

The Lowdown on TLEDs

April 26, 2016 LIGHTFAIR® International Jeff McCullough, PNNL Tracy Beeson, PNNL Naomi Miller, PNNL

U.S. Department of Energy

Order of the Day...

- 1. An introduction into the current state of the TLED market Jeff McCullough
 - Size and current state of the market
 - Prior DOE Studies
 - How do TLEDs save energy?
 - The Troffer Conundrum
- 2. Learn about the "ABCs" ... of UL 1598 Tracy Beeson
 - What are the different types
 - Wiring diagrams
 - Installation lessons learned
 - Pitfalls, areas to be concerned about
- 3. Facilitated discussion on the questions/concerns you have with respect to TLEDs Naomi Miller + All

Top 10 reasons why everyone is interested in TLEDs?

- 1. They last longer (forever maybe) than fluorescent lamps
- 2. A TLED is perceived to be the lowest cost option to get the benefits of LED
- 3. Efficacy has been steadily increasing
- 4. Prices have been steadily decreasing
- 5. I get to keep my existing fixture that's been in my ceiling for 20 years, yippee!
- 6. They don't have any of that bad 'ol mercury
- 7. Many continue to cling to the old paradigm that... "a-lamp-is-a-lamp" and all lamps interchange "one-for-one"
- 8. I can potentially do away with my ballasts and get into the "lamps only" business
- 9. Installation is just a "point" and "click" away
- 10. They truly are shiniest damn thing in my ceiling!

A True Case Study from a 1st Generation TLED Installation

1st Generation System

- Installed circa 2010
- 16 W, 1400 lm, 87.5 lm/W
- 4200-4600K claimed "cool white"
- Reached < L₇₀ in 6 years and is currently delivering 50% of initial fluorescent levels
- Warranty: 50,000 hour/5 year "life" claimed by manufacturer. No L₇₀!

2016 system

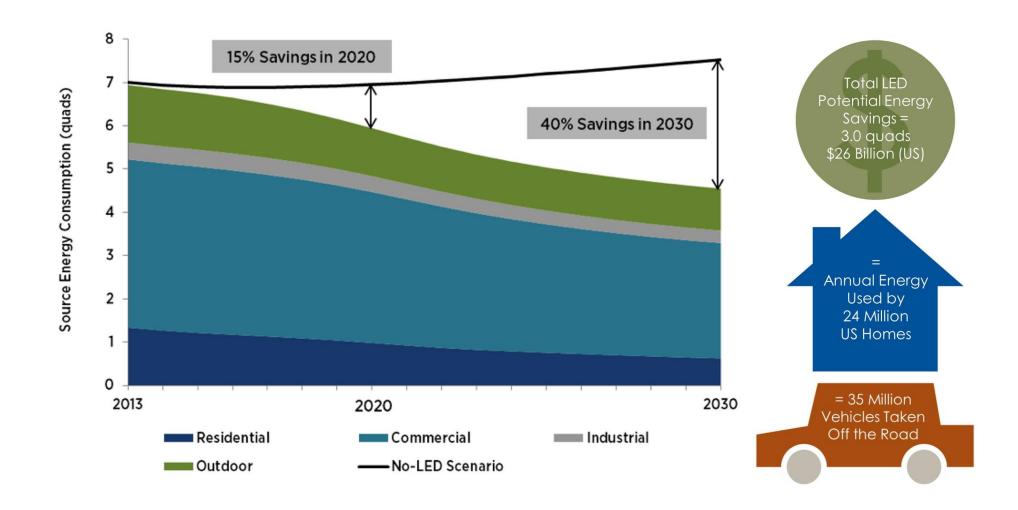
- 18 W, 1950lm, 108 lm/W
- 4100K (3000-6500K offered)
- L₇₀: 50,000 hours
- Warranty: 5 years (with a 10-year option)
- Results in increased energy usage!

