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The Match Game: New Stratigraphic Correlation 
Algorithms’ 

Michael S. Waterman2 and Robert Raymond, JI- .~  

New algorithms for automatic correlaiion of geologic strata are introduced. The algorithm are 
exiensions of the Smith and Waierman (1980) dynamic programming technique and include several 
features rhat greatly increase the utility for sedimentary sequences. Gaps in correlation (uncon- 
formiiies) caused by local nondeposiiion or eroded strata can include in a single “event” several 
strata. Furihermore, these gaps can be weighied as a single event, rather than as the sum of gap 
events for each sirata. In addition, one or several adjacent strata in a second column can be 
correlated (matched) with one or several srraru in a second column. Deletions within one of ihese 
multiple matches are also possible. The new algoriihms include ihe method of minimum distance 
and the meihod of maximum similariry. Wiihin this context, a similarity algorithm is given to locate 
and correlate the best matching segmenis or iniervals from each Stratigraphic column. All corre- 
lations within a preset disiance of rhe optimum likewise can be produced for any of these algo- 
rithms. An example of specific assignments of ihese weighifunctions is given for correlation of well 
logs from the San Juan Basin. 

KEY WORDS: stratigraphic correlation, well log correlation, dynamic programming, matching. 

INTRODUCTION 

The problem of correlating stratigraphic sequences is important in exploration 
and characterization of resources. These stratigraphic data can simply be se- 
quences of lithologic units but may also include gamma logs, electric logs, 
strata thickness, geochemical or mineral arrays, or fossil occurrence and abun- 
dance. Until 1980, the most frequently used computer technique was cross- 
association, although other methods were attempted. [For cross-association see 
Sackin, Sneath, and Merriam (1965); Harbaugh and Merriam (1968); Merriam 
(1971); and Davis (1973). For other methods see Neidell (1969); Gill (1970); 
Matuszak (1972); Rudman and Lankston (1973); Shaw and Simms (1977); and 
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Mann and Dowel1 (1978)l. Smith and Waterman (1980) presented a dynamic 
programming technique, the first one to overcome the problem of correlating 
across gaps. Gordon and Reyment (1979) and Gordon (1980) used dynamic 
programming but did not solve the gap problem. 

At Los Alamos, we began work to extend the Smith and Waterman algo- 
rithm to include several features that would greatly increase the utility of the 
method. Howell, who assisted us, published a program written under our di- 
rection (Howell, 1983). Because our results as embodied in Howell’s program 
were preliminary, we take this opportunity to report more complete results and 
to make some corrections. Important algorithms and modifications added to our 
early version are now discussed. 

The first of these modifications utilizes multiple gaps. An essential prop- 
erty of these methods is the ability to include gaps in correlations. A single 
stratigraphic unit can be made a gap (not matched) and several adjacent units 
can be treated as a single gap (a multiple gap). The ability to include multiple 
gaps causes computation time to increase but this problem can be overcome in 
most cases (see the next section). Howell’s (1983) code includes only single 
gaps- 

A second modification to the early version is “many to many matching.” 
Correlation of stratigraphic units can include several types of events. First, in- 
dividual strata can be correlated or matched. Second, a stratigraphic unit from 
one column can be matched with several adjacent units in a second column. 
Howell’s code includes these one-to-many matchings. One-to-many matching 
is related to the technique “time-warping” from speech recognition. [Kruskal 
and Liberman (1983) review this subject.] In addition, we introduce a new type 
of multiple matching, many-to-many matching, where a block of adjacent strat- 
igraphic units in one column is matched to a block in a second column. Another 
new feature allows us to include gaps in the multiple matchings. 

In addition to presenting minimum distance correlation (next section), we 
also introduce maximum similarity correlation (see section on maximum simi- 
larity correlation) and show how to convert from distance to similarity. A new 
technique to find most similar sections between two stratigraphic sequences is 
presented in the section on correlation of sections and is based on a modified 
similarity method. 

Even the best correlation by a computer algorithm cannot always guarantee 
correct answers. For successful use of our technique, much care should be given 
to determining choice of weights for the algorithm. Still, even after weights are 
chosen carefully, the actual or desired correlation might only be near the “op- 
timal,” rather than be exactly optimal. To overcome this problem, we present 
a method (see section on finding optimal or near-optimal correlations) that pro- 
duces all correlations within a user-specified distance of the computed “opti- 
mal.” 
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In a section on algorithm specification, we discuss the rationale behind our 
choices for a specific example, some of which are concealed in R, or FUNC- 
TION CUBE of Howell’s code. Corrections to our earlier specifications as re- 
ported by Howell are also made in this section, and the extension to similarity 
is described. Different geological environments may out of necessity require 
different weighting schemes and one such example is discussed. 

