The Next Generation of Ground Operations Command and
Control;
Scripting in C# and Visual Basic

George Ritter’
Computer Science Corporation (CSC), Huntsville, Alabama, 35806

And
Ramon Pedoto’
COLSA Corporation, Huntsville, Alabama 35806

Scripting languages have become a common method for implementing command and control solutions in
space ground operations. The Systems Test and Operations Language (STOL), the Huntsville Operations
Support Center (HOSC) Scripting Language Processor (SLP), and the Spacecraft Control Language (SCL)
offer script-commands that wrap tedious operations tasks into single calls. Since script-commands are
interpreted, they also offer a certain amount of hands-on control that is highly valued in space ground
operations. Although compiled programs seem to be unsuited for interactive user control and are more
complex to develop, Marshall Space flight Center (MSFC) has developed a product called the Enhanced and
Redesign Scripting (ERS) that makes use of the graphical and logical richness of a programming language
while offering the hands-on and ease of control of a scripting language. ERS is currently used by the
International Space Station (ISS) Payload Operations Integration Center (POIC) Cadre team members. ERS
integrates spacecraft command mnemonics, telemetry measurements, and command and telemetry control
procedures into a standard programming language, while making use of Microsoft’s Visual Studio for
developing Visual Basic (VB) or C# ground operations procedures. ERS also allows for script-style user
control during procedure execution using a robust graphical user input and output feature. The availability
of VB and C# programmers, and the richness of the languages and their development environment, has
allowed ERS to lower our “script” development time and maintenance costs at the Marshall POIC.

Nomenclature

ASP = Active Server Page
CLI Command Line Interface

csC = Computer Science Corporation

C2 = Command and Control

C3ISR = Command, Control, Communications, Intelligence, Surveillance and Reconnaissance
C# = ‘C’ “sharp”, a programming language

EHS = Enhanced HOSC System

EPC = Enhanced Personal Computer (MSFC HOSC Telemetry and command tool-set)
ERS = Enhanced and Redesigned Scripting Language

HOSC = Huntsville Operations Support Center

HTML = Hypertext Markup Language

1SS = International Space Station

MSFC = Marshall Spaceflight Center

PHP = Hypertext Preprocessor

PoIC = Payload Operations Integration Center

SCL = Systems Control Language

SLP = Scripting Language Processor

STOL = Systems Test and Operations Language

TSTOL = The System Test and Operations Language

VB = Visual Basic

VS = Visual Studio

! Software Development Team Lead, Software Engineering, CSC, 310 Bridge St., Huntsville, Al. 35806
2 Computer Scientist, Software Engineering, COLSA Corporation, 6728 Odyssey Drive, Huntsville, Al. 35806
1
American Institute of Aeronautics and Astronautics

I. Introduction

Script serves as a pre-planned set of instructions to execute or perform a task such as the dialog in a play or a

small job in a computer. While traditional programming languages evolved primarily for the purpose of
solving complex, computational intensive problems, scripting languages or scripts have become mainstream tools
for solving more of the “house-keeping” computer problems like managing file systems. Where the focus on
compiled programming languages 1s on performance, script commands are geared towards ease of use. In the typical
script command, task performance is less of an issue permitting the use of an interpreted environment.

Control of space systems from ground operations sites requires a certain amount of repetitive or scripted actions to
control remote systems. The ease of use of script commands makes creation and modification of ground initiated
flight procedures simple and less prone to error. A number of flight operation scripting languages have evolved from
today’s commonly used computer scripting languages. These scripting languages integrate with the native command
and telemetry systems through unique script commands.

The Marshall Space Flight Center’s (MSFC) Huntsville Operations Support Center (HOSC) has developed a tool
called the Enhanced and Redesigned Scripting Language (ERS). ERS combines the ecase of use and low risk
potential of the typical interpreted scripting language with the power and richness of a full programming language.
ERS has streamlined development of scripts and enhanced remote control of on-board systems at the Huntsville
Payload Operations Integration Center (POIC).

II. The Value of Scripting in Flight Operations

Since the beginning of scripting languages like IBM Job Control Language (JCL) to the current object oriented
languages like Ruby and Perl, system administrators and software developers have sought to “avoid the compiler” in
an effort to simplify common and repetitive tasks that are not performance oriented. Space ground systems have
adapted and extended scripting concepts to the command and telemetry processing domains. What makes the
interpreted languages so useful in the Space Operations world? Is there a more advanced solution that combines the
graphical richness of a complied language with the ease and flexibility of a script development environment?

