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1. Introduction 
 
The Manning equation can be used for uniform flow in a pipe, but the Manning 
roughness coefficient needs to be considered to be variable, dependent upon the 
depth of flow.  This course includes a review of the Manning equation, along with 
presentation of equations for calculating the cross-sectional area, wetted perimeter, 
and hydraulic radius for flow of a specified depth in a pipe of known diameter. 
Equations are also given for calculating the Manning roughness coefficient, n, for a 
given depth of flow in a pipe of known diameter.  Numerous worked examples 
illustrate the use of these equations together with the Manning equation for 
partially full pipe flow. A spreadsheet for making partially full pipe flow 
calculations is included with this course and its use is discussed and illustrated 
through worked examples. 
 
 

        
 
 



2. Learning Objectives 
 
At the conclusion of this course, the student will: 
 

• Be able to calculate the cross-sectional area of flow, wetted perimeter, and 
hydraulic radius for less than half full flow at a given depth in a pipe of 
given diameter. 

 
• Be able to calculate the cross-sectional area of flow, wetted perimeter, and 

hydraulic radius for more than half full flow at a given depth in a pipe of 
given diameter. 

 
• Be able to use Figure 3 in the course material to determine the flow rate at a 

given depth of flow in a pipe of known diameter if the full pipe flow rate is 
known or can be calculated. 

 
• Be able to use Figure 3 in the course document to determine the average 

water velocity at a given depth of flow in a pipe of known diameter if the 
full pipe average velocity is known or can be calculated. 

 
• Be able to calculate the Manning roughness coefficient for a given depth of 

flow in a pipe of known diameter, with a known Manning roughness 
coefficient for full pipe flow. 

 
• Be able to use the Manning equation to calculate the flow rate and average 

velocity for flow at a specified depth in a pipe of specified diameter, with 
known pipe slope and full pipe Manning roughness coefficient. 

 
• Be able to calculate the normal depth for a specified flow rate of water 

through a pipe of known diameter, slope, and full pipe Manning roughness 
coefficient 

. 
• Be able to carry out the calculations in the above learning objectives using 

either U.S. units or S.I. units. 
 

• Be able to use the spreadsheet included with this course to make partially 
full pipe flow calculations. 

 
 



3. Topics Covered in this Course 
 

I. Manning Equation Review 
 

II. Hydraulic Radius - Less than Half Full Flow 
 

III. Hydraulic Radius - More than Half Full Flow 
 

IV. Use of Variable n in the Manning Equation 
 

V. Equations for Variable Manning roughness coefficient 
 

VI. Flow Rate Calculation for Less than Half Full Flow 
 

VII. Flow Rate Calculation for More than Half Full Flow 
 

VIII. Normal Depth Calculation Review 
 

IX. Normal Depth for Less than Half Full Flow 
 

X. Normal Depth for More than Half Full Flow 
 

XI. Summary 
 

XII. References 
 
 
4. Manning Equation Review 
 
The most widely used equation for uniform open channel flow* calculations is the 
Manning equation: 
 

Q = (1.49/n)A(Rh
2/3)S1/2   (1) 

 
Where: 
 

• Q is the volumetric flow rate passing through the channel reach in cfs. 
 
• A is the cross-sectional area of flow normal to the flow direction in ft2. 



• S is the bottom slope of the channel** in ft/ft (dimensionless). 
 

• n is a dimensionless empirical constant called the Manning Roughness 
coefficient. 

 
• Rh is the hydraulic radius  =  A/P. 

 
• P is the wetted perimeter of the cross-sectional area of flow in ft. 

 
*You may recall that uniform open channel flow (which is required for use of the 
Manning equation) occurs for a constant flow rate of water through a channel with 
constant slope, size and shape, and roughness.  Uniform and non-uniform flows are 
illustrated in the diagram below. 
 
Uniform partially full pipe flow occurs for a constant flow rate of water through a 
pipe of constant diameter, surface roughness and slope.  Under these conditions the 
water will flow at a constant depth. 
 
 

 
 
**S is actually the slope of the hydraulic grade line.  For uniform flow, the depth 
of flow is constant, so the slope of the hydraulic grade line is the same as the slope 
of the liquid surface and the same as the channel bottom slope.  The channel 
bottom slope is typically used for S in the Manning equation. 
 
