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Chemical genomics aims to comprehensively define, and ultimately predict, the
effects of small molecule compounds on biological systems. Chemical activity profiling
approaches must consider chemical effects on all pathways operative in mammalian
cells. To enable a strategic and maximally efficient chemical profiling of pathway space,
we have created the NCATS BioPlanet, a comprehensive integrated pathway resource
that incorporates the universe of 1,658 human pathways sourced from publicly available,
manually curated sources, which have been subjected to thorough redundancy and
consistency cross-evaluation. BioPlanet supports interactive browsing, retrieval, and
analysis of pathways, exploration of pathway connections, and pathway search by
gene targets, category, and availability of corresponding bioactivity assay, as well as
visualization of pathways on a 3-dimensional globe, in which the distance between any
two pathways is proportional to their degree of gene component overlap. Using this
resource, we propose a strategy to identify a minimal set of 362 biological assays
that can interrogate the universe of human pathways. The NCATS BioPlanet is a
public resource, which will be continually expanded and updated, for systems biology,
toxicology, and chemical genomics, available at http://tripod.nih.gov/bioplanet/.
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INTRODUCTION

For most of its history, the field of toxicology has focused predominantly on whole-organism
studies, with observable histological, behavioral, or developmental endpoints, or “apical endpoints,”
being cataloged as occurring after exposure to chemicals. While whole-organism studies have
served as the backbone of scientific and regulatory imperatives to protect human health, they
suffer from lack of mechanistic insights, high cost, low throughput, and uncertain applicability to
human risk assessment. However, unlike systems pharmacology and drug development, toxicology
assessment has changed relatively little in the last 50 years (Kavlock et al., 2009; Hamburg, 2011)
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due, in part, to the regulatory context in which most toxicological
assessment takes place, and the human bias that (only) “seeing
is believing.”

An example of a recently initiated effort to explore in vitro
approaches to toxicology, the United States Tox21 program
(National Research Council [NRC], 2007) was constituted in 2007
to utilize high-throughput in vitro testing and computational
methods to transition toxicology into a predictive, mechanistic
science (Collins et al., 2008; Kavlock et al., 2009; Tice et al., 2013).
A collection of approximately 10,000 drugs and environmental
chemicals (Attene-Ramos et al., 2013b) has been tested at 15
concentrations using a robotic platform (Inglese et al., 2006) in
a wide variety of assays (Huang et al., 2016) with the initial
focus on stress-response (Attene-Ramos et al., 2013a; Nishihara
et al., 2015) and nuclear hormone receptor pathways (Hsu et al.,
2014; Huang et al., 2014). However, given the protean nature
of toxicological endpoints, and the lack of understanding of the
molecular mechanism(s) that lead to most of these endpoints,
characterization of the chemicals’ effects in a much broader set
of assays will be required. Ideally, a set of assays could be selected
or designed to measure targets that encompass all pathways that
are relevant to toxicity. However, what constitutes a “toxicity
pathway” is not clearly defined. A recent report (National
Research Council [NRC], 2007) states that “toxicity pathways” are
“cellular response pathways that, when sufficiently perturbed in
an intact animal, are expected to result in adverse health effects.”
This definition could potentially refer to all biological pathways,
as our current understanding of the biological system is not
sufficient for us to pinpoint the specific subset of pathways that
fit this description. Molecular pathways are defined not only by
their importance in normal physiology, but also by the disease
or adverse events caused by their dysfunction. Since toxicological
endpoints may potentially be caused by dysfunction of any
pathway operative in human cells, mechanistic understanding
and predictive signatures for all endpoints may ultimately require
profiling of the Tox21 and/or other chemicals in a suite of
assays that encompass all human pathways, representing a highly
implausible scenario.

As a first step to enabling this goal, we aimed to develop
a complete and non-redundant catalog of all human pathways,
and construct an informatics platform to represent and browse
the pathways, their healthy and disease state annotations, and
targets within and relationships among them at varying levels of
detail. Such a platform would enable the rational construction
of a minimal set of assays that could be used to query all of
pathway space experimentally, given that many pathways overlap
and together form a network subsuming all cellular functions.
Toward this goal, this platform can serve as a starting point
for the systematic design of experiments to better understand
how biological systems function. When linked with bioactivity
data, the pathway data can be used to examine and predict the
network effects of chemicals and other perturbations. Such a
public resource would not only be critical to fulfilling the goals
of in vitro toxicology efforts, but also provide fundamental values
to the biomedical research community as a whole.