A. Mini-History of Scripting Languages

In the early 1960°s IBM introduced Job Control Language (JCL) on their OS/360 where files could be copied
from one location to another using only 9 lines of instructions! JCL was followed by Data General’s Command
Line Interface (CLI) and later followed by the Unix Bourne Shell. These Scripting Languages store a series of
commands in a file. Data General called them “macros”. Unix called them “shell scripts.” In all cases, the scripts
ran as interpreted statements where no time was spent compiling. Local variables and flow control were slowly
added. As complexity grew, these languages continued to be interpreted, most likely because compute power was
also increasing,

A small list of the more popular scripting languages of today, often calling themselves dynamic programming
languages, includes Perl, Python, Ruby, Hypertext Preprocessor (PHP), Active Server Page (ASP), and JavaScnpt.
Pearl 1s known for its text processing capabilities; Python for readability and object oriented constructs; Ruby for
object oriented; and PHP, ASP, and JavaScript for their ability to be used on Web applications inside Hypertext
Markup Language (HTML) files.

Today’s scripting languages have progressed beyond simple file manipulation to common (and even complex)
programming tasks. They satisfy the needs of providing fast-to-develop and easy-to-maintain programming
solutions 1n many of today’s computer problem domains.

B. Some Space Ground Operations Scripting Languages

Companies such as SRA International and some NASA Centers have found scripting languages very powerful
for space operations applications.

Systems Control Language (SCL) developed by SRA International “is a full-featured scripting language with
which you can easily build, test and operate diverse control systems across mission critical command and control
(C2) and Command, Control, Communications, Intelligence, Surveillance and Reconnaissance (C3ISR) domains.
SCL greatly reduces workload and automates routine tasks through procedural, time-sequenced and event based

2
American Institute of Aeronautics and Astronautics

responses to real-time data.” We would have to have a closer relationship with SRA to show more details of SCL,
but they do go on to list features of SCL that include “Full-featured scripting language.”' SCL also provides
interfaces to let you adapt your proprietary C2 and telemetry acquisition systems to the SCL engine . SCL was chosen
by Kennedy Space Center as the script engine for the Constellation Launch Control System.

The Systems Test and Operations Language (TSTOL) is an interpreted language developed at Goddard Space
Flight Center and “is derived from generations of the Systems Test and Operations Language (STOL) used in
existing NASA satellite control centers. TSTOL is a procedural command language consisting of a core set of
generic commands, supplemented by mission-specific extensions.””” TSTOL includes typical programming
capabilities such as various data types, arithmetic, logical, and relational operators, global and local variables, and
looping constructs. TSTOL also has built in “procedures” or commands specific to the Goddard Mission Systems.
TSTOL allows for the creation of custom procedures or commands so that the language can be adapted to new
programs and interfaces.

The Scripting Language Processor (SLP) at the MSFC POIC and also currently used by the Chandra X-ray
Observatory Control Center 1s based on the TSTOL design and provides the operations teams with the ability to
develop scripts and to control script execution. SLP scripts consist of text files made up of statements, called
directives, which the SLP interpreter can recognize and execute. In SLP many of the same things can be done as in
TSTOL with respect to arithmetic, logical, and looping functions. The SLP directives also include POIC (and
Chandra) spacecraft command and telemetry specific actions for remote control of the ISS Payload (and Chandra
spacecraft). Examples of the SLP directives are included m Table 1.

Table 1. Sample SLP Directives

ask prompt [variable] Prompts the operator for input and waits until a resume directive is entered. The
value entered is stored in variable. If variable is not specified, the process is halted
until the user enters a resume directive. Prompt is a quoted string that will be
displayed to the operator.

Sample next Samples the oldest unread received value(s) of the specified MSID, and stores the
MSID identifier function returned telemetry value(s) into the local or global script variable specified.
update command Updates a variable length DL.C command. The file must be in the predefined binary

command_mnemonic from | image format, and may not contain more data than can fit in a single command. The
file binary image filename | file must reside on the PIMS server. See Appendix C: Data Load Commands.

uplink command Initiates the transmission or uplink to the spacecraft for the command referenced
mnemonic [verify by a unique mnemonic as defined in the Operational Command Database.
car/fsv/crr]

C. Why Scripts for Ground Operations

Compared to compiled languages, scripts are easier to write due to the simple and limited language syntax.
When the language is simple, training time is decreased and the need for language experts is lessened. Scripts are
also faster to develop because each statement does lots of work, ie., “uplink command,” and because the script
developer gets immediate feedback from the interpreter. Scripting languages also provide easy to use constructs for
user-controlled program flow. In many operations scenarios, it is necessary to have flight operations personnel
monitor the script or operations procedure progress and respond to queries. With SCL, TSTOL, and SLP, the script
user has many control options.

