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Abstract. This article examines projectively-invariant local geometric properties of
smooth curves and surfaces. Oriented projective differential geometry is proposed as a
general framework for establishing such invariants and characterizing the local projec-
tive shape of surfaces and their outlines. It is applied to two problems: (1) the projective
generalization of Koenderink’s famous characterization of convexities, concavities, and
inflections of the apparent contours of solids bounded by smooth surfaces, and (2) the
image-based construction of rim meshes, which provide a combinatorial description
of the arrangement induced on the surface of an object by the contour generators
associated with multiple cameras observing it.
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1. Introduction

As firmly established in the multi-view geometry literature (Faugeras et al.,

2001; Hartley and Zisserman, 2000), an essential part of the relationship between

“flat” geometric elements—that is, planes, lines, and points—and their perspec-

tive images is intrinsically projective, and can be modeled without appealing to

the affine and/or Euclidean structure of the ambient space. The present article

extends this line of reasoning to smooth curves, surfaces, and their outlines. A

natural theoretical framework for this study is offered by projective differential

geometry (Lane, 1932; Bol, 1950), which is concerned with local properties of

smooth curves and surfaces that remain invariant under projective transforma-

tions of the ambient space. These properties are typically characterized in terms

of scalar functions of (local) curve and surface parametrizations and their deriva-

tives. Our presentation focuses on qualitative local invariants, or functions whose
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signs, as opposed to actual values, are preserved under projective transformations

and reparametrizations. The local elliptic, hyperbolic, or parabolic shape of a

smooth surface at one of its points is such an invariant. In Euclidean geometry, it

is characterized by the sign of the determinant of the second fundamental form,

or equivalently, by the sign of the Gaussian curvature. The notion of Gaussian

curvature is meaningless in projective geometry; yet, as will be shown in Section

2, the local shape of a surface can still be determined by the sign of a simple

expression in the derivatives of order k ≤ 2 of its parametrization.

Despite its elegance and simplicity, ordinary projective geometry (whether

differential or not) lacks a concept of orientation, and thus fails to capture such

familiar and useful notions as the left and right sides of an oriented line in the

plane, or the distinction between the convex and concave elliptic points of an ori-

ented smooth surface. Fortunately, these can be regained at very little additional

expense in the oriented projective geometry framework recently popularized by

Stolfi (1991). This article extends Stolfi’s original work, which was limited to

the study of flats (points, lines, planes, etc.), to encompass smooth curves and

surfaces. Specifically, we propose oriented projective differential geometry as a

language for reasoning about the qualitative invariant relationships between

smooth surfaces and their outlines. The study of such relationships was addressed

by Koenderink (1984) twenty years ago when he showed that, in Euclidean

spaces, a convex (resp. concave, inflection) point on the apparent contour of a

smooth solid is the projection of a convex (resp. hyperbolic, parabolic) point on

the rim of its surface.1 Koenderink’s proof is remarkably simple and elegant, but

it deeply relies on Euclidean concepts such as the Gaussian curvature. As shown

in Section 4, the oriented projective differential geometry framework reveals the

intrinsically projective nature of Koenderink’s theorem, and it provides a totally

different (but once again quite simple) proof that never appeals to any affine or

Euclidean concept.

1 The rim (or contour generator) is the surface curve that projects onto the apparent contour. See
Section 4.2 for more details.
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More generally, we contend that many combinatorial structures of interest

in computer vision—for example, aspect graphs (Koenderink and Van Doorn,

1979), visual hulls (Baumgart, 1974; Laurentini, 1994), and visibility complexes

(Durand et al., 2002)—are oriented projective objects, that are best studied

in the oriented projective differential geometry framework. This is illustrated

in Section 5 with an image-based algorithm for computing the rim mesh of

a solid observed by multiple cameras, i.e., a combinatorial description of the

arrangement induced on its surface by the corresponding contour generators.

1.1. Previous Work

So far, the applications of projective differential geometry to computer vision

have been limited to the construction of quantitative invariants of plane and

surface curves and their image projections. This includes the seminal paper by

Weiss (1988) that caused much of the initial interest for invariants in the early

1990s (Mundy and Zisserman, 1992; Mundy et al., 1994), as well as (among

others) the work on semi-differential invariants by Moons et al. (1995), and the

characterization of plane curves in terms of their projective curvature and its evo-

lution as a function of scale and/or projective arc length by Salden et al. (1993),

Faugeras (1994), and Calabi et al. (1998). This line of research can, in principle,

be extended to the study of surfaces and their invariants using Cartan’s general

moving frame method (Cartan, 1992). Unfortunately, the practical usefulness of

quantitative invariants is limited by the numerical difficulty of computing high-

order image derivatives: For example, the definition of the projective curvature

of a plane curve involves derivatives of up to seventh order (Faugeras, 1994).

This is our motivation for pursuing instead qualitative invariants in this article.

Oriented projective geometry was introduced in computer vision by Laveau

and Faugeras (1996). A few researchers have used this framework to derive

constraints on valid projective reconstructions from multiple images (Hartley,

1998; Werner et al., 1998; Werner and Pajdla, 2001a; Werner and Pajdla, 2001b;



4

Chum et al., 2003). Our work differs from these in two key respects: (1) We focus

on properties of smooth curves, surfaces and their outlines, instead of flats and

their projections; and (2) we do not rely on the “cheirality” assumption (Hartley,

1998) that the true underlying structure of the scene and the cameras is affine,

so that all points in the scene are in front of the plane at infinity, and all cameras

only observe points lying in front of their focal planes.

Parts of the research presented in this article have appeared in (Lazebnik,

2002; Lazebnik and Ponce, 2003). Rim meshes were originally introduced in

(Lazebnik et al., 2001) in a setting where all cameras are strongly calibrated,

with a Euclidean construction for ordering the rim arcs incident to each vertex

and assembling the faces of the mesh. This article presents the first algorithm for

computing the rim mesh in the much more difficult setting where the ambient

space only has an oriented projective structure, and the cameras’ projection

matrices are only known up to an oriented projective ambiguity.

1.2. Objectives, Main Contributions, and Outline of the Presentation

The main objective of this article is to introduce an oriented version of projective

differential geometry as a language for stating and proving qualitative local

invariant properties of curves, surfaces, and their outlines. Its key contributions

are:

− Establishing in Section 3 the existence of oriented projective differential

invariants of curves and surfaces (Propositions 2 and 5).

− Characterizing in Section 4 the oriented relationship between the points on

the rim of a surface and their projections onto the apparent contour, and

presenting a new, elementary proof of Koenderink’s theorem (Proposition

9) that reveals its intrinsically projective nature.

− Applying in Section 5 the proposed mathematical language to the task of

constructing rim meshes. This includes theoretical results on the relative
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orientation of rim tangents and its image-based characterization (Proposi-

tions 12 and 13), as well as an implemented algorithm taking advantage of

these results.

The rest of this article is organized as follows: We start in Section 2 with

a brief tutorial introduction to projective differential geometry. Our motivation

for including this material is that it is little known to many computer vision

researchers, and difficult to find in accessible literature. Our presentation is

informal, and—unlike classical treatments of the subject (Lane, 1932)—it em-

phasizes the intuitive connection between projective and Euclidean differential

geometries. In particular, we introduce projective precursors of the second funda-

mental form and Gaussian curvature in order to extend to the projective setting

the familiar Euclidean characterization of the local shape of a surface in terms

of elliptic, hyperbolic, and parabolic points (Proposition 1).

Next, Section 3 presents an oriented extension of projective differential geom-

etry that, although fairly straightforward, has not (to the best of our knowledge)

appeared before in the computer vision literature. This allows us to introduce

two qualitative invariants missing from ordinary projective geometry—namely,

the local convexity/concavity of points on a plane curve (Proposition 2), and the

local convexity/concavity of elliptic points on a surface (Proposition 5).