It should also be noted that the Manning equation is a dimensional equation.  With 
the 1.49 constant in Equation (1), the parameters in the equation must have the 
units shown in the list below the equation. 



For S.I. units, the constant in the Manning equation changes slightly to the 
following: 

Q = (1.00/n)A(Rh
2/3)S1/2   (2) 

 
Where: 
 

• Q is the volumetric flow rate passing through the channel reach in m3s. 
 

• A is the cross-sectional area of flow normal to the flow direction in m2. 
 

• S is the bottom slope of the channel in m/m (dimensionless). 
 

• n is a dimensionless empirical constant called the Manning Roughness 
coefficient. 

 
• Rh is the hydraulic radius  =  A/P. 

 
• P is the wetted perimeter of the cross-sectional area of flow in m. 

 
Table 1.  Typical Manning Roughness Coefficient Values 

 

 



Values of the Manning roughness coefficient, n, for some common open channel 
materials are given in Table 1 above.  The source for the n values in the table is  
www.engineeringtoolbox.com. 
 
 
5. Hydraulic Radius – Less than Half Full Flow 
 
The hydraulic radius is one of the parameters needed for Manning equation 
calculations.  Equations are available to calculate the hydraulic radius for known 
pipe diameter and depth of flow.  The equations are slightly different depending on 
whether the pipe is flowing less than half or more than half full.  The calculations 
for less than half full pipe flow will be covered in this section and the more than 
half full calculation will be covered in the next section. 
 
The equations needed to calculate the cross sectional area of flow, A, the wetted 
perimeter, P, and the hydraulic radius, Rh, are shown below, along with a diagram 
showing the parameters for a pipe flowing less than half full.  Note that the 
parameters r and h are used in the equations for A and P.  For this case of less than 
half full flow, h is simply equal to the depth of flow y, while r is the radius of the 
pipe, which is D/2. 
 
 

 
 
 

http://www.engineeringtoolbox.com/


Example #1:  Calculate the hydraulic radius (ft) for water flowing 6 inches deep in 
a 48-inch diameter storm sewer. 
 
Solution:  r = D/2  =  24 in  =  2 ft;   h  =  y  =  6 in  =  0.5 ft;   
 

θ  =  2 arccos [ (2 – 0.5)/2) ]  =  1.45 radians 
 
A  =  [ 22 (1.45 – sin (1.45)) ] / 2  =  0.91 ft2   
 
P  =   (2)(1.45)  =  2.9 ft 
 
Rh  =  0.91/2.9  =  0.31 ft 

 

 



The screenshot above shows part of the “Q_less than half full” worksheet in the 
spreadsheet that was included with this course.  It shows the solution to Example 
#1.  All that is necessary is the entry of the pipe diameter and the depth of flow.  
The spreadsheet will then calculate the area of flow, wetted perimeter, and 
hydraulic radius. 
 
Example #2:  Calculate the hydraulic radius (m) for water flowing 20 mm deep in 
a pipe of 100 mm diameter. 
 
Solution:  r = D/2  =  50 mm  =  0.050 m;   h  =  y  =  20 mm  =  0.020 m;   
 

θ  =  2 arccos [ (0.050 – 0.020)/0.050) ]  =  1.85 radians 
 
A  =  [ 0.052 (1.85 – sin (1.85)) ] / 2  =  0.00111 m2   
 
P  =   (0.05)(1.85)  =  0.0925 m 
 
Rh  =  0.00111/0.0925  =  0.0120 m   

 
 
6. Hydraulic Radius – More than Half Full Flow 
 
The equations for calculating the cross-sectional area of flow, A, the wetted 
perimeter, P, and the hydraulic radius, Rh, are shown below alongside a diagram 
showing the parameters in the equations.  For more than half full pipe flow, the 
parameter h is 2r – y, instead of simply being equal to y as for less than half full 
pipe flow. 
 
Calculation of the area of flow and the wetted perimeter are slightly different than 
those calculations for the less than half full case.  The area of flow is calculated as 
the total cross-sectional area of the pipe minus the cross-sectional area of the 
empty space above the water.  Similarly the wetted perimeter is calculated as the 
total perimeter minus the dry perimeter at the top of the pipe.  These equations are 
shown below along with a diagram for “more than half full” pipe flow. 