Scripting languages are not historically known for being rich in graphic capabilities. At the MSFC POIC, the
operations Cadre personnel use a combination of scripts (SLP and now ERS), a data display tool, and custom
programs or comps (compiled languages) to provide them with the best combination of all the features they need to
automate their flight operations tasks.

We wondered if it was possible to combine the features of a scripting language like TSTOL and SLP with the
graphical richness of a simple programming language like Visual Basic. Some of the scripting language syntax for
standard program operations had become more complex and more work to maintain just to provide features that
basic programming languages already offer. Visual Basic and C# programmers are becoming more readily available.
The idea was to let programming languages do what they do best, and add in classes and methods (script commands
or directives) that do lots of work, i.e. “uplink command.” We also had to develop a way to provide run-time
“script” control that made execution feel and act like a script. Thus was born the Enhanced and Redesigned
Scripting language or ERS.

3
American Institute of Aeronautics and Astronautics

III. ERS

The Enhanced and Redesigned Scripting (ERS) 1s one of a suite of applications of the Enhanced Personal
Computer (EPC) tool at the MSFC POIC. EPC 1s a Windows based tool-set that allows local and remote POIC users
to display and analyze telemetry, and uplink commands to the ISS payload systems for control purposes. ERS 1is the
latest “scripting” product developed at Marshall to support procedural style remote operations control.

A. Script Creation and Script Help

ERS uses the Microsoft Visual Studio programming environment for development and also offers custom
controls that enable an ERS developer to extend the Visual Basic and Visual C# languages to interface with the
POIC telemetry and command system. Although the “programs” are compiled, ERS offers execution control
features that make an ERS program feel and operate like a script. Visual Basic and Visual C# provide a rich set of
graphical development tools that make for an extremely user friendly end-product. In ERS, the richness of a full
featured programming language is combined with the flexibility and user control of a script. ERS consists of ERS
Operations, Microsoft Visual Studio, and a number of custom wizards developed at Marshall to provide point and
clink integration with the POIC ground system’s core libraries.

& ERS Operation [SS:TST1: Test, dtdnas1 (EHS 12.2); dte0allo (=133

Fle View Options
E B ba &) {) E) x o 1) 02 Dats Mode: iRea?time ﬂ TOB Version: !Baseline- FROF-V[&

Script Projects: Active Soripts:
& (FRS Seripts Assembly Class
) @ Customl
o ¥ Damol
@ LogMsID
(O] Legacy Scripts

Messages:

Figure 1. ERS Operation Main Window

The ERS Operations application, Fig. 1, is the main entry-point into the ERS system. Here the user can create,
edit, delete, and run ERS scripting projects. Each ERS “script” is actually a NET project that must be first compiled
before 1t 1s run. Part of the compiling phase includes steps that validate the correctness of an ERS script. From ERS
Operations, scripts can be validated and then run in various data modes including real-time and playback.. ERS
Operation also displays any currently running ERS scripts.

When creating a new ERS project, the ERS developer selects “add new script” from the File menu option in ERS
Operation, which will launch Visual Studio’s New Project Wizard, Fig. 2. In the New Project Wizard, the user then
selects a desired programming language, the ERS Script Project template and a project name.

4
American Institute of Aeronautics and Astronautics

Hew Project

Project bypes; Templates: -MET Framework 3.5
i+ Reporting # || visual Studio installed templates S
- Tesk
Wy ZF £
- warlflow '.ECF
[+ Wisual C# ERS Script
(= Other Languages Projeck
| - Wisual Basic
- =2 Wisual Basic
: My Templates
s My Templ:
[Wisual C++ =.
[Other Projeck Types
[+ Test Projects =]
b Sgarch Online b
Creates an ERS script project, |
kame; | Custom1 |
Location: i C:\Diocuments and Settings\kesthDeskiopyCods w I [Browse... }
Solution: iCreate e Solution w | [CJereate directory For solution
| I [[] add o Rational ClearCase (musk be in a view)
[‘ Ok I [Cancel]