Section 4 completes the development of our theoretical framework by describ-

ing an oriented camera model related to that of Laveau and Faugeras (1996). We

present a novel result (Proposition 7) relating the orientation of the tetrahedron

formed by the camera center and three scene points to that of the corresponding

image triangle. The section concludes with a purely projective proof of Koen-

derink’s theorem (Proposition 9). When seen as an oriented projective statement,

this theorem elegantly ties together the qualitative invariants of curves and

surfaces defined in the previous two sections.

Finally, Section 5 presents a sample application of the proposed framework:

We exploit the epipolar constraints associated with a pair of cameras to charac-
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terize the relative orientation of the corresponding rims at the frontier points

where they intersect on the surface (Proposition 12), and to determine this

orientation from image information (Proposition 13). This result is used in an

implemented algorithm for computing rim meshes from image contours. Other

potential applications are listed in Section 6.

Disclaimer. This is not a mathematics article, and a mathematician looking for

novel theoretical developments will be disappointed by our presentation: Most of

our results intuitively make sense, and they are easily shown to hold in Euclidean

spaces using the proof techniques of classical differential geometry. However, this

article is not intended to uncover new mathematics. Its main goal is to draw

attention to the fact that certain important properties of the visual world are

intrinsically projective, and to introduce the elementary machinery that is both

necessary to precisely state these properties, and sufficient to prove them. We

believe that oriented projective differential geometry provides such a machinery,

and hope to demonstrate with the elementary results proven in this article that

it offers a useful alternative language for computer vision practitioners to reason

about the outlines of solids bounded by smooth surfaces, irrespective of their

possible embedding in a Euclidean space.

In the interest of brevity, our presentation omits the proofs of all classical

results (Propositions 1, 6, and 8), as well as others that are straightforward

exercises in algebraic manipulation (Propositions 2–5 and 10–11). We refer the

interested reader to (Lazebnik, 2002) for details.

2. Projective Differential Geometry

This section informally presents elementary notions of projective differential

geometry that will be used throughout the article. The results found in Section

2.3 date back to the beginning of the 20th century (Bol, 1950; Lane, 1932), but

a coherent and accessible presentation is not to be found in recent literature. It
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is this lack of suitable introductory material, and not the dearth of applications,

that accounts for the relatively obscure status of projective differential geometry

in the field of computer vision (Koenderink, 1990). We attempt here to fill

this gap by presenting an elementary self-contained introduction to projective

differential geometry for vision researchers.

2.1. Basic Concepts

The projective space P
n is formed by identifying all nonzero vectors of the space

R
n+1 that are scalar multiples of each other. A d-dimensional flat in P

n is the

subspace of P
n associated with some (d + 1)-dimensional subspace of R

n+1.

Note that P
n contains a unique n-dimensional flat, known as the universe. A

d-dimensional flat is spanned by d + 1 independent points — that is, points

associated with d+1 independent vectors in R
n+1 — defining a proper simplex. A

projective transformation is the mapping between two projective spaces induced

by some bijective linear transformation between the corresponding vector spaces.

In this presentation, the projective spaces of interest are P
2 and P

3, and the

flats of interest are points, lines, and planes. A line is spanned by two distinct

points, and a plane is spanned by three non-collinear points. Note that the only

plane in P
2 is the universe. The universe of P

3 is a three-dimensional flat spanned

by any non-coplanar quadruple of points.

Two operators—the join and the meet—play a fundamental role in projective

geometry. The join F ∨G of two disjoint flats F and G is the flat defined by the

simplex formed by concatenating two simplices that span F and G. For example,

the join of two points is a line; the join of a point and a line is a plane (or the

universe in P
2); and the join of two skew lines in P

3 is the universe. The meet

F ∧ G of two flats F and G intuitively corresponds to the intersection of these

flats. We will only make cursory use of the meet in this presentation.

To represent flats analytically, it is necessary to select a coordinate system for

P
n (see Berger [1987] for details), thereby associating each point with a unique
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(up to scale) homogeneous coordinate vector in R
n+1. More generally, any d-

dimensional flat can be associated with a homogeneous vector of
(

n+1
d+1

)
Plücker

coordinates (note that the Plücker coordinate of the universe is simply a non-zero

scalar). We will assume from now on that some fixed but arbitrary coordinate

system has been chosen, and will identify flats with their coordinate vectors.

Lowercase letters will denote flats in P
2, while uppercase letters will denote flats

in P
3. Likewise, we will identify the geometric join and meet operators with

their algebraic counterparts. The latter can be described using simple bilinear

formulas (Stolfi, 1991) whose precise form is generally not important for the

rest of our presentation. We will, however, explicitly use the fact that the join

of n + 1 points X1, . . . , Xn+1 in P
n is the determinant |X1, . . . , Xn+1| of their

homogeneous coordinate vectors: In particular, the join of three points x, y, z

in P
2 is the 3 × 3 determinant |x, y, z|, and the join of four points X, Y , Z, W

in P
3 is the 4 × 4 determinant |X,Y, Z,W |. These expressions have a nonzero

value if and only if the triangle (resp. tetrahedron) in question is proper—that

is, spans the universe of P
2 (resp. P

3).

2.2. Curves and Surfaces in Projective Space

A curve in P
3 is defined in the neighborhood of one of its points by a smooth

mapping s �→ X(s) =
[
X1(s), . . . , X4(s)

]T
from an open interval of R into P

3.

A point X(s) on the curve is called regular when the derivative X ′(s) is not

identically zero nor a scalar multiple of X(s). At a regular point X of a curve Γ,

the osculating flat of order k is the flat spanned by X, X ′, . . . , X(k). Note that

in homogeneous coordinates, the successive derivatives X(i) represent points in

P
3 (by contrast, when a non-homogeneous coordinate representation is used, as

in the Euclidean case, derivatives are thought of as vectors instead of points).

The order-1 osculating flat is the tangent line X ∨ X ′, defined as the limit

of a line through X and another point on Γ that approaches X. Consider what

happens when X is multiplied by a scalar function μ(s), a transformation that
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Figure 1. A tangent line of a curve and a tangent plane of a surface. Any linear combination
of the partial derivatives Xu and Xv defines a point X ′—or tangent direction—on the line
joining these two points and the corresponding tangent X ∨ X ′.

does not change the image of the curve in P
3. Since (μX)′ = μ′X+μX ′, it follows

that we can scale X to place the derivative point (μX)′ anywhere on the tangent

to Γ at X, though it cannot coincide with X unless Γ is singular. Thus, it is

important to realize that even though the derivative point X ′ is not invariant

under algebraic transformations such as homogeneous rescaling, the tangent line

X ∨ X ′ is. The order-2 osculating flat X ∨ X ′ ∨ X ′′, or osculating plane, is the

limit of the plane through X and two points that independently approach X.

Regular points with a degenerate osculating plane (that is, points for which X ′′

is contained in the tangent line X ∨ X ′) are known as inflections.

A surface in P
3 is defined in the neighborhood of one of its points by a smooth

mapping (u, v) �→ X(u, v) =
[
X1(u, v), . . . , X4(u, v)

]T
from an open set of R

2

into P
3, where each Xi is a smooth coordinate function. Let Γ be some curve

defined on the surface Σ by X(s) = X
(
u(s), v(s)

)
. The derivative in X is X ′ =

u′Xu+v′Xv, and it follows that the tangent to Γ lies in the plane Π = X∨Xu∨Xv

(Figure 1). Since Γ and the derivatives u′ and v′ are arbitrary, Π is geometrically

defined as the plane spanned by the tangent lines to all surface curves passing

through X, and is known as the tangent plane to Σ at X. Although the derivatives

Xu and Xv depend on the chosen parametrization, it is easy to show that the

tangent plane is invariant under reparametrizations and rescalings.
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2.3. Local Shape

Projective differential geometry is a study of projective invariants of curves

and surfaces. A geometric property is said to be a projective invariant when

it continues to hold under projective transformations. We also say that a scalar

function of a curve or surface parametrization and its derivatives is a projec-

tive invariant when it is invariant under any transformation that changes the

analytical representation of the curve or surface but not its geometry—that is,

(1) a rescaling of homogeneous coordinates by a nonzero scalar function of the

parameters; (2) a reparametrization; or (3) a projective transformation.