 
 
Example #3:  Calculate the hydraulic radius for water flowing 3.4 ft deep in a 48-
inch diameter storm sewer. 
 
Solution:  r  =  48/2  =  24 inches  =  2 ft;  h  =  2*2 – 3.4  = 0.6 ft 
 

θ  =  2 arccos [ (2 – 0.6)/2) ] =  1.59 radians 
 
A  =  π (22)  -  [ 22 (1.59 – sin (1.59)) ] / 2  =  11.38 ft2   
 
P  =   2 π (2)  -  (2)(1.59)  =  9.4 f5 
 
Rh  =  11.38/9.4  =  1.21 ft   

 
This example can also be solved with the course spreadsheet as illustrated in the 
screenshot below, which is from the “Q_more than half full” tab in the course 
spreadsheet.  As you can see, the values for A, P, and Rh are the same as in the 
calculations above. 



 
 
 
7. Use of Variable n in the Manning Equation 
 
The cross-sectional area, A; wetted perimeter, P; and hydraulic radius, Rh; can be 
calculated using the geometric/trigonometric equations presented in the previous 
two sections.  It thus seems logical that the A and Rh values calculated in this 
manner could be used in the Manning equation (along with the pipe slope and the 
Manning roughness coefficient value for full pipe flow) to calculate flow rate for a 
given depth of flow or normal depth for a given flow rate in partially full pipe 
flow. 



Unfortunately, as early as the mid-twentieth century, it had been observed that 
measured flow rates in partially full pipe flow do not agree with values calculated 
as just described above.  T. R. Camp developed a method for improving the 
agreement between measured values of partially full pipe flow rate and values 
calculated with the Manning equation.  He did this by using a variation in Manning 
roughness coefficient with depth of flow in the pipe as a fraction of the pipe 
diameter.  That is, he used a variation in n/nfull as a function of y/D.  His procedure 
is described in his 1946 article, “Design of Sewers to Facilitate Flow,” which is 
Reference #3 at the end of this course.  T. R. Camp’s work led to the graph below, 
which shows the variation of Q/Qfull, V/Vfull, and n/nfull as functions of the ratio of 
depth of flow to pipe diameter (y/D).   
 
The graph developed by Camp and shown in the diagram below appears in several 
publications of the American Society of Civil Engineers, the Water Pollution 
Control Federation, and the Water Environment Federation from 1969 through 
1992, as well as in many environmental engineering textbooks.  The graph below 
was prepared from values read off a similar graph in Steel and McGhee’s textbook 
(Reference #5 at the end of this course). 
 
Prior to the common use of spreadsheets, which make calculations with the 
trigonometric/geometric equations for A, P, and Rh, relatively easy, use of the 
graph below was a widely used method of handling partially full pipe flow 
calculations.  Vfull and Qfull can be calculated for full pipe flow conditions in a 
given pipe with the Manning equation.  Then V and Q can be found for any depth 
of flow, y, in that pipe by reading values off the graph. 
 



 
Figure 3. Flow in Partially Full Pipes 

 
 
Although the variation in Manning roughness coefficient, n, shown in the graph 
above, doesn’t make sense intuitively, it does work well in calculating values of 
flow rate, velocity, or normal depth that agree with empirical measurements.  Keep 
in mind that the Manning equation was developed for flow in open channels with 
rectangular, trapezoidal, and similar cross-sections.  It works very well for those 
channel shapes with a constant value for the Manning roughness coefficient, n.  
For partially full pipe flow, however, using the variation in n with depth of flow as 
proposed by Camp is a preferred method. 
 
Example #4:  The flow rate and average velocity in a particular 21-inch diameter 
storm sewer when it is flowing full, have been calculated to be: Qfull = 9.12 cfs and 
Vfull = 3.79 ft/sec.  Estimate the average velocity and flow rate in this storm sewer 
when it is flowing: 

 
a)  at a depth of 8.4 inches and 
 
b)  at a depth of 14.7 inches. 

