
The LTFAT tutorial

Jordy van Velthoven, Peter L. Søndergaard

October 8, 2015

Contents

Introduction 2

1 Fourier analysis 3
1.1 Periodic functions . 3
1.2 Discrete Fourier transforms . 6
1.3 Operations for periodic functions . 9

2 Gabor analysis 12
2.1 Time-frequency shifts . 12
2.2 Discrete short-time Fourier transform . 13
2.3 Discrete Gabor transform . 15

2.3.1 Lattices associated with Gabor transforms 16
2.4 Discrete Wilson transform . 18

3 Wavelet analysis 20
3.1 Discrete scaling and translation . 20
3.2 Discrete wavelet transform . 21

4 Frame theory 24
4.1 Frames . 24
4.2 Operators associated with frames . 25

A Installation 27
A.1 System requirements . 27
A.2 Download . 27

1

Introduction

The Large Time-Frequency Analysis Toolbox (LTFAT) is a well-documented collection of routines
for time-frequency analysis and synthesis. It is intended both as an educational and a compu-
tational tool. It consists of a large number of linear transforms for Fourier, Gabor and wavelet
analysis along with associated operators and plotting routines. The routines that are included
in the toolbox are primarily programs written in Matlab/Octave, but the toolbox contains also
MEX/OCT interfaces written in C/C++, which function as a backend library.

This tutorial provides an introduction to LTFAT by giving a summary of the basic methods
used in the toolbox. Each chapter and section of the tutorial starts with the theory and math-
ematical background of the routines. This theoretical treatment is written in an informal style
and the interested reader is referred to several references for proofs and further details. After
the theoretical treatment of the methods, it will be specified how these methods can be used in
LTFAT. Note that not every function that is included in LTFAT is discussed in the tutorial. For
a complete overview of the toolbox, the interested reader may consult the on-line documentation1

and the LTFAT reference manual2, which both contain a complete overview of the toolbox.

Terminology and notation All functions and operators in the tutorial are finite-dimensional.
Functions are considered as elements of the L-dimensional complex space CL. Any element f ∈ CL
is represented as a function on the finite Abelian group ZL, i.e., f : ZL → C, where ZL :=
{0, 1, ..., L− 1} denotes the commutative ring of integers modulo L. In this setting, all operations
on the indices are computed modulo L. Furthermore, the indices have a cyclic indexing, i.e.,
f(l + kL) = f(l) for all l, k ∈ Z. The value of the l’th element of f is denoted by f(l), where
l ∈ ZL. A linear operator O : CL → CM is represented as a matrix multiplication (Of)(m) =∑L−1
l=0 o(m, l)f(l), where O = o(m, l) is a M × L matrix.
In Matlab and Octave, all data structures are indexed starting by 1. However, all formulae in

this tutorial are indexed starting from 0. The formulae in this tutorial can therefore be translated
into procedures for Matlab and Octave by adding +1 to the argument when indexing a data
structure.

In order to distinguish the mathematical background from the actual routines of LTFAT, the
Matlab and Octave functions are called routines. To the names of these routines is referred in
a typewriter style (routine-name). Aside the names of the routines, also the input and output
parameters will be written in the typewriter style.

1http://ltfat.sourceforge.net/doc/start
2http://ltfat.sourceforge.net/doc/ltfat.pdf

2

Chapter 1

Fourier analysis

Fourier analysis is based on the notion that arbitrary functions can be represented in terms of
complex exponentials. The coefficients associated with these complex coefficients can be obtained
through the Fourier transform, which maps a function to the so-called frequency domain. The
inverse of the Fourier transform, the inverse Fourier transform, maps a function from the frequency
domain back to the time domain.

1.1 Periodic functions

A function f ∈ CL can be considered as a periodic function. In this case, it is interpreted as a
period of length L. If the index of such a function is denoted by l ∈ ZL, then it is a L-periodic
function of l on Z, i.e.,

f(l + kL) = f(l), k ∈ Z.

Such a periodic function is called even if it satisfies, for all l ∈ ZL,

f(l) = f(−l),

and it is called odd if it satisfies, for all l ∈ ZL,

−f(l) = f(−l).

A function f ∈ CL is in general called symmetric if there exists an N ∈ ZL such that, for all
l ∈ ZL,

f(l) = f(N − l).

In this case, the function is said to be symmetric around N . If a function is symmetric around an
even N , it is called whole-point symmetric. If a function is symmetric around an odd N , then it is
called half-point symmetric. In general, a function is half-point symmetric if it is symmetric around
l = − 1

2 , and whole-point symmetric if it is symmetric around l = 0. Using these definitions, a
function f ∈ CL is said to have half-point even symmetry if, for all l ∈ ZL,

f(l) = f(L− 1− l).

Similarly, a function f ∈ CL is said to have whole-point even symmetry if, for all l ∈ ZL,

f(l) = f(−l) = f(L− l).

In the same manner, a function f ∈ CL is called half-point odd symmetric if for all l ∈ ZL,

f(l) = −f(L− 1− l),

and is called whole-point odd symmetric if for all l ∈ ZL,

f(l) = −f(−l) = −f(L− l).

3

Routines for periodic functions There are several routines in LTFAT that can be used in
order to get the even or odd part of a periodic function. For the even part, the routine peven can
be used. This routine returns the even part of an input array f as an output array fe, i.e., fe =

peven(f). In a similar way, the routine podd returns the odd part of an input array as an output
array. To check whether an array is even, the LTFAT routine called isevenfunction can be used.
The input of this routine is an array f, the output is the scalar 1 if the array f is whole-point even
and the scalar 0 if the array f is not whole-point even. The routine isevenfunction does the
same for a half-point even input array if the additional flag ’hp’ is added as an input parameter.

A function that has half-point or whole-point even symmetry can be symmetrically extended
or cut using the routine middlepad. This routine extends or cuts the function by inserting zeros
in the middle of the vector or by cutting in the middle of the vector. The input parameters of
middlepad are a function f and the length L to which the input should be extended or cut. Adding
the additional flag ’wp’ or ’hp’ as an input parameter of middlepad will cut or extend functions
with a whole-point respectively half-point even symmetry.

