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Abstract
A new set of benchmarks has been developed for the performance eval�

uation of highly parallel supercomputers� These benchmarks consist of �ve
parallel kernels and three simulated application benchmarks� Together they
mimic the computation and data movement characteristics of large scale
computational 	uid dynamics 
CFD� applications�

The principal distinguishing feature of these benchmarks is their �pencil
and paper
 speci�cation�all details of these benchmarks are speci�ed only
algorithmically� In this way many of the di�culties associated with conven�
tional benchmarking approaches on highly parallel systems are avoided�
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� GENERAL REMARKS

D� Bailey� D� Browning�� R� Carter� S� Fineberg�� and H� Simon�

��� Introduction

The Numerical Aerodynamic Simulation 
NAS� Program� which is based at
NASA Ames Research Center� is a large scale e�ort to advance the state of
computational aerodynamics� Speci�cally� the NAS organization aims �to
provide the Nation�s aerospace research and development community by the
year ���� a high�performance� operational computing system capable of sim�
ulating an entire aerospace vehicle system within a computing time of one to
several hours
 
ref� �� p� ��� The successful solution of this �grand challenge

problem will require the development of computer systems that can perform
the required complex scienti�c computations at a sustained rate nearly one
thousand times greater than current generation supercomputers can now
achieve� The architecture of computer systems able to achieve this level of
performance will likely be dissimilar to the shared memory multiprocessing
supercomputers of today� While no consensus yet exists on what the design
will be� it is likely that the system will consist of at least ���� processors
computing in parallel�

Highly parallel systems with computing power roughly equivalent to tra�
ditional shared memory multiprocessors exist today� Unfortunately� the per�
formance evaluation of these systems on comparable types of scienti�c com�
putations is very di�cult for several reasons� Few relevant data are available
for the performance of algorithms of interest to the computational aerophysics
community on many currently available parallel systems� Benchmarking and
performance evaluation of such systems has not kept pace with advances in
hardware� software and algorithms� In particular� there is as yet no gener�
ally accepted benchmark program or even a benchmark strategy for these
systems�

The popular �kernel
 benchmarks that have been used for traditional vec�
tor supercomputers� such as the Livermore Loops ���� the LINPACK bench�
mark ��� �� and the original NAS Kernels ���� are clearly inappropriate for

�Computer Sciences Corporation� El Segundo� California� This work is supported
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the performance evaluation of highly parallel machines� First of all� the
tuning restrictions of these benchmarks rule out many widely used parallel
extensions� More importantly� the computation and memory requirements
of these programs do not do justice to the vastly increased capabilities of the
new parallel machines� particularly those systems that will be available by
the mid�����s�

On the other hand� a full scale scienti�c application is similarly unsuitable�
First of all� porting a large program to a new parallel computer architecture
requires a major e�ort� and it is usually hard to justify a major research task
simply to obtain a benchmark number� For that reason we believe that the
otherwise very successful PERFECT Club benchmark ��� is not suitable for
highly parallel systems� This is demonstrated by very sparse performance
results for parallel machines in the recent reports ��� �� ���

Alternatively� an application benchmark could assume the availability of
automatic software tools for transforming �dusty deck
 source into e�cient
parallel code on a variety of systems� However� such tools do not exist today�
and many scientists doubt that they will ever exist across a wide range of
architectures�

Some other considerations for the development of a meaningful bench�
mark for a highly parallel supercomputer are the following�

� Advanced parallel systems frequently require new algorithmic and soft�
ware approaches� and these new methods are often quite di�erent from
the conventional methods implemented in source code for a sequential
or vector machine�

� Benchmarks must be �generic
 and should not favor any particular
parallel architecture� This requirement precludes the usage of any
architecture�speci�c code� such as message passing code�

� The correctness of results and performance �gures must be easily veri�
�able� This requirement implies that both input and output data sets
must be kept very small� It also implies that the nature of the compu�
tation and the expected results must be speci�ed in great detail�

� The memory size and run time requirements must be easily adjustable
to accommodate new systems with increased power�

� The benchmark must be readily distributable�
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In our view� the only benchmarking approach that satis�es all of these
constraints is a �paper and pencil
 benchmark� The idea is to specify a set
of problems only algorithmically� Even the input data must be speci�ed only
on paper� Naturally� the problem has to be speci�ed in su�cient detail that
a unique solution exists� and the required output has to be brief yet detailed
enough to certify that the problem has been solved correctly� The person
or persons implementing the benchmarks on a given system are expected
to solve the various problems in the most appropriate way for the speci�c
system� The choice of data structures� algorithms� processor allocation and
memory usage are all 
to the extent allowed by the speci�cation� left open to
the discretion of the implementer� Some extension of Fortran or C is required�
and reasonable limits are placed on the usage of assembly code and the like�
but otherwise programmers are free to utilize language constructs that give
the best performance possible on the particular system being studied�

To this end� we have devised a number of relatively simple �kernels�

which are speci�ed completely in chapter � of this document� However�
kernels alone are insu�cient to completely assess the performance potential
of a parallel machine on real scienti�c applications� The chief di�culty is that
a certain data structure may be very e�cient on a certain system for one of
the isolated kernels� and yet this data structure would be inappropriate if
incorporated into a larger application� In other words� the performance of
a real computational 	uid dynamics 
CFD� application on a parallel system
is critically dependent on data motion between computational kernels� Thus
we consider the complete reproduction of this data movement to be of critical
importance in a benchmark�

Our benchmark set therefore consists of two major components� �ve par�
allel kernel benchmarks and three simulated application benchmarks� The
simulated application benchmarks combine several computations in a man�
ner that resembles the actual order of execution in certain important CFD
application codes� This is discussed in more detail in chapter ��

We feel that this benchmark set successfully addresses many of the prob�
lems associated with benchmarking parallel machines� Although we do not
claim that this set is typical of all scienti�c computing� it is based on the key
components of several large aeroscience applications used on supercomput�
ers by scientists at NASA Ames Research Center� These benchmarks will be
used by the Numerical Aerodynamic Simulation 
NAS� Program to evaluate
the performance of parallel computers�
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��� Benchmark Rules

����� De�nitions

In the following� the term �processor
 is de�ned as a hardware unit capable
of executing both 	oating point addition and 	oating point multiplication in�
structions� The �local memory
 of a processor refers to randomly accessible
memory that can be accessed by that processor in less than one microsecond�
The term �main memory
 refers to the combined local memory of all proces�
sors� This includes any memory shared by all processors that can be accessed
by each processor in less than one microsecond� The term �mass storage

refers to non�volatile randomly accessible storage media that can be accessed
by at least one processor within forty milliseconds� A �processing node
 is
de�ned as a hardware unit consisting of one or more processors plus their
local memory� which is logically a single unit on the network that connects
the processors�

The term �computational nodes
 refers to those processing nodes pri�
marily devoted to high�speed 	oating point computation� The term �ser�
vice nodes
 refers to those processing nodes primarily devoted to system
operations� including compilation� linking and communication with external
computers over a network�

����� General rules

Implementations of these benchmarks must be based on either Fortran���

which includes Fortran��� as a subset� or C� although a wide variety of
parallel extensions are allowed� This requirement stems from the observation
that Fortran and C are the most commonly used programming languages by
the scienti�c parallel computing community at the present time� If in the
future� other languages gain wide acceptance in this community� they will
be considered for inclusion in this group� Assembly language and other low�
level languages and constructs may not be used� except that certain speci�c
vendor�supported assembly�coded library routines may be called 
see section
�������

We are of the opinion that such language restrictions are necessary� be�
cause otherwise considerable e�ort would be made by benchmarkers in low�
level or assembly�level coding� Then the benchmark results would tend to
re	ect the amount of programming resources available to the benchmarking
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organization� rather than the fundamental merits of the parallel system� Cer�
tainly the mainstream scientists that these parallel computers are intended
to serve will be coding applications at the source level� almost certainly in
Fortran or C� and thus these benchmarks are designed to measure the per�
formance that can be expected from such code�

Accordingly� the following rules must be observed in any implementations
of the NAS Parallel Benchmarks�

� All 	oating point operations must be performed using ���bit 	oating
point arithmetic�

� All benchmarks must be coded in either Fortran��� ���� or C ����� with
certain approved extensions�

� Implementation of the benchmarks may not include a mix of Fortran���
and C code�one or the other must be used�

� Any extension of Fortran��� that is in the High Performance Fortran

HPF� draft dated January ���� or later ���� is allowed�

� Any language extension or library routine that is employed in any of
the benchmarks must be supported by the vendor and available to all
users�

� Subprograms and library routines not written in Fortran or C may only
perform certain functions� as indicated in the next section�

� All rules apply equally to subroutine calls� language extensions and
compiler directives 
i�e�� special comments��

����� Allowable Fortran extensions and library routines

Fortran extensions and library routines are also permitted that perform the
following�

� Indicate sections of code that can be executed in parallel or loops that
can be distributed among di�erent computational nodes�

� Specify the allocation and organization of data among or within com�
putational nodes�
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� Communicate data between processing nodes�

� Communicate data between the computational nodes and service nodes�

� Rearrange data stored in multiple computational nodes� including con�
structs to perform indirect addressing and array transpositions�

� Synchronize the action of different computational nodes�

� Initialize for a data communication or synchronization operation that
will be performed or completed later�

� Perform high�speed input or output operations between main memory
and the mass storage system�

� Perform any of the following array reduction operations on an array
either residing within a single computational node or distributed among
multiple nodes� ���� MAX� MIN� AND� OR� XOR�

� Combine communication between nodes with one of the operations
listed in the previous item�

� Perform any of the following computational operations on arrays ei�
ther residing within a single computational node or distributed among
multiple nodes� dense or sparse matrix�matrix multiplication� dense or
sparse matrix�vector multiplication� one�dimensional� two�dimensional
or three�dimensional fast Fourier transforms� sorting� block tri�diagonal
system solution and block penta�diagonal system solution� Such rou�
tines must be callable with general array dimensions�

��� Sample Codes

The intent of this paper is to completely specify the computation to be car�
ried out� Theoretically� a complete implementation� including the generation
of the correct input data� could be produced from the information in this pa�
per� However� the developers of these benchmarks are aware of the di�culty
and time required to generate a correct implementation from scratch in this
manner� Furthermore� despite several reviews� ambiguities in this technical
paper may exist that could delay implementations�
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In order to reduce the number of di�culties and to aid the benchmarking
specialist� Fortran��� computer programs implementing the benchmarks are
available� These codes are to be considered examples of how the problems
could be solved on a single processor system� rather than statements of how
they should be solved on an advanced parallel system� The sample codes
actually solve scaled down versions of the benchmarks that can be run on
many current generation workstations� Instructions are supplied in comments
in the source code on how to scale up the program parameters to the full size
benchmark speci�cations�

These programs� as well as the benchmark document itself� are available
from the Systems Development Branch in the NAS Systems Division� Mail
Stop ������ NASA Ames Research Center� Mo�ett Field� CA �����������
attn� NAS Parallel Benchmark Codes� The sample codes are provided on
Macintosh 	oppy disks and contain the Fortran source codes� �ReadMe
 �les�
input data �les� and reference output data �les for correct implementations
of the benchmark problems� These codes have been validated on a number
of computer systems ranging from conventional workstations to supercom�
puters�

Three classes of problems are de�ned in this document� These will be
denoted �Sample Code�
 �Class A�
 and �Class B�
 since the three classes
di�er mainly in the sizes of principal arrays� Tables ���� ���� and ��� give
the problem sizes� memory requirements 
measured in Mw�� run times and
performance rates 
measured in M	op�s� for each of the eight benchmarks
and for the Sample Code� Class A� and Class B problem sets� These statis�
tics are based on implementations on one processor of a Cray Y�MP� The
operation count for the Integer Sort benchmark is based on integer oper�
ations rather than 	oating�point operations� The entries in the �Problem
Size
 columns are sizes of key problem parameters� Complete descriptions
of these parameters are given in chapters � and ��

��� Submission of Benchmark Results

It must be emphasized that the sample codes described in section ��� are not
the benchmark codes� but only implementation aids� For the actual bench�
marks� the sample codes must be scaled to larger problem sizes� The sizes
of the current benchmarks were chosen so that implementations are possi�
ble on currently available supercomputers� As parallel computer technology

�



Benchmark code Problem Memory Time Rate
size 
Mw� 
sec� 
M	op�s�

Embarrassingly parallel 
EP� ��� ��� ���� ���
Multigrid 
MG� ��� ��� ��� ���
Conjugate gradient 
CG� ���� ��� ��� ��
��D FFT PDE 
FT� ��� ��� ��� ���
Integer sort 
IS� ��� ��� ��� ����
LU solver 
LU� ��� ��� ��� ��
Pentadiagonal solver 
SP� ��� ��� ��� ��
Block tridiagonal solver 
BT� ��� ��� ��� ��

Table ���� NAS Parallel Benchmarks Sample Code Statistics

progresses� future releases of these benchmarks will specify larger problem
sizes�

The authors and developers of these benchmarks encourage submission of
performance results for the problems listed in table ���� Periodic publication
of the submitted results is planned� Benchmark results should be submitted
to the Applied Research Branch� NAS Systems Division� Mail Stop T������
NASA Ames Research Center� Mo�ett Field� CA ������ attn� NAS Parallel
Benchmark Results� A complete submission of results should include the
following�

� A detailed description of the hardware and software con�guration used
for the benchmark runs�

� A description of the implementation and algorithmic techniques used�

� Source listings of the benchmark codes�

� Output listings from the benchmarks�
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Benchmark code Problem Memory Time Rate
size 
Mw� 
sec� 
M	op�s�

Embarrassingly parallel 
EP� ��� � ��� ���
Multigrid 
MG� ���� �� �� ���
Conjugate gradient 
CG� ����� �� �� ��
��D FFT PDE 
FT� ���� � ��� �� �� ���
Integer sort 
IS� ��� �� �� ����
LU solver 
LU� ��� �� ��� ���
Pentadiagonal solver 
SP� ��� � ��� ���
Block tridiagonal solver 
BT� ��� �� ��� ���

Table ���� NAS Parallel Benchmarks Class A Statistics

Benchmark code Problem Memory Time Rate
size 
Mw� 
sec� 
M	op�s�

Embarrassingly parallel 
EP� ��� �� ��� ���
Multigrid 
MG� ���� �� ��� ���
Conjugate gradient 
CG� ����� �� ��� ��
��D FFT PDE 
FT� ������� � ��� ��� ��� ���
Integer sort 
IS� ��� ��� ��� ��
LU solver 
LU� ���� ��� ���� ���
Pentadiagonal solver 
SP� ���� �� ���� ���
Block tridiagonal solver 
BT� ���� �� ���� ���

Table ���� NAS Parallel Benchmarks Class B Statistics
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� THE KERNEL BENCHMARKS

D� Bailey� E� Barszcz� L� Dagum�� P� Frederickson�y R� Schreiber�y

and H� Simon�

��� Overview

After an evaluation of a number of large scale CFD and computational aero�
sciences applications on the NAS supercomputers at NASA Ames� a number
of kernels were selected for the benchmark� These were supplemented by
some other kernels which are intended to test speci�c features of parallel
machines� The following benchmark set was then assembled�

EP� An �embarrassingly parallel
 kernel� It provides an estimate of the
upper achievable limits for 	oating point performance� i�e�� the perfor�
mance without signi�cant interprocessor communication�

MG� A simpli�ed multigrid kernel� It requires highly structured long dis�
tance communication and tests both short and long distance data com�
munication�

CG� A conjugate gradient method is used to compute an approximation to
the smallest eigenvalue of a large� sparse� symmetric positive de�nite
matrix� This kernel is typical of unstructured grid computations in that
it tests irregular long distance communication� employing unstructured
matrix vector multiplication�

FT� A ��D partial di�erential equation solution using FFTs� This kernel
performs the essence of many �spectral
 codes� It is a rigorous test of
long�distance communication performance�

IS� A large integer sort� This kernel performs a sorting operation that is
important in �particle method
 codes� It tests both integer computa�
tion speed and communication performance�

�Computer Sciences Corporation� This work is supported through NASA Contract
NAS ��������

yResearch Institute for Advanced Computer Science �RIACS�� Ames Research Center�
This work is supported by NAS Systems Division through Cooperative Agreement Number
NCC ��	
��
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These kernels involve substantially larger computations than previous ker�
nel benchmarks� such as the Livermore Loops or Linpack� and therefore they
are more appropriate for the evaluation of parallel machines� The Parallel
Kernels in particular are su�ciently simple that they can be implemented
on a new system without unreasonable e�ort and delay� Most importantly�
as emphasized earlier� this set of benchmarks incorporates a new concept in
performance evaluation� namely that only the computational task is speci�
�ed� and that the actual implementation of the kernel can be tailored to the
speci�c architecture of the parallel machine�

In this chapter the Parallel Kernel benchmarks are presented� and the
particular rules for allowable changes are discussed� Future reports will de�
scribe implementations and benchmarking results on a number of parallel
supercomputers�

��� Description of the Kernels

����� Kernel EP� An embarrassingly parallel benchmark

D� Bailey and P� Frederickson

Brief Statement of Problem
Generate pairs of Gaussian random deviates according to a speci�c scheme

described below and tabulate the number of pairs in successive square annuli�

Detailed Description
Set n � ���� a � ��� and s � ���� ���� ���� Generate the pseudorandom

	oating point values rj in the interval 
�� �� for � � j � �n using the
scheme described in section ���� Then for � � j � n set xj � �r�j�� � �
and yj � �r�j � �� Thus xj and yj are uniformly distributed on the interval

��� ���

Next set k � �� Then beginning with j � �� test to see if tj � x�j �y�j � ��
If not� reject this pair and proceed to the next j� If this inequality holds� then

set k � k��� Xk � xj
q

�� log tj��tj and Yk � yj

q

�� log tj��tj� where log

denotes the natural logarithm� Then Xk and Yk are independent Gaussian
deviates with mean zero and variance one� Approximately n��� pairs will
be constructed in this manner� See reference �� page ��� for additional dis�
cussion of this scheme for generating Gaussian deviates� The computation
of Gaussian deviates must employ the above formula� and vendor�supplied
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Class A Class B
l Ql Ql

� �������� ���������
� �������� ���������
� �������� ��������
� ������� �������
� ����� ������
� ��� ���
� � �
� � �
� � �
� � �

Table ���� EP Benchmark Counts

intrinsic routines must be employed for performing all square root and loga�
rithm evaluations�

Finally� for � � l � � tabulate Ql as the count of the pairs 
Xk� Yk� that
lie in the square annulus l � max
jXkj� jYkj� � l � �� and output the ten Ql

counts� The two sums
P

k Xk and
P

k Yk must also be output�
This completes the de�nition of the Class A problem� The Class B prob�

lem is the same except that n � ����

Veri�cation Test
The two sums

P
k Xk and

P
k Yk must agree with reference values to

within one part in ����� For the Class A problemm� the reference values are
���������������������� and ���������������������� � while for the Class
B problem the sums are ��������������������� and �������������������
���� Each of the tenQl counts must agree exactly with reference values� which
are given in table ����

Operations to be Timed
All of the operations described above are to be timed� including tabulation

and output�
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Other Features

� This problem is typical of many Monte Carlo simulation applications�

� The only requirement for communication is the combination of the ��
sums from various processors at the end�

� Separate sections of the uniform pseudorandom numbers can be inde�
pendently computed on separate processors� See section ��� for details�

� The smallest distance between a 	oating�point value and a nearby in�
teger among the rj� Xk and Yk values is ��� � ������ which is well
above the achievable accuracy using �� bit 	oating arithmetic on ex�
isting computer systems� Thus if a truncation discrepancy occurs� it
implies a problem with the system hardware or software�

����� Kernel MG� a simple �D multigrid benchmark

E� Barszcz and P� Frederickson

Brief Statement of Problem
Four iterations of the V�cycle multigrid algorithm described below are

used to obtain an approximate solution u to the discrete Poisson problem

r�u � v

on a ��� � ��� � ��� grid with periodic boundary conditions�

Detailed Description
Set v � � except at the twenty points listed in table ���� where v � ���


These points were determined as the locations of the ten largest and ten
smallest pseudorandom numbers generated as in Kernel FT��

Begin the iterative solution with u � �� Each of the four iterations
consists of the following two steps� in which k � � � log�
�����

r � v � A u 
evaluate residual�

u � u � Mk r 
apply correction�

Here Mk denotes the V�cycle multigrid operator� de�ned in table ����
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vi�j�k 
i�j�k�
���� �������� �� ����������� �������� �� ������� �� ��� ������

���� ����� ����������� ���������� �������� �� ���� ������
���� ���������� ��������� ����������� ���������� ���� �����

����������� ���� ������ ���� ������ �������� �� ������� ��

Table ���� Nonzero values for v

zk � Mkrk �
if k � �

rk�� � P rk 
restrict residual�
zk�� � Mk��rk�� 
recursive solve�
zk � Q zk�� 
prolongate�
rk � rk � A zk 
evaluate residual�
zk � zk � S rk 
apply smoother�

else
z� � S r�� 
apply smoother�

Table ���� V�cycle multigrid operator

In this de�nition A denotes the trilinear �nite element discretization of
the Laplacian r� normalized as indicated in table ���� where the coe�cients
of P� Q� and S are also listed�
In this table c� denotes the central coe�cient of the ���point operator� when
these coe�cients are arranged as a �� �� � cube� Thus c� is the coe�cient
that multiplies the value at the gridpoint 
i�j�k�� while c� multiplies the six
values at grid points which di�er by one in exactly one index� c� multiplies
the next closest twelve values� those that di�er by one in exactly two indices�
and c� multiplies the eight values located at grid points that di�er by one
in all three indices� The restriction operator P given in this table is the
trilinear projection operator of �nite element theory� normalized so that the
coe�cients of all operators are independent of level� and is half the transpose
of the trilinear interpolation operator Q�
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C c� c� c� c�
A �������� ��� ������� ��������
P ������� ������� ������� ��������
Q ��� ������� ������� �������
S
a� �������� ��������� ��������� ���
S
b� ��������� ��������� ��������� ���

Table ���� Coe�cients for trilinear �nite element discretization

Veri�cation Test
Class A� Evaluate the residual after four iterations of the V�cycle multi�

grid algorithm using the coe�cients from the S
a� row for the smoothing
operator S� and verify that its L� norm

krk� � � 

X
i�j�k

ri�j�k ������ ����

agrees with the reference value

������������ � �����

within an absolute tolerance of ������
Class B� The array size is the same as for Class A 
����� but �� iterations

must be performed using the coe�cients from the S
b� row for the smoothing
operator S� The output L� norms must agree with the reference value

�������������� � �����

within an absolute tolerance of ������
Timing

Start the clock before evaluating the residual for the �rst time� and after
initializing u and v� Stop the clock after evaluating the norm of the �nal
residual� but before displaying or printing its value�

��



����� Kernel CG� Solving an unstructured sparse linear system
by the conjugate gradient method

R� Schreiber� H� Simon� and R� Carter

Brief Statement of Problem
This benchmark uses the inverse power method to �nd an estimate of

the largest eigenvalue of a symmetric positive de�nite sparse matrix with a
random pattern of nonzeros�

Detailed Description
In the following� A denotes the sparse matrix of order n� lower case Roman

letters are vectors� xj is the jth component of the vector x� and superscript
�T
 indicates the usual transpose operator� Lower case Greek letters are
scalars� We denote by jjxjj the Euclidean norm of a vector x� jjxjj � p

xTx�
All quantities are real� The inverse power method is to be implemented as
follows�

x � ��� �� � � � � ��T �

start timing here�
DO it � �� niter

Solve the system Az � x and return jjrjj� as described below
� � � � ��
xT z�
Print it� jjrjj� and �
x � z�jjzjj

ENDDO

stop timing here�

Values for the size of the system n� number of outer iterations niter� and
the shift � for three di�erent problem sizes are provided in table ���� The
solution z to the linear system of equations Az � x is to be approximated us�
ing the conjugate gradient 
CG� method� This method is to be implemented
as follows�

z � �
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r � x
� � rT r
p � r
DO i � �� ��

q � Ap
	 � ��
pT q�
z � z � 	p
�� � �
r � r � 	q
� � rTr

 � ����
p � r � 
p

ENDDO
compute residual norm explicitly� jjrjj � jjx�Azjj

Size n niter NONZER �

Sample ���� �� � ��
Class A ����� �� �� ��
Class B ����� �� �� ��

Table ���� Input parameters for CG benchmark

Veri�cation Test
The program should print� at every outer iteration of the power method�

the iteration number it� the eigenvalue estimate �� and the Euclidean norm
jjrjj of the residual vector at the last CG iteration 
the vector r in the dis�
cussion of CG above�� For each size problem the computer value of � must
agree with the reference value �REF within a tolerance of ��� � ������ i�e��
j� � �REF j � ���� ������ These reference values �REF are provided in table
����
Timing

The reported time must be the wall�clock time required to compute all
niter iterations and print the results� after the matrix is generated and down�
loaded into the system� and after the initialization of the starting vector x�
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Computed FLOP mem
Size nonzeros ���� 
MW� �REF

Sample ����� ����� ��� ����������������
Class A ������� ���� ���� �����������������
Class B �������� ���� ���� ���������������

Table ���� Output parameters for CG benchmark

It is permissible initially to reorganize the sparse matrix data structure

arow� acol� aelt�� which is produced by the matrix generation routine 
de�
scribed below�� to a data structure better suited for the target machine�
The original or the reorganized sparse matrix data structure can then be
subsequently used in the conjugate gradient interation� Time spent in the
initial reorganization of the data structure will not be counted towards the
benchmark time�

It is also permissible to use several di�erent data structures for the matrix
A� keep multiple copies of the matrix A� or to write A to mass storage and
read it back in� However� the time for any data movements� which take place
within the power iterations 
outer iteration� or within the conjugate gradient
iterations 
inner iteration�� must be included in the reported time�

However� the matrix A must be used explicitly� By saving the random
sparse vectors x used in makea 
see below�� it is possible to reformulate the
sparse matrix�vector multiply operation in such a way that communication
is substantially reduced 
to only a few dense vectors�� and sparse operations
are restricted to the processing nodes� Although this scheme of matrix�vector
multiplication technically satis�ed the original rules of the CG benchmark� it
defeats this benchmark�s intended purpose of measuring random communi�
cation performance� Therefore this scheme is no longer allowed� and results
employing implicit matrix�vector multiplication based on the outer prod�
uct representation of the sparse matrix are no longer considered to be valid
benchmark results�

Other Features
The input sparse matrix A is generated by a Fortran �� subroutine called

makea� which is provided on the sample code disk described in section ����
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In this program� the random number generator is initialized with a � ���

and s � ���������� Then the subroutine makea is called to generate the
matrix A� This program may not be changed� In the makea subroutine the
matrix A is represented by the following Fortran �� variables�
N �INTEGER��the number of rows and columns
NZ �INTEGER��the number of nonzeros
A �REAL����array of NZ nonzeros
IA �INTEGER��array of NZ row indices� Element A
K� is in row IA
K� for
all � � K � NZ�
JA �INTEGER��array of N�� pointers to the beginnings of columns� Column
J of the matrix is stored in positions JA
J� through JA
J����� of A and IA�
JA
N��� contains NZ���

The code generates the matrix as the weighted sum of N outer products
of random sparse vectors x�

A �
NX
i	�

�ixx
T

where the weights �i are a geometric sequence with �� � � and the ratio
chosen so that �N � ���� The vectors x are chosen to have a few randomly
placed nonzeros� each of which is a sample from the uniform distribution
on 
�� ��� Furthermore� the ith element of xi is set to ��� to insure that
A cannot be structurally singular� Finally� ��� is added to the diagonal
of A� This results in a matrix whose condition number 
the ratio of its
largest eigenvalue to its smallest� is roughly ��� The number of randomly
chosen elements of x is provided for each problem size in table ���� in the
�NONZER
 column� The �nal number of nonzeros of A are listed in table ���
in the �computed nonzeros
 column� As implemented in the sample codes�
the shift � of the main diagonal of A is the �nal task in subroutine makea�
Values are provided for � in table ����

The data structures used are these� First� a list of triples 
arow� acol� aelt�
is constructed� Each of these represents an element in row i � arow� column
j � acol� with value aij � aelt� When the arow and acol entries of two of
these triples coincide� then the values in their aelt �elds are added together in
creating aij� The process of assembling the matrix data structures from the
list of triples� including the process of adding coincident entries� is done by
the subroutine sparse� which is called by makea and is also provided� For
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examples and more details on this sparse data structure� consult section ���
of the book by Du�� Erisman� and Reid ����

����� Kernel FT� A ��D fast�Fourier transform partial di	erential
equation benchmark

D� Bailey and P� Frederickson

Brief Statement of Problem
Numerically solve a certain partial di�erential equation 
PDE� using for�

ward and inverse FFTs�

Detailed Description
Consider the PDE

�u
x� t�

�t
� 	r�u
x� t�

where x is a position in three�dimensional space� When a Fourier transform
is applied to each side� this equation becomes

�v
z� t�

�t
� ��	��jzj�v
z� t�

where v
z� t� is the Fourier transform of u
x� t�� This has the solution

v
z� t� � e����
�jzj�tv
z� ��

Now consider the discrete version of the original PDE� Following the
above steps� it can be solved by computing the forward ��D discrete Fourier
transform 
DFT� of the original state array u
x� ��� multiplying the results by
certain exponentials� and then performing an inverse ��D DFT� The forward
DFT and inverse DFT of the n��n��n� array u are de�ned respectively as

Fq�r�s
u� �
n���X
l	�

n���X
k	�

n���X
j	�

uj�k�le
���ijq�n�e���ikr�n�e���ils�n�

F��
q�r�s
u� �

�

n�n�n�

n���X
l	�

n���X
k	�

n���X
j	�

uj�k�le
��ijq�n�e��ikr�n�e��ils�n�

The speci�c problem to be solved for the Class A benchmark is as follows�
Set n� � ���� n� � ���� and n� � ���� Generate �n�n�n� ���bit pseudo�
random 	oating point values using the pseudorandom number generator in
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section ���� starting with the initial seed ���������� Then �ll the complex
array Uj�k�l� � � j � n�� � � k � n�� � � l � n�� with this data� where the
�rst dimension varies most rapidly as in the ordering of a ��D Fortran array�
A single complex number entry of U consists of two consecutive pseudoran�
domly generated results� Compute the forward ��D DFT of U � using a ��D
fast Fourier transform 
FFT� routine� and call the result V � Set 	 � ����

and set t � �� Then compute

Wj�k�l � e����
�
�j���k���l�
tVj�k�l

where �j is de�ned as j for � � j � n��� and j � n� for n��� � j � n��
The indices �k and �l are similarly de�ned with n� and n�� Then compute an
inverse ��D DFT on W � using a ��D FFT routine� and call the result the
array X� Finally� compute the complex checksum

P����
j	� Xq�r�s where q � j


mod n��� r � �j 
mod n�� and s � �j 
mod n��� After the checksum for
this t has been output� increment t by one� Then repeat the above process�
from the computation of W through the incrementing of t� until the step
t � N has been completed� In this benchmark� N � �� The V array and the
array of exponential terms for t � � need only be computed once� Note that
the array of exponential terms for t � � can be obtained as the t�th power of
the array for t � ��

This completes the de�nition of the Class A problem� The Class B prob�
lem is the same except that n� � ���� n� � ���� n� � ���� and N � ���

Any algorithm may be used for the computation of the ��D FFTs men�
tioned above� One algorithm is the following� Assume that the data in the
input n� � n� � n� complex array A are organized so that for each k and l�
all elements of the complex vector 
Aj�k�l� � � j � n�� are contained within a
single processing node� First perform an n��point ��D FFT on each of these
n�n� complex vectors� Then transpose the resulting array into an n��n��n�
complex array B� Next� perform an n��point ��D FFT on each of the n�n�
�rst�dimension complex vectors of B� Again note that each of the ��D FFTs
can be performed locally within a single node� Then transpose the resulting
array into an n� � n� � n� complex array C� Finally� perform an n��point
��D FFT on each of the n�n� �rst�dimension complex vectors of C� Then
transpose the resulting array into an n� � n� � n� complex array D� This
array D is the �nal ��D FFT result�

Algorithms for performing an individual ��D complex�to�complex FFT
are well known and will not be presented here� Readers are referred to ��� �� ��
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�� �� for details� It should be noted that some of these FFTs are �unordered

FFTs� i�e�� the results are not in the correct order but instead are scrambled
by a bit�reversal permutation� Such FFTs may be employed if desired� but
it should be noted that in this case the ordering of the exponential factors in
the de�nition of Wj�k�l above must be similarly scrambled in order to obtain
the correct results� Also� the �nal result array X may be scrambled� in which
case the checksum calculation will have to be changed accordingly�

It should be noted that individual ��D FFTs� array transpositions� and
even entire ��D FFT operations may be performed using vendor�supplied
library routines� See sections ����� and ����� for details�

Operations to be Timed
All of the above operations� including the checksum calculations� must

be timed�

Veri�cation Test
The N complex checksumsmust agree with reference values to within one

part in ����� For the parameter sizes speci�ed above� the reference values are
given in table ����

Other Features

� ��D FFTs are a key part of certain CFD applications� notably large
eddy turbulence simulations�

� The ��D FFT steps require considerable communication for operations
such as array transpositions�

����
 Kernel IS� Parallel sort over small integers

L� Dagum

Brief Statement of Problem
Sort N keys in parallel� The keys are generated by the sequential key

generation algorithm given below and initially must be uniformly distributed
in memory� The initial distribution of the keys can have a great impact on
the performance of this benchmark� and the required distribution is discussed
in detail below�
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Class A Class B
t Real Part Imaginary Part t Real Part Imaginary Part
� �������������� �������������� � �������������� ��������������
� �������������� �������������� � �������������� ��������������
� �������������� �������������� � �������������� ��������������
� �������������� �������������� � �������������� ��������������
� �������������� �������������� � �������������� ��������������
� �������������� �������������� � �������������� ��������������

� �������������� ��������������
� �������������� ��������������
� �������������� ��������������

�� �������������� ��������������
�� �������������� ��������������
�� �������������� ��������������
�� �������������� ��������������
�� �������������� ��������������
�� �������������� ��������������
�� �������������� ��������������
�� �������������� ��������������
�� �������������� ��������������
�� �������������� ��������������
�� �������������� ��������������

Table ���� FT Benchmark Checksums
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De�nitions
A sequence of keys� fKi j i � �� �� � � � � N � �g� will be said to be

sorted if it is arranged in non�descending order� i�e�� Ki � Ki�� � Ki�� � � ��
The rank of a particular key in a sequence is the index value i that the
key would have if the sequence of keys were sorted� Ranking� then� is the
process of arriving at a rank for all the keys in a sequence� Sorting is
the process of permuting the the keys in a sequence to produce a sorted
sequence� If an initially unsorted sequence� K��K�� � � � �KN�� has ranks
r
��� r
��� � � � � r
N���� the sequence becomes sorted when it is rearranged in
the order Kr
�
�Kr
�
� � � � �Kr
N��
� Sorting is said to be stable if equal keys
retain their original relative order� In other words� a sort is stable only if
r
i� � r
j� whenever Kr
i
 � Kr
j
 and i � j� Stable sorting is not required
for this benchmark�

Memory Mapping
The benchmark requires ranking an unsorted sequence of N keys� The

initial sequence of keys will be generated in an unambiguous sequential man�
ner as described below� This sequence must be mapped into the memory
of the parallel processor in one of the following ways depending on the type
of memory system� In all cases� one key will map to one word of memory�
Word size must be no less than �� bits� Once the keys are loaded onto the
memory system� they are not to be moved or modi�ed except as required by
the procedure described in the Procedure subsection�

Shared Global Memory
All N keys initially must be stored in a contiguous address space� If Ai is

used to denote the address of the ith word of memory� then the address space
must be �Ai� Ai�N���� The sequence of keys�K��K�� � � � �KN��� initially must
map to this address space as

Ai�j ��MEM
Kj � for j � �� �� � � � � N � � 
����

where MEM
Kj� refers to the address of Kj �
Distributed Memory

In a distributed memory system with p distinct memory units� each mem�
ory unit initially must store Np keys in a contiguous address space� where

Np � N�p 
����
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If Ai is used to denote the address of the ith word in a memory unit� and
if Pj is used to denote the jth memory unit� then Pj � Ai will denote the
address of the ith word in the jth memory unit� Some initial addressing 
or
�ordering
� of memory units must be assumed and adhered to throughout the
benchmark� Note that the addressing of the memory units is left completely
arbitrary� If N is not evenly divisible by p� then memory units fPj j j �
�� �� � � � � p� �g will store Np keys� and memory unit Pp�� will store Npp keys�
where now

Np � bN�p � ���c
Npp � N � 
p� ��Np

In some cases 
in particular if p is large� this mapping may result in a
poor initial load balance with Npp �� Np� In such cases it may be desirable
to use p� memory units to store the keys� where p� � p� This is allowed� but
the storage of the keys still must follow either equation ��� or equations ����
��� with p� replacing p� In the following we will assume N is evenly divisible
by p� The address space in an individual memory unit must be �Ai� Ai�Np����
If memory units are individually hierarchical� then Np keys must be stored
in a contiguous address space belonging to a single memory hierarchy and
Ai then denotes the address of the ith word in that hierarchy� The keys
cannot be distributed among di�erent memory hierarchies until after timing
begins� The sequence of keys� K��K�� � � � �KN��� initially must map to this
distributed memory as

Pk �Ai�j ��MEM
KkNp�j� for j � �� �� � � � � Np � �

and k � �� �� � � � � p � �

where MEM
KkNp�j� refers to the address of KkNp�j � If N is not evenly
divisible by p� then the mapping given above must be modi�ed for the case
where k � p� � as

Pp�� � Ai�j ��MEM
K
p��
Np�j� for j � �� �� � � � � Npp � �� 
����

Hierarchical Memory
All N keys initially must be stored in an address space belonging to a

single memory hierarchy which will here be referred to as the main memory�
Note that any memory in the hierarchy which can store all N keys may
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be used for the initial storage of the keys� and the use of the term �main
memory
 in the description of this benchmark should not be confused with
the more general de�nition of this term in section ������ The keys cannot
be distributed among di�erent memory hierarchies until after timing begins�
The mapping of the keys to the main memory must follow one of either the
shared global memory or the distributed memory mappings described above�

The benchmark requires computing the rank of each key in the sequence�
The mappings described above de�ne the initial ordering of the keys� For
shared global and hierarchical memory systems� the same mapping must be
applied to determine the correct ranking� For the case of a distributed mem�
ory system� it is permissible for the mapping of keys to memory at the end of
the ranking to di�er from the initial mapping only in the following manner�
the number of keys mapped to a memory unit at the end of the ranking may

di�er from the initial value� Np� It is expected� in a distributed memory
machine� that good load balancing of the problem will require changing the
initial mapping of the keys and for this reason a di�erent mapping may be
used at the end of the ranking� If Npk is the number of keys in memory
unit Pk at the end of the ranking� then the mapping which must be used to
determine the correct ranking is given by

Pk �Ai�j ��MEM
r
kNpk � j�� for j � �� �� � � � � Npk � �

and k � �� �� � � � � p � �

where r
kNpk �j� refers to the rank of keyKkNpk
�j � Note� however� this does

not imply that the keys� once loaded into memory� may be moved� Copies of
the keys may be made and moved� but the original sequence must remain in�
tact such that each time the ranking process is repeated 
Step � of Procedure�
the original sequence of keys exists 
except for the two modi�cations of Step
�a� and the same algorithm for ranking is applied� Speci�cally� knowledge
obtainable from the communications pattern carried out in the �rst ranking
cannot be used to speed up subsequent rankings and each iteration of Step
� should be completely independent of the previous iteration�

Key Generation Algorithm
The algorithm for generating the keys makes use of the pseudorandom

number generator described in section ���� The keys will be in the range
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Rank 
full� Full scale Rank 
sample� Sample code
r
�������� ��� � i r
������ � � i
r
������� ����� � i r
������ �� � i
r
�������� ������ � i r
������ ��� � i
r
�������� ������� � i r
������ ����� � i
r
�������� ������� � i r
����� ����� � i

Table ���� Values to be used for partial veri�cation

��� Bmax�� Let rf be a random fraction uniformly distributed in the range
��� ��� and let Ki be the ith key� The value of Ki is determined as

Ki �� bBmax
r�i���r�i���r�i���r�i�����c for i � �� �� � � � � N���
����

Note that Ki must be an integer and b�c indicates truncation� Four consecu�
tive pseudorandom numbers from the pseudorandom number generator must
be used for generating each key� All operations before the truncation must be
performed in ���bit double precision� The random number generator must
be initialized with s � ��������� as a starting seed�

Partial Veri�cation Test
Partial veri�cation is conducted for each ranking performed� Partial ver�

i�cation consists of comparing a particular subset of ranks with the reference
values� The subset of ranks and the reference values are given in table ����

Note that the subset of ranks is selected to be invariant to the ranking
algorithm 
recall that stability is not required in the benchmark�� This is
accomplished by selecting for veri�cation only the ranks of unique keys� If
a key is unique in the sequence 
i�e�� there is no other equal key�� then it
will have a unique rank despite an unstable ranking algorithm� The memory
mapping described in the Memory Mapping subsection must be applied�

Full Veri�cation Test
Full veri�cation is conducted after the last ranking is performed� Full

veri�cation requires the following�

�� Rearrange the sequence of keys� fKi j i � �� �� � � � � N � �g� in the
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order fKj j j � r
��� r
��� � � � � r
N���g� where r
��� r
��� � � � � r
N�
�� is the last computed sequence of ranks�

�� For every Ki from i � � � � � N � � test that Ki � Ki���

If the result of this test is true� then the keys are in sorted order� The memory
mapping described in the Memory Mapping subsection must be applied�

Procedure

�� In a scalar sequential manner and using the key generation algorithm
described above� generate the sequence of N keys�

�� Using the appropriate memory mapping described above� load the N
keys into the memory system�

�� Begin timing�

�� Do� for i � � to Imax


a� Modify the sequence of keys by making the following two changes�

Ki �� i

Ki�Imax �� 
Bmax � i�


b� Compute the rank of each key�


c� Perform the partial veri�cation test described above�

�� End timing�

�� Perform full veri�cation test described above�

Speci�cations
The speci�cations given in table ��� shall be used in the benchmark� Two

sets of values are given� one for Class A and one for Class B�
For partial veri�cation� the reference values given in table ��� are to be

used� In this table� r
j� refers to the rank of Kj and i is the iteration
of Step � of the Procedure� Again two sets of values are given� the Full

Scale set being for the actual benchmark and the Sample Code set being
for development purposes� It should be emphasized that the benchmark
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Parameter Class A Class B
N ��� ���

Bmax ��� ���

seed ��������� ���������
Imax �� ��

Table ���� Parameter values to be used for benchmark

measures the performance based on use of the Full Scale values� and the
Sample Code values are given only as a convenience to the implementor�
Also to be supplied to the implementor is Fortran �� source code for the
sequential implementation of the benchmark using the Sample Code values
and with partial and full veri�cation tests�

��� A Pseudorandom Number Generator for the Par�

allel NAS Kernels

D� Bailey
Suppose that n uniform pseudorandom numbers are to be generated� Set

a � ��� and let x� � s be a speci�ed initial �seed�
 i�e�� an integer in the
range � � s � ���� Generate the integers xk for � � k � n using the linear
congruential recursion

xk�� � axk 
mod ����

and return rk � ����xk as the results� Thus � � rk � �� and the rk are
very nearly uniformly distributed on the unit interval� See ���� beginning on
page � for further discussion of this type of pseudorandom number generator�

Note that any particular value xk of the sequence can be computed di�
rectly from the initial seed s by using the binary algorithm for exponentiation�
taking remainders modulo ��� after each multiplication� To be speci�c� let m
be the smallest integer such that �m � k� set b � s and t � a� Then repeat
the following for i from � to m�

j � k��
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b � bt 
mod ���� if �j �� k

t � t� 
mod ����

k � j

The �nal value of b is xk � aks 
mod ����� See ��� for further discussion of
the binary algorithm for exponentiation�

The operation of multiplying two large integers modulo ��� can be imple�
mented using �� bit 	oating point arithmetic by splitting the arguments into
two words with �� bits each� To be speci�c� suppose one wishes to compute
c � ab 
mod ����� Then perform the following steps� where int denotes the
greatest integer�

a� � int 
����a�

a� � a� ���a�

b� � int 
����b�

b� � b� ���b�

t� � a�b� � a�b�

t� � int 
����t��

t� � t� � ���t�

t� � ���t� � a�b�

t� � int 
����t��

c � t� � ���t�

An implementation of the complete pseudorandom number generator al�
gorithm using this scheme produces the same sequence of results on any
system that satis�es the following requirements�

� The input multiplier a and the initial seed s� as well as the constants
���� ����� ��� and ����� can be represented exactly as �� bit 	oating
point constants�

� The truncation of a nonnegative �� bit 	oating point value less than
��� is exact�

� The addition� subtraction and multiplication of �� bit 	oating point
values� where the arguments and results are nonnegative whole numbers
less than ���� produce exact results�
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� The multiplication of a �� bit 	oating point value� which is a nonneg�
ative whole number less than ���� by the �� bit 	oating point value
��m� � � m � ��� produces an exact result�

These requirements are met by virtually all scienti�c computers in use today�
Any system based on the IEEE���� 	oating point arithmetic standard ���
easily meets these requirements using double precision� However� it should
be noted that obtaining an exact power of two constant on some systems
requires a loop rather than merely an assignment statement with ���

Other Features

� The period of this pseudorandom number generator is ��� � ����������
and it passes all reasonable statistical tests�

� This calculation can be vectorized on vector computers by generating
results in batches of size equal to the hardware vector length�

� By using the scheme described above for computing xk directly� the
starting seed of a particular segment of the sequence can be quickly
and independently determined� Thus numerous separate segments can
be generated on separate processors of a multiprocessor system�

� Once the IEEE���� 	oating point arithmetic standard gains universal
acceptance among scienti�c computers� the radix ��� can be safely in�
creased to ���� although the scheme described above for multiplying
two such numbers must be correspondingly changed� This will increase
the period of the pseudorandom sequence by a factor of �� to approxi�
mately ���� � �����
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� AMETHODOLOGY FOR BENCHMARK�

ING SOMECFDKERNELS ONHIGHLY

PARALLEL PROCESSORS

Sisira Weeratunga�� Eric Barszcz� Rod Fatoohi�� and V� Venkatakrishnan�

Summary

A collection of iterative PDE solvers embedded in a pseudo application pro�
gram is proposed for the performance evaluation of CFD codes on highly
parallel processors� The pseudo application program is stripped of com�
plexities associated with real CFD application programs� thereby enabling a
simpler description of the algorithms� However� it is capable of reproducing
the essential computation and data motion characteristics of large scale� state
of the art CFD codes� In this chapter� we present a detailed description of
the pseudo application program concept� Preceding chapters address our ba�
sic approach towards the performance evaluation of parallel supercomputers
targeted for use in numerical aerodynamic simulation�

��� Introduction

Computational Fluid Dynamics 
CFD� is one of the �elds in the area of
scienti�c computing that has driven the development of modern vector su�
percomputers� Availability of these high performance computers has led to
impressive advances in the state of the art of CFD� both in terms of the
physical complexity of the simulated problems and the development of com�
putational algorithms capable of extracting high levels of sustained perfor�
mance� However� to carry out the computational simulations essential for
future aerospace research� CFD must be able and ready to exploit potential
performance and cost�performance gains possible through the use of highly
parallel processing technologies� Use of parallel supercomputers appears to
be one of the most promising avenues for realizing large complex physical
simulations within realistic time and cost constraints� Although many of the
current CFD application programs are amenable to a high degree of parallel

�Computer Sciences Corp�� Ames Research Center�
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computation� performance data on such codes for the current generation of
parallel computers often has been less than remarkable� This is especially
true for the class of CFD algorithms involving global data dependencies�
commonly referred to as the implicit methods� Often the bottleneck is data
motion� due to high latencies and inadequate bandwidth�

It is a common practice among computer hardware designers to use the
dense linear equation solution subroutine in the LINPACK to represent the
scienti�c computing workload� Unfortunately� the computational structures
in most CFD algorithms bear little resemblance to this LINPACK routine�
both in terms of its parallelization strategy as well as 	oating point and
memory reference features� Most CFD application codes are characterized by
their use of either regular or irregular sparse data structures and associated
algorithms� One of the reasons for this situation is the near absence of
communication between computer scientists engaged in the design of high
performance parallel computers and the computational scientists involved
in the development of CFD applications� To be e�ective� such exchange of
information should occur during the early stages of the design process� It
appears that one of the contributing factors to this lack of communication is
the complexity and con�dentiality associated with the state�of�the�art CFD
application codes� One way to help the design process is to provide the
computer scientists with synthetic CFD application programs� which lack
the complexity of a real application� but at the same time retain all the
essential computational structures� Such synthetic application codes can be
accompanied by detailed and simpler descriptions of the algorithms involved�
In return� the performance data on such synthetic application codes can be
used to evaluate di�erent parallel supercomputer systems at the procurement
stage by the CFD community�

Computational 	uid dynamics involves the numerical solution of a sys�
tem of nonlinear partial di�erential equations in two or three spatial dimen�
sions� with or without time dependence� The governing partial di�erential
equations� referred to as the Navier�Stokes equations� represent the laws of
conservation of mass� momentum and energy applied to a 	uid medium in
motion� These equations� when supplemented by appropriate boundary and
initial conditions� describe a particular physical problem� To obtain a system
of equations amenable to solution on a computer requires the discretization
of the di�erential equations through the use of �nite di�erence� �nite volume�
�nite element or spectral methods� The inherent nonlinearities of the govern�
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ing equations necessitate the use of iterative solution techniques� Over the
past years� a variety of e�cient numerical algorithms have been developed�
all requiring many 	oating point operations and large amounts of computer
memory to achieve a solution with the desired level of accuracy�

In current CFD applications� there are two types of computational meshes
used for the spatial discretization process� structured and unstructured�
Structured meshes are characterized by a consistent� logical ordering of mesh
points� whose connectivity is associated with a rectilinear coordinate system�
Computationally� structured meshes give rise to regularly strided memory
reference characteristics� In contrast� unstructured meshes o�er greater free�
dom in terms of mesh point distribution� but require the generation and
storage of random connectivity information� Computationally� this results
in indirect memory addressing with random strides� with its attendant in�
crease in memory bandwidth requirements� The synthetic application codes
currently under consideration are restricted to the case of structured meshes�

The numerical solution algorithms used in CFD codes can be broadly
categorized as either explicit or implicit� based on the procedure used for
the time domain integration� Among the advantages of the explicit schemes
are the high degree of easily exploitable parallelism and the localized spatial
data dependencies� These properties have resulted in highly e�cient imple�
mentations of explicit CFD algorithms on a variety of current generation
highly parallel processors� However� the explicit schemes su�er from strin�
gent numerical stability bounds and as a result are not optimal for problems
that require �ne mesh spacing for numerical resolution� In contrast� implicit
schemes have less stringent stability bounds and are suitable for problems
involving highly stretched meshes� However� their parallel implementation
is more di�cult and involve local as well as global spatial data dependen�
cies� In addition� some of the implicit algorithms possess limited degrees of
exploitable parallelism� At present� we restrict our synthetic applications to
three di�erent representative implicit schemes found in a wide spectrum of
production CFD codes in use at NASA Ames Research center�

In the remaining sections of this chapter� we describe the development
of a collection of synthetic application programs� First we discuss the ratio�
nale behind this approach followed by a complete description of three such
synthetic applications� We also outline the problem setup along with the as�
sociated veri�cation tests� when they are used to benchmark highly parallel
systems�
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��� Rationale

In the past� vector supercomputer performance was evaluated through the
use of suites of kernels chosen to characterize generic computational struc�
tures present at a site�s workload� For example� NASKernels ��� were selected
to characterize the computational workloads inherent in a majority of algo�
rithms used by the CFD community at Ames Research Center� However� for
highly parallel computer systems� this approach is inadequate for the reasons
outlined below�

The �rst stage of the pseudo application development process was the
analysis of a variety of implicit CFD codes and the identi�cation of a set of
generic computational structures that represented a range of computational
tasks embedded in them� As a result� the following computational kernels
were selected�

�� Solution of multiple� independent systems of nondiagonally�dominant�
block tridiagonal equations with a 
� � �� block size�

�� Solution of multiple� independent systems of nondiagonally�dominant�
scalar pentadiagonal equations�

�� Regular�sparse� block 
� � �� matrix�vector multiplication�

�� Regular�sparse� block 
� � �� lower and upper triangular system solu�
tion�

These kernels constitute a majority of the computationally�intensive� main
building blocks of the CFD programs designed for the numerical solution of
three�dimensional 
�D�� Euler�Navier�Stokes equations using �nite�volume�
�nite�di�erence discretization on structured grids� Kernels 
�� and 
�� are
representative of the computations associated with the implicit operator in
versions of the ARC�D code ���� These kernels involve global data depen�
dencies� Although they are similar in many respects� there is a fundamental
di�erence with regard to the communication�to�computation ratio� Kernel

�� typi�es the computation of the explicit part of almost all CFD algorithms
for structured grids� Here all data dependencies are local� with either nearest
neighbor or at most next�to�nearest neighbor type dependencies� Kernel 
��
represents the computations associated with the implicit operator of a newer
class of implicit CFD algorithms� typi�ed by the code INS�D�LU ���� This
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kernel may contain only a limited degree of parallelism� relative to the other
kernels�

In terms of their parallel implementation� these kernels represent varying
characteristics with regard to the following aspects� which are often related�

�� Available degree of parallelism�

�� Level of parallelism and granularity�

�� Data space partitioning strategies�

�� Global vs� local data dependencies�

�� Inter�processor and in�processor data motion requirements�

�� Ratio of communication to computation�

Previous research e�orts in adapting algorithms in a variety of 	ow solvers
to the current generation of highly parallel processors have indicated that the
overall performance of many CFD codes is critically dependent on the latency
and bandwidth of both the in�processor and inter�processor data motion�
Therefore� it is important for the integrity of the benchmarking process to
faithfully reproduce a majority of the data motions encountered during the
execution of applications in which these kernels are embedded� Also� the
nature and amount of data motion is dependent on the kernel algorithms
along with the associated data structures and the interaction of these kernels
among themselves as well as with the remainder of the application that is
outside their scope�

To obtain realistic performance data� speci�cation of both the incoming
and outgoing data structures of the kernels should mimic those occuring in
an application program� The incoming data structure is dependent on the
section of the code where the data is generated� not on the kernel� The op�
timum data structure for the kernel may turn out to be suboptimal for the
code segments where the data is generated and vice versa� Similar consid�
erations also apply to the outgoing data structure� Allowing the freedom to
choose optimal incoming and outgoing data structures for the kernel as a
basis for evaluating its performance is liable to produce results that are not
applicable to a complete application code� The overall performance should
re	ect the cost of data motion that occur between kernels�
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In order to reproduce most of the data motions encountered in the exe�
cution of these kernels in a typical CFD application� we propose embedding
them in a pseudo application code� It is designed for the numerical solution
of a synthetic system of nonlinear Partial Di�erential Equations 
PDEs�� us�
ing iterative techniques similar to those found in CFD applications of interest
to NASA Ames Research Center� However� it contains none of the pre� and
post�processing required by the full CFD applications� or the interactions of
the processors and the I�O subsystem� This can be regarded as a stripped�
down version of a CFD application� It retains the basic kernels that are
the principal building blocks of the application and admits a majority of the
interactions required between these basic routines� Also� the stripped�down
version does not represent a fully con�gured CFD application in terms of
system memory requirements� This fact has the potential for creating data
partitioning strategies during the parallel implementation of the synthetic
problem that may be inappropriate for the full application�

 From the point of view of functionality� the stripped�down version does
not contain the algorithms used to apply boundary conditions as in a real
application� It is well known that often the boundary algorithms gives rise to
load imbalances and idling of processors in highly parallel systems� Due to the
simpli�cation of the boundary algorithms� it is likely that the overall system
performance and e�ciency data obtained using the stripped�down version
may be higher than that of an actual application� This e�ect is somewhat
mitigated by the fact that for most realistic problems� a relatively small time
amount of is spent dealing with boundary algorithms when compared to the
time spent in dealing with the internal mesh points� Also� most boundary
algorithms involve only local data dependencies�

Some of the other advantages of the stripped�down application vs� full
application approach are�

�� Allows benchmarking where real application codes are con�dential�

�� Easier to manipulate and port from one system to another�

�� Since only the abstract algorithm is speci�ed� facilitates new implemen�
tations that are tied closely to the architecture under consideration�

�� Allows easy addition of other existing and emerging CFD algorithms
to the benchmarking process�
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�� Easily scalable to larger problem sizes�

It should be noted that this synthetic problem di�ers from a real CFD
problem in the following important aspects�

�� In full CFD application codes� a non�orthogonal coordinate transfor�
mation ��� is used to map the complex physical domains to the regu�
lar computational domains� thereby introducing metric coe�cients of
the transformation into the governing PDE�s and boundary conditions�
Such transformations are absent in the synthetic problem� and as a re�
sult may have reduced arithmetic complexity and storage requirements�

�� A blend of nonlinear� second� and fourth�di�erence arti�cial dissipation
terms ��� is used in most of the actual CFD codes� whose coe�cients
are determined based on the local changes in pressure� In the stripped�
down version� only a linear� fourth di�erence term is used� This reduces
the arithmetic and communication complexity needed to compute the
added higher�order dissipation terms� However� it should be noted that
computation of these arti�cial dissipation terms involve only local data
dependencies� similar to the matrix�vector multiplication kernel�

�� In codes where arti�cial dissipation is not used� upwind di�erencing
based on either 	ux�vector splitting ��� ��� 	ux�di�erence splitting ��� or
Total Variation Diminishing 
TVD� schemes ��� is used� The absence of
such di�erencing schemes in the stripped�down version induces e�ects
similar to 
�� on the performance data�

�� Absence of turbulence models� Computation of terms representing
some turbulence models involve a combination of local and some long�
range data dependencies� Arithmetic and communication complexity
associated with turbulence models are absent�

In addition� it needs to be emphasized that the stripped�down problem
is neither designed nor is suitable for the purposes of evaluating the conver�
gence rates and�or the applicability of various iterative linear system solvers
used in computational 	uid dynamics applications� As mentioned before�
the synthetic problem di�ers from the real CFD applications in the following
important ways�

�� Absence of realistic boundary algorithms�
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�� Higher than normal dissipative e�ects�

�� Lack of upwind di�erencing e�ects� based on either 	ux�vector splitting
or TVD schemes�

�� Absence of geometric sti�ness introduced through boundary conform�
ing coordinate transformations and highly stretched meshes�

�� Lack of evolution of weak 
i�e�� C��� solutions found in real CFD ap�
plications� during the iterative process�

�� Absence of turbulence modelling e�ects�

Some of these e�ects tend to suppress the predominantly hyperbolic na�
ture exhibited by the Navier�Stokes equations� when applied to compressible
	ows at high Reynolds numbers�

��� Mathematical Problem De�nition

We consider the numerical solution of the following synthetic system of �ve
nonlinear partial di�erential equations 
PDEs��

�U

�

�

�E
U�

��
�
�F
U�

��
�
�G
U�

��

�
�T
U�U��

��
�
�V
U�U��

��
�
�W
U�U��

��

�H
U�U��U��U��� 

� �� �� �� 	 D� �D 
����

with the boundary conditions�

B
U�U��U��U�� � UB

� �� �� ��� 

� �� �� �� 	 D� � �D 
����

and initial conditions�

U � U�
�� �� ��� 
�� �� �� 	 D for 
 � � 
����

where D 	 
� is a bounded domain� �D is its boundary and D� � f� � 
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Tg�
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Also� the solution to the system of PDEs�

U �

�
BBBBBBBBBBBBBBBB�

u
�


u
�


u
�


u
�


u
�


�
CCCCCCCCCCCCCCCCA

de�ned in 
 D � �D ��D� � is a vector function of temporal variable 
 and
spatial variables 
�� �� �� that form the orthogonal coordinate system in 
��
i�e��

u
m
 � u
m


� �� �� ��

The vector functions UB and U� are given and B is the boundary oper�
ator� E� F� G� T� V� W and H are vector functions with �ve components
each of the form�
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�
BBBBBBBBBBBBBBBB�
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�
CCCCCCCCCCCCCCCCA

and e
m
 � e
m

U� etc�� are prescribed functions�
The system given by equations ��� through ��� is in the !normal�form��

i�e�� it gives explicitly the time derivatives of all the dependent variables
u
�
� u
�
� � � � � u
�
� Consequently� the Cauchy data at 
 � �� given by equation
��� permits the calculation of solution U

� �� �� �� for 
 � ��
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In the current implementation of the synthetic PDE system solver� we
seek a steady�state solution of equations ��� through ��� of the form�

U� � f
�� �� �� �

�
BBBBBBBBBBBBBBBB�

f 
��

f 
�


f 
�


f 
�


f 
�


�
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where f 
m
 � f 
m

�� �� �� are prescribed functions of the following form�
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Here� the vector e is given by

eT � 
�� �� �� �� ��� ��� ��� ��� ��� ��� ��� ��� ��� �

and Cm�n�m � �� �� � � � � � � n � �� �� � � � � �� are speci�ed constants� The vec�
tor forcing function H � �h
�
� h
�
� h
�
� h
�
� h
�
�T � where h
m
 � h
m

�� �� ��
is chosen such that the system of PDE�s� along with the boundary and initial
conditions for H� satis�es the prescribed exact solution� U�� This implies
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The bounded spatial domain D is speci�ed to be the interior of the unit
cube �
�� ��� 
�� �� � 
�� ���� i�e��

D � f
�� �� �� � � � � � �� � � � � �� � � � � �g
and its boundary �D� is the surface of the unit cube given by

�D � f 
�� �� �� � � � � or �g � f 
�� �� �� � � � � or �g � f 
�� �� �� � � � � or �g
The vector functions E�F�G�T�V and W of the synthetic problem are

speci�ed to be the following�
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����� The boundary conditions

The boundary conditions for the system of PDEs is prescribed to be of the
uncoupled Dirichlet type� and is speci�ed to be compatible with U�� such
that
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����� The initial conditions

The initial values U� in D are set to those obtained by a trans�nite� trilinear
interpolation ��� of the boundary data given by equation ���� Let
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��� The Numerical Scheme