The most important projective invariant of a smooth surface in the neighbor-

hood of one of its points is its local shape, leading, as in the Euclidean setting,

to the partition of the surface into elliptic, hyperbolic, and parabolic points

(Figure 2). Our goal in the remainder of this section is to arrive at an analytic

characterization of local shape (Proposition 1). To this end, let us first introduce

the local shape matrix S defined at a surface point X by

S =

(
l m
m n

)
, where

⎧⎪⎨
⎪⎩

l = |X,Xu, Xv, Xuu|
m = |X,Xu, Xv, Xuv|
n = |X,Xu, Xv, Xvv|

.

A tangent direction is a point on the line spanned by the first-order partial

derivatives Xu and Xv (Figure 1). Given two tangent directions U1 = α1Xu +

β1Xv and U2 = α2Xu + β2Xv, the symmetric bilinear form associated with S is

II(U1, U2) = UT
1 S U2 = lα1α2 + m(α1β2 + α2β1) + nβ1β2 . (1)

Our choice of notation is justified by the fact that II(U1, U2) is the (negated)

second fundamental form in the Euclidean case where the coordinates of X have

the form [X1, X2, X3, 1]T . We say that two tangent directions U1 and U2 (resp.

tangent lines X ∨ U1 and X ∨ U2) are conjugate when II(U1, U2) = 0. Although

this is not obvious from our purely algebraic definition of conjugacy, it is a projec-

tively invariant relationship that can be defined in purely geometric terms using
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the language of conjugate nets: Namely, a net2 of curves on a surface is called

conjugate if the tangents of the curves of one family of the net constructed at the

points of each fixed curve of the other family form a developable surface (Lane,

1932). Then the tangents to the two curves passing through any point on the

surface are said to be conjugate. Conversely, these geometric properties can be

used to define conjugate tangents and prove that conjugate directions U1 and U2

verify II(U1, U2) = 0 (Lazebnik, 2002).

In particular, self-conjugate tangent directions U = αXu + βXv satisfying

II(U,U) = l α2 + 2 m α β + nβ2 = 0 are called asymptotic directions. Geometri-

cally, they are characterized by the fact that the corresponding tangent X ∨ U

has (at least) second-order contact with the surface: Informally, a line and a

surface have contact of order (at least) k at a common point if they intersect

at k + 1 “consecutive” points. For example, a stabbing line has contact of order

zero with the surface; any ordinary (generic) tangent has contact of order one;

and a surface point may (in general) have zero, one, or two asymptotic tangents

with contact of order two or higher. Order of contact is a projective invariant,

and so is the number of asymptotic tangents at a given point. As shown by the

following proposition, the sign of the determinant K = ln − m2 of the shape

matrix provides an analytic characterization of the latter.

Proposition 1. The sign of K is a projective invariant. The local shape of a

surface at some point is (Figure 2):

elliptic: when K > 0, with 0 asymptotic tangent;

parabolic: when K = 0, with 1 asymptotic tangent;

hyperbolic: when K < 0, with 2 asymptotic tangents.

In summary, the projectively invariant geometric characterization of local

shape is given by the number of asymptotic tangents to the surface at the

2 Two one-parameter families of curves on the surface are said to form a net if exactly one curve
of each family passes through each point of the surface, and the tangents of the two curves passing
through the same point are always distinct.
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Elliptic Parabolic Hyperbolic

Figure 2. The local shape of a surface. Elliptic point: the surface does not cross its tangent
plane, no asymptotic tangent. Hyperbolic point: the surface intersects the tangent plane along
two curves whose tangents are the two asymptotic directions. Parabolic point: the surface
intersects the tangent plane along a curve that cusps in the single asymptotic direction.

point, while the equivalent analytic characterization is in terms of the sign of

the determinant K of the local shape matrix, which may be thought of as a

projective precursor of Gaussian curvature.

3. Oriented Projective Differential Geometry

Next, we present an extension of projective differential geometry in the oriented

setting due to Stolfi (1991). In particular, we derive in Section 3.2 qualitative

invariants corresponding to local convexity/concavity of points on a plane curve

and local convexity/concavity of elliptic points on a surface.

3.1. Basic Concepts

First, let us briefly review the basics of oriented projective geometry (the in-

terested reader is referred to [Stolfi, 1991] for details). An oriented projective

space T
n is formed by identifying all nonzero vectors of R

n+1 that are positive

multiples of each other. Thus, homogeneous coordinate vectors of flats in oriented

projective space are defined up to positive scale. Two proper simplices spanning

the same flat are said to have the same orientation when they are related by an

orientation-preserving projective transformation represented by a matrix with a

positive determinant. All the simplices of a given flat form two classes under this
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(a) l ∨ x > 0 (b) Π ∨ X > 0

Figure 3. (a) Relative orientation of a line and a point in 2D. The counterclockwise arrow
indicates the positive orientation of the 2D universe. (b) Relative orientation of a plane and
a point in T

3. The counterclockwise arrow indicates the orientation of the plane Π, and the
straight arrow points to the positive side of Π, which is located using the right-hand rule.

equivalence relation. An oriented flat is a flat to which an orientation has been

assigned by choosing as “positive” one of the two classes of simplices that span

it. To form an oriented simplex spanning the join of two oriented flats F and G,

we concatenate the simplices spanning the respective flats in that order.

There are two oriented flats of dimension n, the positive and the negative

universe, whose Plücker coordinates are given by a positive and a negative

scalar, respectively. Assuming from now on that right-handed triangles in T
2

and tetrahedra in T
3 have (arbitrarily) been chosen as the positive ones, a nec-

essary and sufficient condition for the triangle (x, y, z) in T
2 (resp. tetrahedron

(X,Y, Z,W ) in T
3) to span the positive universe is that the determinant |x, y, z|

(resp. |X,Y, Z,W |) be positive.

The relative orientation of two disjoint flats F and G such that dim(F ) +

dim(G) + 1 = n is positive (resp. negative) if F ∨ G spans the positive (resp.

negative) universe. The two cases will be denoted by F ∨G > 0 and F ∨G < 0.

In T
2, relative orientation is defined for points and lines, and we will say that a

point x lies on the positive (resp. negative) side of a line l when l ∨ x > 0 (resp.

l∨x < 0). In Figure 3 (a), we have l∨x = |y, z, x| > 0. In T
3, relative orientation

is defined for points and planes, as well as pairs of (skew) lines. In this article,

we are mostly interested in the former, and we say that a point X lies on the

positive (resp. negative) side of a plane Π when Π ∨ X > 0 (resp. Π ∨ X < 0).
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Figure 4. The local relationship between a curve and its tangent line: γ lies on the positive
side of the tangent line at a convex point (left), lies on its negative side at a concave point
(middle), and crosses the tangent at an inflection (right).

In Figure 3 (b), we have Π ∨ X = |Y, Z,W,X| > 0. Finally, note that the join

of a line and a point in 2D—or of a plane and a point in 3D—is given by the

dot product of the respective coordinate vectors, l ∨ x = lT x and Π∨X = ΠT X

(Stolfi, 1991).

3.2. Orienting Curves and Surfaces

We show in this section how to orient curves in T
2 and surfaces in T

3, and

characterize their invariants. A geometric property is an oriented projective

invariant when it continues to hold under orientation-preserving projective trans-

formations. We also say that a scalar function of a curve parametrization in T
2

or surface parametrization in T
3 and its derivatives is an oriented projective

invariant when it is invariant under any (1) positive rescaling, i.e., multiplica-

tion by a positive scalar function of the parameters, (2) orientation-preserving

reparametrization, i.e., a change of parameters with positive Jacobian, and (3)

orientation-preserving projective transformation.