Size of Market

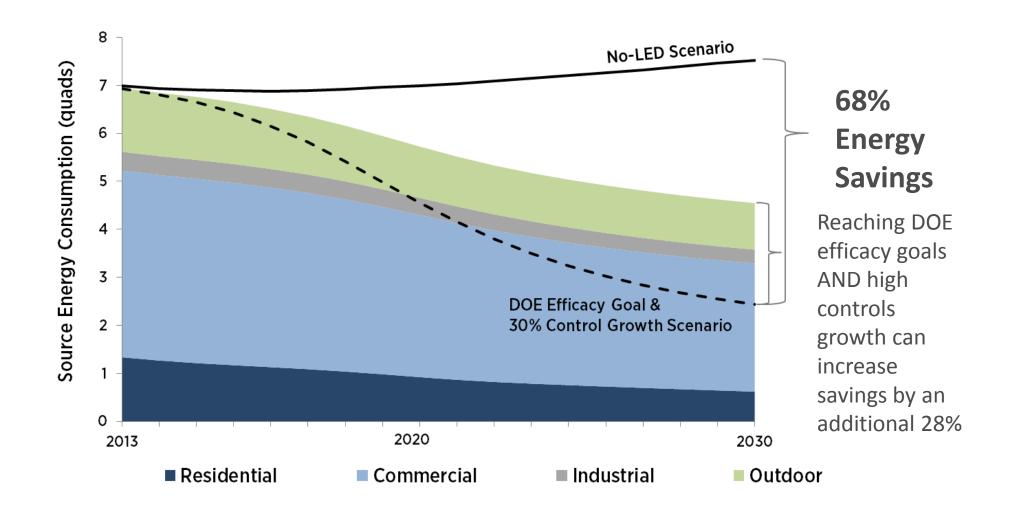
Configuration	Mixture	Approx. # of Installations	Hours	Input Power (W)	Estimated Energy (TWh)
2'x4'	74%	~272,000,000	10.5	74	77.1
2'x2'	16%	~59,000,000	10.5	59	13.3
1'x4'	8%	~29,000,000	10.5	44	4.9
Total	100%	~367,000,000			95.3

Notes:

- Quantities extrapolated from DOE SSL Niche Report & NEMA LE5-2001
- Power values assume a mixture of lamps, ballast factors, and ballast efficiencies
- TWh = 1,000,000,000,000 watt-hours