Starting from the initial values prescribed by equation ����� we seek some
discrete approximation U�

h 	 D to the steady�state solution U� of equations
��� through ���� through the numerical solution of the nonlinear system of
PDE�s using a pseudo�time marching scheme and a spatial discretization
procedure based on �nite di�erence approximations�

����� Implicit time di	erencing

The independent temporal variable 
 is discretized to produce the set

D� � f
n � n 	 ��� N �g
where the discrete time increment "
 is given by


n � 
n�� �"
 � n"


Also the discrete approximation of U on D� is denoted by

U

 � � U� 
n"
 � � Un

��



A generalized single�step temporal di�erencing scheme for advancing the
solution of equations ��� through ��� is given by ����

"Un �

"
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�"Un
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�Un
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"Un��
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�
� ��"
 � �"
 �� 
�����

where the forward di�erence operator " is de�ned as

"Un � Un�� �Un

With the appropriate choice for the parameters 
 and �� equation ����
reproduces many of the well known two� and three�level explicit and implicit
schemes� In this particular case� we are interested only in the two�level�
�rst�order accurate� Euler implicit scheme given by 
 � � and � � �� i�e��

"Un � "

�"Un

�

�"


�Un

�

�O�"
 �� 
�����

Substituting for 
�"Un��
 � and 
�U��
 � in equation ����� using equations
��� through ���� we get

"Un � "
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�
"En �"Tn�
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�
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�
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�
G�W�n
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� � "
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where "En � En�� �En and En�� � E
Un��� etc�
Equation ���� is nonlinear in "Un as a consequence of the fact that the

increments "En� "Fn� "Gn� "Tn� "Vn and "Wn are nonlinear functions
of the dependent variables U and its derivatives U�� U� and U�� A linear
equation with the same temporal accuracy as equation ���� can be obtained
by a linearization procedure using a local Taylor series expansion in time
about Un ���� ����

En�� � En � 

�E

�

�n"
 �O
"
 ��

� En � 

�E

�U
�n


�U

�

�n"
 �O
"
 �� 
�����

��



Also
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Then� by combining equations ���� and ����� we get
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 ��

where A
U� is the Jacobian matrix 
�E��U��
It should be noted that the above non�iterative time�linearization formu�

lation does not lower the formal order of accuracy of temporal discretization
in equation ����� However� if the steady�state solution is the only objective�
the quadratic convergence of the Newton�Raphson method 
for su�ciently
good initial approximations� is recovered only as "
 
��

Similarly� the linearization of remaining terms gives
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When the approximations given by equations ���� are introduced into
equation ����� we obtain the following linear equation for "Un�
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It should be noted that the notation of the form

�
�
A�M�N��n

��
�"Un

is used to represent the expressions as such

��
A�M�N��
n"Un�

��
etc�

The left hand side 
i�e��LHS� of equation ���� is referred to as the implicit
part and the right hand side 
i�e�� RHS� as the explicit part�

The solution at the advanced time� 
 � 
n� ��"
 � is given by

Un�� � Un �"Un
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The Jacobian matrices for the problem under consideration are given by
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����� Spatial discretization

The independent spatial variables 
�� �� �� are discretized by covering �D� 
 the
closure of D�� with a mesh of uniform increments 
 h�� h�� h� � in each of the
coordinate directions� The mesh points in the region will be identi�ed by the
index�triple 
i� j� k�� where the indices i 	 ��� N��� j 	 ��� N�� and k 	 ��� N��
correspond to the discretization of �� � and � coordinates� respectively�

Dh � �Dh � f
�i� �j� �k� � � � i � N�� � � j � N�� � � k � N�g
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where

�i � 
i� ��h�� �j � 
j � ��h�� �k � 
k � ��h� 
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and the mesh widths are given by

h� � ��
N� � ��� h� � ��
N� � ��� h� � ��
N� � ��

with 
N�� N�� N�� 	 N being the number of mesh points in ��� �� and
��directions� respectively�

Then� the set of interior mesh points is given by
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and the boundary mesh points by

�Dh � f
�i� �j � �k� � i 	 f�� N�gg � f
�i� �j � �k� �
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Also� the discrete approximation of U in 
 �D �D� � is denoted by

U

� �� �� �� �� U �
h 
n"
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i� ��h�� 
j � ��h�� 
k � ��h�� � Un

i�j�k

����� Spatial di	erencing

The spatial derivatives in equation ���� are approximated by the appropri�
ate �nite�di�erence quotients� based on the values of U �

h at mesh points in
Dh � �Dh� We use three�point� second�order accurate central di�erence ap�
proximations in each of the three coordinate directions�

In the computation of the �nite�di�erence approximation to the RHS�
the following two general forms of spatial derivatives are encountered� i�e��
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m
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�t
m

U�U��
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��



The �rst form is di�erenced as 
using m�th component vector function E as
an example�
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The second form is approximated as 
using m�th component of vector func�
tion T as an example�
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for � � i � 
N� � ��� Similar formulas are used in the �� and �� directions
as well�

During the �nite�di�erence approximation of the spatial derivatives in the
implicit part� following three general forms are encountered�
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The �rst form is approximated by the following�
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The second form is di�erenced in the following compact three�point form�
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Finally� the third form is di�erenced as follows�
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����� Added higher order dissipation

When central di�erence type schemes are applied to the solution of the Euler
and Navier�Stokes equations� a numerical dissipation model is included� and
it plays an important role in determining their success� The form of the
dissipation model is quite often a blending of second�di�erence and fourth�
di�erence dissipation terms ���� The second�di�erence dissipation is nonlinear
and is used to prevent oscillations in the neighborhood of discontinous 
i�e��
C�� solutions� and is negligible where the solution is smooth� The fourth�
di�erence dissipation term is basically linear and is included to suppress
high�frequencymodes and allow the numerical scheme to converge to a steady
state� Near solution discontinuities� it is reduced to zero� It is this term that
a�ects the linear stability of the numerical scheme�

In the current implementation of the synthetic problem� a linear fourth�

��



di�erence dissipation term of the following form�
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� h��

��Un

���
� h��

��Un
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�

is added to the right hand side of equation ���� Here� � is a speci�ed constant�
A similar term withUn replaced by "Un will appear in the implicit operator�
if it is desirable to treat the dissipation term implicitly as well�

In the interior of the computational domain� the fourth�di�erence term is
computed using the following �ve�point approximation�
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for � � i � 
N� � ���
At the �rst two interior mesh points belonging to either end of the compu�

tational domain� the standard �ve�point�di�erence stencil used for the fourth�
di�erence dissipation term is replaced by one�sided or one�sided biased sten�
cils� These modi�cations are implemented so as to maintain a non�positive
de�nite dissipation matrix for the system of di�erence equations �����
Then� at i � ��
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Similar di�erence formulas are also used in the �� and �� directions�
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Also� for vector functions T� V and W used here�
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Then� for the cases where added higher order dissipation terms are treated
only explicitly� equation ���� reduces to
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When the implicit treatment is extended to the added higher order dissipa�
tion terms as well� equation ���� takes the following form�
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The modi�ed vector forcing function is given by�
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����
 Computation of the explicit part�RHS

The discretized form of the explicit part of equation ���� is given by�
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where D� � D� and D� are second�order accurate� central spatial di�erencing
operators� de�ned in Dh� At each point in the mesh� �RHS�ni�j�k is a column
vector with � components� Discretization of added higher order dissipation
terms was already discussed in section ���� Here we consider the computation
of the �rst term in equation ����� using formulas given in equations ���� and
�����
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for f
i� j� k� 	 Dhg� Also� �RHS�ni�j�k � � for i � � or N�� j � � or N� and
k � � or N��

This right hand side computation is equivalent in terms of both arithmetic
and communication complexity to a regular sparse block 
���� matrix�vector

��



multiplication� which is the kernel 
c�� However� its e�cient implementation�
in this case� does not necessarily require the explicit formation and�or storage
of the regular sparse matrix�

����� Computation of the forcing vector function

Given the analytical form ofU�� the forcing vector functionH� can simply be
evaluated analytically as a function of �� �� and �� using equation ����� This
function� along with equation ����� can then be used to evaluate �H��i�j�k�
which is also a colunm vector with � components�

Here� we opt for a numerical evaluation of �H��i�j�k� using �U��i�j�k and the
�nite�di�erence approximations of equations ���� and ����� as in the case of
equation �����
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for f
i� j� k� 	 Dhg� The fourth di�erence dissipation terms are evaluated
using equation ����� Also� �H��i�j�k � � for i � � or N�� j � � or N� and k � �
or N��
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����
 Solution of the system of linear equations

Replacing the spatial derivatives appearing in equation ���� by their equiv�
alent di�erence approximations results in a system of linear equations for
�"Un�i�j�k for i 	 ��� N� � ��� j 	 ��� N� � �� and k 	 ��� N� � ��� Direct
solution of this system of linear equations requires a formidable matrix in�
version e�ort� in terms of both the processing time and storage requirements�
Therefore� "Un is obtained through the use of an iterative method� Here we
consider three such iterative methods� involving the kernels 
a�� 
b� and 
d��
All methods involve some form of approximation to the implicit operator or
the LHS of equation ����� For pseudo�time marching schemes� it is generally
su�cient to perform only one iteration per time step�

Approximate factorization �Beam�Warming� algorithm
In this method� the implicit operator in equation ���� is approximately

factored in the following manner ��� ���
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�fI �"
 �
�
C�n
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�
��
S�n

���
�g"Un � RHS

The Beam�Warming algorithm is to be implemented as shown below�

Initialization� Set the boundary values of Ui�j�k for 
i� j� k� 	 �Dh in accor�
dance with equation ���� Set the initial values of U�

i�j�k for 
i� j� k� 	 Dh in
accordance with equation ���� Compute the forcing function vector� H�

i�j�k

for 
i� j� k� 	 Dh� using equation �����

Step � 
Explicit part�� Compute the �RHS�ni�j�k for 
i� j� k� 	 Dh�
Step � 
��Sweep of the implicit part�� Form and solve the following system
of linear equations for �"U��i�j�k for 
i� j� k� 	 Dh�

fI�"
 �D�
A�n �D�
�
N�n�g"U� � RHS

Step � 
��Sweep of the implicit part�� Form and solve the following system
of linear equations for �"U��i�j�k for 
i� j� k� 	 Dh�

fI�"
 �D�
B�n �D�
�
Q�n�g"U� � "U�

��



Step � 
��Sweep of the implicit part�� Form and solve the following system
of linear equations for �"Un�i�j�k for 
i� j� k� 	 Dh�

fI�"
 �D�
C�n �D�
�
S�

n�g"Un � "U�

Step �� Update the solution

�Un���i�j�k � �Un�i�j�k � �"Un�i�j�k� for 
i� j� k� 	 Dh

Steps ��� consist of one time�stepping iteration of the Approximate Fac�
torization scheme� The solution of systems of linear equations in each of the
steps ��� is equivalent to the solution of multiple� independent systems of
block tridiagonal equations� with each block being a 
� � �� matrix� in the
three coordinate directions �� �� � respectively� For example� the system of
equations in the ��sweep has the following block tridiagonal structure�

�B��j�k��"U����j�k � �C��j�k��"U����j�k � �RHS���j�k
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� � i � N� � ��

�AN� �j�k��"U��N����j�k � �BN��j�k��"U��N��j�k � �RHS�N��j�k

where 
j 	 ��� N����� and 
k 	 ��� N������ Also� �A�� �B� and �C� are 
����
matrices and �"U��i�j�k is a 
�� �� column vector�

Here� for � � i � 
N� � ��� using equations ���� and �����
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Also� �B��j�k� � �I�� �C��j�k� � ���� �AN��j�k� � ���� and �BN� �j�k� � �I��

Diagonal form of the approximate factorization algorithm
Here the approximate factorization algorithm of section ����� is modi�ed

so as to transform the coupled systems given by the left hand side of equation
���� into an uncoupled diagonal form� This involves further approximations
in the treatment of the implicit operator� This diagonalization process targets
only the matrices A� B� and C in the implicit operator� E�ects of other
matrices present in the implicit operator are either ignored or approximated
to conform to the resulting diagonal structure�

��



The diagonalization process is based on the observation that matrices A�
B� and C each have a set of real eigenvalues and a complete set of eigenvec�
tors� Therefore� they can be diagonalized through similarity transformations
�����
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and T�
U�� T�
U�� and T�
U� are the matrices whose columns are the
eigenvectors of A� B� and C� respectively� When all other matrices except
A� B� and C are ignored� the implicit operator is given by
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Substituting for A�B� and C� using equation ���� in equation ����� we get
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A modi�ed form of equation ���� is obtained by moving the eigenvector
matricesT�� T�� and T� outside the spatial di�erential operators ����� �����
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and ����� respectively �����
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This can be written as
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The eigenvector matrices are functions of �� � and � and therefore this mod�
i�cation introduces further errors of O
"
 � into the factorization process�

During the factorization process� the presence of the matrices N� Q� and
S in the implicit part were ignored� This is because� in general� the similarity
transformations used for diagonalizing A do not simultaneously diagonalize
N� The same is true for the � and � factors as well� This necessitates
some ad�hoc approximate treatment of the ignored terms� which at the same
time preserves the diagonal structure of the implicit operators� Whatever
the approach used� additional approximation errors are introduced in the
treatment of the implicit operators� We chose to approximate N�Q� and S
by diagonal matrices in the implicit operators� whose values are given by the
spectral radii �
N�� �
Q�� and �
S�� respectively ����� In addition� we also
treat the added fourth�di�erence dissipation terms implicitly�
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The matrices T��
� � T�� �N��� and �P�� are given by�
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In addition� the spectral radii of the matrices N�Q� and S are given by�
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The explicit part of the diagonal algorithm is exactly the same as in
equation ���� and all the approximations are restricted to the implicit opera�
tor� Therefore� if the diagonal algorithm converges� the steady�state solution
will be identical to the one obtained without diagonalization� However� the
convergence behavior of the diagonalized algorithm would be di�erent�

The Diagonalized Approximate Factorization algorithm is to be imple�
mented in the following order�

Initialization� Set the boundary values of Ui�j�k for 
i� j� k� 	 �Dh in accor�
dance with equation ���� Set the initial values of U�

i�j�k for 
i� j� k� 	 Dh in
accordance withequation ���� Compute the forcing function vector�H�

i�j�k for

i� j� k� 	 Dh� using equation �����
Step � 
Explicit part�� Compute �RHS�ni�j�k for 
i� j� k� 	 Dh�
Step �� Perform the matrix�vector multiplication

�"U�� � 
T��
� �n�RHS�

Step � 
��Sweep of the Implicit part�� Form and solve the following system
of linear equations for "U��
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Step �� Perform the matrix�vector multiplication

�"U�� � �N���"U��

Step � 
��Sweep of the implicit part�� Form and solve the following system
of linear equations for "U��
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Step �� Perform the matrix�vector multiplication

�"U�� � �P���"U��

Step � 
��Sweep of the implicit part�� Form and solve the following system
of linear equations for "U��

fI �"
 �D�
#��
n��"
 �D�

�
�
S�
nI�� � "
 �� h��D

�
�
I��g�"U�� � �"U��

Step �� Perform the matrix�vector multiplication

�"Un� � T��"U��

Step �� Update the solution

Un�� � Un �"Un

Steps ��� constitute of one iteration of the Diagonal Form of the Ap�
proximate Factorization algorithm� The new implicit operators are block
pentadiagonal� However� the blocks are diagonal in form� so that the opera�
tors simplify into �ve independent scalar pentadiagonal systems� Therefore�
each of the steps �� �� and � involve the solution of multiple� independent
systems of scalar pentadiagonal equations in the three coordinate directions
�� � and � respectively� For example� each of the �ve independent scalar
pentadiagonal systems in the ��sweep has the following structure�
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where� 
j 	 ��� N� � ���� 
k 	 ��� N� � ��� and 
m 	 ��� ���� The elements of
the pentadiagonal matrix are given by the following�
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aN��j�k � ��� bN��j�k � ��� cN��j�k � �

Symmetric successive over�relaxation algorithm
In this method� the system of linear equations obtained after replacing

the spatial derivatives appearing in the implicit operator in equation ���� by
second�order accurate� central �nite di�erence operators� is solved using the
symmetric� successive over�relaxation scheme� Let the linear system be given
by

�Kn��"Un� � �RHSn�

where

Kn � fI�"
 �D�A
n �D�

�N
n �D�B

n �D�
�Q

n �D�C
n �D�

�S
n�g"Un�

for 
i� j� k� 	 Dh

It is speci�ed that the unknowns be ordered corresponding to the gridpoints�
lexicographically� such that the index in ��direction runs fastest� followed
by the index in ��direction and �nally in ��direction� The �nite�di�erence
discretization matrix K� resulting from such an ordering has a very regular�
banded structure� There are altogether seven block diagonals� each with a

�� �� block size�

The matrix K can be written as the sum of the matrices D� Y and Z�

Kn � Dn �Yn � Zn

where

Dn � Main block� diagonal of Kn

Yn � Three sub� block� diagonals of Kn

Zn � Three super� block� diagonals of Kn

Therefore� D is a block�diagonal matrix� while Y and Z are strictly lower
and upper triangular� respectively� Then the point�SSOR iteration scheme
can be written as ���� ����

�Xn��"Un� � �RHS�
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where
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and � 	 
��� ��� is the over�relaxation factor 
a speci�ed constant�� The
SSOR algorithm is to be implemented in following manner�

Initialization� Set the boundary values of Ui�j�k in accordance with equation
���� Set the initial values of U�

i�j�k in accordance with equation ���� Compute
the forcing function vector� H�

i�j�k� for 
i� j� k� 	 Dh� using equation �����

Step � 
The explicit part�� Compute �RHS�ni�j�k for 
i� j� k� 	 Dh�
Step � 
Lower triangular system solution�� Form and solve the following
regular� sparse� block lower triangular system to get �"U���


Dn � �Yn��"U�� � �RHS�

Step � 
Upper triangular system solution�� Form and solve the following
regular� sparse� block upper triangular system to get �"Un��


I� �
Dn���Zn��"Un� � �"U��

Step �� Update the solution�

Un�� � Un � ����
��� ���"Un

Steps ��� constitute one complete iteration of the SSOR scheme� The
l�th block row of the matrix K has the following structure�
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The 
� � �� matrices are given by�
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Also� A� B and C are the elements in the l�th block row of the matrix Y�
whereas E�F and G are the elements in the l�the block row of the matrix Z�

��� Benchmarks

There are three benchmarks associated with the three numerical schemes
described in section �� for the solution of system of linear equations given by
equation ����� Each benchmark consists of running one of the three numerical
schemes for Ns time steps with given values for N�� N�� N� and "
 �

��
�� Veri�cation test

For each of the benchmarks� at the completion of Ns time steps� compute
the following�

�� Root Mean Square normsRMSR
m�� of the residual vectors �RHS
m
�ni�j�k�
for m � �� �� � � � � � where n � Ns� and 
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�� The numerically evaluated surface integral given by
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where i�� i�� j�� j�� k� and k� are speci�ed constants� such that � � i� �
i� � N�� � � j� � j� � N� and � � k� � k� � N�� and
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The validity of each these quantities is measured according to

jXc �Xrj
jXrj � �

where Xc and Xr are the computed and reference values� respectively� and
� is the maximum allowable relative error� The value of � is speci�ed to
be ����� The values of Xr are dependent on the numerical scheme under
consideration and the values speci�ed for N�� N�� N��"
 and Ns�

��
�� Benchmark �

Class A� Perform Ns � ��� iterations of the Approximate Factorization Al�
gorithm� with the following parameter values�

N� � ��� N� � ��� N� � ��

and

"
 � ������

Timing for this benchmark should begin just before the Step � of the �rst
iteration is started and end just after the Step � of the Ns�th iteration is
complete�

Class B� Same except N� � N� � N� � ��� and "
 � �������

��
�� Benchmark �

Class A� Perform Ns � ��� iterations of the Diagonal Form of the Approxi�
mate Factorization Algorithm� with the following parameter values�

N� � ��� N� � ��� N� � ��

and

"
 � ������

��



Timing for this benchmark should begin just before the Step � of the �rst
iteration is started and end just after the Step � of the Ns�th iteration is
complete�

Class B� Same except N� � N� � N� � ��� and "
 � ������

��
�� Benchmark �

Class A� Perform Ns � ��� iterations of the Symmetric Successive Over�
Relaxation Algorithm with the following parameter values�

N� � ��� N� � ��� N� � ��

and

"
 � ��� � � ���

Timing for this benchmark should begin just before the Step � of the �rst
iteration is started and end just after the Step � of the Ns�th iteration is
complete�

Class B� Same except N� � N� � N� � ����
For all benchmarks� values of the remaining constants are speci�ed as

k� � ����� k� � ����� k� � ����� k� � ����� k� � ����
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C��� � ��� C��� � ��� C��� � ��� C��� � ��� C��� � ���

C��� � ��� C��� � ��� C��� � ��� C��� � ��� C��� � ���
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