
The Mother of All Query Languages:
SQL in Modern Times

@MarkusWinand • @ModernSQL

http://www.almaden.ibm.com/cs/people/chamberlin/sequel-1974.pdf

http://www.almaden.ibm.com/cs/people/chamberlin/sequel-1974.pdf

1974 1992

SQL-92 — Tied to the Relational Idea

Relational Data Model
‣ “Atomic” types (domain)

Atom image: https://commons.wikimedia.org/wiki/File:Stylised_atom_with_three_Bohr_model_orbits_and_stylised_nucleus.png

SQL-92 — Tied to the Relational Idea

Relational Data Model
‣ “Atomic” types (domain)

A B C

SQL-92 — Tied to the Relational Idea

Relational Data Model
‣ “Atomic” types (domain)
‣Schema independent of 

processing purposes
‣ “Normalization”

A B C C D B E

SQL-92 — Tied to the Relational Idea

Relational Data Model
‣ “Atomic” types (domain)
‣Schema independent of 

processing purposes
‣ “Normalization”

Relational Operations
‣Transform data for 

each particular 
processing purposes
‣JOIN, UNION, nesting, …

A B C C D B E A B C D E

SQL-92 — Tied to the Relational Idea

Relational Data Model
‣ “Atomic” types (domain)
‣Schema independent of 

processing purposes
‣ “Normalization”

Relational Operations
‣Transform data for 

each particular 
processing purposes
‣JOIN, UNION, nesting, …

A B C C D B E A B C D E

A B E

SQL-92 — Tied to the Relational Idea

Relational Data Model
‣ “Atomic” types (domain)
‣Schema independent of 

processing purposes
‣ “Normalization”

Relational Operations
‣Transform data for 

each particular 
processing purposes
‣JOIN, UNION, nesting, …

A B C C D B E A B C D E

A B E

C D E

SQL-92 — Tied to the Relational Idea

Relational Data Model
‣ “Atomic” types (domain)
‣Schema independent of 

processing purposes
‣ “Normalization”

Relational Operations
‣Transform data for 

each particular 
processing purposes
‣JOIN, UNION, nesting, …

A B C C D B E A B C D E

A B E

C D E

1992 1999

https://www.wiscorp.com/DBMS_-_GreatNews-TheRelationalModelIsDead_-_paper_-_sam.pdf

https://www.wiscorp.com/DBMS_-_GreatNews-TheRelationalModelIsDead_-_paper_-_sam.pdf

SQL:1999 — Escaping the Relational Cage

To say that these SQL:1999 extensions are mere  
“extended interpretations” of the relational data model 
is like saying that an intercontinental ballistic missile is  

merely an “extended interpretation” of a spear.

With SQL/99 you can get the best of both worlds and 

of course, you can get the worst of both worlds. 
It’s up to the database practitioners to do the right thing.

https://www.wiscorp.com/DBMS_-_GreatNews-TheRelationalModelIsDead_-_paper_-_sam.pdf

https://www.wiscorp.com/DBMS_-_GreatNews-TheRelationalModelIsDead_-_paper_-_sam.pdf

Relational Model?

Chris DateDate on Database: Writings 2000-2006

SQL:1999 — Escaping the Relational Cage

?
I was as confused as anyone else

Relational Model?

Chris DateDate on Database: Writings 2000-2006

SQL:1999 — Escaping the Relational Cage

?I was as confused as anyone else
By the early 1990s, however, 

I’d seen the light
Domains Can Contain Anything!

Relational Model?
‣ Introduced rich types

Chris DateDate on Database: Writings 2000-2006

SQL:1999 — Escaping the Relational Cage

?I was as confused as anyone else
By the early 1990s, however, 

I’d seen the light
Domains Can Contain Anything!

Relational Model?
‣ Introduced rich types
‣arrays

Chris DateDate on Database: Writings 2000-2006

SQL:1999 — Escaping the Relational Cage

A B

[,]
[]
[]

?I was as confused as anyone else
By the early 1990s, however, 

I’d seen the light
Domains Can Contain Anything!

Relational Model?
‣ Introduced rich types
‣arrays
‣Nested tables (multiset)

Chris DateDate on Database: Writings 2000-2006

SQL:1999 — Escaping the Relational Cage

A B

[,]
[]
[]

C
C D

C D

C D

?I was as confused as anyone else
By the early 1990s, however, 

I’d seen the light
Domains Can Contain Anything!

Relational Model?
‣ Introduced rich types
‣arrays
‣Nested tables (multiset)
‣composite types (objects)

Chris DateDate on Database: Writings 2000-2006

SQL:1999 — Escaping the Relational Cage

A B C D

[,] {x: ,
 y: }

[] {x: ,
 y: }

[] {x: ,
 y: }

C D

C D

C D

?I was as confused as anyone else
By the early 1990s, however, 

I’d seen the light
Domains Can Contain Anything!