Figure 2. Visual Studio New Project Wizard

Clicking “okay” brings up the ERS New Project Wizard, Fig. 3, and the user must select an active EPC session
to run against. The EPC session selection connects the ERS project to a specific set of telemetry and command
meta-data within the POIC ground system. Clicking “okay” causes this Wizard to create a new NET project that
contains a code file plus an ERS-specific Validation File (Fig. 4: “DemoScript. Validation.ers™). The code file is
where the user-defined scripting logic is inserted. The validation file is used to map EPC telemetry and commanding
objects into the project. These objects then become accessible in the wuser-defined code.

£ Mew Project Wizard

Project Name

‘ Demo |

Lacation

MOP: ISHTSTL:Test

Folder: U\ISS\WsT\TST1\Test\dte0al0
MOP: HMone ’

Folder: C:\Documents and Settings\pedotrw!\Desktop\Codel\Demn

l Creste Project] [Cancel]

Figure 3. ERS New Project Wizard

In programming terms, an ERS script is just a custom NET class that extends a base class called “ScriptEngine”.
This base class is defined in the ERS library and contains many useful EPC-related methods. These methods will
appear in Visual Studio’s Intellisense, Fig. 4, whenever the user types code. Included in the Intellisense are
descriptions for each method. A list and description of some of the ERS methods available for use within ERS

script classes are found in Table 2. Notice the similarities between these methods and the directives in Table 1 for
the SLP.

5
American Institute of Aeronautics and Astronautics

‘ﬂ Demo - Microsoft Yisoal Studio

=d| My Project
@ DemoScript, Yalidation, ers
] DemoScript.vb

File Edt Wiew Project Buld Debug ClearCase Data Tools Test Apalvze Window Help
Solution Explorer - Demo - ll x DemaScript.yb® -
=t 2 [=) 1
=l ﬁ ; 5 51’-' “iZ DemoScript | “4Run{Paramairray String{}) |
; sn\utlon Dema' {1 projeck) Option Strict Off —1
= _‘E Demo ~

Option Explicit On
Twports ERSLibrary

System

System.Collections. Generic
System. Text

Twports
Tiports
Imports

Partial Public Class DemoScript

Inherits ScriptEngine

j_a‘, Error List §E Pending Solution Checkins| (5] Outpu.t i Find Results 1 ;;‘_;Find Symbol Results

Public Owerrides Sub Run(ByVal Parswlirray ards () Ls Suring)
' Insert scripting cocde here.

In
W UpdateCommandForm
W UpdateCommandFromDat aset
9 UpdatePseudo
9 UpdatePseudos
% UplinkCormand

M|[Pubic sub UplinkZommand{crmdMnem As String) (+ 2 overloads)
Initiates the transmission or uplink to the spacecraft for the command re

commen Al defined in the Operational Command Datsbase, The actusl command tr:
W |Command System Services processes.
End Uhile
End Sub

<3ysten. 3TAThreadittribute () >
Duhlic Sfharad Sakh Main !

Figure 4. ERS Development Showing Intelescense

Table 2. A Sample of ERS Methods

Ask(vanable)

Prompts the operator for mmput and waits until a resume directive 1s
entered. The value entered 1s stored in vanable. If vanable is not
specified, the process is halted until the user enters a resume directive.

Ask<(Of <(T>)>)(variable)

Prompts the operator for imput and waits until a resume directive is
entered. The value entered is stored in vanable. If variable is not
specified, the process is halted until the user enters a resume directive.

AskPulldown(String, Create a dialog box that will prompt the operator to select a single answer

array<String>[]([]) to a prompt by clicking a selection from a list of text items in a pulldown
list.

AskPushButton(String, Creates a dialog box that will prompt the operator to select a single

array<String=[][]) answer to a prompt by pressing a pushbutton with the specified text.

LoggingOptions Contains various options for controlling logging behavior. These options
must be set prior to calling any logging methods. Upon calling the first
logging method, these options become read-only.

SampleLatest()()() Updates all MSIDs with their latest packet values.

SampleMSID<(Of <(T=)=)(String, | Imtializes a MSID object from which values and statuses will be sampled.

Processing, Boolean, Boolean)

SampleNext()()() Updates all MSIDs with their next packet values.