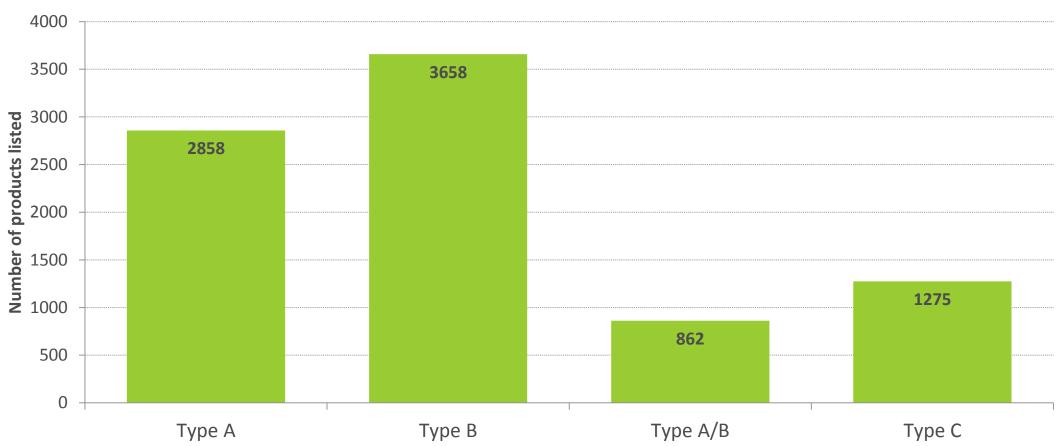


Interior Lighting by the Numbers - Commercial Buildings



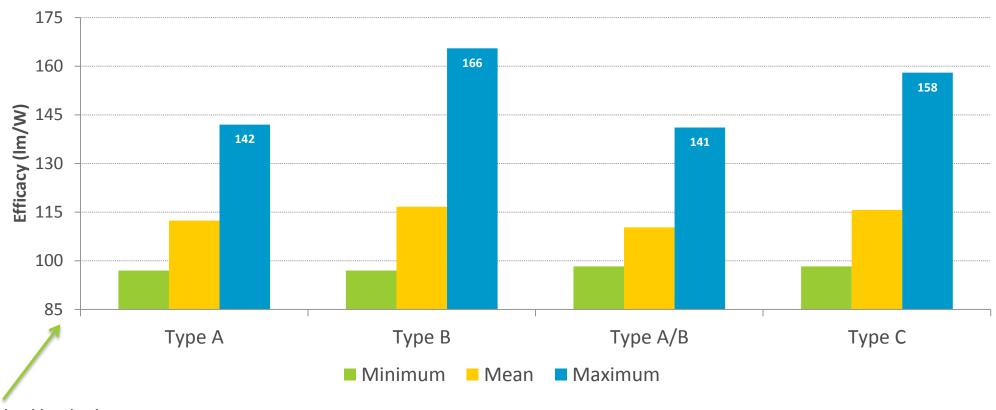
- Commercial lighting is ≈ 2.6% of <u>ALL</u> primary energy consumption in the U.S.
- Troffers ≈ 1% of <u>ALL</u> energy use
- ≈ 20% of building energy is lighting and troffers are ≈ 50% of that energy

Energy Savings Forecast


Much Deeper Energy Savings Still Achievable

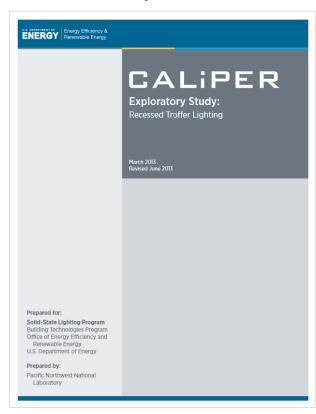
TLEDs Today (2016)

4-foot LED linear replacements on DLC Qualified Products List by UL Type


4/20/16

TLEDs Efficacy

Measured luminaire efficacy of DLC-listed 4-foot LED linear replacement lamps by UL type


4/20/16

Min required luminaire efficacy is 85 lm/W

Prior DOE Studies into TLEDs

Reports

Application Summary Report 21: Linear (T8) LED Lamps (March 2014)

- Report 21.1: Linear (T8) LED Lamps in a 2 × 4 K12-Lensed Troffer (April 2014)
- Report 21.2: Linear (T8) LED Lamp Performance in Five Types of Recessed Troffers (May 2104)
- Report 21.3: Cost-Effectiveness of Linear (T8) LED Lamps (May 2014)
- Report 21.4: Summary of Linear (T8) LED Lamp Testing (June 2014)
- "Only one product tested for this report could be installed without removing the existing fluorescent ballast, assuming the luminaire was equipped with an instant-start electronic ballast."

Exploratory Study: Recessed Troffer Lighting (May 2013)

Fact Sheets

Energy Efficiency & Renewable Energy Ren

Upgrading Troffer Luminaires to LED

Lighting accounts for roughly 20% of the electricity use in a typical commercial building, and the workforce in these indoor applications has been the linear fluorescent lamp. In 2010, lighting systems using linear fluorescent lamps accounted for over 75% of the lighting service in commercial buildings. Reseased troffer furniariers, commonly available in 1" 4", 2" 4", and 2" 2" 2" sizes, provide the majority of this lighting. The total installed stock of common linear fluorescent luminaires in the United States is estimated to be over 960 million furniaries."

Although the installation of LED troffer-style luminaires jumped from an estimated 40,000 units in 2010 to nearly 700,000 units in 2012, ELD juminaires still represent less some constant process of the state of th

Introduction

These desired and the second series for upgrading lighting ystems that up rights ystem to other typicals the flowcose of length with LED replacement lamps, replacing the flowcose of length with LED replacement lamps, replacing the flowcose of lamps and LED replacement lamps, and the lamps and the flowcose of lamps and the flowcose of lamps and the lamps and the condition of the flowcose of length lamps and ballast types and the condition of the flowcose to the current lamps and ballast types and the condition of the flowcose to the flow lamps and ballast types and the condition of the flowcose to the flow lamps and ballast types and the condition of the flowcose to the flow lamps and ballast types and the condition of the flowcose of the fl

System Factors to Consider

An evaluation of LED uggrade options include a suessing the system costs and the impact on the lighting system performance. Table I summarizes a number of the key factors, and the accompanying test explains those factors. The column heading Longue refers to LED resplacement lamps; the heading Kitz refers to LED resplacements in Lengue in the late of the LED resplacement in LED investion and the lengue of the light and the heading Longue refers to new LED luminatives. For each of the three LED uggrade options, that help recorded a color-coded destination of whether a factor is made to the late of lat