Orienting curves. A curve γ in T
2 is locally defined by a smooth mapping

s �→ x(s) =
[
x1(s), x2(s), x3(s)

]T
and naturally oriented in the direction of

increasing values of s (Figure 4). If a point x of γ is not an inflection, then γ

locally lies either on the positive or on the negative side of the oriented tangent

line. In the former case, we say that γ is locally convex, and in the latter case,

it is locally concave.

When the curve γ is the boundary ∂ω of a solid region ω of the plane, it

is possible to orient it so that ω is on the positive side of the tangent at every

point of the curve (Figure 5). Intuitively, this orientation can be thought of as
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Figure 5. Orientation convention for a curve γ bounding a solid region ω in the plane. Note
that at the concave point x, the tangent is locally inside ω, and at the convex point y, the
tangent is locally outside ω.

the direction in which we must traverse γ so as to always see ω to our left (we

conventionally designate the left side of the line as positive).

Consider the determinant κ = |x, x′, x′′|, a simple quantity that can be seen

as a precursor of Euclidean plane curvature. Geometrically, the sign of κ tells

us about the relative orientation of the tangent x∨ x′ and the second derivative

point x′′ at a point x of an oriented curve γ. The next proposition shows that

the sign of κ can be used to determine the local shape of γ at x.

Proposition 2. The sign of κ = |x, x′, x′′| is an oriented projective invariant.

The point x is convex (resp. concave, an inflection) when κ is positive (resp.

negative, zero).

The proof is based on considering the determinant |x, x′, x(s + δs)|, where

x(s + δs) is a point on γ infinitesimally close to x. With the help of a second-

order Taylor expansion of x(s + δs), it is easy to show that the sign of this

determinant is the same as the sign of κ as δs approaches zero.

Orienting surfaces. The parametrization of a smooth surface in T
3 induces

a natural orientation of its tangent plane Π = X ∨ Xu ∨ Xv. According to

Proposition 1, the sign of the determinant K of the shape matrix is an ordinary

projective invariant, and thus an oriented one as well. As shown by the next

proposition, the sign of II(U,U) is also an oriented projective invariant.

Proposition 3. Let U be a tangent direction at the point X of the surface Σ.

The sign of II(U,U) is an oriented projective invariant. At elliptic points, it is
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independent of the direction U . If U1 and U2 are two conjugate tangent directions

at a hyperbolic point, then II(U1, U1) and II(U2, U2) have opposite signs.

When the surface Σ is the boundary ∂Ω of some solid Ω, it is possible to

orient it so that Ω is always located on the positive side of the tangent plane.

Intuitively, we want to orient Σ so that any line stabbing the surface at X

penetrates Ω along some interval beginning at X and lying on the positive side

of the tangent plane.3 The sign of II can be used to characterize tangents that

are locally inside or outside Ω, as shown by the next proposition.

Proposition 4. Let Σ denote the surface bounding a solid Ω, oriented so that

Ω lies on the positive side of its tangent planes. Given a point X on Σ and a

direction U in the tangent plane at X, the tangent line X ∨ U is locally outside

the solid when II(U,U) > 0, and locally inside it when II(U,U) < 0.

The proof of this important result is somewhat technical, and is omitted here

for the sake of conciseness. See (Lazebnik, 2002) for details.

We say that an elliptic point on the surface of a solid is convex when the

solid is locally on the positive side of its tangent plane, and concave when it is

locally on the negative side. Combining Propositions 3 and 4, we finally obtain

a characterization of the oriented local shape of elliptic points.

Proposition 5. Let Σ be as in Proposition 4. An elliptic point on Σ is convex

when II(U,U) > 0 for some tangent direction U , and concave otherwise.

4. Surfaces and Their Outlines

This section concludes the development of our theoretical framework by showing

how oriented projective differential geometry can be used for reasoning about

3 Because the notion of an inward-pointing tangent is not readily available in projective differential
geometry, the precise statement of what it means for a solid to lie on the positive side of the tangent
plane is a bit involved and omitted here (Lazebnik, 2002).
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Figure 6. An oriented projective camera. The circular arrow indicates the intrinsic orientation
of the image plane, so that O ∨ R > 0. The three projection planes are U = O ∨ B ∨ C,
V = O ∨ C ∨ A, and W = O ∨ A ∨ B.

surfaces and their projections. Specifically, it presents an oriented camera model

and gives consistent conventions for orienting the rim on a surface and the

outline in the picture. With all the mathematical ingredients in place, we end

the section by presenting a novel proof of Koenderink’s famous characterization

of the convexities, concavities and inflections of the apparent contours of solids

bounded by smooth surfaces (Koenderink, 1984).

4.1. Camera Model

Geometrically, a pinhole camera is defined by its optical center O and its image

plane R. By convention, we orient O and R such that O lies on the negative

side of R, i.e., R ∨O < 0 or O ∨R > 0 (note that relative orientation for points

and planes is anti-commutative). The corresponding perspective projection maps

every point X distinct from O onto the point (O ∨ X) ∧ R, i.e., the (oriented)

intersection of the ray joining O to X with the image plane. The convention that

O ∨ R be positive ensures that the projection maps any point X lying in the

image plane onto itself (as opposed to the antipodal point −X) (Stolfi, 1991).

The perspective projection mapping is a generalized projective transformation

from T
3 to R (Stolfi, 1991). In order to model this transformation algebraically,

we choose an arbitrary but fixed coordinate system for R and identify R with T
2.
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Thus, if X denotes a point in T
3 and x is its projection, we can write x � PX,

where “�” denotes equality up to positive scale, and P is the 3 × 4 projection

matrix associated with the camera.

Note that selecting a projective coordinate system for R amounts to taking

three points A,B,C in R that form a positive triangle, i.e., R � A ∨ B ∨ C.4

Using the methodology of (Faugeras et al., 2001), it is easy to show that

P =

⎛
⎜⎝ UT

V T

W T

⎞
⎟⎠ ,

where U = O ∨ B ∨ C, V = O ∨ C ∨ A, and W = O ∨ A ∨ B are the projection

planes of the camera (Figure 6).

In standard projective geometry, the unoriented center O of a camera is de-

termined by the null space of the camera projection matrix, since PO = 0. In

the oriented setting, it is also possible to recover the pinhole given the projection

matrix P. Indeed, given our convention that O ∨ R > 0, it is easy to show that

O is given by the oriented meet U ∧ V ∧ W of the three projection planes. We

can recover the three projection rays V ∧ W � O ∨ A, W ∧ U � O ∨ B, and

U ∧ V � O ∨ C. However, it is impossible to recover the basis points A, B,

and C, or even the image plane itself. In fact, it is easy to see that any two

cameras with the same pinhole but different image planes can be represented by

the same (up to positive scale) projection matrix provided that we choose the

same projection rays. On the other hand, a different choice of projection rays will

result in a different projection matrix for the same geometric camera. These facts

compel us to seek a more fundamental invariance relationship between cameras.

The following proposition is an oriented statement of the well-known result that

cameras with the same center are projectively equivalent (Faugeras et al., 2001).

Proposition 6. Any two cameras with the same center O and two properly

oriented image planes R and R′ (i.e., O∨R > 0 and O∨R′ > 0) are in oriented

4 A fourth unit point is actually required to complete the specification of a projective frame and the
corresponding projective coordinates (see Berger [1987] for details). The unit point will not, however,
play an explicit role in the rest of this presentation.
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Figure 7. Illustration of Proposition 7. The circular arrows indicate the orientation of the
planes, and the straight arrows point toward the positive sides of the planes. Here the
tetrahedron (O,X, Y, Z) and the triangle (x, y, z) are both positive.

projective equivalence: if P and P ′ are the projection matrices corresponding to

the two cameras for any projective bases of R and R′, respectively, then for any

point X in T
3, its two images x � PX and x′ � P ′X are related by the same

orientation-preserving transformation: x � Mx′, where M is a 3 × 3 matrix

with positive determinant.