StartDisplay(String) Starts the identified display within an instance of the Display Operations

application.

UpdateCommandForm(String)

Shows the update form for the specified command.

UplinkCommand(String, Verify)

Initiates the transmission or uplink to the spacecraft for the command
referenced by a unique mnemonic as defined in the Operational
Command Database.

6

American Institute of Aeronautics and Astronautics

Wait(Int32)

Suspends execution until the time has elapsed and then resumes execution
with the next statement in the script.

Write(Object, array<Object>[]()[])

Constructs a string of text and displays it on the operator’s screen.
Expressions may consist of user defined vanables, intrinsic functions, and
quoted strings. All expressions will be formatted in ASCII. The message
will NOT be sent to Message Handler.

WriteFormat(String,
array<Object>[|O[])

Logs a string using the composite formatting feature of the NET
Framework.

More detailed help 1s also available for each method by pressing the “F1” key while in the Visual Studio IDE.
This brings up the full set of ERS documentation, Fig. 5, which contains all the methods and objects that can be used
in an ERS project. ERS Help 1s also searchable by keywords.

(@ ScriptEngine Members - Microsoft Yisual Studio 2008 Documentation - Microsoft Document Explorer

File Edt Wiew Jools Window Help
@ Back [#] ¥ A" @ Howpol - A search |3 Index ¥ Contents [=]Helg Favorites | =] %) M Forums 1A &
= -7

Index -1 x ScriptEngine Members A
Fil=Ed b F1 Options: ichoose - URL: ms-help:§fMS.45CC, va0fMs, YVSIPCC, w20
| Cunfiltered) ¥ = cCollapss Al ¥ Code: Multipls ¥ Membars: Show Al
Look For: MET Fra k Class
. ‘ ScriptEngine Members
Expression.DTE property -~ N i
Expression.ElementInit method 5 @55 Constructars Methods Properties See Also Send Feedback
Expression.Equal method
Expression. ExdusiveOr method X R B
Expression. Expression constructor L StartSampling Starts the MSID data strearmn, Once started, this will
Expression. ExpressionTexk property populate all the MSID wariables with their respective
Expressian.Field method MSID sampls data, The update rate at which to buffer
Expressian. GetActionTyps methad incoming data, A value of 0 should be used if all the
EXPVESSEOH-gEtFtUHCTLVDB mi;hﬂéﬂ data is necessary, whils 1 is suitabls for |stest data,
rpression.GreaterThan metho
Exgression.GreaterThanOrEqual meth o StopAllComputations Stops all computations curreptly exe:_uting on the EHS
Expression. Irvoke method login server under the caller's Epc login session.
Expr’ess!an.ish'agg'\faluegrgperty L] StopAllDisplays Stops all displays currently executing under the
#pressionsLamooa MELa caller's Epe lngin session,
ExprassionLeftshift mathod 5 He S 5 5
Exprassion.LessThan msthad i StopAllERSScripts Stops all IERS scripts executing on the local host under
Expression.LessThanOrEqual mathad the caller's Epc login session,
Expression Listiind rne;:-lhc;d L4 StopAlllegacySoripts stops all l=gacy scripts executing on the local host
E:E:zz:gg'uztggﬁf; ;ethud under the caller's Epc loain session,
Expression, MakeMemberficcess methe i StopallScripts Stops all ERS and legacy s:rip_ts executing on the local
Expression.MakeUnary method host under the caller's Epc login session.
Expression.MemberBind method :

= 5]] i

Expression.MemberInit method s StanGarnpntation LheHoadnd
Expression.Modulo method L] StopDisplay overloaded.
Ezg:;;:g;mmgﬂ:z&f&;ﬂ method W StopERSSoript Stops the caller identifisd ERS script,
Expression.hame properky & b StoplegacyScript Ztops the caller identified legacy script.
F: inn Blenate rethad

;qn';:'wm jE; = r:w.. ?n e b4 StopPseudos

Ready

Figure 5. ERS Detailed Help

B. Measurements and Commands as Script Variables
To properly use many of the methods or procedures previously presented, individual telemetry mmnemonics or
Measurement Stimulus Identifiers (MSIDs) and Command Mnemonics must be assigned to variables in the

program. The validation file (Fig.

4: “DemoScript.Validation.ers™) that was generated at project creation time is

used to map these objects into an ERS project. Double-clicking on the validation file will display the validation
dialog shown in Fig. 6. Here the user can define the telemetry measurements and commands to include in the code

project.