* 

MINIMUM DISTANCE CORRELATION 

To begin, let a = ala2 ,  . . . , a, and b = blb2 ,  . . . , b, be two strati- 
graphic sequences with n and m strata, respectively, where a; or bj represents 
lithologic characteristics of strata. To keep things general, we specify a gap 
function g and a distance function d. This keeps the initial formulas less clut- 
tered and emphasizes the general applicability of the ideas. Associated with a 
gap of strata, aiai + 1, . . . , ai ( j = i is possible) is a gap penalty, which we 
assume is positive 

0 < g(ajaj+l,  * * * 9 aj )  

As mentioned above, we include matches or correlations of one or several strat- 
igraphic units from one column with one or several from the other columns. 
One-to-one, one-to-many , many-to-one, and many-to-many can all be grouped 
together in one matching (distance) function d. Here aiai + 1, . . . , ai is to be 
matched with bkbk + 1, . . . , bl 

0 I d(a;a;+l ,  . . . , aj, bkbk+I, . . . , b , )  

This includesj = i and k = 1 ,  d(a i ,  b k ) ,  the case of matching single strata. 
Next define the minimum distance D(a, b) between a and b, the strati- 

graphic columns, to be the minimum weighted sum of matches and gaps re- 
quired to correlate the columns. If d is a mathematical metric, then D can be 
shown to be also a metric and has the properties 

(1) D(a, b) = 0 
(2) D(a, b) = D(b, a)  
(3) For any sequence c, D(a, b) I D(a, c )  + D(c, b) 

if and only if a = b 
(symmetry) 

(triangle inequality) 

The algorithm of Smith and Waterman (1980, their Eq. 5 )  covers only 
matching of single strata. The algorithm depends on considering 

D, = D(ala2, . . . , a;, blb2,  . . . , b j )  

the correlation of al a2, . . . , aj and b,  b2, . . . , bj. This correlation, if only 
one-to-one matching and single gaps are allowed, can end in one of three ways 
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(1) a, gapped (2 )  bj gapped (3) ai and b, matched 

Here, we focus on the bottom of the correlation. In case (1) where a, is gapped, 
the earlier correlation has distance (by assumption) D, - Therefore, case (1) 
has total distance D i - l , j  + g ( a , ) .  

In case (2), the distance is D,, - + g ( bj ) whereas in case (3) the distance 
is Di- I , j -  + d(a , ,  b j ) .  Hence the formula is 

D, = min [Di- l , j  + g ( a ; ) ,  Di,j-1 + g ( b j ) ,  Di-1,j-l + d(ai, b j ) ]  (1 )  

The recursion begins with D, = 0, Djo = 

alal + I ,  . . . , ai, the corresponding term is 

g ( a , ) ,  Doj = E$=, g ( b j ) .  
Equation (1) extends to multiple gaps and multiple matching. For a gap of 

D l - l , j  + g ( a l a l + , ,  . . . , a i ) ,  1 I 1 1  i 

A gap of bkbk + I ,  . . . , bj is handled in the same manner. For multiple matching 
of alal + I ,  . . . , a, with bkbk + 1, . . . , bj, the corresponding term is 

Dl-1,k-I + d(alal.1, . . *  yai,bkbk+l, . - .  , b j )  

The extension of recursion Eq. (1) is 

min [ D 1 - l , j  + g(al ,  . . . , a , ) ] ;  
I S l S i  

I s k s  j 

The algorithm is initialized by D, = 0, Dj0 = g ( a l a 2 ,  . . . , a,) and Doj = 

The computer storage required for the D, array is nm, a reasonable re- 
quirement. The time to compute Dnm by Eq. (1) is O(nm) ,  a constant times 
nm. Unfortunately, this goes up to 0 (n2mZ) for the more useful Eq. (2). How- 
ever, efficiency for Eq. (2) in most cases can be greatly improved to achieve 
nearly O(nm) running time. 