Existing pathway databases tend to focus on particular areas
of biology, e.g., metabolism vs. signaling, and a comprehensive
and uniform resource that covers all known pathways and

their annotations does not exist (Galperin and Cochrane, 2011;
Galperin and Fernandez-Suarez, 2012). Moreover, information in
many databases are computationally generated, e.g., HumanCyc1,
and not derived from direct experimental evidence, which is
generally deemed more reliable. Other efforts that attempt to
integrate individual resources, e.g., Pathway Commons (Cerami
et al., 2011) simply combine data from various databases without
further curation or validation of the information collected to
remove redundancy or improve data quality. Different types of
data are often mixed together with no distinctions made between,
e.g., pathways and protein–protein interactions, experimental
results and computational predictions, and no additional
annotations are provided. Commercial pathway resources and
tools are claimed to be more comprehensive (e.g., Ingenuity,
GeneGo) (Thomas and Bonchev, 2010) yet the access by the
research community to these products is hampered by the
high cost. Our aim is to develop an open-source solution to
enable researchers worldwide to access the tools and the data
without encumbrance.

We report here the construction, features, and utilization
of a comprehensive integrated and non-redundant pathway
resource, the NCATS BioPlanet (Figure 1). The resource hosts
information only from public sources that have been herein
further manually curated to ensure the quality of the data.
Along with our pathway warehouse, the NCATS BioPlanet
software platform allows easy browsing and visualization of the
universe of pathways, and exploration of associations among
them. Additionally, we curated the set of annotated pathways in
terms of the biological space covered and the current availability
of assays, either commercial or academic, to probe each subspace.
After eliminating redundancy across the pathway databases used
to create the BioPlanet, we found that human cells incorporate
1,658 pathways. Starting with these pathways, we utilized a
condensation approach to construct a minimal set of assays to
cover all of pathway space. This minimal set of pathways will
serve as the starting point to prioritize pathways for testing in a
wide variety of systems biology efforts, and provides a reduced-
complexity set for the systems pharmacology community. The
NCATS BioPlanet will be continually updated and is publicly
accessible at http://tripod.nih.gov/bioplanet/.

DATA, METHODS, AND RESULTS

Source Databases
Annotations for pathways and gene-gene or protein–protein
interactions were obtained from a number of publically available
databases, in which pathway annotations are also manually
generated based on experimental observations to ensure the
quality of our data sources. The locations and contents of
these databases are listed in Table 1. Annotations of human
disease genes were downloaded from the Online Mendelian
Inheritance in Man (OMIM) database (McKusick, 1998). Gene
target information for assays was extracted from PubChem
bioassay descriptions (PubChem, 2010).

1http://humancyc.org/

Frontiers in Pharmacology | www.frontiersin.org 2 April 2019 | Volume 10 | Article 445



fphar-10-00445 April 24, 2019 Time: 17:27 # 3

Huang et al. The NCATS BioPlanet

FIGURE 1 | Workflow for the NCATS BioPlanet construction process.

TABLE 1 | Pathway data sources.

Database Number of human
pathways

Number of
genes

URL

KEGG – Kyoto Encyclopedia of Genes
and Genomes

214 5520 http://www.genome.jp/kegg/pathway.html

BioCarta∗ 314 1494 https://cgap.nci.nih.gov/Pathways/BioCarta_Pathways

Reactome - a curated knowledgebase
of biological pathways

1283 6125 http://www.reactome.org/

WikiPathways 204 4064 http://www.wikipathways.org/

NCI-Nature – Pathway Interaction
Database∗

722 3725 https://www.nlm.nih.gov/research/umls/sourcereleasedocs/current/NCI_PID/

Science Signaling∗ 58 1234 http://stke.sciencemag.org/about/help/cm

NetPath 35 2877 http://www.netpath.org/

∗Original database site is no longer supported. The URL provided here points to some data hosted at an alternative site.

The present study focused on pathways annotating human
genes. Different pathway sources focused on different aspects
of the human biological system. KEGG is a large pathway
database annotating over 5,500 human genes with a heavy
focus on metabolism (KEGG , 2010). Over 50% of the KEGG
pathways are metabolic pathways with the second largest pathway

category, human diseases, making up only 14% of all KEGG
pathways. The Science Signaling database (support ended in
2015) (Science Signaling, 2010) as its name indicates, is a
collection of cell signaling pathways. Its pathway maps were
generated based on information provided by scientists with
expertise in a given field, deemed “pathway authorities,” thus
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assuring the quality of the data. A result of collaborative efforts
between the National Cancer Institute (NCI) and the Nature
Publishing Group, the NCI-Nature Pathway Interaction Database
(PID) (now retired) (NCI-Nature, 2010) is another source
of curated human signaling pathways. Reactome is an open-
source, curated pathway database that covers a variety of human
biology including cell signaling, metabolism, human diseases
and other fundamental biological processes, with some emphasis
on signaling and metabolic pathways, comprising 18% and
17% of the pathways, respectively (Reactome, 2010). BioCarta
pathway collection (no longer supported) operated as an open-
source, community-fed forum with annotations collected on
over ten different biological functions and processes, but with
cell signaling as the primary category encompassing 32% of
all BioCarta pathways (BioCarta, 2010). Similar to BioCarta,
WikiPathways adopts the open source approach, as well, which
takes input from the scientific community for the curation
of biological pathways (WikiPathways , 2010). WikiPathways
annotates over 4,000 human genes encompassing a range of
pathway categories, including signaling (∼30%) and metabolic
(∼10%) pathways.