The next proposition, which to our knowledge has not previously appeared in

the computer vision literature, relates the orientation of the tetrahedron formed

by the camera center and three points in T
3 to that of the corresponding image

triangle (Figure 7). This result is central to the development of our theoretical

framework: It alone will allow us to connect the qualitative invariants of 3D

surfaces to those of their outlines, as will be seen, for example, in Propositions

9 and 13.

Proposition 7. Let X, Y , and Z be three points in T
3 with projections x, y,

and z in the image plane. Then the tetrahedron (O,X, Y, Z) is positive (resp.

negative, improper) if and only if the triangle (x, y, z) is positive (resp. negative,

improper) in the image plane:

|x, y, z| � |O,X, Y, Z| .
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Proof. Let us first suppose that the tetrahedron (O,X, Y, Z) is positive, and let

R′ = X ∨ Y ∨ Z. Because O ∨ R′ > 0, the optical center O and the image

plane R′ form a properly oriented camera. Let x′, y′, and z′ denote the images

of X, Y , and Z under some perspective projection matrix associated with this

camera.5 According to Proposition 6, the points x, y, z and x′, y′, z′ are related by

the same orientation-preserving transformation, so the corresponding triangles

have the same orientation, and, in particular, the triangle (x, y, z) is positive.

If the tetrahedron is negative, we define R′ = −X ∨ −Y ∨ −Z and apply the

same reasoning to the points −X, −Y , and −Z. It follows that the triangles

(−x,−y,−z) and (−x′,−y′,−z′) have the same orientation, thus (x, y, z) is

negative. When the tetrahedron (O,X, Y, Z) is not proper, it is easy to see that

the points x, y, z are collinear.

Note that the above proof assumes a particular choice of coordinate systems

for the image planes. However, as a consequence of Proposition 6, Proposition 7

holds for any such choice.

Before concluding this section, let us briefly mention a distinction between the

oriented camera model presented above and the ones described in previous litera-

ture (Hartley, 1998; Laveau and Faugeras, 1996; Werner et al., 1998; Werner and

Pajdla, 2001a; Werner and Pajdla, 2001b; Chum et al., 2003). In the (usual) set-

ting where T
3 is considered as the projective completion of the “physical” affine

space (Faugeras et al., 2001), the third projection plane, W can be interpreted

as a focal plane parallel to the image plane and passing through the pinhole O.

Since the third coordinate of an image point x = PX is x3 = W T X = W ∨ X,

the projections of points in the focal plane verify x3 = 0 and lie on the line at

infinity of the image plane. For all other points, x3 is positive (resp. negative)

when X is on the positive (resp. negative) side of W . In this way, the oriented

camera model can be used to distinguish between scene points that lie in front

5 Geometrically speaking, in this case the points X, Y , and Z project to themselves since they lie
on the image plane R′. However, the algebraic formalism of projection matrices requires us to make
a distinction between the points and their images.
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of the camera focal plane from the ones that lie behind (Laveau and Faugeras,

1996). Clearly, only points located in front of the focal plane can be visible in

the image. Of course, when one insists on a purely projective setting, as we do

here, such a simple interpretation is not possible, and it is only by convention

that “physical” image points verify x3 > 0. Thus, we do not use this constraint

in the article and content ourselves with ensuring consistent orientation between

points, curves, surfaces, and their projections.

4.2. Rims and Apparent Contours

The rim or contour generator of a surface Σ associated with a camera center

O is the curve Γ formed by the points X on Σ whose tangent plane contains

O, or |X,Xu, Xv, O| = 0 (Figure 8). The corresponding perspective projection

of Γ is an image plane curve γ called the apparent contour, or outline of Σ.

The following well-known and fundamental result (Koenderink, 1990) relates

the viewing direction from the camera center to a rim point and the tangent to

the rim at that point:

Proposition 8. Let X be a point on the rim Γ, O the center of a perspective

projection camera, and T the (unoriented) tangent line to Γ at X. Then O ∨ X

and T lie in conjugate directions.

This fact will play a key role in our proofs of Propositions 9 and 12. It makes

intuitive sense if one recalls the geometric interpretation of conjugate directions

given in Section 2.2: It is clear that the viewing rays O ∨ X associated with all

points X belonging to the rim sweep out a developable surface, namely, a cone

with apex O.6

Visibility. When the surface Σ is the boundary of an opaque solid Ω, a rim

point X will be hidden from view if the ray L = O ∨ X enters the object Ω
6 More generally, one can specify how to obtain a conjugate net on the surface by moving the

camera center along a line. This result is known as Blaschke’s Theorem (Blaschke, 1967; Koenderink,
1990): The curves along which osculating cones with their apices on a straight line touch a surface,
together with the curves of intersection of that surface with the planes through that line, define a net
of conjugate directions on the surface.
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Figure 8. The rim and the apparent contour of a smooth surface.

prior to grazing it at X. In general, visibility is not a purely local phenomenon,

since the infinitesimal properties of Σ in the neighborhood of X do not tell us

whether the viewing ray L has already passed through the object elsewhere.

However, there is one necessary local condition for visibility: L must be locally

outside Ω. Note that this condition is never satisfied for concave points (recall

Proposition 4)—hence the well-known fact that concavities never show up on

the silhouette of an opaque object. We call a point X on the rim locally visible

if the viewing ray O ∨ X is locally outside Ω.

X

�

O L X

�

O L X

�

O L

Figure 9. Local visibility: X is locally visible (left), locally invisible (middle), locally visible
but globally invisible (right).
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Figure 10. Orienting the rim. Left: The intrinsic orientation of the surface tangent plane,
X ∨ Xu ∨ Xv (the orientation is indicated with a counterclockwise arrow). Right: Orienting
the rim tangent such that O ∨ X ∨ X ′ matches the intrinsic orientation of Π.

Orienting the rim. Let us assume that Σ is oriented so that Ω is everywhere

on the positive side of the tangent plane. The projection process induces a

relationship between the rim tangent T = X ∨ X ′ at the point X and the

contour tangent t at the point x � PX, namely t = x ∨ x′ � (PX) ∨ (PX ′).

Clearly, all points in the tangent plane Π = X ∨ Xu ∨ Xv (except O) project

onto t in the image. We want the orientation of t to be consistent with the

orientation of Π in the following way: if Y is a point such that Π ∨ Y > 0, then

y � PY must satisfy t∨ y > 0. This can be written as |X,Xu, Xv, Y | � |x, x′, y|,
and by Proposition 7 we have |x, x′, y| � |O,X,X ′, Y |. Therefore, we must have

X ∨ Xu ∨ Xv � O ∨ X ∨ X ′. This is satisfied if we orient the rim tangent T

such that O ∨ T � Π (Figure 10). From now on, we will assume that the rim is

oriented according to this convention, and that the orientation of the apparent

contour is induced by the orientation of the rim.

4.3. Koenderink’s Theorem

The following result, referred to as Koenderink’s theorem in this presentation,

was first proved in (Koenderink, 1984) for smooth surfaces embedded in Eu-

clidean space and observed by orthographic and spherical perspective cameras.
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Proposition 9. A convex (resp. concave, inflection) point on the apparent con-

tour of a smooth solid is the projection of a convex (resp. hyperbolic, parabolic)

point on the rim of its surface (Figure 11).

O

X

x

y
Y

Z

z

�

�

�

Figure 11. A smooth solid and its perspective projection. The dashed curve on the surface is
the rim and the dotted curve is the parabolic curve or the locus of parabolic points. The rim
points X, Y , and Z are respectively convex, hyperbolic, and parabolic, and their images x, y,
and z are respectively convex, concave, and inflection points of the apparent contour.

