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SQL:1999 — Escaping the Relational Cage

 

To say that these SQL:1999 extensions are mere  
“extended interpretations” of the relational data model 
is like saying that an intercontinental ballistic missile is  

merely an “extended interpretation” of a spear.

 
With SQL/99 you can get the best of both worlds and 

of course, you can get the worst of both worlds. 
It’s up to the database practitioners to do the right thing.
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Non-Relational Operations 
‣ Introduced recursive 

queries that process 
their own output 
‣Transitive closure
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WITH	RECURSIVE	prev	(id,	parent)	AS	(	

) 

		SELECT	t.id,	t.parent	
				FROM	t	
			WHERE	t.id	=	?
UNION	ALL			
		SELECT	t.id,	t.parent	
				FROM	t	
				JOIN	prev	ON	t.parent	=	prev.id

SELECT	*	FROM	prev
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SQL:2016 — JSON

id a1

42 foo

43 bar
 

[	
		{	
				"id":	42,	
				"a1":	"foo"	
		},	
		{	
				"id":	43,	
				"a1":	"bar"	
		}	
]

http://standards.iso.org/ittf/PubliclyAvailableStandards/c067367_ISO_IEC_TR_19075-6_2017.zip
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SQL has evolved 

beyond 
the relational idea

 
If you use SQL for 

CRUD operations only, 
you are doing it wrong

 
A lot has  
happened 

since SQL-92

https://modern-sql.com 
@ModernSQL by @MarkusWinand