1 "Energy Swings Potential of Solid Status Lighting in General Marination Applications", Amysaid, January 2012, http://appls. seri energy gov/buildings/ Applications", Amysaid, January 2012, http://appls. seri energy gov/buildings/ - "Adoption of Light-Familtings positions" or January Lightings popilisations", Nasigaal, April 2015, http://appls. seri energy gov/buildings/pablications/pdfs/ssl/ ded-adoption-pedic-2015.ddf.

nitial Costs

Equipment Purchase Costs
LED replacement lamps often provide the lowest cost option in
terms of purchasing the LED components. The cost of LED retrofit kits is usually more than replacement lamps, and purchasing
new LED luminairies usually is the highest cost.

Installation Labor Costs

Institution Tunor Centre Replacement lamps that simply snap into the existing fluorescent lamp sockets provide the lowest labor costs for installation. Flowerer, most products marketed as replacement lamps require costs similar to products marketed as retirofit lists. Labor costs similar to products marketed as retrofit lists. Labor costs from the replacement lamps, and depending on the extent of the luminaire modifications required, may approach or even exceed the labor.

SYSTEM FACTORS TO CONSIDER	DESCRIPTION	LAMPS	KITS	LUMINAIRES
	Equipment purchase costs	•	_	
Initial costs	Installation labor costs	•		
	Safety certification costs			•
	Energy costs for equal light output		_	•
Operating costs	Replacement costs over system life	_	<u> </u>	_
Current light	Acceptable; should not be reduced at all	_	<u> </u>	_
levels	Reductions of 10% or more are okay	•	•	•
Dimming required	No, dimming is not required	•	•	•
	Yes, dimming is required		_	_

www.energy.gov/eere/ssl/led-linear-lamps-and-troffer-lighting

How Do TLEDs Save Energy and \$?

- Higher source (system) efficacy (lamp + driver) compared to fluorescent system efficacy (lamp + ballast) = reduced connected wattage.
- Greater fixture efficiency. Directionality of TLED allows for more light (useful lumens) out of the fixture.
- Energy savings of 20-30% are possible with similar light levels but ultimately is a function of the space and the existing fixture type.
- Potential for longer "lamp" life = reduced maintenance costs
- Potential to optimize existing lighting systems (reduce light levels) that are overlighted by current ASHRAE/IES standards

Key Challenges with TLEDs

- There are NO standards for:
 - Wiring configurations. No guarantee that a replacement lamp 5 years from now will be wired the same way.
 - Distribution from the lamps. Is beam angle a good surrogate? What about "batwing" distributions?
 - Light output. Fluorescent lamps are interchangeable and have standard lumen ranges
- How many manufacturers are in the market?

3 manufacturer groups for UL Type A products:

Group 1: Cree, GE, OSRAM SYLVANIA, Philips

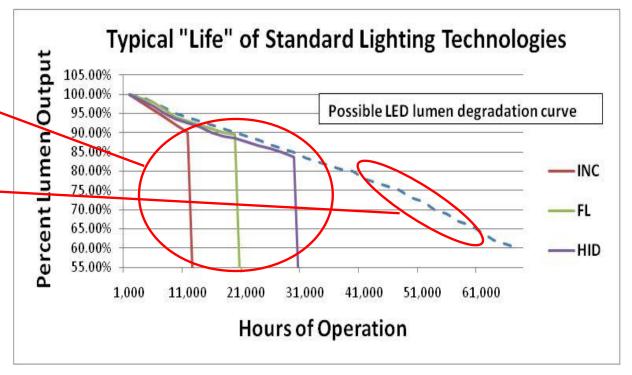
Group 2: Lighting Science Group, Litetronics,
Maxlite, Ushio, Universal Lighting
Technologies, Venture, Westinghouse