Koenderink’s theorem is in fact also valid under planar perspective projection,

and variants of the original proof can be found in (Brady et al., 1985; Koenderink,

1990; Arbogast and Mohr, 1991; Cipolla and Blake, 1992; Vaillant and Faugeras,

1992; Boyer, 1996). It is usually presented as a corollary of the simple formulas

that relate the curvature of the apparent contour to the Gaussian curvature

of a surface under various projection models in a three-dimensional Euclidean

space. Such a formula does not exist in the projective case, but the proposition

itself still holds. The proof presented below is purely projective, and, as such,

encompasses both the orthographic and perspective imaging situations, which

are both subsumed by our oriented camera model. More importantly, it does not

rely on the ambient three-dimensional space being endowed with a Euclidean

structure, revealing the intrinsically projective nature of Koenderink’s theorem.

Proof. Let X be the point of interest on the surface Σ, Π the tangent plane at

X, X ′ and X ′′ the corresponding derivatives along the properly oriented rim,

x the projection of X, and x′ and x′′ the corresponding derivatives along the



25

apparent contour. We define the projection direction U1 = α1Xu + β1Xv such

O ∨ X � X ∨ U , and the rim tangent direction U2 = X ′ = α2Xu + β2Xv.

Invoking Proposition 7 yields

κ = |x, x′, x′′| � |O,X,X ′, X ′′| � |X,U1, U2, X
′′| = (α1β2−β1α2) |X,Xu, Xv, X

′′|.

Now, it is easy to show that, for any surface curve with tangent direction X ′ = U ,

the determinant |X,Xu, Xv, X
′′| is equal to II(U,U) (Lane, 1932), and it follows

that κ � (α1β2 − β1α2)II(U2, U2).

Note that O ∨ X ∨ X ′ = X ∨ U1 ∨ U2 = (α1β2 − α2β1) (X ∨ Xu ∨ Xv). Since

the rim tangent is oriented by convention such that O ∨ X ∨ X ′ � Π, we must

have α1β2 − α2β1 > 0, and it follows that the signs of κ and II(U2, U2) are

the same. For the point X to be visible, II(U1, U1) must be positive. When κ is

positive, II(U2, U2) must be positive as well, and since the viewing ray and the rim

tangent are conjugate, the point X must be elliptic according to Proposition 3,

and therefore convex according to Proposition 5. By the same token, X must be

hyperbolic when κ is negative. Finally, the rim tangent must be an asymptotic

direction when κ = 0, and thus self-conjugate. But since the viewing ray is

conjugate to the rim tangent as well, this means that any tangent direction is

conjugate to U2, and the point X must be parabolic.

5. Application: Computing Rim Meshes

As stated in the Introduction, one of the main contentions of this paper is that

oriented projective differential geometry forms a useful language for establishing

intrinsically projective properties of smooth surfaces and their outlines. In the

previous section, we have demonstrated this idea using the example of Koen-

derink’s theorem, perhaps the simplest and most fundamental of the properties in

question. In the final part of our paper, we provide an additional, comprehensive

demonstration of the proposed mathematical framework in action by applying it
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to the task of computing the rim mesh of a solid viewed by multiple cameras—

that is, the combinatorial arrangement of faces (surface patches), edges (rim

arcs), and vertices (rim intersections, or frontier points) induced on its surface by

the corresponding contour generators. Section 5.1 uses the language of oriented

projective differential geometry to define a new qualitative invariant, the relative

orientation of a pair of rims in the vicinity of a frontier point. We also give

analytic characterizations of this invariant on the surface (Proposition 12) and

in the image (Proposition 13). These theoretical results form the basis for the

first algorithm for computing the rim mesh of a surface from a set of image

contours and (oriented) projective cameras (Section 5.2). Finally, Section 5.3

presents experiments with several real-world datasets.

It is important to emphasize that the present section is not meant as a cul-

mination or the end result of the theoretical developments presented in Sections

2 to 4. Rather, its goal is to demonstrate how the mathematical language pro-

posed in this article can be applied to a computational task involving curves

and surfaces. We seek to give a concrete illustration of the key theoretical and

practical components of any such task, from identifying an oriented projective

data structure that describes the geometry and/or topology of a surface seen

from different viewpoints, to stating and proving its local properties (qualitative

invariants), and finally to using these theoretical results in the specification of

an algorithm for computing the data structure from real-world input data. In

Section 6, we will go beyond the relatively limited application considered here

and indicate additional data structures that possess an intrinsically projective

nature and may be treated in the same framework.

5.1. Relative Orientation of Rim Tangents at a Frontier Point

This section briefly reviews the geometric properties of frontier points (Rieger,

1986; Porrill and Pollard, 1991; Cipolla et al., 1995) where pairs of rims intersect,

and defines the relative orientation of the rims in the vicinity of a frontier point.
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The two key theoretical results are Proposition 12, which shows that the relative

orientation of rims depends on the relative orientation of the viewing rays in

3D and on the local shape of the surface at the frontier point, and Proposition

13, which states that the relative orientation can be determined from image

information alone. The latter result will be an essential ingredient of the image-

based algorithm for computing rim meshes discussed in the next section.

Frontier Points. Suppose that X is a point where the rims Γi and Γj meet

(Figure 12). Then the visual rays Oi∨X and Oj∨X both lie in the tangent plane

to Σ at X, and the tangent plane coincides with the (unoriented) epipolar plane

defined by Oi, Oj, and X. Since Oj belongs to the plane Oi ∨ Ti = Oi ∨X ∨X ′
i,

we have |Oi, X,X ′
i, Oj| = 0. In the first image, let xi � PiX be the projection of

X, and x′
i � PiX

′
i be the derivative point of the outline γi at xi. By Proposition

7, we conclude that

|xi, x
′
i, eij| = 0 , (2)

where eij � PiOj is the epipole in the first view. This expression can be rewritten

as ti∨eij = 0, where ti = xi∨x′
i is the tangent to γi at xi. Thus, xi is distinguished

by the geometric property that its tangent line ti passes through the epipole eij.

Equivalently, we can say that the derivative point x′
i lies on the epipolar line

lij � eij ∨ xi. In this view, an analogous relationship holds:

|xj, x
′
j, eji| = 0 . (3)

We will refer to xi and xj as matching frontier points. Note that xi and xj

satisfy the epipolar constraint xT
j Fijxi = 0 where Fij is the fundamental matrix

associated with views i and j (Luong and Faugeras, 1996).

Relative Orientation. We say that the relative orientation of two directions U1

and U2 in the tangent plane of Σ in X is positive when X∨U1∨U2 � X∨Xu∨Xv.

In this case, we also say that the relative orientation of the tangent lines X ∨U1

and X ∨ U2 is positive. As shown by the following proposition, whose proof is



28

X

xi
xj

Oi

lij lji

Oj

�

eij eji

�i �j

�i �j

Figure 12. Frontier points: see text for details.

elementary and omitted here for the sake of brevity, it is a simple matter to

characterize relative orientation analytically.

Proposition 10. A necessary and sufficient condition for the relative orienta-

tion of two tangent directions U1 = α1Xu + β1Xv and U2 = α2Xu + β2Xv to be

positive is that α1β2 − α2β1 > 0.

In the sequel, we will be particularly interested in pairs of conjugate directions

(viewing rays and rim tangents). The next proposition shows how to obtain a

positively oriented pair of conjugate directions.

Proposition 11. Two tangent directions U1 = α1Xu + β1Xv and U2 = α2Xu +

β2Xv such that (
α2

β2

)
� C

(
α1

β1

)
, where C =

( −m −n
l m

)
,

are conjugate. A necessary and sufficient condition for their relative orientation

to be positive is that II(U1, U1) > 0—that is, the tangent X ∨U1 is locally outside

the surface.

Since we are concerned with frontier points where pairs of rims meet, there

are two conjugate pairs to worry about. The next proposition relates the relative

orientation of the rim tangents Ti = X ∨ X ′
i and Tj = X ∨ X ′

j to that of the

viewing rays Oi ∨ X and Oj ∨ X.
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Proposition 12. The relative orientation of the rim tangents Ti and Tj is the

same as (resp. opposite of) the relative orientation of the viewing rays Oi ∨ X

and Oj ∨ X when X is a convex (resp. hyperbolic) point (Figure 13).