Before turning to algorithm efficiency, we add one more feature, deletions 

g(blb2, . . . 9 bj 1. 
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within multiple matches. When matching al, . . . , a, with bkr . . . , bj, clearly 
most units ai, ul + I ,  . . . , a, should be close to most of the units bk, bk + 1 ,  

. . . , bj. Our distance function d(a,a, + . . . , a,, bkbk + ,, . . . , b j )  should be 
severe regarding heterogeneity within al,  . . . , a, and bk, . . . , bj. The following 
procedure is an approach which will accomplish our objective in reasonable 
computational time. 

Suppose units a[, . . . , a, are classified into types T I ,  T2, . . . , TN. In the 
example shown later in the section on algorithm specification, 11 lithotypes are 
present. We also take a distance 6(Ts ,  T,) on these types. Assign each a, to 
type T(a,).  Group all units close to type t into 

S , ( E )  = ( a , : 6 [ T ( a X ) ,  T,] < E and 1 s  x I i ]  

where E is a preset constant. We must measure also the size of $ ( E )  and take 
the size to be in [0, 1 1 .  The set S, = 0 should have size 0 whereas S, = {a l ,  
al + 1, . . . , a, } should have size 1 .  In the example in the section on algorithm 
specification size is taken to be proportional to total thickness. Suppose S, (E ) 
has the maximum size of SI (E ), S, ( E  ), . . . , SN ( E  ). If this maximum size 
is less than a preset vaibe, say 0.9, deletions within multiple matches are not 
allowed for al,  ai+ I ,  . . . , a,. If maximum size $ ( E )  is at least this preset 
value, then delete a, not in & ( E ) .  Of course, bk, . . . , bj is examined in an 
identical way. 

Equation (2) above has two multiple gap terms, which contribute 
n m  

C C ( i  + j )  = 0 ( n m 2  + n2m) 
, = I  j =  1 

to the computational cost of the algorithm. We now show how to reduce this 
to 0 (nm) for a reasonable class of gap functions 

1 

where 
is, g is “linear” in al,  . . . , a,. If we set 

and y are nonnegative constants and h is a nonnegative function. That 

= min [Di,k-l + g(bk,  . . . , b j ) : l  s k I j ]  and 

F~ = min [ D , - ~ , ~  + g(al ,  . . . , a i ) : l  I Z I i ]  

then Eq. (2) becomes 

I Fii, Eo, min [ D I - l , k - l  + d(a,, . . . , a,, bkr . . . , b j ) ]  
l s f s i  
l s k s j  

Here E, = F, = Doo = 0, E,, = Dio = g ( a l ,  . . . , a , ) ,  Foj = Doj = g(b l ,  
. . . , bj ). Next observe that 
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E~ = min ( D ~ , ~ - ~  + g ( b j ) ,  min + g(bk, . . . , b j ) :  1 I k c j ] ]  

= min ( D ; , ~ - ~  + g ( b j ) ,  min [D;,k-l 

+g( bk, . . . ,  b j ) : l  5 k I j -  11) 

= min ( D ~ , ~ - ~  + g ( b j ) ,  min [ D i , k - l  

+ g(bk, . . . , bj- 1 ) :  1 5 k 5 j - 11 + y h ( b , ) )  

= min [ D ~ . ~ - ~  + g ( b j ) ,  E ~ , ~ - ~  + y h ( b j ) ]  

Also 

Fii = min [ D i - l , j  + g ( a , ) ,  F i - l , j  + yh((a;)] (4) 

These two equations reduce gap calculations to 0 (nrn) .  
If the gap function is concave instead of linear, a somewhat more involved 

recursion also reduces calculation to O ( n m ) .  Derivation for the concave gap 
function case can be obtained by modifying Waterman (1984). We assume the 
gap function has the form g(a, ,  . . . , a i )  =f[E;=,  h ( a x ) ]  and concave is, as 
usual, defined a s f ( z  + u )  - f ( z )  s f( y + u )  - f( y),  whenever y 5 z 
and 0 I u. We restrict study to because identical considerations hold for 
Fi, j .  Now let 

fora110 I k s j - 1. For l  s k 

j +  1 

x = k + l  x = k + l  

and, adding the last two inequalities 

The implications are that 

Ei,j + I - - mill [Di,k g ( U k . 1 ,  . . . , U , + l ) : o  5 k 5 1; Di,, + g ( a , + i ) ]  

Therefore, concave gap functions can reduce computation. Moreover, the above 
implies that minimization can be related to the set 

s ( i )  = { k : E i . k + l  = Di,k + g ( a k + l ) }  and 
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This does not obtain the 0 (nm) result of linear gap functions, but that is the 
practical implication. 