Examples of periodic functions LTFAT contains several periodic functions. Examples of
periodic functions that are included are the complex exponential, chirp, rectangular function and
sinc function. All these functions are characterized by their properties in relation to the Fourier
transform.

A discrete complex exponential h of length L with discrete frequency k is given by

h(l) = e2πilk/L, l ∈ ZL. (1.1)

The collection of complex exponentials with k = 0, ..., L−1, that is, the collection {e2πilk/L}k,l∈ZL
,

forms the basis of the discrete Fourier transform — see §1.2. The routine that constructs a complex
exponential is called expwave. This routine has the length and the frequency of the complex
exponential as input parameters.

A periodic, discrete chirp g of length L is given by

g(l) = eπin(l−dL/2e2(L+1)/L, l ∈ ZL. (1.2)

Such a chirp revolves n ∈ Z times around the time-frequency plane in frequency. The routine that
constructs a periodic, discrete chirp is called pchirp. This routine has the length and number of
revolutions around the time-frequency plane in frequency of the chirp as input parameters.

The discrete, periodic rectangle function r of length L is given by

r(l) =

{
1, if |l| ≤ 1

2 (n− 1)

0, otherwise
, l ∈ ZL,

where n ∈ ZL denotes the length of the support of r. The discrete, periodic rectangle function
is related to a discrete, periodic sinc function through a discrete Fourier transform. The discrete
periodic rectangle and sinc function form therefore a so-called Fourier pair. The discrete, periodic
sinc function p of order n is given by

p(l) =
sin(nπl)

n sin(πl)
, l ∈ ZL.

The discrete, periodic rectangle and sinc function are implemented in LTFAT by the routines
prect and psinc, respectively. Both routines have the length of the function L and the associated
number n as input parameters.

4

Figure 1.1: FIR window functions

Figure 1.2: IIR window functions

5

Window functions A window function is a function that is in general centred around the origin
and zero-valued outside a certain interval. In LTFAT both so-called Finite Impulse Response (FIR)
and Infinite Impulse Response (IIR) windows functions are implemented. In the finite, discrete
setting, an FIR window is defined as a window function of which the length of its support is shorter
than its total length, and an IIR window is a window function of which the length of its support
equals its total length L. In LTFAT, both the FIR and IIR window functions are implemented as
whole-point even functions.

Examples of the IIR windows functions that are included in the LTFAT are the periodic
Gaussian, B-spline, Sech and Gauss-Hermite window functions. These functions are implemented
in the LTFAT as the routines pgauss, pbspline, psech respectively pherm. They all have their
length L as input parameter and the pbsline and pherm have their order a as additional input
parameter. The periodic, discrete B-spline, Sech and Gauss-Hermite window functions are all
related to the periodic, discrete Gaussian: The B-spline functions converge to a Gaussian when its
order grows, the Sech distribution can be defined in terms of a Gaussian and the Gauss-Hermite
functions are defined as the product of a Hermite polynomial and the Gaussian. The periodic,
discrete Gaussian ϕ ∈ CL is given by

ϕ(l) =

(
L

2

)−1/4 L−1∑
k=0

e
−π(l√

L
−k
√
L)2
, l ∈ ZL (1.3)

and is invariant under the discrete Fourier transform.
Examples of FIR window functions that are included in the LTFAT are the Von Hann, sine,

triangular, the Hamming and Blackman window functions. These functions can all be derived from
the routine firwin which has as input parameters the name of the window function (FIR-name)

and its length L.

1.2 Discrete Fourier transforms

The Fourier transform on CL is in general called the discrete Fourier transform or finite Fourier
transform. The unitary discrete Fourier transform F : CL → CL is the operator given by

(Ff)(k) =
1√
L

L−1∑
l=0

f (l) e−2πikl/L, k ∈ ZL. (1.4)

The operator given in (1.4) is a normalized version of the discrete Fourier transform in the sense
that it corresponds to the discrete Fourier transform up to 1/

√
L. This normalization yields that

the discrete Fourier transform is a unitary transform on CL, i.e.,

〈f, g〉CL = 〈Ff,Fg〉CL , (1.5)

for any f, g ∈ CL. The equality given in (1.5) is in general called Parseval’s identity of the discrete
Fourier transform. By setting f = g, Plancherel’s identity follows as a special case,

‖f‖CL = ‖Ff‖CL .

The discrete Fourier transform can be considered as a unitary transform, but it can also be
considered as a matrix product. In this case, the unitary discrete Fourier transform of a function
f ∈ CL is given by

Ff = FLf,

where FL is a L× L matrix, the so-called Fourier matrix, and is given by

FL =
1√
L


1 1 1 · · · 1
1 ω ω2 · · · ω(L−1)

1 ω2 ω4 · · · ω2(L−1)

...
...

...
...

1 ω(L−1) ω2(L−1) · · · ω(L−1)(L−1)

 , (1.6)

6

where ω := e−i2π/L.
Any function can be reconstructed from its Fourier transform through the so-called inverse

Fourier transform. The unitary inverse discrete Fourier transform F−1 : CL → CL is the operator
given by

(F−1c)(l) =
1√
L

L−1∑
k=0

c (k) e2πikl/L, (1.7)

where l ∈ ZL. As the unitary discrete Fourier transform is a normalized version of the discrete
Fourier transform, the unitary inverse discrete Fourier transform is a normalized version of the
inverse discrete Fourier transform. The unitary inverse discrete Fourier transform corresponds to
the inverse discrete Fourier transform up to

√
L. The unitary discrete Fourier transform possess

aside its definition in terms of an operator also a definition in terms of a matrix. In terms of a
matrix, the inverse unitary discrete Fourier transform F−1 is the L× L matrix given by