Oi

Oj

�i �j

X

X

Xi

Xj

'

'

X

X

� �

Oi

Oj

�j

�i

Oi Oi

Oj Oj

Xj
'

Xi
'

Figure 13. Relative orientation of rims and camera centers for a convex point (left), and a
hyperbolic point (right).

Note. The relative orientation of two rim tangents at a parabolic point is not

defined since, as noted in the proof of Koenderink’s theorem, these tangents must

run along the unique asymptotic direction there. This only occurs for exceptional

pairs of viewpoints since the rims associated with two views will not, in general,

intersect at parabolic points.

Proposition 12 can be understood intuitively as follows. Consider putting a

tiny flashlight on the tangent plane and shining the light beam toward X. As we

rotate the flashlight while keeping it aimed at X, the boundary of the shadow will

rotate in the same direction as the light beam if X is elliptic and in the opposite

direction if X is hyperbolic (Figure 13, bottom). In the Euclidean setting, this

qualitative result is a simple consequence of the fact that the Gauss map pre-
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serves orientation at elliptic points and reverses it at hyperbolic ones (do Carmo,

1976). The proof below is purely projective.

Proof. Let us define constants αi, βi, αj, βj, and α′
i, β

′
i, α

′
j, β

′
j such that

{
Oi ∨ X � X ∨ (αiXu + βiXv),
Oj ∨ X � X ∨ (αjXu + βjXv),

and

{
X ∨ X ′

i � X ∨ (α′
iXu + β′

iXv),
X ∨ X ′

j � X ∨ (α′
jXu + β′

jXv).

According to Proposition 10, the relative orientation of the viewing rays Oi ∨X

and Oj ∨ X is determined by the sign of αiβj − αjβi. Likewise, the relative

orientation of X ∨X ′
i and X ∨X ′

j is given by the sign of α′
iβ

′
j −α′

jβ
′
i. We can use

the conjugate mapping C as defined in Proposition 11 to express the derivative

points as functions of the viewing directions:
(

α′
i

β′
i

)
� C

(
αi

βi

)
and

(
α′

j

β′
j

)
� C

(
αj

βj

)
.

Note that C obeys the orientation convention of Figure 10: This is guaranteed

by Proposition 11 and the fact that the rays O1 ∨X and O2 ∨X both lie locally

outside the surface since X is locally visible by both cameras. Thus, C expresses

the properly oriented relationship between the determinants αiβj − αjβi and

α′
iβ

′
j − α′

jβ
′
i: ∣∣∣∣∣ α

′
i α′

j

β′
i β′

j

∣∣∣∣∣ � |C|
∣∣∣∣∣ αi αj

βi βj

∣∣∣∣∣ = K (αiβj − αjβi) .

Whenever X is convex (resp. hyperbolic), we have K > 0 (resp. < 0) and the

signs of αiβj − αjβi and α′
iβ

′
j − α′

jβ
′
i are the same (resp. opposite).

From now on, we will simplify our terminology and refer to the relative orien-

tation of the rims, implying the relative orientation of their tangents at a frontier

point. Next, we give a proposition showing that the relative orientation of the

rims can be decided from image information alone.

Proposition 13. Given a frontier point xi in the first image, the corresponding

tangent ti to the apparent contour, and the epipolar line lij, the relative orien-

tation of the rims Γi and Γj is positive if and only if (a) xi is convex and the

lines ti and lij have the same orientations (i.e. ti � lij), or (b) xi is concave and

ti � −lij (Figure 14).
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Figure 14. Illustration of Proposition 13. The epipolar lines are oriented from the epipole eij

toward the image frontier points labeled 1 to 4, and the orientations of the epipolar tangents
at the frontier points are indicated by the arrows. The four points illustrate the four possible
cases. Point 1: xi is convex and lij � ti. Point 2: xi is concave and lij � ti. Point 3: xi is
concave and lij � −ti. Point 4: xi is convex and lij � −ti. The relative orientation of Γi and
Γj is positive in cases 1 and 3, and negative in cases 2 and 4.

Proof. The epipolar line lij is the oriented projection of the viewing ray Oj ∨
X, and the tangent ti is the projection of the rim tangent X ∨ X ′

i. It follows

immediately from Proposition 7 that lij and ti have the same orientation exactly

when Oi ∨ Oj ∨ X � Oi ∨ X ∨ X ′
i. But Oi ∨ Oj ∨ X = X ∨ Oi ∨ Oj, and

Oi ∨ X ∨ X ′
i � X ∨ Xu ∨ Xv. Therefore, a necessary and sufficient condition for

the orientation of lij and ti to be the same is that the relative orientation of the

viewing rays Oi ∨ X and Oj ∨ X be positive. Since we know from Proposition

9 that the preimage X is convex when xi is convex, and hyperbolic otherwise,

Proposition 13 follows immediately from Proposition 12.

For completeness, let us consider the role of the second image in the state-

ment of the Proposition 13. Since the local shape of X does not depend on the

viewpoint and since both rays Oi ∨X and Oj ∨X are locally outside the surface

by assumption, xi and xj are either both convex or both concave. However, the

relative orientation of X ′
i and X ′

j is the opposite of the relative orientation of X ′
j

and X ′
i. Therefore, whenever lij � ti in the first image, we must have lji � −tj

in the second image.
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5.2. The Rim Mesh

Let us suppose now that we observe the object Ω using n oriented projective

cameras. The rims Γ1, . . . , Γn associated with the centers of these cameras form

an arrangement on the surface Σ, the rim mesh. The vertices of the rim mesh

are frontier points where two rims intersect, its edges are rim segments between

successive vertices, and its faces are maximal connected regions of Σ bounded

by closed paths consisting of vertices and edges (Lazebnik et al., 2001).7

The rest of this section presents an image-based algorithm for computing

the rim mesh. Specifically, we assume that we are given as input the apparent

contours γ1, . . . , γn and the oriented projective camera matrices P1, . . . ,Pn.8 The

knowledge of the camera matrices enables us to compute the properly oriented

epipolar geometry between each pair of views (Lazebnik, 2002).

Image data alone provides very little information about the geometry of the

rim mesh: We can recover the tangent planes along the rims and the positions of

the mesh vertices, but this only constrains the edges (resp. faces) of the mesh to

lie on the surface of (resp. inside) an outer approximation of the observed solid,

its visual hull (Baumgart, 1974; Laurentini, 1994). On the other hand, we will

show that the same image information is sufficient to recover the combinatorial

structure of the rim mesh, thus providing an exact topological representation of

the surface in the form of the incidence relationships of the vertices, edges, and

faces of the mesh.

Although the rim mesh is well defined for any smooth surface Σ and any

combination of viewpoints, its construction from image data is severely compli-

cated by the loss of information inherent in the projection process. Apart from

7 See (Cross and Zisserman, 2000) for the related notion of an epipolar net, a term which informally
refers to the set of all frontier points on a surface.

8 In practice, these camera matrices are usually obtained with the help of some (projective) cali-
bration or structure-and-motion estimation technique. To guarantee the correctness of the computed
rim mesh, we must first ensure that the orientations of these matrices are consistent: Namely, we must
enforce the constraint that any point xij observed in the image plane of the ith camera is equal up to
a positive scale factor to the computed projection PiXj . These sign consistency constraints can either
be built into the estimation process itself or imposed a posteriori using the technique described in
Hartley (1998).
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1. Find Vertices. For each two views i, j, find all pairs of matching frontier points. Each
matching pair in the image corresponds to a single vertex X belonging to the intersection
of rims Γi and Γj .

2. Find Edges. For each contour γi, construct a circular list of frontier points where the
ordering is induced by the orientation of the apparent contour. For each interval between
two successive pair of frontier points corresponding to vertices X and Y , add (X,Y ) as
the edge of the rim mesh.