 



Solution:  a) The depth/diameter ratio is:  y/D  =  8.4/21  =  0.4.  From the “Flow 
in Partially Full Pipes” graph above, at y/D  =  0.4:  V/Vfull  =  0.7  and  Q/Qfull  =  
0.25.  The flow rate and average velocity at y = 8.4 inches can now be calculated 
as follows: 
 

V  =  (V/Vfull)(Vfull)  =  (0.7)(3.79) ft/sec  =  1.95 ft/sec 
 
Q  =  (Q/Qfull)(Qfull)  =  (0.25)(9.12) cfs  =  2.28 cfs 

 
 
b) The depth/diameter ratio is:  y/D  =   14.7/21  =  0.7.  From the “Flow in 
Partially Full Pipes” graph above, at y/D  =  0.7:  V/Vfull  =  0.95  and  Q/Qfull  =   
0.7.  The flow rate and average velocity at y = 14.7 inches can now be calculated 
as follows: 
 

V  =  (V/Vfull)(Vfull)  =  (0.95)(3.79) ft/sec  =  2.65 ft/sec 
 
Q  =  (Q/Qfull)(Qfull)  =  (0.7)(9.12) cfs  =  6.38 cfs 

 
 
8. Equations for Variable Manning Roughness Coefficient 
 
Although the “Flow in Partially Full Pipes” graph can be used to determine 
average velocity and flow rate for partially full pipe flow, as shown in Example #3, 
it would often be convenient to be able to make such calculations with an Excel 
spreadsheet.  In order to do that, the following set of equations have been 
developed for n/nfull as a function of y/D, over the range from 0  <  y/D  <  1: 
 

0  <  y/D  <  0.03:   n/nfull   =  1  +  (y/D)/(0.3)   (3) 
 

0.03  <  y/D  <  0.1:  n/nfull   =  1.1  +  (y/D – 0.03)(12/7)  (4) 
 

0.1  <  y/D  <  0.2:   n/nfull   =  1.22  +  (y/D – 0.1)(0.6)  (5) 
 

0.2  <  y/D  <  0.3:   n/nfull   =  1.29     (6) 
 

0.3  <  y/D  <  0.5:   n/nfull   =  1.29  -  (y/D – 0.3)(0.2)  (7) 
 

0.5  <  y/D  <  1:   n/nfull   =  1.25  -  (y/D – 0.5)(0.5)  (8) 



Note that the first 5 equations are for y/D  <  0.5 or less than half full.  The last 
equation covers the entire range for more than half full pipe flow. 
 
Example #5: Water is flowing through a 12-inch diameter corrugated metal pipe at 
a depth of 4 inches.  The Manning roughness coefficient for full pipe flow in the 
corrugated metal pipe is: nfull = 0.022.  Calculate the Manning roughness 
coefficient for the 4-inch deep flow in this pipe. 
 
Solution:  The given parameters are depth of flow: y = 4 inches and pipe diameter: 
D = 12 inches.  Thus y/D = 4/12 = 0.3333.  Since y/D is between 0.3 and 0.5, the 
equation for n/nfull is:  n/nfull   =  1.29  -  (y/D – 0.3)(0.2), as shown above. 
 

n = nfull[1.29 - (y/D - 0.3)(0.2)]  =  (0.022)[1.29 - (0.3333 - 0.3)(0.2)] 
 

n =  0.028 
 
The calculation of n for given values of D, y, and nfull, is built into the course 
spreadsheet for both the “less than half full” and “more than half full” cases.  The 
section of the “less than half full” worksheet that includes calculation of n is shown 
in the screenshot below.  If the diameter, D; depth of flow, y; and full pipe flow 
value for the Manning roughness coefficient, nfull, are entered, the spreadsheet 
calculates the value of n for that depth of flow.  The screenshot shows the solution 
to Example #5, giving the same result: n = 0.028. 



 
 
 
9. Flow Rate Calculation for Less than Half Full Flow 
 
The cross-sectional area, A; wetted perimeter, P; and hydraulic radius, Rh, can be 
calculated for known pipe diameter and depth of flow using the equations that were 
presented and discussed in Section 5.  The appropriate equation from those 
presented in the previous section can be used to calculate the Manning roughness 
coefficient, n, for given nfull, y, and D. These values together with the pipe slope, S, 
can be used in the Manning equation to calculate the flow rate and velocity, as 
illustrated in the following example. 
 