F−1c = F−1
L c = FT Lc

where FT L is the conjugate transpose of the Fourier matrix FL, which was defined in (1.6).
The fact that the Fourier transform and its inverse, as defined in (1.4) respectively (1.7), are

both unitary, leads, for all f ∈ CL, to the following reproducing formula

f(l) =

L−1∑
k=0

(Ff)(k)e2πikl/L, (1.8)

where l ∈ ZL. Similarly, for all f ∈ CL,

f = FT LFLf. (1.9)

The discrete fractional Fourier transform is a generalization of the discrete Fourier transform.
The discrete fractional Fourier transform can be considered as a discrete Fourier transform to the
power n, i.e., Fn. For n = 1, 2, 3, 4, ...,

(F2f)(l) = f(−l), (F3f)(k) = (Ff)(−k), (F4f)(l) = f(l),,

The ordinary discrete Fourier transform, F1, maps a function from the so-called time-domain to
the so-called frequency domain, which corresponds to a rotation of π2 radians in the time-frequency
plane. In general, Fn with n ∈ R corresponds to a rotation of nπ

2 radians in the time-frequency
plane — see figure 2.2. Therefore, the discrete fractional Fourier transform allows representations
of a function between the time and the frequency domain.

Routines for discrete Fourier transforms The unitary discrete Fourier transform is imple-
mented in LTFAT as the routine dft. The input of the routine dft is an array and so is its output.
If the input array consists of real-valued scalars only, then the routine fftreal could, instead of
the routine dft, be used. The routine fftreal differs from dft in that the output of the routine
dft consists of both positive and negative frequencies, whereas the output of fftreal consists of
positive frequencies only. In order to plot the output array of dft and fftreal, the routines called
plotfft and plotfftreal can be used, respectively. The unitary discrete Fourier transform is
implemented by the routine idft. The input of the routine idft is a vector and so is its output.
The routine in LTFAT for the discrete fractional Fourier transform is dfract and has a function
f and power a as input arguments, e.g. dfract(f,a) computes the discrete Fourier transform to
the power a of the array f.

7

Figure 1.3: Bat signal in time domain

Figure 1.4: Bat signal in frequency domain

8

Example 1. In this example, the reproducing formulas of the discrete Fourier transform, as given
in (1.8) and (1.9), will be verified. In listing 1.1, the discrete Fourier transform of the array f of
length 400 is computed, which is a 400 × 400 array called c. Then the inverse discrete Fourier
transform of c is computed, which is an array of length 400 called r. Finally, the difference between
f and r is computed.

f = bat;

c = dft(f);

r = idft(c);

norm(r - f)

Listing 1.1: dft idft.m

The output of listing 1.1 is

ans = 4.3653e-16

Listing 1.2: Output of listing 1.1

which shows that there is no remarkable difference between the original array f and its recon-
struction r. �

1.3 Operations for periodic functions

Involution An involution is in general an operator � that satisfies

(f�)� = f. (1.10)

In Fourier analysis, the involution f� of a function f ∈ CL is defined as

f�(l) = f(−l), (1.11)

for all l ∈ ZL. That f� is an involution is easily verified,

(f�)�(l) = f�(−l) = f(−(−l)) = f(l).

The involution (1.11) is an important operator in Fourier analysis since it possess several important
relations with respect to the Fourier transform. The involution (1.11) is related to the discrete
Fourier transform F by

(Ff�)(k) = (Ff)(k).

The inverse discrete Fourier transform F−1 of a function c ∈ CL can therefore be expressed in
terms of involution as

(F−1c)(l) = (F�c)(l).

The routine for the involution (1.11) is implemented in the LTFAT as involute. The routine
involute takes an array as input and returns an array as output.

Example 2. In listing 1.3 the relations between involution, conjugation and the discrete Fourier
transform are verified.

f = bat;

f_i = involute(f);

c = dft(f);

r = idft(c);

r_i = conj(involute(dft(c)));

norm(r - r_i)

Listing 1.3: dft involute.m

9

ans = 3.4391e-16

Listing 1.4: Output of listing 1.3

The output of listing 1.3 is given in listing 1.4, which confirms the relations between involution,
conjugation and the discrete Fourier transform. �

Periodic convolution The periodic or circular convolution product of two functions f, g ∈ CL
is the function h ∈ CL given by

h(l) = (f ~ g)(l) =

L−1∑
n=0

f(n)g(l − n), (1.12)

for all l ∈ ZL. The periodic convolution h ∈ CL of two functions f, g ∈ CL is related to the
discrete Fourier transforms of f and g by

(F(f ~ g))(k) = (Ff · Fg)(k),

(F(f · g))(k) = (Ff ~ Fg)(k).

If (Fg)(k) 6= 0, for all k ∈ ZL, then the function f can be reconstructed from the convolution
product h by the inverse discrete Fourier transform of the quotient

(Fh)(k)

(Fg)(k)
. (1.13)

The periodic convolution of f and the involution of g, g�, is in general called the periodic
cross-correlation, and is given by

x(l) = (f ~ g�)(l) =

L−1∑
n=0

f(n)g(n− l), (1.14)

and the periodic cross-correlation of a function f with itself is called the periodic autocorrelation
of f ,

a(l) = (f ~ f�)(l) =

L−1∑
n=0

f(n)f(n− l). (1.15)

The periodic cross-correlation x and autocorrelation a are, since they can be defined in terms of
convolution and involution, also related to the discrete Fourier transform. The periodic cross-
correlation is related to the discrete Fourier transform as

(F(f ~ g�))(k) = (Ff · Fg)(k), (1.16)

and the periodic autocorrelation is related to the discrete Fourier transform as

(F(f ~ f�))(k) = (Ff · Ff)(k) = |Ff(k)|2. (1.17)

The periodic convolution and periodic cross-correlation are implemented in LTFAT by the routines
pconv and pxcorr, respectively. For both routines the inputs are one-dimensional arrays.

Linear convolution The linear convolution h of two functions f, g ∈ CZ is given by

h(l) = (f ∗ g)(l) =
∑
n∈Z

f(n)g(l − n), l ∈ Z. (1.18)

10

For two functions with a finite length L, that is, f, g ∈ CL this becomes

h(l) = (f ∗ g)(l) =

l∑
n=0

f(n)g(l − n), l ∈ ZL.