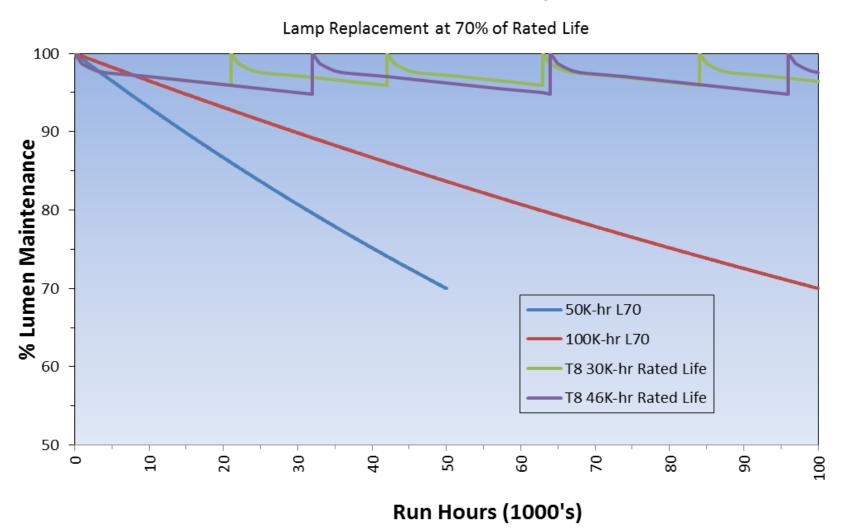
Group 3: All others (about 190 companies)

Number of Type A products listed by manufacturer group Group 1 Group 2 Group 3

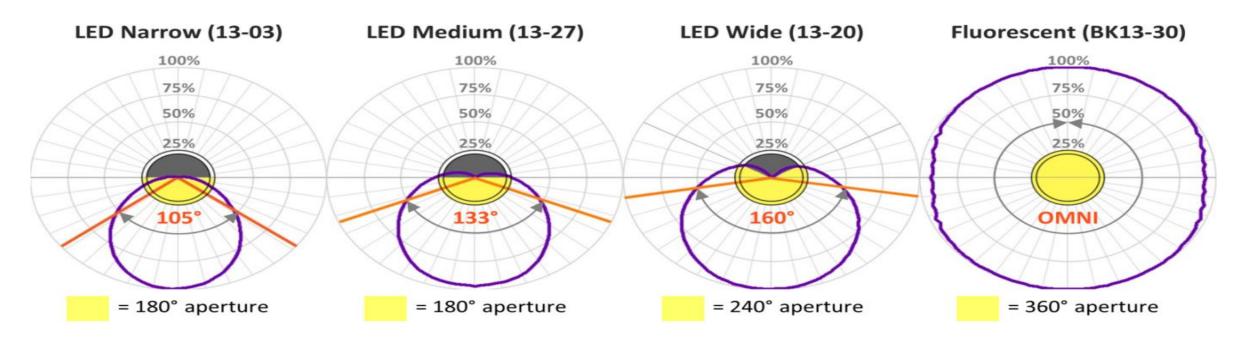
How Do We Design Indoor Lighting Systems?

- Lighting designers "target" a sustained light level based on many factors:
 - The room geometry (e.g. ceiling height, location to work plane, etc.)
 - The reflectances of the room surfaces. You often see "80/50/20" used.
 - 80% for acoustic ceiling
 - 50% for light colored walls
 - 20% for dark carpet
 - Various light loss factors (LLFs)
 - Lamp lumen, dirt, temperature, fixture, ballast, voltage, etc.
 - Lamp lumen depreciation is specified at a point in time (typically 40% of rated life for fluorescents). Fluorescent lamp lumen depreciation
 - The lamp lumen depreciation for a "good" quality F32T8 85 CRI fluorescent lamp is ~0.91 or 91%. Some "premium" lamps are capable of even lumen maintenance all the way out to rated lamp life.
- The initial light levels are generally higher than the space needs so as to deliver ≥ the target light levels at a point in time
- As a practical matter light levels are generally allowed to fall about 10% below the target as the human eye will not notice the difference.
- Some building lease specifications may require a minimum light level at all times.


LEDs are not "Everlasting Gobstoppers"

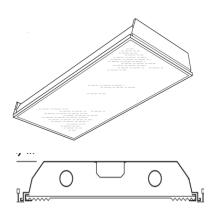


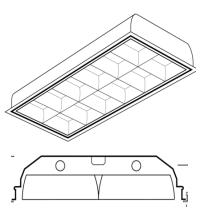
- ALL light sources degrade most fail before critical light output level is reached
- LED diodes can survive but also degrade well beyond useful light level
- Industry considers lumen output as one measure of the useful life of an LED diode.
 Commonly, 70% of initial output is used.