Example #6:  Calculate the flow rate and average velocity for the 4-inch deep flow 
in the 12-inch diameter corrugated metal pipe from Example #5, if the pipe slope is 
0.0085. 
 



Solution:  From the equations in section 5:   
 

r  =  D/2  =  12/2 inches  =  6 inches  =  0.5 ft 
 
h  =  y  =  4 inches  =  0.3333 ft 
 
θ  =  2 arccos [ (r - h)/r ]  =  2 arccos [ (0.5 - 0.3333)/0.5 ]  =  2.462 radians 
 
A =  r2(θ - sinθ)/2  =  (0.52)[2.462 - sin(2.462)]/2  =  0.2292 ft2  
 
P  =  rθ  =  (0.5)(2.462)  =  1.231  ft 
 
Rh  =  A/P  =  0.2292/1.231  =  0.1862  ft 

 
From Example #4:  n =  0.028 
 
Now the Manning equation can be used to calculate Q: 
 

Q = (1.49/n)A(Rh
2/3)S1/2  =  (1.49/0.028)(0.2292)(0.18622/3)(0.00851/2) 

 
Q   =  0.364 cfs 
 
V  =  Q/A  =  0.367/0.2292  =  1.59 ft/sec 

 
As expected, this problem can be solved using the course spreadsheet.  A portion 
of the “Q_less than half full” worksheet is shown below with the solution to 
Example #6, resulting in the same values for Q and V. 



 
 
 
Example #7:  Calculate the flow rate and average velocity for water flow 20 mm 
deep in a 100 mm diameter corrugated metal pipe (nfull = 0.022), if the pipe slope is 
0.0085. 
 
Solution:  From the equations in Section 5:   
 

r  =  D/2  =  100/2 mm  =  50 mm  =  0.05 m 
 
h  =  y  =  20 mm  =  0.02 m 
 
θ  =  2 arccos [ (r - h)/r ]  =  2 arccos [ (0.05 - 0.02)/0.05 ]  =  1.854 radians 



A =  r2(θ - sinθ)/2  =  (0.052)[1.854 - sin(1.854)]/2  =  0.001117 m2  
 
P  =  rθ  =  (0.05)(1.854)  =  0.0927 m 
 
Rh  =  A/P  =  0.001117/0.0927  =  0.01205 m 

 
For y/D = 20/100 = 0.2, from Eqn (5): n/nfull   =  1.22  +  (0.2 – 0.1)(0.6) = 0.028 
 
Now the Manning equation can be used to calculate Q: 
 

Q = (1.49/n)A(Rh
2/3)S1/2  =  (1.00/0.028)(0.001117)(0.012052/3)(0.00851/2) 

 
Q   =  0.000193 m3/s 
 
V  =  Q/A  =  0.000193/0.001117  =  0.173 m/sec 

 
 
10. Flow Rate Calculation for More than Half Full Flow 
 
The cross-sectional area, A; wetted perimeter, P; and hydraulic radius, Rh, can be 
calculated for known pipe diameter and depth of flow using the equations that were 
presented and discussed in Section 6.  The appropriate equation from those 
presented in the previous section can be used to calculate the Manning roughness 
coefficient, n, for a given nfull, y, and D. These values together with the pipe slope, 
S, can be used in the Manning equation to calculate the flow rate and velocity, as 
illustrated in the following example. 
 
Example #8:  Calculate the flow rate and average velocity for a 10-inch deep flow 
in the 12-inch diameter corrugated metal pipe from Example #4, if the pipe slope is 
0.0085. 
 