Relational Model?
‣ Introduced rich types
‣arrays
‣Nested tables (multiset)
‣composite types (objects)

Non-Relational Operations
‣ Introduced recursive 

queries that process 
their own output
‣Transitive closure

Chris DateDate on Database: Writings 2000-2006

SQL:1999 — Escaping the Relational Cage

?I was as confused as anyone else
By the early 1990s, however, 

I’d seen the light
Domains Can Contain Anything!

SQL:1999 — Recursion

SQL:1999 — Recursion

SQL:1999 — Recursion

SQL:1999 — Recursion

		SELECT	t.id,	t.parent	
				FROM	t	
			WHERE	t.id	=	?
UNION	ALL			
		SELECT	t.id,	t.parent	
				FROM	t	
			WHERE	t.parent	=	?

SQL:1999 — Recursion

		SELECT	t.id,	t.parent	
				FROM	t	
			WHERE	t.id	=	?
UNION	ALL			
		SELECT	t.id,	t.parent	
				FROM	t	
			WHERE	t.parent	=	?

SQL:1999 — Recursion

		SELECT	t.id,	t.parent	
				FROM	t	
			WHERE	t.id	=	?
UNION	ALL			
		SELECT	t.id,	t.parent	
				FROM	t	
			WHERE	t.parent	=	?

SQL:1999 — Recursion

WITH	RECURSIVE	prev	(id,	parent)	AS	(

) 

		SELECT	t.id,	t.parent	
				FROM	t	
			WHERE	t.id	=	?
UNION	ALL			
		SELECT	t.id,	t.parent	
				FROM	t	
				JOIN	prev	ON	t.parent	=	prev.id

SELECT	*	FROM	prev

SQL:1999 — Recursion

19
99

20
01

20
03

20
05

20
07

20
09

20
11

20
13

20
15

20
17

5.1 10.2 MariaDB
8.0 MySQL

8.4 PostgreSQL
3.8.3[0] SQLite

7.0 DB2 LUW
11gR2 Oracle

2005 SQL Server
[0]Only for top-level SELECT statements

1999 2016

SQL:2016 — JSON

http://standards.iso.org/ittf/PubliclyAvailableStandards/c067367_ISO_IEC_TR_19075-6_2017.zip

SQL:2016 — JSON

id a1

42 foo

43 bar

[
		{	
				"id":	42,	
				"a1":	"foo"	
		},	
		{	
				"id":	43,	
				"a1":	"bar"	
		}	
]

http://standards.iso.org/ittf/PubliclyAvailableStandards/c067367_ISO_IEC_TR_19075-6_2017.zip

SELECT	*	
		FROM	tbl	
					,	JSON_TABLE	
							(jsoncol	
							,	'$[*]'	
									COLUMNS	
									(id	INT								PATH	'$.id'	
									,	a1	VARCHAR(…)	PATH	'$.a1'	
)	
)	r				

SQL:2016 — JSON

[
		{	
				"id":	42,	
				"a1":	"foo"	
		},	
		{	
				"id":	43,	
				"a1":	"bar"	
		}	
]

id a1
42 foo
43 bar

SELECT	*	
		FROM	tbl	
					,	JSON_TABLE	
							(jsoncol	
							,	'$[*]'	
									COLUMNS	
									(id	INT								PATH	'$.id'	
									,	a1	VARCHAR(…)	PATH	'$.a1'	
)	
)	r				

SQL:2016 — JSON

[
		{	
				"id":	42,	
				"a1":	"foo"	
		},	
		{	
				"id":	43,	
				"a1":	"bar"	
		}	
]

id a1
42 foo
43 bar

SQL/JSON Path
‣ Query language to

select elements from
a JSON document
‣Defined in the 

SQL standard

SELECT	*	
		FROM	tbl	
					,	JSON_TABLE	
							(jsoncol	
							,	'$[*]'	
									COLUMNS	
									(id	INT								PATH	'$.id'	
									,	a1	VARCHAR(…)	PATH	'$.a1'	
)	
)	r				

SQL:2016 — JSON

[
		{	
				"id":	42,	
				"a1":	"foo"	
		},	
		{	
				"id":	43,	
				"a1":	"bar"	
		}	
]

id a1
42 foo
43 bar

SQL/JSON Path
‣ Query language to

select elements from
a JSON document
‣Defined in the 

SQL standard

SQL:2016 — JSON
19
99

20
01

20
03

20
05

20
07

20
09

20
11

20
13

20
15

20
17

MariaDB
8.0 MySQL

PostgreSQL
SQLite
DB2 LUW

12cR1 Oracle
SQL Server

SQL has evolved 

beyond
the relational idea

If you use SQL for

CRUD operations only,
you are doing it wrong

A lot has  
happened

since SQL-92

https://modern-sql.com 
@ModernSQL by @MarkusWinand

