linogram (the LHS of 41) is then remapped as grid points in

the two-dimensional Fourier transform of fk ,

14

[ l ]
[F,fk ] (X,vX) = [F g'k] (X,v)

The next step is to use the CZT to do an inverse DFT in the second

variable.

['] ['] _l[F fk] (X,y) = [(F ) F,fk] (X,vX)

We can then calculate fk(x,y) by doing an inverse FFT in the first

variable. The complete image is then calculated by (24).

(42)

(43)

Comparison between the Linogram method (LM) and the Direct Fourier Method

with Linograms (DFM). In both methods the steps are the same up to the

stage where we have filtered linograms which are Fourier transformed in the
first variable, i.e. [F[']g'k] (X, v).

From this point they take different routes (Fig 8) and arrive at the same

result, namelya partial image Fourier transformed in its first variable,
[ l ]

Le. [F f k ] (X, y).

In both methods all operations are only in the second variable, which is

transformed from v to y. The first variable is all the time X.

In the LM a Fourier transform of the linogram in the v-coordinate is

carried out by CZT, which changes this coordinate into V, expressed as

-yX. A multiplication of this coordinate with (-l/X) is then performed,
which gives the desired result.

In the DFM the linogram is first remapped into the 2-dimensional Fourier

trans form of the partial image. The v-coordinate is multiplied with X which



ehanges it into Y. An inverse Fourier transform by CZT in this eoordinate
then gives the desired result.

Although the two methods are eoneeptually different the ealeulations are

praetieally identical. Both methods arrive at exaetly the same result and

no interpolations are performed.

This is elear from the following. Assume that we only eompute one eolumn in

[F[llfkl (X,y), (i.e. in the following X < 1 and is a constant). Call this

sequenee of values I(y). It is eomputed from a corresponding column of
values in [F[llg'k1 (X,v) (with the same eons tant X). Call this sequence

L(v).

In the Linogram method we make a forward Fourier trans form into a new

sequence [F,g'k1 (X,V). We do not, however, compute this sequence for
integer values of V but at the fractional values for which V = -yX

H -1
2 (-yXjY

[F2gi](X, -yX) =N-i L L(v)e-12Jr-N-n
N ·1

n=-~­
•

N -I

z yXvL L(v)e12Jr
1I

n

N -I
0=-2-

The "remapping" of the LHS into I (y) consists in letting the second

variable assume integer values. As the LHS in fact only is a sequence

of values, it can directly be accepted as I (y).

The "remapping step" is therefore only a coneeptual step. It is no step in

the caleulations. So we have that

15



In the Direct Fourier method we start with a similar conceptual "remapping

step" by considering the sequence L(v) to be values at the fractional

coordinate points Y = vX, in [F,fkl (X,vX).

We then do an inverse Fourier transform of this sequence resulting in I (y)

16

I(y) =N-i

Thus the calculations are exactly the same for both methods.
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s

Fig l. A line specified by
the point (s ,e ).p p

Fig 2. A sinusoid (onlyapart
of it is shown), specified by

the point (xp' yp)'
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Fig 3. A line specified by

the point (up' vp)'

Fig 4. A line specified by

the point (Xp ' yp)'
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x

Fig 5. The row of points in fk(x,y) paralIeI to the x-axis are

reconstructed by a paralIeI projection of g'(u,v).
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Fig 6. a) The resulting grid if the Pourier transform in the v-direction is

performed by PPT. b) The grid of points needed for the reconstruction. This
grid can be achieved without interpolation by CZT.

y

x

Pig 7. The grid resulting from a remapping and combination of the two
[p[llg;'l (X,v).



20

v

x

re­
map
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X

Fig 8. Pictorial comparison of the different routes taken by the Linogram

Method and the Direct Fourier Method with linograms. Both start from a

filtered and Fourier transformed linogram (upper left) and end at a partial

image Fourier transformed in its first variable (lower right). The Linogram

Method goes via the 2-D Fourier transformed linogram (upper right), the

Direct Fourier Method via the 2-D Fourier transformed image (lower left).
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