Removing Redundancy
As expected, we found substantial overlaps among the pathway
databases. To assess the extent of redundancy, we calculated a
similarity score, defined as the ratio of genes shared between two
pathways over the total number of unique genes contained in
the two pathways, between each pathway and the pathway with
which it has the highest gene component overlap. Figure 2A
shows the distribution of these similarity scores. Approximately
23% of the pathways have at least one complete duplicate with
identical gene components, and 31% of the pathways have at
least one close match, with which they share over 90% of genes,
in a different data source. Moreover, many pathways have only
a few genes annotated. As shown in Figure 2B, about 20% of
the pathways have ≤5 genes and 2.4% of the pathways only
have one gene. Annotation of these pathways thus appears to
be incomplete. For ease of downstream analysis, we chose to
merge pathways with no significant difference in their gene
components and exclude pathways with less than three genes
whenever appropriate to minimize redundancy (see below for the
procedure details). Utilizing these criteria, we found that there
are 1,658 distinct pathways, encompassing 9,818 human genes,
which constitute approximately 40% of all human genes. The
number of pathway genes and the details of their relationships
can be reasonably expected to change as functions of more genes
are discovered and their interactions elucidated. Therefore, the
content of the BioPlanet will be curated and updated periodically
to reflect the updates from our data sources and to incorporate
information from any new data sources that might emerge. As
this project is constantly evolving, mistakes and incompleteness
are inevitable and we have set up a mechanism for the scientific
community to send us feedback and corrections to improve the
quality of the BioPlanet as a public resource.

Two pathways were merged into one by merging their gene
components when one of four criteria was met: (1) the overlap,
defined as the number of genes shared by the two pathways

FIGURE 2 | Overview of source pathways. (A) Distribution of similarity scores,
measured by the degree of gene component overlap, of pathways from
different databases. (B) Distribution of pathway sizes measured by
gene count.

divided by the total number of unique genes in the two pathways,
was >90%; (2) the two pathways differ by only one gene; (3)
one pathway has <3 genes and all of these genes are contained
in the other pathway; (4) the two pathways have >50% overlap
in their gene components and p < 0.05 (Fisher’s exact test).
The merging procedure was repeated until no two pathways
met any of these criteria. After merging, the pathway gene lists
were manually curated to correct mis-assigned genes and further
remove redundancy (Figure 1; see below for detailed curation
procedure) resulting in a final list of 1,658 distinct pathways.

Extensive Manual Curation
After initial merging, BioPlanet included 1,774 pathways that
contained 10,040 unique genes, 9,928 of which were assigned
to Homo sapiens. The pathway names were standardized and
corrected for consistent capitalization, biological clarity, usage of
Greek letters, and hyphenated terms. The genes in the pathways
were also edited to remove withdrawn identifiers and replace
obsolete ones. Non-human genes were removed or replaced with
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corresponding human genes. However, even after the removal of
non-human genes, a few pathways from mice and other species
remained. Yet, despite the pathway names, all genes in these
pathways were human. Therefore, to ameliorate this discrepancy,
these pathways were renamed to remove the animal inference.
Extremely small pathways that contained only one or two genes
were merged with larger pathways, and some pathways with
similar names and functions were merged. Eighty-nine sets of
pathways had very similar names but different gene lists. For
example, “Alzheimer’s disease” has 168 genes, and a separate
pathway called “Alzheimer’s disease” has 82 genes, but some
genes from the latter set are not among the genes in the former
one. To resolve similarly named pathway sets like these, each
set was manually examined to establish whether their gene
lists had sufficiently similar functions to substantiate merging
of these pathways, or whether the functions were sufficiently
different, and the pathways should have been kept separate
under distinctly different names. To make these decisions, the
genes unique to each pathway were uploaded to the DAVID
annotation resource2. Using DAVID’s Functional Annotation
Clustering tool, the top annotation cluster characterizing the
gene list was used to determine the collective function of these
genes. Gene Ontology Biological Process terms, KEGG pathways,
and BioCarta pathways were preferred when available. Based on
these results, pathway sets with gene lists that had sufficiently
similar functions were merged. The pathways with gene lists that
had distinct functions were preserved as separate pathways and
renamed to distinguish them better. In total, 714 of the 1,774
pathway names (40%) were edited. Some pathways were removed
or merged with other ones during the process, reducing the
total number of pathways to 1,658. The number of unique genes
represented in the pathways was reduced from 10,040 to 9,818.