We define a gap function to be convex iff(  y + u )  - f ( y )  I f (z + u )  
- f (z) ,  whenever y I z and 0 I u. Argument similar to the last paragraph 
shows 

E;, ,+I  = mill [Di,k + g ( U k + l ,  . . . , U , + i ) : l  5 k I j ]  

again allowing reduction in the computation. In fact, this equation immediately 
gives an O (  nm) algorithm. 

The major contribution to computation time in Eq. (2) is not from gap 
terms but from the multiple matching term 

I s k s j  

This term takes computation time proportional to 
n m  

;= 1 j =  1 
c c ( i  . j )  = O(nZm2) 

This was reduced in our earlier algorithm as reported by Howell (see the section 
on algorithm specification) by the simple device of only multiple matching al, 
. . . , a, and bk, . . . , bj if the total thickness of al, . . . , a, is close (f50%) to 
that of bk, . . . , bj. This essentially reduces O(nzmz)  to O[min (n2m, n m 2 ) ] .  

MAXIMUM SIMILARITY CORRELATION 

We shall retain our notation for two stratigraphic sequences a = ala2,  
. . . , a, and b = bl bz ,  . . . , b,. We derived algorithms for minimum distance 
correlation, basing the approach on finding the correlation with the least differ- 
ence between a and b see previous section. Here we use the equally intuitive 
idea of finding the correlation with the most similarity between a and b. After 
presenting the basic algorithm, we show how to build similarity functions from 
distance functions (and vice versa) which yield equivalent optimal correlations. 
These two approaches might seem to be different ways of saying the same thing, 
replacing minimum by maximum. However, the issue of which approach to use 
is not simply a matter of taste; we present in the section on correlation of sec- 
tions a similarity based algorithm for a problem which has no equivalent dis- 
tance algorithm. 

To distinguish a new gap function of this section, we use g* 

0 c g*(a;a;+l ,  . . . , U j )  
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The similarity functions between strata is not assumed strictly positive or strictly 
negative; frequently the similarity function s is taken to be both. Let 

s(a;ai+I, * * . 7 aj, bkbk.1, * - 9 b , )  
be given for 1 I i I j I n and 1 I k s 1 I n. In this setting, we wish to 
accumulate similarity, so s should be positive for good matches and negative 
for poor ones. The similarity function S maximizes, over all correlations C, the 
sum of similarity values of matches minus gap penalties 

where C ranges over all correlations. If Sij = S ( a , ,  . . . , a;, b l ,  . . . , bj 1, the 
single gap, single match algorithm (1) becomes 

( 5 )  SO = max [ s i - ] , ,  - g * ( a i ) ,  s ; , , - I  - g * ( b j ) ,  ~ j - 1 , j - I  + s(ai,  b j ) ]  

The multiple match, multiple gap algorithm is 

max [ D ~ - ~ , ~  - g*(al ,  . . . , a , ) ] ;  
ISIS; 

The efficiencies derived earlier carry over to these algorithms as well. 
Distance correlation and similarity correlation are equivalent. We conclude 

this section by demonstrating this for the single match, single gap case. Al- 
though true in general, the single gap, single match requires much less notation. 
In any correlation C, n + m units occur from the two columns. The equation 

n + m = 2 (number matches) + number gaps 

is obviously true. From the distance function d ( a ,  b), construct a similarity 
function 

S ( U ,  b )  = K - d ( a ,  b )  

where K is a fixed constant, 0 I K s max,,b d ( a ,  b). Then 
r 1 
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= min [ c K - c s(a, b )  + c g ( e ) ]  
c matches matches gaps e 

number gaps - c s(a, b )  + c g ( e ) ]  
2 matches gaps e 

n + m  
2 

= K- - max 

This says that if 

S ( U ,  b )  = K - d ( a ,  b )  

then 

g * ( e )  = d e )  - K/2 
and, moreover 

D(a, b) + S(a, b) = K [ ( n  + m)/2] 
Thus for any constant K, the above equations show that for any distance (sim- 
ilarity) correlation problem, a similarity (distance) correlation problem exists 
with identical optimal correlations. 

