

The Mirror Crack'd:

Constraining the matterantimatter asymmetry with T2K

https://doi.org/10.1038/s41586-020-2177-0

Outline

- Introduction to the T2K experiment
- Quick review of neutrino oscillations
- Excursion to matter-antimatter asymmetry
- The CP-violating phase measurement

- Will try to be light on the maths
- Will borrow slides from Federico Sanchez' CERN seminar talk
- T2K logo in top right corner

The T2K Experiment

What is T2K

- T2K = Tokai To Kamioka
 - Neutrino beam experiment in Japan
- J-PARC (Tokai) → Super-Kamiokande (Kamioka)

J-PARC

J-PARC = Japan Proton Accelerator Research Complex

Joint Project between KEK and JAEA

T2K experiment

Neutrinos produced in a particle accelerators or nuclear reactors.

Neutrino flux properties

Neutrino flux & flavour

νμ,**ν**μ

Off-axis beam

Off-axis

- off-axis optimises the flux at the maximum of the oscillation.
- Only one oscillation maximum can be measured at a fixed distance.
- Narrow beam less dependent on beam uncertainties but more on beam pointing.
- Lower energies achieved.

On-axis

- on-axis optimises the total integrated flux.
- Spectrum with higher neutrino energy (longer oscillation distances)
- If broad enough, more than one oscillation maximum can be measured at a fixed distance.

Near Detector Site IZK

INGRID: On-axis

ND280: Off-axis

Wagasci/BabyMind: Off-axis

Side MRDs

Far detector

Particle range

Electromagnetic energy reconstruction

Hadronic interactions

Neutrino Oscillations

Neutrino oscillations IZK

- Neutrino flavour eigenstates are not the same than the neutrino Lorentz eigenstates.
- Eigenstates are related through a rotation matrix.

Flavour eigenstates

$$(
u_e,
u_\mu,
u_ au)$$

state of the neutrino interactions

Lorentz eigenstates

$$(\nu_1, \nu_2, \nu_3)$$

states of the neutrino propagation in space

Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix

$$\begin{pmatrix} \nu_e & \nu_\mu & \nu_ au \end{pmatrix} = U_{PNMS} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$

Oscillation parameters

PNMS Matrix

$$U_{PNMS} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta_{23} & \sin\theta_{23} \\ 0 & -\sin\theta_{23} & \cos\theta_{23} \end{pmatrix} \begin{pmatrix} \cos\theta_{13} & 0 & e^{-i\delta_{CP}}\sin\theta_{13} \\ 0 & 1 & 0 \\ -e^{i\delta_{CP}}\sin\theta_{13} & 0 & \cos\theta_{13} \end{pmatrix} \begin{pmatrix} \cos\theta_{12} & \sin\theta_{12} & 0 \\ -\sin\theta_{12} & \cos\theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Parameter	best-fit	3σ
$^{\sim 4\%}$ $\Delta m_{21}^2 \ [10^{-5} \ { m eV}^{\ 2}]$	7.37	6.93 - 7.96
~3% $\Delta m^2_{31(23)} \ [10^{-3} \ { m eV}^{\ 2}]$	2.56 (2.54)	2.45 - 2.69 (2.42 - 2.66)
~11% $\sin^2 \theta_{12}$	0.297	0.250 - 0.354
$\sin^2 \theta_{23}, \Delta m_{31(32)}^2 > 0$	0.425	0.381 - 0.615
$\sin^2\theta_{23}, \Delta m^2_{31(32)} > 0$ $\sin^2\theta_{23}, \Delta m^2_{32(31)} < 0$	0.589	0.384 - 0.636
$\sin^2 \theta_{13}, \Delta m_{31(32)}^2 > 0$	0.0215	0.0190 - 0.0240
$\sin^2 \theta_{13}, \Delta m_{31(32)}^2 > 0$ $\sin^2 \theta_{13}, \Delta m_{32(31)}^2 < 0$	0.0216	0.0190 - 0.0242
~31% δ/π	1.38(1.31)	2σ : $(1.0 - 1.9)$
		$(2\sigma: (0.92\text{-}1.88))$