Since the periodic convolution of a L-periodic function as defined in (1.12) can be written as

h(l) = (f ~ g)(l) =

l∑
n=0

f(n)g(l − n) +

L−1∑
n=l+1

f(n)g(l − n),

it can be deduced that the linear convolution of two functions f and g with finite length is equiv-
alent to a periodic convolution of these functions when the period Lh of the periodic convolution
satisfies

Lh ≥ Lf + Lg − 1, (1.19)

where Lf and Lg is the lengths of the function f and g, respectively. Since the autocorrelation
and cross-correlation functions can be defined in terms of convolution they also have their linear
versions.

The routines for linear convolution and linear cross-correlation in LTFAT are lconv and
lxcorr, respectively. The input of those routines are two vectors f and g.

Example 3. In listing 1.5 the equivalence of linear and periodic convolution is verified. In this
example the routine postpad extends a vector x to a length N by zero-padding.

f = rand (100 ,1);

g = rand (100 ,1);

L = length(f) + length(g) - 1;

h_p = pconv(postpad(f, L), postpad(g, L));

h_l = lconv(f,g);

norm(h_p - h_l)

Listing 1.5: lconv pconv.m

The output of listing 1.5 is given in listing 1.6,

ans = 0

Listing 1.6: Output of listing 1.5

which shows the equivalence of the periodic and linear convolution. ♦

11

Chapter 2

Gabor analysis

Gabor analysis is based on the notion that general functions can be represented as a linear com-
bination of translated and modulated window functions. In this case a function is mapped from
the time domain to a time-frequency domain. The transform that maps a function from the time
domain to a time-frequency domain is in general called a time-frequency transform. The inverse
transform, that maps a function from the time-frequency domain to the time domain is called an
inverse time-frequency transform. Time-frequency transforms that are associated with translated
and modulated window functions are called Gabor transforms.

2.1 Time-frequency shifts

The translation operator Tn, which translates a function f ∈ CL by n, is given by

(Tnf)(l) = f(l − n), l, n ∈ ZL. (2.1)

The modulation operator Mk, which modulates a function f ∈ CL by k, is given by

(Mkf)(k) = f(l)ei2πkl/L, l, k ∈ ZL.

The translation operator Tn and modulation operator Mk satisfy the following commutation
relations

(TnMkf)(l) = ei2πk(l−n)/Lf(l − n), l, k, n ∈ ZL,

= e−i2πkn/L(MkTnf)(l), l, k, n ∈ ZL.

The translation operator and modulation operator are related to the discrete Fourier transform as

F(Tnf) =M−n(Ff),

and
F(Mkf) = Tk(Ff),

respectively. From this it can be deduced that the modulation operatorMb applied on a function
f corresponds with a shift of the discrete Fourier transform of the function f by b. For this
reason, the modulation operator is also called the frequency-shift operator. In the same vein, the
translation operator Tn is sometimes called the time-shift operator.

A so-called time-frequency shift operator can be defined by the concatenation of the time-shift
operator and frequency-shift operator. The time-frequency shift operator πΛ for a function f ∈ CL
is given by

(πΛf)(Λ) = (MkTnf)(k, n), Λ = (k, n) ∈ ZL × ZL
A time-frequency shifted version of a function g ∈ CL is thus given by

(MkTng)(k, n) = g(l − n)ei2πkl/L. (2.2)

12

If the function g ∈ CL in (2.2) is a window function, then a collection of such time-frequency
shifted window functions is given by

{(πΛg)(Λ)}Λ∈Z2
L

= {MkTng}k,n∈ZL
,

and is called a local Fourier basis. Since the time-shift operator localizes a function in time and the
frequency-shift operator localizes a function in frequency, a local Fourier basis consists of functions
that are both localized in time and frequency.

2.2 Discrete short-time Fourier transform

The short-time Fourier transform represents a function in terms of time-frequency shifted versions
of a window function. The discrete short-time Fourier transform Vg of a function f ∈ CL is given
by

(Vgf)(k, n) = 〈f,MkTng〉, k, n ∈ ZL (2.3)

=

L−1∑
l=0

f(l)g (l − n)e−2πikl/L, k, n ∈ ZL (2.4)

where g is a window function. The discrete short-time Fourier transform maps a function f ∈ CL
to a matrix Vgf ∈ CL×L of coefficients. In this matrix k denotes the frequency around which the
window function g of (2.3) is positioned and n denotes the time around which the window function
is positioned. Therefore, the sequence (Vgf)(k, n)k=0,1,...,L−1 where n ∈ ZL is fixed, denotes the
discrete Fourier transform coefficients of the windowed function f(l)g(l − n).

The discrete short-time Fourier transform satisfies Moyal’s formula, which is given by

L−1∑
k=0

L−1∑
n=0

(Vg1f1)(k, n)(Vg2f2)(k, n) =

(L−1∑
l=0

f1(l)f2(l)

)(L−1∑
l=0

g1(l)g2(l)

)
, (2.5)

where f1, f2 ∈ CL are general functions and g1, g2 ∈ CL are window functions. By setting f =
f1 = f2 and g = g1 = g2 in (2.5), the following equality is obtained as a consequence of Moyal’s
formula

L−1∑
k=0

L−1∑
n=0

|(Vgf)(k, n)|2 =

(L−1∑
l=0

|f (l)|2
)(L−1∑

l=0

|g (l)|2
)
.

This formula gives rise to the inversion formula of the discrete short-time Fourier transform. The
inversion formula of the discrete short-time Fourier transform shows that any f ∈ CL can be
expressed in termes of the short-time Fourier transform,

f(l) =
1

‖g‖2
L−1∑
m=0

L−1∑
n=0

(Vgf)(k, n)g(l − n)e2πikl/L, l ∈ ZL.