CORRELATION OF SECTIONS 

Frequently in geologic strata, a surprisingly large section or segment of 
one column will correlate well with a section from the second column, whereas 
the remainder of the strata correlate poorly. As a result, methods presented 
above (minimum distance and maximum similarity) may fail to find good qual- 
ity correlation. In an earlier paper, Smith and Waterrnan (1980) show how to 
modify the minimum distance algorithm to correlate a fragmentary sequence 
with a longer complete sequence. However, that idea can not be extended to 
solve the more general problem described here. 

The difficulty with extending the distance algorithm to a best sections al- 
gorithm is shown in the following simple example. Both D ( a ,  a )  = 0 and 
D(aaa, aaa) = 0 where a represents some lithologic unit. Therefore, distance 
does not distinguish short identities from long identities. However, similarity 
gives larger scores for longer matches: S(a ,  a )  = s(a, a )  whereas S ( m ,  a m )  
= 3s(a, a). This property was exploited in an algorithm of Smith and Water- 
man (1981a, b) and is adapted for use in the present context. 

Values of s(a, b) are assumed to be set such that negative values corre- 
spond to poor quality matches and positive values to good quality matches. 
Define 
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Hii = max [0, S ( U , U , + ~ ,  . . . , a;, byby+lr . . . , b j ) :  

l s n ~ i  and 1 . 1 y I j ]  

Fortunately, a simple algorithm to find HV exists. For the single gap, single 
match case 

H~ = max [0, H ~ - ~ , ~  - g * ( a ; ) ,  

where Hi, = Hoj = 0 for 0 I i I n 0 I j I m ( 7 )  

- g*(b , ) ,  ~ i - 1 , j - I  + s(a;, b j ) ]  

This algorithm, as usual, is easily extended to the multiple gap, multiple match 
case 

where Hoj = Hi, = 0 for 0 I i 5 n and 0 I j I m. Again, efficiencies (see 
section on minimum distance correlations) carry over to this situation. 

FINDING ALL OPTIMAL AND NEAR-OPTIMAL CORRELATIONS 

All methods presented above are designed to find the distance and or sim- 
ilarity corresponding to an optimal correlation. However, we have not discussed 
how the actual correlations, which are of primary interest, can be produced. 
Although progamming for finding correlations is slightly more involved than 
for the forward recursion, computation time is small compared to the forward 
recursion. 

Initially, we show how to find the set of all optimal correlations. Then we 
adapt some recent results in dynamic programming to show how to produce all 
correlations within a user-specified distance of the optimum. Even when much 
care is given to establishing weights for the algorithm, the correct correlation 
is not always optimal. If, however, the correlation is close to optimal, our near- 
optimal algorithm will produce it. 

Although all optimal correlations can be produced by setting pointers on 
the forward pass, we prefer a more straightforward approach, which we refer 
to as a traceback. For definiteness, assume we are doing a single gap, single 
match distance correlation. We have calculated the matrix 

j = l ,  . . . ,  m 
i = 1, . . .  , n  

(Dij ) 
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Optimal correlations correspond to paths through this matrix, which we begin 
at D,,. Assume we have discovered an optimal correlation leading from (n, rn) 
to, but not including (i, j ). We can discover easily what step(s) led us to com- 
pute D, on the forward recursion by asking three questions 

( 1 )  Dj- l , ,  + g(a;)  = D,? 

(2)  D j , j - l  + g(bj) = Do? (9) 

(3) Dj-1,j-I + d ( ~ ; ,  bj)  = Dij? 

If, for example, Di-  I , j  + g ( a j )  = Dij, we know a; can be gapped and we 
repeat the three questions using ( i  - 1, j ). Multiple optimal correlations can 
be obtained by remembering (stacking) unexplored directions. 

Recent work (Waterman, 1983 and more fully described in Byers and 
Waterman, 1985) allows us to find all correlations within e of the optimum. 
This time we assume that at position (i, j ) a correlation is being generated that 
can result in a total alignment sum less than or equal to D,, + e. The alignment 
sum from (n, rn) to but not including ( i ,  j ) is T,. The three questions above 
become 

(1) D j - l , j  + g(a i )  + K j  I D,, + e? 