Solution:  From the equations in Section 6:   
 

r  =  D/2  =  12/2 inches  =  6 inches  =  0.5 ft 
 
h  =  2r - y  =  (2)(0.5) - 10/12  =  0.1667 ft 
 
θ  =  2 arccos [ (r - h)/r ]  =  2 arccos [ (0.5 - 0.1667)/0.5 ]  =  1.682 radians 
 



A =  πr2 -  r2(θ - sinθ)/2  =  π0.52 - (0.52)[1.682 - sin(1.682)]/2  =  0.6994 ft2  
 
P  =  2πr  -  rθ  =  2*pi()*0.5 - (0.5)(1.682)  =  2.300  ft 
 
Rh  =  A/P  =  0.6994/2.300  =  0.3040  ft 

 
From Example #4:  n =  0.028 
 
Now the Manning equation can be used to calculate Q: 
 

Q = (1.49/n)A(Rh
2/3)S1/2  =  (1.49/0.028)(0.6994)(0.30402/3)(0.00851/2) 

 
Q   =  1.55 cfs 
 
V  =  Q/A  =  1.55/0.6994  =  2.22 ft/sec 

 
 
11. Review of Normal Depth Calculation 
 
For a constant flow rate through a channel with constant bottom slope, cross-
sectional shape and size, and Manning roughness coefficient, the depth of flow will 
be constant at a depth called the normal depth.  The procedure for determining the 
normal depth is the same for gravity flow through partially full pipes as it is for 
open channel flow with cross-sectional shapes like rectangular or trapezoidal.  The 
normal depth can be determined by rearranging the Manning equation to: 
 

A(Rh
2/3)  =  Qn/1.49(S1/2)     (9) 

 
For flow in a channel with specified Q, n, and S, the right hand side of the equation 
has a constant value that can be calculated.  The left hand side of the equation can 
be written as a function of the depth of flow, y, for a specified channel shape and 
size.  An iterative solution is typically required to find the value of y that makes the 
two sides of the equation equal.  This type of calculation is illustrated in Example 
#9 below. 
 
Example #9:  Determine the normal depth for water flowing at a rate of 18 cfs in a 
rectangular channel that has a bottom slope of 0.00084, bottom width of 4 ft, and 
Manning roughness coefficient of 0.013. 
 
Solution:  For the given rectangular channel:  A = byo = 4yo,   



P = b + 2yo = 4 + 2yo, and Rh = A/P = 4yo/(4 + 2yo) 
 
Substituting values and expressions into Equation (9), the rearranged Manning 
equation gives: 
 

(4yo)[4yo/(4 + 2yo)]2/3  =  (18*0.013)/(1.49*0.000841/2)  =  5.419 
 
This equation requires an iterative (trial and error) solution because it can't be 
solved explicitly for yo.  The table below was printed from an Excel spreadsheet 
that was used to carry out the iterative solution.  The steps leading to the 
conclusion that yo = 1.5 ft (accurate to 2 significant figures) are shown in the table.  
The table shows that yo = 1.50 ft gives a value for  (4yo)[4yo/(4 + 2yo)]2/3  that is 
closer to the target value of 5.419 than that given by either yo = 1.49 or  yo = 1.51.  
Thus:  
 

yo = 1.50 ft  =  18 in 
 
 

 
 
 
12. Normal Depth for Less than Half Full Flow 
 
Calculation of normal depth for partially full pipe flow is slightly more 
complicated than its calculation for a rectangular or trapezoidal channel, because 
for the partially full pipe flow, the Manning roughness coefficient isn’t a constant, 
but rather depends upon the depth of flow, y.  The Manning equation can thus be 
rearranged to: 
 

A(Rh
2/3)/n  =  Q/1.49(S1/2)    (10) 



The right hand side of this equation is constant and the left hand side is a function 
of the normal depth, yo, so iterative solution of this equation can be used instead of 
Equation (9) to determine the normal depth for partially full pipe flow. 
 
Example #10:  Find the depth of flow (normal depth) for 0.2 cfs of water flowing 
through a 12-inch diameter concrete pipe (nfull = 0.013) with a pipe slope of 
0.0085. 
 
Solution:  The given parameters are  D = 12 inches,  Q = 0.2 cfs,  S = 0.0085, and 
nfull = 0.013.  The right hand side of equation (10) is: 

 
Q/1.49(S1/2)  =  0.2/(1.49*0.00851/2)  =  1.456 

 
The equations needed to calculate A(Rh

2/3)/n  for a given value of yo are: 
 

r  =  D/2,    h  =  y,    θ  =  2 arccos[(r – h)/r],   A  =  r2(θ – sinθ)/2, P = rθ, 
and the set of equations for n/nfull from Section 8. 