The inversion formula of the discrete short-time Fourier transform clearly shows that a function f
can be represented in terms of time-frequency shifted versions of a window function. In general,
the inverse discrete Fourier transform of a c ∈ CL×L is given by

(V−1
g c)(l) =

L−1∑
m=0

L−1∑
n=0

c(k, n)g(l − n)e2πikl/L, l ∈ ZL.

Spectrogram The spectrogram is a time-frequency representation based on the short-time
Fourier transform. The spectrogram is defined as the squared modulus of the short-time Fourier
transform, that is, |c(m,n)|2, where c(m,n) denotes the coefficients of the short-time Fourier
transform. The spectrogram is implemented in LTFAT as the routine sgram and is mainly meant
as a plotting routine. The input parameter of sgram is a function f. The spectrogram could be
inverted trough an iterative algorithm which is available as the routine isgram in LTFAT.

13

Figure 2.1: Spectrogram of bat signal

Figure 2.2: Spectrogram of a fractional Fourier transform of bat signal.

14

2.3 Discrete Gabor transform

The discrete short-time Fourier transform as defined in (2.3) has a redundancy L since it represents
a function f ∈ CL by a matrix c ∈ CL×L. A subsampled version of a short-time Fourier transform
is in general called a Gabor transform.

The Gabor transform of a function f ∈ CL represents a function in terms of a collection of
subsampled, time-frequency shifted versions of a window function. Such a version of a window
function is given by

(MmbTnag)(m,n), (m,n) ∈ ZM × ZN ,

where L = Mb = Na. Here a denotes the time-shift, b the frequency-shift and N and M the num-
ber of time-shifts and frequency-shifts, respectively. A collection of such subsampled, translated
and modulated window functions g ∈ CL,

{πΛg}Λ⊆ZM×ZN
= {MmbTna}m∈ZM ,n∈ZN

is called a Gabor system. The discrete Gabor transform of a function is formally defined as the
inner products between this function and the elements of a Gabor system. The Gabor transform
G of a function f ∈ CL is therefore explicitly given by

(Gf)(m,n) = 〈f,MmbTnag〉CL , (2.6)

=

L−1∑
l=0

f(l)g (l − na)e−2πimbl/M . (2.7)

where m ∈ ZM , n ∈ ZN and L = Mb = Na. The Gabor transform maps a function f ∈ CL
into a matrix c ∈ CM×N of so-called Gabor coefficients. The redundancy of the discrete Gabor
transform is in general given by the quotient MN

L . From this it can be deduced that the short-time
Fourier transform, as defined in (2.3), has indeed a redundancy L. Although a Gabor transform
may have a lower redundancy than a short-time Fourier transform, it is still possible reconstruct
an analysed function from its Gabor transform. In order to do so, the inverse Gabor transform
should be used. The inverse Gabor transform G−1 of c ∈ CM×N is given by

(G−1c)(l) =

N−1∑
n=0

M−1∑
m=0

c (m,n) e2πiml/Mγ (l − an) , l ∈ ZL.

Whenever the window function γ is a dual of g, the window function used in the analysis, then
G−1c equals the analysed function f . Thus, a perfect reconstruction of a function from its Gabor
transform is possible if, and only if, the analysis and synthesis are performed with respect to two
dual window functions. There are several conditions that characterize when two Gabor window
functions are dual window functions, including the Wexler-Raz relations and the characterization
equation. By the Wexler-Raz relation, two Gabor window functions g, γ ∈ CL are dual if, and
only if,

MN

L
〈g,MmNTnMγ〉 = δmδn,

for all m ∈ Za, n ∈ Zb. The characterization equation states that two Gabor window functions
g, γ ∈ CL are dual window functions if, and only if,

L−1∑
k=0

g(l − nM − ka)γ(x− ka) =
δn,0
M

,

for all l ∈ Za, n ∈ Zb.
The discrete Gabor transform is implemented in LTFAT as the routine dgt. It has as input

parameters a vector f, window function g, time-shift a and number of frequency shifts M. The
output of dgt is a matrix c with Gabor coefficients. If the input vector f is real valued, then the

15

function dgtreal could be used instead. This routine computes only the coefficients associated
with the positive frequencies. To construct a window function that is suitable to use with a Gabor
transform, the function gabwin can be used. The input parameters of gabwin are exactly the
same as dgt. To plot the matrix of Gabor coefficients c the routine plotdgt or plotdgtreal

can be used. The input parameters of plotdgt are the Gabor coefficients c and the time-shift
a. The input parameters of plotdgtreal are the same as plotdgt, but also needs the number
of frequency shifts M. The routine that computes the inverse discrete Gabor transform is called
idgt and has as input parameters the Gabor coefficients c, window function h and time-shift
a. The inverse discrete Gabor transform for the Gabor coefficients that are computed using the
routine dgtreal is called idgtreal and has the same input parameters as idgt, but needs also
the number of frequency shifts M. To construct a dual window function h of a window function
g the routine gabdual can be used. This routine has the window function g, time-shift a and
number of frequency shifts M as input parameters.

Example 4. In listing 2.1 a random vector is constructed from its discrete Gabor transform.

f = rand (1000 ,1);

g = gabwin(’gauss’, 5, 100, 1000);

c = dgt(f, g, 5, 100);

h = gabdual(g, 5, 100);

r = idgt(c, h, 5);

norm(f-r)

Listing 2.1: dgt rand.m

The output of listing 2.1 is listed in listing 2.2.

ans = 5.7459e-15

Listing 2.2: Output of listing 2.1

Listing 2.2 shows that there isn’t any significant difference between the original random vector and
its reconstruction from Gabor coefficients. The output of listing 2.1 when the window function g

was used in both discrete Gabor transforms is given in listing 2.3.

ans = 345.69

Listing 2.3: Output of listing 2.1 with g equal to h

This shows that perfect reconstruction without duals Gabor windows isn’t possible in general. ♦