Literature supporting the pathways and interactions were first
added computationally. For the 303 pathways with no literature
association found through the automated approach, references
were sourced manually. GeneRif3 was used to link genes to
literature references (PubMed IDs). Pathway names and gene
lists were used to search PubMed to find pathway-literature
linkages. PubMed IDs shared between genes and pathways were
then identified to establish the gene-pathway association. An
average of 50 abstracts from each method were spot-checked to
ensure the method was producing the correct results. A total
of 234,347 unique references were found for all 1,658 pathways,
with each pathway having at least one reference. Further curation
of the gene–gene interactions within each pathway is currently
underway. Publications supporting the interactions selected by
the pathway authors are retrieved from the source files and added
to the BioPlanet pathways.

Pathway Tagging
Keyword tags were used to group functionally related pathways
into categories. The GO Slim biological processes4, a small set
of high-level functions characterizing an organism, were used

2http://david.abcc.ncifcrf.gov
3http://www.ncbi.nlm.nih.gov/gene/about-generif
4http://geneontology.org/docs/go-subset-guide/

to generate the list of pathway tags. Some GO Slim terms were
rejected for being too long (“anatomical structure formation
involved in morphogenesis”), only applying to one pathway
(“ribosome biogenesis”), or describing processes that do not exist
in humans (“photosynthesis”). Disease-related tags were added
based on the top-level disease categories at Disease Ontology5.
Tags used by the source databases to group pathways were also
collected for inclusion. Redundant tags were removed or merged
with existing tags. A total of 51 tags were eventually selected, and
grouped into seven categories: Major Systems, Cell Cycle, Genetic
Information Processing, Metabolism, Development, Signaling,
and Disease. The tags in each category are listed in Table 2.

GO annotations for human genes were used to tag many of
the pathways automatically. The tag keywords were first matched
manually to GO terms in the top 4 levels of the GO hierarchy.
For each GO term, up to three tags were assigned. Most level-
4 terms were not manually tagged unless they also occurred
in a higher level. These terms were then associated with genes
using the GO annotations, and the gene lists for each pathway
were used to determine whether enough genes with one tag were
present to assign that tag to the whole pathway. Specifically,
we required that (1) at least 10% of the genes in the pathway
have the same tag and (2) at least four genes have the same
tag. The automated GO term method assigned at least one tag
to 84% of the pathways. However, the GO term method missed
some obvious tags suggested by the pathway titles. For example,
“HIV-induced T cell apoptosis” would be expected to get tags for
“Infectious disease” (“HIV” in the name), “Immune response” (“T
cell”), and “Cell death” (“apoptosis”). For this reason, a second
component was added to the automatic tagging algorithm. A list
of keywords was created that would be expected to match
each tag, and the occurrence of these keywords in the pathway
title would assign the corresponding tags. For example, the tag
“Nucleic acid metabolism” would be assigned if the pathway title
contained words like “Nucleobase,” “Nucleotide,” “Nucleoside,”
“Purine,” or “Pyrimidine.” This keyword method assigned at least
one tag to 58% of the pathways. The combination of the two
methods yielded 92% pathways with at least one tag. To measure
how well the automated tagging process worked, 10 pathways
were selected for manual review. The results showed that the
automated process produced a high false positive (63%) and low
false negative rate (30%). For this reason, we decided to manually
review all of the tagged pathways, removing tags that seemed
irrelevant and adding tags that were missed.

A manual workflow was then applied to add missing tags,
remove false positive tags, and add disease tags to pathways.
For each pathway, one or more summaries of the pathway were
found from online scientific sources like PubMed, Entrez Gene
(Maglott et al., 2005) and BioCarta, and the decisions to add or
remove tags were based on these summaries. The Comparative
Toxicogenomics Database (CTD6) was used to find relevant
disease associations. The list of gene IDs from the pathway
was entered into CTD’s gene set analyzer and disease Venn
diagram. The first method shows a list of diseases associated

5http://disease-ontology.org/
6http://ctdbase.org/
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with the input gene set, ranked by p-value, and the second
method shows the overlap between the input gene set and the
disease gene set. Rather than relying on a p-value threshold
or minimum number of genes, high-ranking diseases in the
list were accepted if they were consistent with the pathway
description. This prevented the problem we observed in some of
the automated tag assignments, when, for example, a subset of
pathway genes may be involved in an Infectious Disease but the
corresponding pathway is not primarily associated with any such
Infectious Disease. After manual curation, all pathways have at
least one tag assigned. The median number of tags per pathway is
5, while the maximum number is 15.