Lumen Maintenance

Lumen Maintenance Comparisons

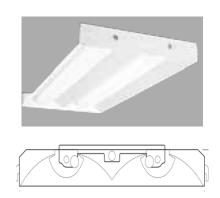
LED Replacement Tube Varieties

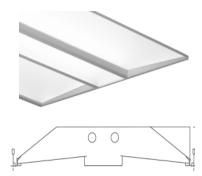

- LED replacement tubes come in a variety of distributions
- Directionality is efficacious but can effect performance in fixtures designed for omnidirectional fluorescent tubes.

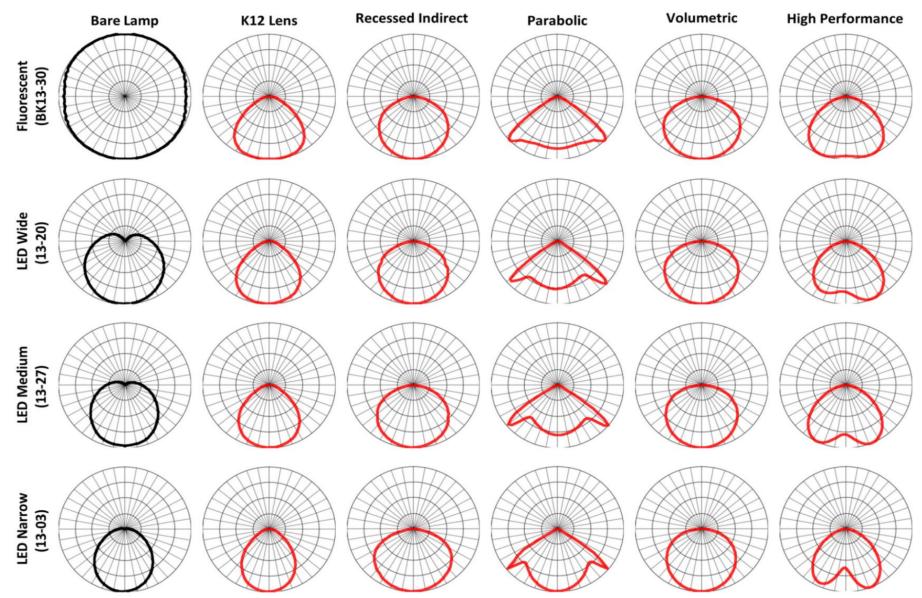

Troffer Geometry

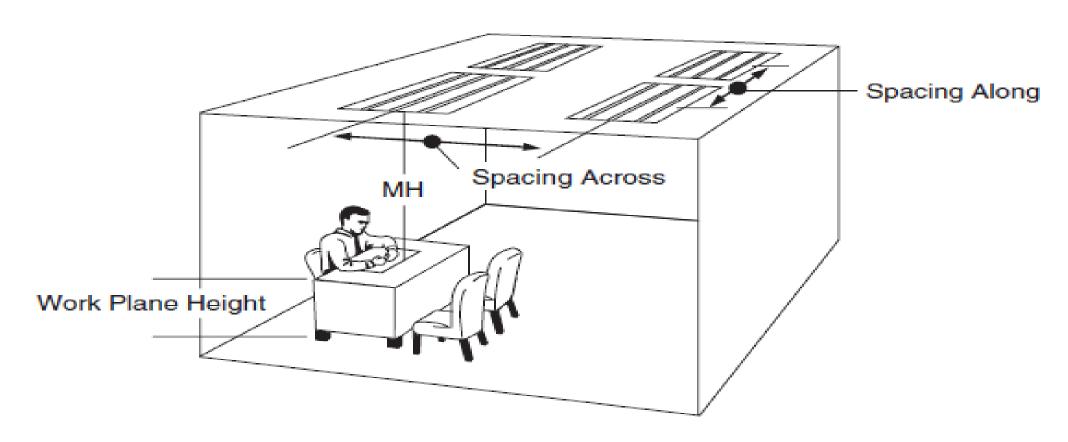
What happens when typical LED replacement tubes are retrofitted in various fluorescent fixture types?