2.3.1 Lattices associated with Gabor transforms

The discrete Gabor transform defined in (2.6) represents the discrete short-time Fourier transform
at the points (an, bm) where n ∈ ZN ,m ∈ ZM , a, b,N,M ∈ ZL with L = Na = Mb. This
corresponds to a discrete short-time Fourier transform sampled at a lattice Λ of the form

Λ =

{
(an, bm)

∣∣∣∣ n ∈ ZN , m ∈ ZM
}
. (2.8)

Note that the lattice Λ is a subset of Z2
L. Here Z2

L is the lattice that corresponds with the short-
time Fourier transform as defined in (2.3). A lattice as defined in (2.8) is in general called separable
or regular, and it can be written as

Λ = A(ZL × ZL), (2.9)

where A ∈ Z2×2
L . Whenever A ∈ Z2×2

L is of the form(
a 0
s b

)
,

16

Figure 2.3: Seperable lattice

Figure 2.4: Nonseperable ’Quincux’ lattice

17

where a, b|L, 0 ≤ s < b and s ∈ ab
gcd(ab,L)Z, then a Gabor system on a lattice Λ = AZ2

L becomes

G(g,Λ) =

{
Msn+mbTnag

∣∣∣∣ (n,m) ∈ ZN × ZM
}
. (2.10)

From this it can be deduced that a lattice with s = 0 is a separable or rectangular lattice as
defined in (2.8), and that the Gabor system on such a lattice corresponds to the Gabor system
defined in (2.3). For s 6= 0, the lattice is called nonseparable and is a subgroup of Z2

L.
The discrete Gabor transform associated with a general lattice as defined in (2.9) is the Ga-

bor transform that corresponds with the Gabor system defined in (2.10). This discrete Gabor
transform is defined as

(Gf)(m,n) =

L−1∑
l=0

f(l)g (l − na)e−2πil(m+w(n))/M ,m ∈ ZM , n ∈ ZN

where m ∈ ZM , n ∈ ZN and w(n) := mod(ns, b)/b.
In LTFAT, the discrete Gabor transform on a general lattice can be computed through the

routine dgt by adding the lattice type lt as an additional input argument. The general lattices
can be constructed through the routine matrix2latticetype.

2.4 Discrete Wilson transform

Since the redundancy of a Gabor transform as defined in (2.6) is MN
L , a Gabor transform has

redundancy 1 when MN = L. In the case that M = L and N = 1, the Gabor transform has
redundancy 1, and b = 1 and a = L. In the case that M = 1 and N = L, the Gabor transform has
also redundancy 1, and b = L and a = 1. In the first case, the Gabor transform results in a L× 1
matrix and in the second case it results in a 1 × L matrix. In both cases the Gabor transform
doesn’t result in a valuable time-frequency description of a function f ∈ CL. An alternative to
the Gabor transform for a time-frequency transform that results in a valuable time-frequency
description with low redundancy is the Wilson transform.

The Wilson transform represents a function in terms of so-called Wilson functions. These
Wilson functions are formed by a linear combination of elements of the Gabor system {MmbTnag}
where g ∈ CL and L = 2Nb = Na.

The discrete Wilson transform W of a function f ∈ CL results in a matrix c ∈ C2M× L
2M of

coefficients. These coefficients are computed as

(Wf)(m,n) = 〈f, w〉, m ∈ Z2M , n ∈ Z L
2M
.

These Wilson coefficients are, for all m ∈ Z2M , n ∈ Z L
2M

, given by

c(0, n) =

L−1∑
l=0

f(l)g(l − 2na), m = 0

c(m,n) =
√

2

L−1∑
l=0

f(l) sin(πml/M)g(l − 2na), m < M, 2 - m

c(m+M,n) =
√

2

L−1∑
l=0

f(l) cos(πml/M)g(l − 2(n+ 1)a), m < M, 2 - m

18

c(m,n) =
√

2

L−1∑
l=0

f(l) cos(πml/M)g(l − 2na), m < M, 2 | m

c(m+M,n) =
√

2

L−1∑
l=0

f(l) sin(πml/M)g(l − (2n+ 1)a), m < M, 2 | m

c(M,n) =

L−1∑
l=0

f(l)(−1)lg(l − 2na), m = M, 2 |M

c(M,n) =

L−1∑
l=0

f(l)(−1)lg(l − (2n+ 1)a), m = M, 2 -M

The inverse discrete Wilson transform W−1 constructs a function f ∈ CL from the coefficients
c ∈ C2M× L

2M . The inverse discrete Wilson transform is given by

(W−1c)(l) =

2M−1∑
m=0

L/2M−1∑
n=0

c(m,n)w(m,n), l ∈ ZL.

where w(m,n) are the Wilson functions constructed from a window function g.
The routine to compute the discrete Wilson transform in LTFAT is dwilt. This routine has

a function f, window function g and the number of frequency shifts M as input parameters. To
construct a window function that is suitable to use with a Wilson transform, the function wilwin

can be used. The input parameters of wilwin are exactly the same as dwilt. The output of
dwilt is a 2M ×N matrix with coefficients. These coefficients can be plotted through the routine
plotwilt. The matrix of coefficients can be converted through a rectangular layout by the routine
wil2rect. The inverse can be done through the routine rect2wil. The inverse discrete Wilson
transform is called idwilt and has the 2M ×N matrix of coefficients and a window function as
input parameters.

19

Chapter 3

Wavelet analysis

Wavelet analysis is based on the notion that general functions can be represented as a linear
combination of translated and dilated or scaled wavelets. In this case a function is mapped from
the time domain to a time-scale domain. A transform that maps a function from the time domain
to the time-scale domain is in general called a time-scale transform. The inverse transform, that
maps a set of coefficients from the time-scale domain to the time domain is called an inverse
time-scale transform. Time-scale transforms that are associated with wavelets are called wavelet
transforms.

3.1 Discrete scaling and translation

Discrete scaling The discrete scaling of a function is based on the convolution of that function
with a so-called scaling function. In general, two types of discrete scaling can be distinguished.