Assay Availability for Pathway
Interrogation
Since one rationale for creating the BioPlanet is to enable the
experimental assessment of chemical modulation of a wide range
of human pathways, we next explored the current availability of
extant bioassays to probe the 1,658 distinct human pathways. We
examined bioassays from four sources, which cover 2,685 gene
targets in total (in the order of decreasing priority): (1) assays
from the Tox21 program that have been run at NCATS, (2) other
NCATS assays, (3) other bioassays in PubChem, and (4) assays
from commercial vendors not yet employed by Tox21, NCATS,
or PubChem assay providers. Phenotypic assays with no specific
gene targets were excluded from the analysis. Figure 3A shows
the coverage of the 1,658 human pathways by assays from these
four sources. If a pathway was covered by assays from multiple
sources, only the source with the highest priority was counted.
For example, if an assay was available from both Tox21 and
PubChem, the pathway would be counted as covered by Tox21
in Figure 3A (see Supplementary Figure S1 for the coverage of

the BioPlanet pathways by each individual source). All available
assay sources for each pathway can be found in the BioPlanet
database and browser. Here, to get an initial estimate, we have not
made a distinction between assays that measure a specific gene
target in a pathway, and pathway assays, i.e., assays that measure
signaling throughout that pathway. We found that 88% of the
pathways have at least one gene target with an assay available
from one of the four assay sources, and 12% of the pathways do
not have a bioassay available from these sources (Supplementary
Figure S2). Of the four sources, the Tox21 assays cover 63% of the
pathways; when combined with the other NCATS assays, these
two sources cover 70% of the 1,658 pathways. Assays from other
PubChem assay providers cover 12% of the pathways and we
found other commercial assays for another 6% of the pathways.
Recent developments in the field of precision medicine and RNA
based therapeutics have highlighted the role of non-coding RNA
(ncRNA) (Cech and Steitz, 2014) such as lncRNA (Volders et al.,
2019), miRNA (Chou et al., 2018), and circRNA (Glazar et al.,
2014) in healthy and disease conditions. When annotated by
the availability of non-coding RNAs, we found that >99% of
the BioPlanet pathways are regulated by at least one ncRNA
(Supplementary Figure S1).

Next, we examined the assay availability for disease-related
and non-related pathways (Figures 3C,D). Of the 1,658 human
pathways, 97% contain at least one gene that is implicated
in a genetic disease according to OMIM (Figure 3B). As of
July 10, 2017, OMIM annotates 15,649 genes, including 6,013
phenotypes (usually diseases) that have been attributed to cognate
genes7. Genes that cause genetic diseases have been identified
in 97% of annotated pathways to date. Disease-related pathways

7http://omim.org/statistics/entry

TABLE 2 | Pathway tags.

Major systems Metabolism Signaling

Circulatory system Nucleic acid metabolism Cell signaling

Digestive system Carbohydrate metabolism G-protein coupled receptor

Endocrine system Protein metabolism Nuclear receptor

Excretory system Lipid metabolism Transcriptional regulation

Immune system Vitamin and cofactor metabolism Stress response

Musculoskeletal system Small molecule metabolism Environmental adaptation

Nervous system Xenobiotic metabolism Chronology

Sensory system Energy metabolism Transport

Genetic information processing Protein folding, sorting, and degradation

DNA replication Protein modification Disease

DNA repair Cancer

Transcription Cardiovascular disease

RNA processing Cell cycle Genetic disease

Translation Cell cycle Immune disease

Cell growth Infectious disease

Development Cell death Neurological disease

Development Cell division Physical disorder

Adhesion Cell proliferation Endocrine and metabolic disease

Cell differentiation Reproduction Sepsis

Cell motility Substance dependence
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FIGURE 3 | Disease pathways and assay availability from four sources (in the order of decreasing priority): (1) Tox21, (2) NCATS, (3) PubChem, and (4) commercial
vendors. If a pathway was covered by assays from multiple sources, only the source with the highest priority was counted. (A) Assay availability for all pathways.
(B) Fraction of pathways that are disease pathways. (C) Assay availability for disease pathways. (D) Assay availability for non-disease pathways.