K12 Lens


Parabolic


Recessed Indirect


Volumetric

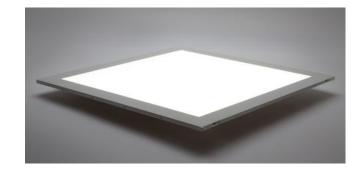

High Performance

Fluorescent Tube vs. LED Tube Distribution Patterns

Design Considerations

Luminaire Spacing = Spacing Criterion x mounting height above work plane (MH)

The Troffer Conundrum – What do I do?


Super T8 Fluorescent Lamp/Ballast

LED Retrofit Kit

Tubular LED (TLED)

New LED Fixture

As with most things... Life is about Choices... and Lighting is no different!

Category	Power Supply	Light Source Mounting	Dimming	Controls	Risk	Total Cost	Attributes
1. LED Replacement Lamp (Ballast)	Existing fluorescent ballast	Existing fluorescent socket	Unlikely	Shut-off only (switch or occupancy sensor)	?	\$	LED or LFL option, No electrician, matches lens configuration, need for future ballast replacement
2. LED Replacement Lamp (Mains)	"Mains" voltage	Existing fluorescent socket	Yes, with matching 0-10V system	Shut-off only (switch or occupancy sensor)	??	\$\$	Matches existing lens configuration
3. LED Replacement Lamp (Hybrid)	"Mains" voltage or existing fluorescent ballast	Existing fluorescent socket	Only likely if FL ballast removed	Shut-off only (switch or occupancy sensor)	?/??	\$\$	Matches existing lens configuration
4. LED Retrofit Kit (Lamp Socket)	Proprietary power supply	Existing fluorescent socket	Yes, with matching 0-10V system	Yes, with matching driver/control	??	\$\$\$	Matches existing lens configuration
5. LED Retrofit Kit (Free- form)	Proprietary power supply	Free-form	Yes, with matching 0-10V system	Yes, with matching driver/control	???	\$\$\$	Allows for light source relocation/realignment

Key Considerations for a Successful TLED Installation

- Give thought to your long term goals for the space. Some choices commit you to certain technology... for a long time!
- A "role" for "control." As luminaire efficacy increases the ability to add controls later becomes less cost-effective and a potential lost opportunity.
- Use the DesignLights® Consortium Qualified Products List and DOE LED Lighting Facts® to help find products that have been tested and meet your performance goals.
- Consider developing performance-based criteria for the intended application. Why not ask
 your vendor to deliver a system that meets your requirements? E.g. light levels in your
 fixtures, maintained light levels at a period in time, etc.
- Target Facilities based on existing technology, light levels and energy costs.
- Do an honest life-cycle cost calculation or total cost of ownership.
- A mock-up is ALWAYS a good idea!

Tons of Resources @ www.ssl.energy.gov

OR...
Get your
badge
scanned to be
automatically
registered

The "A," "B," "A/B," and "C"s of TLEDs – Tracy Beeson

At the time of our LED linear replacement lamp study, the lines for troffer "kits" were blurry.

- Many lamps required bypass of the ballast
- Some were wired to line voltage
- Others required an external ballast
- Some came with new sockets
- Some had new luminaire optics
- Others didn't use the sockets at all
- Some you could install as simply as replacing the lamp

Since then, UL has helped bring clarity to some of the many options (UL 1598 certification)...

UL 1598 Classifiactions

Replacement Lamps (UL Type A):

- can operate off an existing fluorescent ballast
- do not require mechanical or electrical changes to the fixture

Internal Driver/Line Voltage Lamp-Style Retrofit Kits (UL Type B):

- do not operate off the existing fluorescent ballast.
- require rewiring of the existing fixture to bypass the ballast and send line voltage directly to the lamp holders

Dual Mode Internal Driver (UL Type A and Type B):

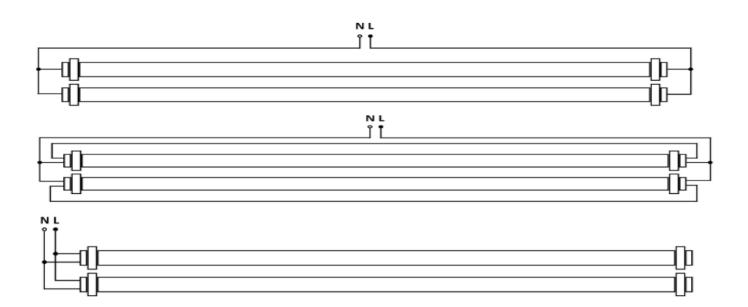
- operate off the existing fluorescent ballast
- also have the ability to operate off of line voltage if the troffer is rewired to bypass the ballast