 
The iterative solution can be done by hand to find the value of yo that makes 
A(Rh

2/3)/n equal to 1.456 to the degree of accuracy desired.  However, the use of a 
spreadsheet makes the repetitive calculations much easier.  The table below is 
copied from the “Normal Depth_less than half” worksheet in the course 
spreadsheet.  It shows the solution:   

 
yo = 0.188 ft = 2.25 in 



 
 
 
NOTE:  For this example, the normal depth turned out to be less than half of the 
pipe diameter, so the pipe was indeed flowing less than half full.  If the flow rate 
was increased above the 0.2 cfs value used in this example, then the normal depth 
would be greater than 0.188 ft.  At some value of flow rate the normal depth would 
be one half of the pipe diameter.  That is the maximum normal depth that can be 
determined with the “Normal Depth_less than half” worksheet.  If you are trying to 
find a normal depth with this worksheet and find that you must use values of yo 
greater than half the pipe diameter to cause the “difference from target value” to 



decrease, then you need to switch to the “Normal Depth_more than half” 
worksheet to find the normal depth.  The equations for calculating A and P are 
different for “more than half full” pipe flow as discussed in the next section, so the 
“Normal Depth_less than half full” will not give the correct value for normal depth 
in cases where the normal depth is greater than half of the pipe diameter. 
 
 
13. Normal Depth for More than Half Full Flow 
 
Determination of normal depth for more than half full pipe flow is nearly the same 
as that just described for less than half full pipe flow. The equations for calculating 
A, P, and Rh are a bit different for the case where the pipe is flowing more than 
half full, as given in Section 6.  Calculation of n/nfull is simpler because the single 
equation, n/nfull   =  1.25  -  (y/D – 0.5)(0.5), applies over the entire range 0.5 < y/D 
<1.0. 
 
Example #11:  Find the depth of flow (normal depth) for 2.5 cfs of water flowing 
through a 12-inch diameter concrete pipe (nfull = 0.013) with a pipe slope of 
0.0085. 
 
Solution:  The given parameters are D = 12 inches, Q = 2.5 cfs, S = 0.0085, and 
nfull = 0.013.  The right hand side of Equation (10) is:    
 

Q/1.49(S1/2)  =  2.5/(1.49*0.00851/2)  =  18.20 
 
The equations needed to calculate A(Rh

2/3)/n  for a given value of yo are: 
 

r  =  D/2,    h = 2r - y,    θ  =  2 arccos[(r – h)/r],   A  =  πr2 - r2(θ – sinθ)/2,  
 
P  =  2πr - rθ,  and   n/nfull   =  1.25  -  (y/D – 0.5)(0.5) 

 
The diagram on the next page is from the "Normal Depth_more than half" 
worksheet in the course spreadsheet.  It shows the calculation of A(Rh

2/3)/n  for 
selected values of yo, with the flow configuration in this example, in order to find 
the normal depth.  As shown in the spreadsheet screenshot, the resulting normal 
depth is: 
 

yo  =  0.719 ft  =  8.63 in 
 
 



NOTE:  For this example, the normal depth of 0.719 ft is indeed more than half of 
the pipe diameter, so the use of the “Normal Depth_more than half full” worksheet 
was appropriate.  If you start the process of determining normal depth with the 
“Normal Depth_more than half full” worksheet and find that you need to use 
values of yo that are less than half of the pipe diameter to cause the “difference 
from target value” to decrease, then you should switch to the “Normal Depth_less 
than half” worksheet.  
 

 



14. Summary 
 
Calculation of the flow rate and average velocity, or determination of normal depth 
at a given flow rate, for partially full pipe flow can be carried out with the Manning 
equation in a manner similar to such calculations for traditional open channel 
cross-sections, like rectangular or trapezoidal.  Calculations for partially full pipe 
flow are complicated by two factors:  1) the equations for calculating A, P and Rh 
are somewhat more complicated, and 2) the Manning roughness coefficient must 
be considered to vary as a function of the ratio of depth of flow to diameter (y/D) 
in order to make accurate calculations. The equations needed and example 
calculations for partially full pipe flow are presented and discussed in this course. 
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