have significantly better assay coverage (89% have at least one
bioassay) than pathways that do not contain any disease-related
genes (66% have bioassays). Compared to the other PubChem
assays, Tox21 and NCATS showed relatively better coverage
of disease-related pathways (71% assays are from Tox21 or
NCATS) than other pathways (only 40% assays are from Tox21
or NCATS). Figure 4 shows the assay availability for different
pathway categories. Cell signaling is by far the best-covered
pathway category with 99% of the 488 pathways having a bioassay
available. In contrast, metabolism, the second largest pathway
category, has only 76% of the 351 pathways having a bioassay
from the four assay sources. The human disease pathway category
shown in Figure 4 was not defined by having an OMIM gene, but
from the annotations obtained from the pathway data sources.
Nevertheless, 89% of these 103 pathways identified as human
disease pathways have an available bioassay. In fact, 97% of
metabolic pathways contain OMIM genes, which is almost the
same as the percentage of signaling pathways containing OMIM
genes (98%). This suggests that the apparent lack of interest in
developing assays to probe metabolic pathways is unwarranted if
the drive behind the wide interest in studying signaling pathways
is their well acknowledged role in disease processes.

Probing the Pathway Universe With
Minimum Number of Assays
The ultimate goal of systems pharmacology, of which the Tox21
program is an exemplar, is to characterize the activity of a

broad range of chemicals across the full spectrum of 1,658
human pathways. However, since performing 1,658 separate
assays is experimentally unfeasible, and given that pathways
are overlapping in their component genes and functions, and
together constitute an interconnected network web, we reasoned
that it should be possible to account for all of pathway space
with a reduced number of assays that could cover multiple
pathways. We thus sought to define a minimal set of gene targets
that could be experimentally assayed and cover all of pathway
space with some degree of overlap and redundancy to assure
complete coverage.

We identified a minimum set of 362 genes that cover the entire
list of 1,658 pathways (Supplementary Table S1a). Specifically,
genes were first sorted by the number and size of pathways
in which they participate, such that genes that appear in more
pathways and smaller pathways were ranked higher. An iterative
algorithm was then applied to go through the gene list collecting
the highest ranked genes while keeping track of the pathways
covered by the genes collected. The algorithm stopped when all
pathways were covered and the 362 genes collected form the
maximum coverage list. As most of these genes participate in
multiple pathways, it is not surprising to find that this set of genes
is significantly enriched (82 out of 362, p < 1.0 × 10−4) with
genes that have been reported to be essential for the viability of
human cells (Blomen et al., 2015; Fraser, 2015). When availability
of assays in Tox21, NCATS, PubChem, or commercial sources
was taken into account, that is, higher priority was assigned
to genes with assays available in one of these three sources, a
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FIGURE 4 | Assay availability for different pathway categories. Cell signaling is the best covered category. Metabolism is the least covered category. Tox21 has the
best coverage in human disease pathways.

minimum set of 411 genes was identified to cover all pathways
(Supplementary Table S1b). More genes are required in this case
because not all the genes that can cover the largest number of
pathways have assays available, thus additional genes are needed
to cover the same pathways.

The underlying premise of testing compounds in a reduced
number of assays as a proxy for all biological pathway activity
space is that it is possible to identify “indicator pathways” based
on genes that regulate/participate in several pathways, such
that activity in this indicator assay would allow inference that
the compound would be active in other pathways that share
this gene product. In this case, screening multiple pathway
assays sharing the same gene target(s) would be redundant
and thus unnecessary in a global assessment of compound
activity on biological space. This premise predicts a positive
correlation between the degree of compound activity overlap
and the extent of gene sharing of two pathway assays. To test
this prediction, we evaluated data generated from screening of
the pilot phase Tox21 collection of 2,870 compounds against
a set of 25 pathway assays (Supplementary Table S2). The

degrees of gene sharing and activity overlap were calculated for
each pathway assay pair. Briefly, the degree of gene sharing
between two pathways was defined as the ratio of genes shared
by the two pathways over the total number of unique
genes in the two pathways. The compound activity overlap
between two assays was defined as the ratio of compounds
active in both assays over the number of compounds active
in either assay. A significant positive correlation was found
(r = 0.41, p < 1.0 × 10−20), and the correlation improved to
0.57 when the degree of gene sharing between two pathway
assays was >20%. Though this correlation is statistically
significant and supports the notion that achievement of
a compound’s comprehensive pathway activity footprint via
testing in the full 1,658 pathways will be feasible, the
extent to which pathway activity may be confidently inferred
from activity in other “indicator” assays is unclear and will
require experimental testing. One of the major goals of the
Tox21 program and other systems biology initiatives is to
generate and make public just these kinds of diverse pathway
data and predictive algorithms, and experimentally test their
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utility. As data are generated, they will be linked to the
BioPlanet for straightforward browsing and correlation testing by
others and ourselves.