Most of the parameters measured with <10% precision

 θ_{23} is known with 15% precision

Remaining parameters are $\,\delta_{CP}$ and the hierarchy

Mass hierarchy

 Oscillations is a quantum interference phenomenon that depends on the (quadratic) mass difference:

$$\Delta m^2_{ij} = m^2_i - m^2_j$$

• Due to matter effects in solar neutrinos we know:

$$\Delta m^2_{12} > 0$$

- Hierarchy determines the ordering of the masses.
 Traditionally:
 - Normal: m₁<m₂<m₃
 - Inverted: m₃<m₁<m₂

normal hierarchy (NH)

inverted hierarchy (IH)

Neutrino oscillations

Weak state

Mass state

Weak state

Neutrino state vector of 3 complex (!) numbers

• Different mass eigenstates propagate with different

phase velocities

 When expressing neutrino state as in flavour base after a while it is no longer pure!

Neutrino oscillations

Weak state

Mass state

Neutrino state vector of 3 complex (!) numbers

Different mass eigenstates propagate with different

phase velocities

 When expressing neutrino state as in flavour base after a while it is no longer pure!

Neutrino oscillations

Neutrino state vector of 3 complex (!) numbers

 $\mathsf{sin}^2(\mathsf{2} heta_{13})\mathsf{sin}^2(heta_{23})$

1000

800

Different mass eigenstates propagate with different

phase velocities

 When expressing neutrino state as in flavour base after a while it is no longer pure!

 $\sin^2(2\theta_{23})$

400

Mass state

0.6

0.5

0.4

0.3

0.2

0.1

1200

CP Asymmetry

 Subdominant term changes electron appearance probability differently for (anti)neutrinos

$$P(\nu_{\mu} \to \nu_{e}) \approx \sin^{2}(2\theta_{13})\sin^{2}\theta_{23}\sin^{2}\left(\frac{1.27\Delta m_{32}^{2}L}{E}\right)$$

$$\mp \frac{1.27\Delta m_{21}^{2}L}{E}8J_{CP}\sin^{2}\left(\frac{1.27\Delta m_{32}^{2}L}{E}\right)$$
(2)

- Up to 40% effect on # of expected events at SK
- Matter effects add another 10% → some sensitivity to mass ordering

CP Asymmetry

 Subdominant term changes electron appearance probability differently for (anti)neutrinos

$$P(\nu_{\mu} \to \nu_{e}) \approx \sin^{2}(2\theta_{13})\sin^{2}\theta_{23}\sin^{2}\left(\frac{1.27\Delta m_{32}^{2}L}{E}\right)$$

$$\mp \frac{1.27\Delta m_{21}^{2}L}{E}8J_{CP}\sin^{2}\left(\frac{1.27\Delta m_{32}^{2}L}{E}\right)$$
(2)

- Up to 40% effect on # of expected events at SK
- Matter effects add another 10% → some sensitivity to mass ordering

OIY (Oscillate It Yourself)

- VISOS by Xianguo Lu, Rasched Haidari, Artur Sztuc
 - Web application to visualise changing flavour probabilities depending on oscillation parameters
- http://www-pnp.physics.ox.ac.uk/~luxi/visos/

CP Violation and the Matter-Antimatter Asymmetry

CP violation

- Charge (C) and parity (P) symmetry are maximally broken in weak interactions
 - Things are different in a mirror universe, xor when switching all particles for antiparticles
 - See e.g. Wu experiment
- The combined CP symmetry is also broken, but less obviously so
 - Things are still different when in a mirror universe *and* switching all particles for antiparticles
 - Implies time symmetry (T) is also broken, assuming CPT is conserved
 - So far only observed in quark sector, see e.g. K^0 decay

CP violation

- All standard model processes create/destroy matter and antimatter in equal amounts
- Need beyond standard model physics to explain the observed matter dominance in the universe
 - Baryogenesis
 - Leptogenesis
 - ...
- Sakharov conditions:
 - Baryon number violation
 - C and CP violation
 - Process out of thermal equilibrium
- CP violating effect in quark sector too weak to explain existence of matter excess via baryogenesis