The first type of discrete scaling of a function f ∈ CL consists of the convolution of f(l
N) with

a scaling sequence φ. In this case, the function f(l
N) is explicitly defined as

f(
l

N
) =

{
f(l/N), for l/N ∈ ZL
0, for l/N /∈ ZL.

The discrete scaling operator associated with this type of scaling is given by

(UNf)(l) = φ(l)~ f(
l

N
) =

L/N−1∑
n=0

f(n)φ(l −Nn). (3.1)

The second type of discrete scaling of a function f ∈ CL consists of the convolution of f with
a scaling function φ and is defined by

(DNf)(l) = (f ~ φ)(lN) =

LN−1∑
n=0

φ(l)f(nN − l).

Discrete wavelet systems A discrete wavelet system consists in general of translated and
discrete scaled versions of a wavelet function. A wavelet function is typically a function that
consists of high frequencies only. The scaling operator associated with discrete scaled versions of
a wavelet function is derived from the scaling operator defined in (3.1).

The discrete scaling operator UNj−1 is defined as

(UNj−1ψ)(l) = φj−1(l)~ f(
l

N j−1
)

=

L

Nj−1−1∑
k=0

f(k)φj−1(l −N j−1k),

20

where φj−1 is a scaling sequence that is itself obtained through the discrete scaling operator
associated with a scaling function φ, i.e.,

φj(l) = (UNj−1φ)(l) =

L

Nj−1−1∑
k=0

φ(k)φj−1(l −N j−1k),

where φ satisfies φ0 = δ and φ1 = φ.
If the translation operator Tna is defined as in (2.1), that is,

(Tnaψ)(l) = ψ(l − na)

then a translated and discrete scaled version of a wavelet function ψ is

(UNj−1Tnaψ)(l).

Such a version of wavelet function can be called a discrete wavelet atom. A collection of such
discrete wavelet atoms, {UNj−1Tnaψ}, can be called a discrete wavelet system.

The discrete scaling operator with N = 2 scales a wavelet ψ dyadically. Such a discrete
dyadically scaled wavelet ψj is given by

ψj(l) = (U2j−1ψ)(l) =

L

2j−1−1∑
k=0

ψ(k)φj−1(l − 2j−1k),

where its associated scaling sequence φj is given by

φj(l) = (U2j−1φ)(l) =

L

2j−1−1∑
k=0

φ(k)φj−1(l − 2j−1k).

The system that is constructed from dyadically scaled and by 2n translated wavelet functions can
be called a discrete dyadic wavelet system. This system is given in terms of discrete scaling and
translation operators as {U2j−1T2nψ}.

3.2 Discrete wavelet transform

The discrete wavelet transform decomposes a function dyadically into a collection of coefficients.
The J-level discrete wavelet transform of a function f ∈ CL is given by

αj(n) = 〈f,U2j−1T2nψ〉 =

L−1∑
l=0

f(l)ψj(l − 2jn)

βJ(n) = 〈f,U2J−1T2nφ〉 =

L−1∑
l=0

f(l)φJ(l − 2Jn),

where αj(n) with n ∈ Z2−jL and j ∈ {1, ..., J} are called the wavelet coefficients and βJ(n) the
scaling coefficients.

A function f ∈ CL can be constructed from the wavelet coefficients αj(n) and scaling coeffi-
cients βJ(n) trough the inverse discrete wavelet transform as

f(l) =

2−jL∑
n=0

βJ(n)φ̃J(l − 2Jn) +

2−jL∑
n=0

J∑
j=1

αj(n)ψ̃j(l − 2jn)

21

where φ̃J and ψ̃j denote the duals of φJ and ψj , respectively. These satisfy the so-called biorthog-
onality relations given by

L−1∑
l=0

ψ(l)ψ̃(2k − l) = δk, (3.2)

L−1∑
l=0

φ(l)φ̃(2k − l) = δk, (3.3)

L−1∑
l=0

φ(l)ψ̃(2k − l) = 0, (3.4)

L−1∑
l=0

ψ(l)φ̃(2k − l) = 0. (3.5)

The construction of dual wavelet functions is discusses in chapter 4.
The discrete wavelet transform is implemented in the LTFAT through the so-called fast wavelet

transform and is therefore called fwt. The input of fwt is a function f, wavelet function w and
number of levels J. The wavelet functions are available in LTFAT as the routines starting with
the prefix wfilt . The output of fwt are the wavelet coefficients c. The inverse discrete wavelet
transform is implemented as the routine ifwt and has as inputs the wavelet coefficients c, dual
wavelet definition dw, number of levels J and length of the signal L.

22

Figure 3.1: Daubechies scaling and wavelet functions

Figure 3.2: Coiflet scaling and wavelet functions

23

Chapter 4

Frame theory

A frame for a finite-dimensional inner product space V is a collection of elements {fk}Nk=1 in V
that spans V , that is, span{fk} = V . If {fk}Nk=1 spans V and is also linear independent, it is called
a Hamel basis for V . Both a frame and a Hamel basis allow that every f ∈ V can be expressed as
a linear combination of their elements. Since a basis is linear independent, the coefficients in the
linear expansion of f ∈ V are unique. The coefficients associated with the elements of a frame are
non-unique when the frame is linear dependent, that is, when the frame is not a basis. A frame
that is not a basis, is called overcomplete or redundant.

4.1 Frames

Any finite-dimensional inner product space is a finite-dimensional Hilbert space H. A collection
of elements {fk}Nk=1 ⊆ H is called a frame for H if there exists finite frame bounds A,B > 0 such
that, for all f ∈ H,

A ||f ||2 ≤
N∑
k=1

|〈f, fk〉|2 ≤ B ||f ||2 . (4.1)

The statement in (4.1) is called the frame condition and it guarantees that any f ∈ H can be
written as a linear combination of elements of the frame {fk}Nk=1.