The BioPlanet Pathway Browser
We report here what we believe to be the most comprehensive
non-redundant enumeration to date of pathways extant in
human cells, and the connections between them. To facilitate the
browsing, visualization, and analysis of the pathway universe, we
have constructed a unified database and a web-based software
platform, the NCATS BioPlanet8, that is publicly available
(Figure 5). From the main page, users may browse pathways by
name, category, or assay availability (Figure 5A). The BioPlanet
web browser also supports free text search enhanced by the
availability of autocomplete suggestions as shown in Figure 5B.
Users may search the BioPlanet by keywords, such as those that
appear in a gene or pathway name, or a disease, or gene identifiers
such as Entrez gene IDs. Batch search is also supported, that
allows a user to paste in multiple gene IDs or keywords and
retrieve their records via a single query. Search is performed on
each individual search term as well as combinations of terms, and
each pathway returned is labeled by the searched term(s) used
to retrieve that pathway (Figure 5C). In the search results view,
each pathway is labeled with functional category tags, disease
relevance, and assay availability (Figure 5C). References to the
original data sources are also provided. Each search result is a
card that contains links to all pathway details: Pathway Map,
Genes, ncRNAs, Diseases, Categories, and Assays.

In particular, Pathway Map is the most detailed graphical
representation of a pathway demonstrating all known
interactions between genes, proteins, nucleic acids, and small
molecules in that pathway (Figure 5D). Importantly, these maps
show the entirety of the pathway data stored in BioPAX or SBML
formats obtained from public sources (vide supra), and curated,
and thus provide the highest amount of detail known to date,
without compromising the visual clarity. Moreover, this pathway
diagram is searchable and interactive, where a click on each
component will show a tooltip with known literature references
and identifiers.

The browser also provides the mapping of pathways on
a 3-dimensional globe, in which the distance between any
two pathways on the globe surface is proportional to their
degree of their gene component overlap (Figure 5E). This
allows users to conduct a pathway similarity analysis at a
glance, and demonstrates the interaction between different
biological processes.

A gene enrichment analysis tool is also provided where the
user can input a list of genes and determine which BioPlanet
pathways are enriched in said list (Figure 5F).

DISCUSSION

The Human Genome Project ushered in a continuing era of
comprehensive enumeration of all biological system components.

8http://tripod.nih.gov/bioplanet

Building on human and model organism reference genome
sequences, comprehensive identification or production of genes
(Collins et al., 1998, 2003), cDNAs (Strausberg et al., 1999;
Gerhard et al., 2004; Temple et al., 2009), SNPs and haplotypes
(International HapMap Consortium, 2003; Thorisson et al.,
2005), structural and functional elements of genomes (ENCODE
Project Consortium, 2004; Birney et al., 2007; Celniker et al.,
2009), knockout mice (Austin et al., 2004), transcriptomes
(Katayama et al., 2005), and microRNAs (He and Hannon, 2004;
Bentwich et al., 2005) have been accomplished. Excellent efforts
at enumeration of molecular, metabolic, and signaling pathways
have been undertaken by multiple groups, but to date there has
not been a synthesis of these efforts into a single collection of
all pathways operant in human cells. The BioPlanet is the first
attempt at creating such a resource, aiming to be comprehensive,
non-redundant, relational, and easy to navigate.

Furthermore, the BioPlanet pathways are extensively
annotated in terms of functional categories, disease relevance,
assay availability and lncRNA regulation, which seems to be
insufficient or lacking in various pathway databases. Using
disease pathways as an example, most data sources we examined
do not have explicit indications on which pathways have been
associated with diseases. BioCarta and Reactome sort their
pathways into several different categories but a general category
for disease pathways is not available. KEGG is the only database
with a “human diseases” category, but the genes listed in these
human disease pathways only account for 27% of the OMIM
disease genes. This shows that many pathways that might have
disease relevance have not been explicitly annotated as such in
previous pathway databases. Since one of our aims in creating
the NCATS BioPlanet database was to enumerate a complete and
non-redundant listing of all human disease-related pathways, we
included the prevalence of disease genes as a principal feature
in annotating all pathways in the BioPlanet. In addition, we
manually examined and assigned a category to each pathway
that did not have a category annotation in its source database.
Furthermore, the complete and non-redundant feature of the
BioPlanet would enable users to not only get a complete and
concise interpretation of their experimental results from, e.g.,
genomic or proteomic screens, but also design an optimal set
of targets or in vitro assays to comprehensively interrogate
the biological space as detailed later below. This would not be
possible with any other existing databases.