CP violation

- CP violation in lepton sector not observed yet
- Could be large enough to "explain" existence of matter excess via leptogenesis
 - Jarlskog invariant in lepton sector (PMNS matrix):

$$J_{\text{CP,I}} = \frac{1}{8} \cos \theta_{13} \sin(2\theta_{12}) \sin(2\theta_{23}) \sin(2\theta_{13}) \sin \delta_{\text{CP}}$$

$$\approx 0.033 \sin \delta_{\text{CP}}$$

$$(1)$$

- In quark sector (CKM matrix): $(I_{CP,q} = 3 \times 10^{-5})$
- CP violation is a necessary condition, not sufficient
 - Still need beyond standard model processes for other Sakharov conditions

T2K's δ_{CP} Measurement

Principle

- Count electron-neutrino events in SuperK
 - Both in neutrino and antineutrino beam mode
 - Data analysed here taken between 2009 and 2018
- Compare with model expectations
 - Exclude parameter space that is incompatible with data

Principle

- Count electron-neutrino events in SuperK
 - Both in neutrino and antineutrino beam mode
 - Data analysed here taken between 2009 and 2018
- Compare with model expectations
 - Exclude parameter space that is incompatible with data

Principle

- Count electron-neutrino events in SuperK
 - Both in neutrino and antineutrino beam mode
 - Data analysed here taken between 2009 and 2018
- Compare with model expectations
 - Exclude parameter space that is incompatible with data

$\overline{SK \nu_e/\bar{\nu}_e}$ candidates, neutrino mode

SK v_e/\bar{v}_e candidates, antineutrino md.

- First 3-sigma confidence interval of δ_{CP} :
 - In normal mass ordering $(m_3 > m_{1,2})$: [-3.41, -0.03]
 - In inverted mass ordering $(m_3 < m_{1,2})$: [-2.54, -0.32]
 - Favouring maximal CP violation

• First 3-sigma confidence interval of δ_{CP} :

• In normal mass ordering $(m_3 > m_{1,2})$: [-3.41, -0.03]

• In inverted mass ordering $(m_3 < m_{1,2})$: [-2.54, -0.32]

Favouring maximal CP violation

• First 3-sigma confidence interval of δ_{CP} :

• In normal mass ordering $(m_3 > m_{1,2})$: [-3.41, -0.03]

• In inverted mass ordering $(m_3 < m_{1,2})$: [-2.54, -0.32]

Favouring maximal CP violation

$\overline{\nu_e/\overline{\nu}_e}$ samples overview

С	1e0de v-mode	1e0de $\bar{\nu}$ -mode	1e1de ν -mode
$_{\rm s}$ $_{\rm m}$ $_{\rm \mu}$ $_{\rm e}$	59.0	3.0	5.4
$\delta_{\rm CP} = -\frac{\pi}{2} \qquad \begin{array}{c} \nu_{\mu} \to \nu_{\rm e} \\ \bar{\nu}_{\mu} \to \bar{\nu}_{\rm e} \end{array}$	0.4	7.5	0.0
Background	13.8	6.4	1.5
Total predicted	73.2	16.9	6.9
Systematic uncertainty	8.8%	7.1%	18.4%
Data	75	15	15

- Systematic uncertainties constrained by near detector fits
 - ~17% → ~9% in single lepton samples
 - \sim 22% \rightarrow \sim 19% in pion sample
- Largest uncertainties from neutrino interaction models
 - "Largest individual contribution" 7.1% of total 8.8%

v_e/\bar{v}_e samples overview

Delayed electron = pion

c	1e0de v-mode	1e0de ⊽-mode	1e1de ν-mode
	Teode V-IIIode	redue v-mode	Te rue /-mode
$_{\rm s}$ $_{\rm m}$ $_{\rm \mu} \rightarrow \nu_{\rm e}$	59.0	3.0	5.4
$\delta_{\rm CP} = -\frac{\pi}{2} \qquad \begin{array}{c} \nu_{\mu} \to \nu_{\rm e} \\ \bar{\nu}_{\mu} \to \bar{\nu}_{\rm e} \end{array}$	0.4	7.5	0.0
Background	13.8	6.4	1.5
Total predicted	73.2	16.9	6.9
Systematic uncertainty	8.8%	7.1%	18.4%
Data	75	15	15