3. Find Faces. For each edge E = (X,Y ), find the boundary of its positive and negative
faces (faces that lie to the left and to the right of the edge, respectively):

If the positive face pointer of E is not already initialized, initialize it to a new
face F , and find the boundary of F using the following loop:

Set X0 = X.
Append E to the boundary list of F .
Set the positive face pointer of E to F .
While X0 �= Y

Find the successor E′ of E as shown in Figure 16.
Append E′ to the boundary list of F .
If E′ = (Y,Z)

Set the positive face pointer of E′ to F .
Else If E′ = (Z, Y )

Set the negative face pointer of E′ to F .
End If
Set Y = Z, E = E′.

End While

If the negative face pointer of E = (X,Y ) is not initialized, create a new face F and find
the boundary of F using the same loop as above, but with different initial conditions:

Set X0 = Y .
Append E to the boundary list of F .
Set the negative face pointer of E to F .
While X0 �= X . . .

Figure 15. Algorithm for computing the rim mesh.

the obvious problem of self-occlusion, it may not be possible to determine the

subdivision induced on Σ by a rim Γ when either Γ or Σ consists of multiple

connected components. To sidestep these difficulties, we impose the following

conditions on the input of our algorithm: that a visual ray passing through a

rim point only intersects Σ at that point (in particular, this precludes contours

from having T-junctions); that the edges of the rim mesh cannot form multiple

loops, and faces cannot have holes; and finally, that the surface Σ is connected.
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Our algorithm for computing the rim mesh (Figure 15) is divided into three

main steps: (1) find the vertices of the mesh; (2) find its edges; (3) determine the

relative orientation of the edges incident to each vertex, and use this information

to trace the loops bounding each face. In step (1), the vertices corresponding to

pairs of matching frontier points are computed for each pair of images. Recall

that pairs of frontier points are identified according to Equations (2) and (3) as

simultaneous epipolar tangencies in the two images. Step (2)—identification of

the edges—is straightforward: The four edges incident to a particular vertex are

simply given by the segments of the two apparent contours that are incident to

the respective image frontier points. Note that the first two steps completely

determine the graph structure, or the 1-skeleton, of the rim mesh. All that

remains is to find the faces of the rim mesh in step (3). This involves finding

the relative ordering of the rim segments incident to each vertex, as specified

in Proposition 13. With the help of the orientation information, the loops of

edges bounding rim faces are traced as follows. Suppose we start with one edge

E = (X,Y ) of the rim Γi and want to find the face F that lies on its left (the

positive face). Informally, we traverse E in its forward direction (as determined

by the orientation of the corresponding segment of the apparent contour) until

we reach its endpoint Y , and take a left turn to get to the successor edge E ′. This

edge is one of the two segments of the second rim Γj incident to Y . The choice

between the segments depends on the relative orientation of Γi and Γj (Figure

16): If the relative orientation is positive (resp. negative), E ′ is the segment of

Γj originating (resp. terminating) at Y . We move from vertex to vertex in this

manner, traversing edges either forward or backward, taking a left turn each

time until we complete a cycle. The negative face of an edge, or the face that

lies to its right, is found in a similar way, as shown in Figure 15.

Note. Let v, e, and f denote the numbers of vertices, edges, and faces of the

rim mesh. Under the three assumptions listed at the beginning of this section,

the Euler formula v − e + f = 2 holds when the surface Σ has genus 0 (which
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Figure 16. Choosing the successor E′ of the edge E along the boundary of the face F of the rim
mesh. The circular arrows indicate the relative orientation of Γi and Γj (the intrinsic orientation
of the tangent plane is assumed to be counterclockwise). Left: The relative orientation is
positive, and E′ is the segment of Γj originating at Y . Right: The relative orientation is
negative, and E′ is the segment of Γj terminating at Y .

is the case in the examples shown in Figure 17). Since each vertex has degree 4,

and the sum of the degrees9 of all the vertices is equal to twice the number of

edges, we have e = 2v. Substituting this expression into the Euler formula and

solving for the number of faces yields f = 2+v. These two relations can be used

to verify the validity of the rim mesh representation computed by the algorithm

outlined in this section.

5.3. Results

We have implemented the algorithm described in the previous section and suc-

cessfully applied it to several real-world image datasets. Figure 17 shows the

results for three calibrated turntable image sequences: the vase (six images),

the teapot (nine images), and the gourd (nine images). The top row of the

figure shows a representative image from each of the three sequences. The rim

mesh computation program takes as input a set of outlines (extracted to sub-

pixel precision from each image) and fundamental matrices between each pair of

views (computed from the calibration data). The 1-skeletons computed by the

program are shown in the second and third rows of Figure 17. To visualize the

9 By the degree of a vertex we mean the number of edges incident on that vertex, regardless of
edge orientation.
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vertices (frontier points), we reconstruct their position in 3D and reproject them

into each respective view. The edges are drawn as straight lines connecting the

corresponding vertices. Because of the turntable setup, the camera remains in

the same plane throughout the sequence, and most of the frontier points end up

being densely clustered near the top and the bottom of the objects — an “ugly”

geometric configuration that makes these sequences a rather difficult case for rim

mesh computation. Finally, the bottom row of the figure shows an alternative

visualization of the 1-skeletons, where they are “flattened” with the help of a

graph-drawing program Graphviz (Gansner and North, 1999). The 1-skeletons

are planar graphs, despite the fact that Graphviz is unable to compute a planar

embedding from them. The figure also does not reflect their directed nature,

where each edge inherits an orientation from the corresponding segment of the

outline. Because of the scarcity of geometric information associated with the rim

mesh, it is difficult to visualize its faces. Nevertheless, note that the numbers of

vertices, edges and faces listed at the bottom of the figure verify the relationships

e = 2v and f = 2+v derived earlier from the Euler formula, thus demonstrating

the topological consistency of the computed rim meshes.

6. Discussion

Computer vision applications of projective differential geometry have focused—

so far—on the use of high-order quantitative differential invariants for object

recognition. By contrast, the oriented projective differential framework presented

in this article is aimed at deriving low-order, qualitative invariants suitable for

reconstruction tasks. The past decade has seen intense study of projective recon-

struction techniques for points, lines, and planes (Faugeras et al., 2001; Hartley

and Zisserman, 2000). In our opinion, the addition of mathematical tools appli-

cable to the reconstruction of more complex geometric entities such as curves
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Vase: 6 images Teapot: 9 images Gourd: 9 images
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Figure 17. Top: Sample images from the vase, teapot, and gourd image sequences. Second and
third row: The 1-skeleton of the rim mesh from two of the original viewpoints. Bottom: An
alternative visualization of the 1-skeleton of the rim mesh. Data courtesy of Edmond Boyer.
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and smooth surfaces should greatly enrich the subject of multi-view geometry

(see Faugeras and Papadopoulo [1993] for related work in the Euclidean case).

Since the present article is concerned primarily with developing a theoretical

framework of qualitative invariants, we have limited our discussion of applica-

tions to the relatively self-contained subject of rim meshes. However, we have

extensively used the oriented constraints derived in this article in practical al-

gorithms for computing visual hulls from image data (Lazebnik, 2002). Other

potential applications include the construction of visibility complexes (Durand

et al., 2002) and aspect graphs (Koenderink and Van Doorn, 1979). These

objects, whose combinatorial structure is determined by local and multilocal

events corresponding to special kinds of contact between lines and surfaces, can

be seen as qualitative projective invariants of a scene. Projective differential

geometry may also be an appropriate setting for identifying the class of projec-

tive transformations that leave certain other geometric structures unchanged,

such as the shadow field (Belhumeur et al., 1997), or even perhaps the set of

reconstructions compatible with a fixating stereo system with unknown vergence

angles (Helmholtz, 1909; Koenderink and Van Doorn, 1976).
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