It is important to emphasize that BioPlanet, like other
cataloging efforts before it, is an attempt to represent complex
and often state-dependent systems in a uniform way and as
such is subject to oversimplification. In addition, since the
BioPlanet is built on a foundation of current understanding
of pathways and their interconnections, there are undoubtedly
errors in it, both representational and biological. We, therefore,
view the BioPlanet as a work in progress, and designate the
version currently available on our website (see text footnote 8)
as BioPlanet 1.0 in recognition of its evolving nature. Like the
data that went into creating the current version of BioPlanet,
which was derived from the community of scientists worldwide,
we view the ongoing curation and growth of the BioPlanet as a
community “wiki” type effort, and therefore actively encourage
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FIGURE 5 | Example use cases of the NCATS BioPlanet web browser (http://tripod.nih.gov/bioplanet). (A) Pathway browsing by name, category, or assay availability
from main page. (B) Free text search with the autosuggest functionality. (C) Search results view: a multiple term search example with the keywords “hypoxia” and
“p53.” The term(s) used to retrieve each pathway, “hypoxia” and/or “p53,” is shown on the right. The pathway title, when clicked on, expands to show detailed
annotations such as assay availability, category, disease relevance, with links to outside sources when available. This example shows the assays available in
PubChem for the first pathway retrieved. (D) Pathway detail view with an interactive pathway diagram and its gene component list. (E) The 3-dimensional globe view
that shows a group of pathways projected on the globe. Each dot on the globe represents a pathway. Mousing over the pathway shows the pathway name.
(F) Enrichment analysis tool that allows users to paste in a list of genes and determine which BioPlanet pathways are enriched in the gene list. The significance of
enrichment p-value is shown on the right of each pathway returned.
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comments, corrections, contributions, and suggestions for
additional features via the BioPlanet page at http://tripod.
nih.gov/bioplanet. All contributions will be acknowledged and
attributed on this page.

We hope that the research community will find the BioPlanet
useful, both for systems biology analyses as well as hypothesis
generation. However, beyond its utility as a catalog, we hope
that the BioPlanet will facilitate perturbation studies using small
molecules, RNAi, gene knockouts, and other forms of biological
modulation. The ultimate test of any network map is its ability
to predict effects when a node in the network is perturbed. We
will be adding capabilities for linking data from small molecule
and siRNA screens performed at our Center to the next version
of the BioPlanet, and we look forward to linking data obtained
by other researchers as well. The current version of BioPlanet
contains only human pathways, therefore, as a future endeavor,
pathways for other species will be added both for their own
importance in biological research and in comparison to their
human counterparts, since human-animal pathway differences
are likely drivers of non-concordance of chemical effects on
humans and animals.

In the nearest term, the BioPlanet will find utility in the
selection of in vitro assays to strengthen predictive toxicology
methods (National Research Council [NRC], 2007; Kavlock et al.,
2009). An underlying premise of in vitro toxicology approaches
is that any pathway which plays an important role in human
physiology could, if sufficiently perturbed, yield pathophysiology,
i.e., toxicity. As we have demonstrated recently, an optimally
designed panel of in vitro assays with targets diverse enough
to sufficiently cover the biological response space could achieve
good performance in predicting in vivo human toxicity, such as
adverse drug effects (Huang et al., 2016, 2018). The BioPlanet
would be an ideal guiding tool in designing such an assay
panel. By analogy to genome-wide association studies (GWAS),
we might refer to the present in vitro toxicology approaches,
such as Tox21, as “pathway-ome-wide activity study,” or PWAS.
Like GWAS studies, in which querying of all polymorphisms in
the genomes of thousands of participants has been considered
impractical, PWAS of all 1,658 pathways across thousands of
chemicals is similarly difficult: by way of example, a 15-point
concentration-response quantitative high throughput (qHTS)
screen of the Tox21 “10K” set requires at least one week for
each assay even with the ultrahigh-throughput robotic platform
being utilized. GWAS studies were rendered practical by the
comprehensive cataloging of SNPs and the discovery of the
SNPs that are inherited together in haplotype blocks, thus
allowing the imputation of SNPs not directly tested via the
presence of a reduced numbers of “tag SNPs.” While there
are 1,658 total pathways currently characterized, our analysis
suggests that assaying only 362 will allow the imputation of
activity in the remaining pathways. Importantly, this reduced
number, while consistent with current data, will require ongoing
data production to test and refine this very concept and the
actual number of independent assays required to adequately
query all of pathway activity space, with such data being
provided in PubChem and other public-facing portals on a
continuing basis.

While BioPlanet was initially conceived as a tool to
guide systems toxicology efforts, it has implications and
applications across the spectrum of systems biology,
systems pharmacology, and disease pathophysiology.
We look forward to continuing to collaborate with the
research community to further develop and populate
the BioPlanet, and thus achieve its potential as a
resource for discovery.
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