- Systematic uncertainties constrained by near detector fits
 - ~17% → ~9% in single lepton samples
 - \sim 22% \rightarrow \sim 19% in pion sample
- Largest uncertainties from neutrino interaction models
 - "Largest individual contribution" 7.1% of total 8.8%

v_e/\bar{v}_e samples overview

Delayed electron = pion

C		1e0de ν -mode	1e0de $\bar{\nu}$ -mode	1e1de ν-mode
$_{s}$ $_{\pi}$ $\nu_{\mu} \rightarrow \nu_{\epsilon}$	÷	59.0	3.0	5.4
$\delta_{\rm CP} = -\frac{\pi}{2} \qquad \begin{array}{c} \nu_{\mu} \to \nu_{\epsilon} \\ \bar{\nu}_{\mu} \to \bar{\nu}_{\epsilon} \end{array}$,	0.4	7.5	0.0
Backgrou	nd	13.8	6.4	1.5
Total predic	eted	73.2	16.9	6.9
Systematic und	ertainty	8.8%	7.1%	18.4%
Data		75	15	15

- Systematic uncertainties constrained by near detector fits
 - ~17% → ~9% in single lepton samples
 - \sim 22% \rightarrow \sim 19% in pion sample

- "The probability of observing an excess over prediction in one of our five samples at least as large as that seen in the electron-like charged pion sample is 6.9%, [...]"
- Largest uncertainties from neutrino interaction models
 - "Largest individual contribution" 7.1% of total 8.8%

Reactor constraint

• Result also uses reactor neutrino results as constraint

Summary

- The (anti)electron-neutrino appearance probability in a (anti)muon-neutrino beam depends on a CP-violating phase in the PNMS matrix
 - It affects neutrinos and antineutrinos in opposite ways
- T2K was able to exclude a large region of the phase space at the 3-sigma level
 - Result point towards maximal CP violation
 - Slight preference for normal mass ordering
- CP violation in the lepton sector is a necessary building block for explaining the matter dominance via leptogenesis
 - Not a finished explanation, but important input for models

http://higgstan.com/4koma-t2k/

T2K

©Yuki A., higgstan.com

J-PARC-chan lives in Tokai-mura, Naka-gun, Ibaraki, Japan.

Super-Kamiokande-chan lives in Kamioka-cho, Hida-city, Gifu, Japan.

CP violation phase IZK

Ve vertex distribution

Systematic uncertainties

- Constrained by near detector fits
 - 13% 17% \rightarrow 4% 9% in single lepton samples
 - 22% \rightarrow 19% in pion sample
- Largest uncertainties from neutrino interaction models
 - "Largest individual contribution" 7.1% of total 8.8%

Type of Uncertainty	$ u_e/ar{ u}_e$ Candidate Relative Uncertainty (%)
Super-K Detector Model	1.5
Pion Final State Interaction and Rescattering Model	1.6
Neutrino Production and Interaction Model Constrained by ND280 Data	2.7
Electron Neutrino and Antineutrino Interaction Model	3.0
Nucleon Removal Energy in Interaction Model	3.7
Modeling of Neutral Current Interactions with Single γ Production	1.5
Modeling of Other Neutral Current Interactions	0.2
Total Systematic Uncertainty	6.0

Systematic uncertainties

- Constrained by near detector fits
 - 13% 17% \rightarrow 4% 9% in single lepton samples
 - 22% \rightarrow 19% in pion sample
- Largest uncertainties from neutrino interaction models
 - "Largest individual contribution" 7.1% of total 8.8%

Type of Uncertainty	$ u_e/ar{ u}_e $ Candidate Relative Uncertainty (%)
Super-K Detector Model	1.5
Pion Final State Interaction and Rescattering Model	1.6
Neutrino Production and Interaction Model Constrained by ND280 Data	2.7
Electron Neutrino and Antineutrino Interaction Model	3.0
Nucleon Removal Energy in Interaction Model	3.7
Modeling of Neutral Current Interactions with Single γ Production	1.5
Modeling of Other Neutral Current Interactions	0.2
Total Systematic Uncertainty	6.0

Near detector fit, FHC

Near detector fit, RHC

Nova results