(2)  D i , j - ,  + g(bj) + Tj I D,, + e? (10) 

(3) D i - l , j - l  + d(a j ,  b j )  + Tj 5 D,, + e? 

was also studied in Smith and Waterman (1980). There 
To illustrate these ideas we take an elementary textbook example which 

a = b  

3 a # b  
d(a ,  b )  = (" 

whereas g(u) = 1 for all a. The sequences from Table 1 have o(a,b) = 5 .  
The single optimal correlation, including the five gaps which results in a 
total distance of 5, is determined (Table 1) 

E E 
F F 
A A 
B B 
F F 
E E 
F F 
B B 
E A 
F A 
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A A 
B B 
F F 
E E 
A F 
A B 

ALGORITHM SPECIFICATION: AN EXAMPLE 

The success of algorithms presented above is dependent heavily on choices 
of weight functions, g ( a j ,  . . . , a i ) ,  d (a i ,  . . . , uj, bkr . . . , b l ) ,  and s(aj, 
. . . , ai, bk, . . . , b , ) .  Functions which are satisfactory for one application will 
prove to be inadequate for others. Within this section, we present some of the 
reasons for functions we chose in correlating sequences from the San Juan Basin. 
The actual functions used in Howell (1983) are described, corrected, and ex- 
tended to similarity correlation. 

We obtained the San Juan data from a report of Beach and Jentgen (1978), 
a reference missing in Howell (1983). The stratigraphic sequences were con- 
verted into the form 

a; = [Major lithologic type; minor lithologic type 

(modifying lithologic adjective); strata thickness] 

= (ti', t; ,  w;) 

The major lithologic types encountered were coal (COA), limestone (LIM), 
sandstone (coarse-, SSC; medium-, SSM; fine-, SSF, and very fine-, SSV 
grained), siltstone (SLT), shale (SHA), claystone (CLA), and alluvium (ALL). 
All of the above could likewise be used as minor lithologic types for modifying 
major types. Carbonaceous (CAR).was used only as a minor lithologic type or 
modifier. Any combination of major and minor lithotypes were possible. For 
example, clayey medium-grained sandstone = (SSM, CLA); coaly shale = 
(SHA, COA); or carbonaceous fine-grained sandstone = (SSF, CAR). These 
three letter abbreviations are used below. 

Distance between two stratigraphic units a; and bj will be considered first, 
before multiple matching. Clearly, type ( t i  ) differences and thickness ( wj ) dif- 
ferences must be blended into a single distance measure. Let a; = ( f f , t:,  wj ) 
and bj = (u f ,  u;, v i ) .  Consider first the distance between two lithologic types 
1 and u. Sandstone, siltstone, and claystone lithologic types are defined by 4 
values where 4 = log2 ( d  ) and d is the diameter of grain size. For these lith- 
ologic types, we define distance 6 ( t ,  u )  between t and u to be 

s ( t ,  .) = (w - 4J(u)l 

Coal, carbonaceous (CAR), and limestone are defined by chemical com- 
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position rather than by 4 size. Alluvium similarly is not defined by 4 size, but 
rather, by origin-relating to the fact that it is recent, unconsolidated material 
overlying older rocks. Except for coal relative to carbonaceous (which are both 
rich in organics), we have chosen all four of these lithotypes to have the max- 
imum defined distance, max 6 ( f ,  u )  = 6, from all other lithotypes, due to great 
dissimilarity based on factors other than 4 size (Table 2). Shale (SHA), which 
by definition is composed of grains with a 4 size equivalent to claystone, is 
defined to be the same distance as claystone from all other lithotypes. However, 
as a result of textural differences, shale is more laminated and fissle than clay- 
stone, and a minimum distance, 6 ( r ,  u )  = 0.5, between shale and claystone is 
used. 

The next task is to combine 6 values for major and minor types into one 
distance measure 

s * ( f i ' f : ;  uju;> = a6(ti', uj) + (1  - a) q t : ,  ui') (11) 

Here we have simply taken a linear combination of the major and minor type 
6 ( f ,  u )  distances [a = q t ,  eq. (5 )  of Howell, 19831. 

Only strata thickness remains to be added to our distance function. Our 
earlier measure was 

I wi - vj 1/42 
where, for example, q2 = 10 ft, say. This would put every 10 ft  of difference 
between strata thickness into equal weight with one unit of 4 distance between 
lithotypes. What is troubling about this assignment is that I 10 - 20 1 / 10 = 1 
is equivalent to I110 - 120 I /10 = 1, so that absolute difference is the con- 
sideration. A much more reasonable assignment seems to be 

Iwi - vj I 
max { 6 ( t ,  u ) }  

max { wi, vi } 
This gives thickness distance a value which is relative to individual strata thick- 
ness and in the same range as lithotype distance. 