External Driver Lamp-Style Retrofit Kits (UL Type C):

- employ lamp holders to connect to the fixture being retrofitted
- do not operate off the existing fluorescent ballast
- require rewiring of the existing fixture to replace the ballast with an external driver
- wired to receive only the low-voltage electricity supplied by the external driver

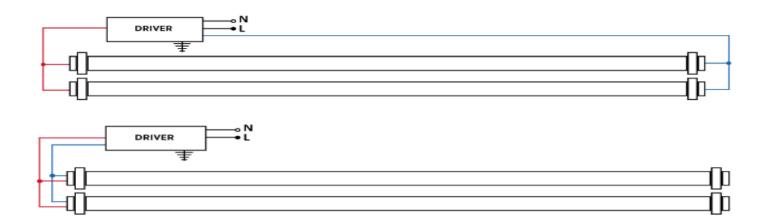
UL 1598- No category is perfect

TYPE A


- More and more products available
- Plug'n Play!
- Ballast compatibility varies
- Efficiency losses due to ballast
- Existing ballast life
- LED life/ballast life

UL 1598- No category is perfect

TYPE B


- Sockets are powered by line voltage
- Line-voltage sockets could prove dangerous for installer
- Still various wiring types

UL 1598- No category is perfect

TYPE C

- Sockets are powered by low-voltage drive current
- Still variables within this category

Considerations- Are Retrofits a Good Idea?

EXISTING CONDITIONS TO CONSIDER	DESCRIPTION	LAMPS	KITS	LUMINAIRES
	Look like new			
Condition of sockets	Some wear but no major cracks			
	Look old, blackened, cracks apparent			
Condition of interior surfaces	Nice and white			
	Slightly worn but no major scratches or peeling paint	_	_	
	Very worn, scratches in paint, some peeling paint			
Condition of lens or louvers	Looks new; very little wear apparent			
	Some minor color variations or scratches in surface			
	Looks old, obvious cracks or yellowing			
Ceiling access	No concerns with working above the ceil- ing; easy access			
	Some concerns about working above the ceiling; limited access			
	Working above the ceiling should be avoided		<u> </u>	

- There is no across-the-board "best" option
- These are retrofit products. You need to know which system components are staying and compliment them.

Considerations- Selecting a Product

- Are your ballasts nearing the end of life?
 - Consider before choosing "Type A"
- What ballast is existing? Does it matter?
 - Yes!
- But I'm not going to use a "Type A" product. Does it still matter?
 - Yes!

Navigating the Wiring Variables

Existing: Instant Start Ballast

- Lampholders are shunted
 - Internally
 - Externally
- Products can be selected to reduce installation time
 - Type A- ballast compatibility
 - Type B- double ended power
 - Type C- double ended power

Above recommendations will reduce installation time, but new ballasts/lampholders can be installed to accommodate any TLED

Existing: Programmed Start/Rapid Start/Magnetic Ballasts

- Lampholders are unshunted
- Unshunted lampholders can be easily shunted
- Products can be selected to reduce installation time
 - Type A- ballast compatibility
 - Type B- single/double ended power
 - Type C- single/double ended power

Maintenance

Re-lamping

- Double-check manufacturer's wiring configuration (we have seen these change, even with the same model number!)
- Clear documentation must be provided so the correct type and wiring can be purchased at time of relamping
- Will the re-lamp work in the existing wiring configuration?

Risks of Mis-lamping

- Short Circuit at lamp holder
- Re-installing fluorescent lamps- tube failure, socket damage

Facilitated Discussion – Naomi Miller

- First... there are no silly questions!
- We want to hear from YOU on what YOUR questions and YOUR concerns are to help inform further DOE investigation.
- Some "seed" questions for you:
 - How can DOE add value in this space?
 - What type of information would you like to see?
 - What concerns you the most?
 - What has been your experience with using TLEDs?

Rules of the Game

When Responding ... Please tell us: Your "Name" and Your "Color"

Manufacturer

Government/DoD

Contractor/ESCO

 Building Owner/ Facility Manager

Testing Lab

Lighting Designer/Specifier

Market Transformation

Ask the Experts!

Stick around, check the schedule, ask questions!