A frame {fk}Nk=1 can be represented as a matrix SN by

SN =

 | | ... |
f1 f2 ... fN
| | ... |

 . (4.2)

In this case, the elements fi of the frame {fk}Nk=1 are stored as column vectors of the matrix SN .
Since N vectors can at most span an N -dimensional space, {fk}Nk=1 is a frame for a K-dimensional
Hilbert space H when N ≥ K. The redundancy of a finite frame {fk}Nk=1 for a K-dimensional
Hilbert space H is therefore defined as the ratio N

K .

Discrete Fourier transform basis The collection of complex exponentials associated with a
discrete Fourier transform given by

{e2πikl/L}k,l∈ZL

forms a frame for a L-dimensional Hilbert space H if it satisfies the frame condition given in
(4.1). If it forms a frame, then this collection of complex exponentials is called a discrete Fourier
transform basis of H.

Gabor frames A Gabor system is given by

{MmbTnag}

24

where m ∈ ZM , n ∈ ZN , a, b > 0 and L = Mb = Na. If this Gabor system associated with a
window function g ∈ CL satisfies the frame condition, then it is called a Gabor frame for CL.

Wavelet frames A discrete dyadic wavelet system is given by

{UNj−1T2nψ}

where j ∈ {1, ..., J} and n ∈ Z2−jL. If this discrete dyadic wavelet system associated with a
wavelet function ψ ∈ CL satisfies the frame condition, then it is called a discrete dyadic wavelet
frame for CL.

A frame can be constructed in LTFAT through the routine called frame. The input parameter
of frame is a string containing the frame type, ’frametype’. Any additional input parameter
depends on the frame type. The frame type of a general frame is called gen and has a matrix that
contains the frame elements as additional parameter. The discrete Fourier transform basis, Gabor
frame, Wilson basis and discrete dyadic wavelet frame are called dft, dgt, dwilt respectively
fwt. These frames have the input parameters of their eponymous transforms as additional input
parameters.

There are several LTFAT routines to obtain information about a constructed frame, including
framered and framebound. The function framered calculates the redundancy of the frame F. If
the output of framered(F) is higher than 1, then F is an overcomplete or redundant frame, and
if it is equal to 1, then F is a basis. The function framebound calculates the frame bounds of the
constructed frame F. When the function is assigned to one variable, e.g. Q = framebound(F), the
value assigned to this variable is the quotient B/A of the frame bounds A and B, and when the
function is assigned to two variables, it assigns the value of the frame bounds A and B to the first
and second variable, respectively.

4.2 Operators associated with frames

There are several basic operations associated with frames, including the analysis operator, syn-
thesis operator and frame operator.

The analysis or coefficient operator Cf : H → CN , associated with the frame {fk}Nk=1, is given
by

C : f 7→ {〈f, fk〉}Nk=1. (4.3)

The analysis operator maps a function f ∈ H to the frame coefficients {〈f, fk〉}Nk=1. The adjoint
of Cf is the so-called synthesis or reconstruction operator Rf : CN → H. The operator Rf ,
associated with the frame {fk}Nk=1, is explicitly given by

Dc : {ck}Nk=1 7→
N∑
k=1

ckfk. (4.4)

The concatenation of the synthesis operator and analysis operator is called the frame operator.
The frame operator S : H → H is given by

Sf =

N∑
k=1

〈f, fk〉fk. (4.5)

The frame operator is invertible if, and only if, the collection {fk}Nk=1 forms a frame. Since the
frame operator S is invertible, a function f can be perfectly reconstructed by the formulas

f = S−1Sf =

N∑
k=1

〈f, fk〉S−1fk

= SS−1f =

N∑
k=1

〈f,S−1fk〉fk,

25

which are called frame decompositions. It can be shown that the collection {S−1fk}Nk=1 forms a
frame, and it is called the canonical dual frame of {fk}. The existence of the canonical dual frame
guarantees that a function f can be perfectly reconstructed from its frame coefficients.

In LTFAT the analysis operator is implemented as the function frana. The function frana

computes the frame coefficients c associated with the frame F of the function f by the command c

= frana(F, f). To plot the frame coefficients c obtained through frana the function plotframe

could be used. This function has the frame F and its associated frame coefficients c as input pa-
rameters. The synthesis operator is implemented as the routine frsyn. It has as input parameters
a constructed frame F and a collection of frame coefficients c. To construct the dual frame Fd of
the frame F the function framedual can be used. The routine framedual has a frame F as input
parameters. The frame operator is implemented as the routine frameoperator and has a frame
F and a function f as input parameters.

Example 5. Listing 4.1 combines the functions frame, framedual, frana and frsyn to get a
perfect reconstruction r of random vector f from its frame coefficients c obtained through the
wavelet frame F.

L = 1000;

f = rand(L, 1);

w = ’db4’;

J = 10;

F = frame(’fwt’, w, J);

c = frana(F,f);

Fd = framedual(F);

r = frsyn(Fd ,c);

norm(f - r)

Listing 4.1: framedual reconstruction.m

The output of listing 4.1 is given in listing 4.2.

ans = 2.2412e-13

Listing 4.2: Output of listing 4.1

which shows that there is no remarkable difference between the reconstructed function r and the
original function f. ♦

26

Appendix A

Installation

A.1 System requirements

The currently supported platforms for the LTFAT are Linux, Windows, and Mac OS X. The
toolbox should work with any version of Matlab from Matlab2009b and any version of Octave
from Octave 3.6.

A.2 Download

The LTFAT can be directly downloaded from the download section of the LTFAT homepage or
from http://sourceforge.net/projects/ltfat/files/. To install the toolbox, the downloaded
file should be unpacked which results in a directory called ltfat. The toolbox is contained in
this directory and in all its subdirectories. To start the toolbox the ltfat directory should be
in the current folder of Matlab/Octave or a path to the ltfat directory should be set using the
Matlab/Octave command addpath. In Matlab the path to the ltfat directory can be set in the
startup.m file and in Octave the path can be set in the ~/.octaverc file. If the ltfat directory
is in the current folder or a path to the directory is set, the toolbox can be started by executing
the command ltfatstart in the prompt. This command will setup all the necessary paths and
perform the necessary initializations to use the toolbox successfully.

27