We combine Eqs. (11) and (12) into 

d ( q ,  b j )  = d [ ( f i ' ,  f : ,  Wi), (uj, u;, V i ) ]  

= a s ( t f ,  uj) + (1  - a) q t : ,  vi') 

I wi - vj 1 + max 6 ( t ,  u )  
max { wi, vi } r.u 
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Equation (13) defines one-to-one matching. It must be extended to multiple 
matches (one-to-many and many-to-many). The idea behind multiple matching 
is to blend several similar strata into one somewhat heterogeneous stratum. 
Suppose individual units are aiai + . . . , ai and bk bk + , , . . . , b,. We extend 
Eq. (11) by 

Dividing by the minimum number of units in either ai, . . . , ai or bk. . . . , bl, 
lets us view this correlation of the larger number of units with the “average” 
unit in the opposite column. Notice that this coincides precisely with the one- 
to-one correlation distance in Eq. (1 1) above or the one-to-many equation pre- 
sented in our earlier work. We also suggest considering weighting 6 (a,, by ) by 
the proportion of type a, ( by ) in the respective columns. 

The extension, then, of Eq. (13) to general multiple matching, is 
i I  

C c [as(t: ,  + (1  - a) & ( t i ,  
x = i  y = k  

d(ai ,  . . . , ai, bk, . . . , b , )  = 
m i n { j - i + l , f - k + l }  

I 

Gaps have not been discussed yet. Reasonably, an initial gap cost /3 and a 
per unit of thickness cost y may be defined. This gives a gap function of the 
form 

which readily extends to 

This function is “linear” and allows the efficiencies discussed earlier. 
The final issue we wish to address is conversion of these distance functions 

to those appropriate for similarity. The key is the choice of the constant K (see 
section on maximum similarity correlation) where 
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S ( U ,  b )  = K - d ( ~ ,  b )  

We would like s(a,  b)  > 0 for “quality” correlations, s(a, b) = 0 for cor- 
relations we are indifferent about, and s(a, b)  < 0 for poor correlations. K is, 
obviously, a parameter the user can adjust. To achieve both positive and neg- 
ative values of s, K must satisfy 

0 < K < max d ( a ,  b) 
a& 

For single strata a and b 

61w - V I  
max d ( a ,  b) = max 6 ( t ,  u )  + max 
a, b 1, u w , u  max {w, v }  

= 6 + 6 = 1 2  

Any value of K larger than 6 does not seem useful to us, whereas a value of K 
as small as 3 seems fairly restrictive. 

SUMMARY 

A need for more rapid quantitative correlation of sedimentary strata, 
whether dealing with outcrops, cores, or geophysical log data has existed. How- 
ever, with realization that correlation of geologic sections with no gaps is the 
exception rather than the rule, an approach had to be developed that would 
consider all anomalies present between two correlative geologic sections. 
Such an approach had to account for erosional disconformities, emplacement in 
one section and not in the other of isolated or convulsive depositional events, 
and occurrence of sedimentary facies representing contemporaneous deposition 
of more than one sediment type in adjoining environments. The approach de- 
scribed in this paper accounts for such anomalies, respectively, though the abil- 
ity to include single and multiple gaps in the correlations, through the ability 
to match a stratigraphic unit from one section with several adjacents units in 
the second section, and through the ability to compare both minimum distance 
and maximum similarity within a single correlation. Furthermore, based on 
one’s knowledge of various depositional environments, different weighting 
schemes may be applied to account for chemical and physical variations occur- 
ring in the strata under study. 

We do not suggest that the proposed algorithms for stratigraphic correla- 
tion replace the geologist or geophysicist presently correlating sedimentary sec- 
tions. Indeed, the geologist/geophysicist must determine the weighting schemes 
for correlations and, based on those schemes, make a decision as to the most 
reasonable of the multiple best fits that result. We have shown that algorithms 



126 Waterman and Raymond 

exist, that when combined with the knowledge of the investigator, provide a 
mechanism to consider complex sedimentary phenomena in automated corre- 
lations. 
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