7

American Institute of Aeronautics and Astronautics

BN ERS (DemoScript-Validation.ers) - IS8:TST4:Test, dtlnas1 (EHS 12.2): dte0all0 - Real... [2|[E]

Input MSIDs | Qutput MSIDs H Commands H UDEs || Advanced |

FMSID Processing All Samples Limits/ES | Variable Type Variable Name

PKT1001-DD08 [CALIBRATED |w | (] [sTRING ™| [|

L s li B CA CONVERTED |» ll] REAL vIr _

IAdd MSED(S]] I Edit] [Details. ..] I Remaowvsa]

[Save] [Validate } [Cancel

Description

Figure 6. Validation Dialog

The validation dialog (Fig. 6) maps an EPC object (i.e., a measurement, command, etc.) to a variable name. The
variable can then be addressed by the user in the code file. The vanable itself exposes properties and methods that
make sense for that particular EPC object type. For example, a measurement variable will have properties that return
a sampling status or value. In the code segment below, the “r” measurement variable is being nspected for new
data.

If STRING IsDataNew Then
Write("New data is available!")
End If

A search dialog is used to select the telemetry measurement for variable assignment (Fig. 7). Measurements can be
searched on several criteria, including whether or not t he measurements have pre-defined limits or expected states.

Bl Select MSIDs - 1S5:TST1:Test, difnasd (EHS 12. 2): dieDall0

Search Criteria

MsID | PicT1001 |

Technical Mame | |

EM Error Description | |

Owner 1D | Limits/Expacted Stabes[|

Search Results

MSID Technical Nama Owiner ID EM Error Dascription s
PKT1001-0004 COUNTER MEASURMENT POL-PETLO0L
PKT1001-0005 COUNTERZ MEASURMENT POL-PETLOOL
PKT1001-0006 FRANGE MEASLIRMENT PDL-PET1001 - -
PKT1001-0007 EBit Non-Conitiguosus Group IUNS POL-PET1001
PKT1001-0008 Single Bit Discrate PDL-PKT1001
PET1001-000% Single Bit Discrete 0=0FF, 1=0MN POL-PET1001
PET1001-0010 32 Bit Signed Integer Twos Comp Word Swap POL-PKT1001
PKT1G01-0011 Multisyilable Range-dependant parameter PDL-PRT1001
PKT1G01-0012 EBit Non-Contiguous Super POL-PRT1001
PKT1001-0013 Multisyilable Countar-dependeant POL-PRT1001
PKT1001-0015 Bit Non-Contiguous Super Sampled TUND POL-PKT1001
PKT1001-0016 Bit-Contiguous Countar Dep FISM POL-PKT1001
PKT1001-0017 Bit Non-Contiguous Counter-dependent POL-PKT1001
PKT1001-0018 EBit-Conitiguous Group FSPL PDL-PHT1001
FEKT1001-001% Multisyllable Super Sampled Fuax POL-PET1001 -
et e ST I el
Found 100 MSIDs
ISeIectl ISaﬁrch] [Clear] [Close]

Figure 7. Select MSIDs

8
American Institute of Aeronautics and Astronautics

From the measurement search dialog, the details of each displayed measurement can be examined, Fig. 8.

B PKT1001-0014 - MSID Details)

Generzl
MSID Name | PT1001-0014 |
Qwner D | PoL-PrcT1001 |

Technical Name

| Typical Super Sampled FEEE |

EM Error Descnption |

Description | Typical Super Sampied FEEE |
[rropriztary [|EHs Header

Converted Calibrated

Raw Data Type | FEEE Calibration MO_CALS

Converted Type | EML c ALOAT Calibrated Type EML_c_DOUBLE

e S R
Low Raw Count |

CL T C—
ol Lerath

Enginesring Unit :\
Min Engineering Units D—l
Max Engineering Units D
Default Set Number D

I Close]

Figure 8. Measurement Detail

Commands can also be added to an ERS project via the command tab back on the Validation Dialog, Fig. 6. Like
MSIDs, the commands available are searchable by name (Fig. 9). From the Select Commands dialog, the details of
each command can be examined in a window similar to Fig. 8.

Bl Select Commands - 155: TST1: Test, dtdnas1 (EHS 12.2): dteOall(

Search Criteria

Mremanic |
Search Results

Mnemaonic Technical Mame Qwner ID | Variable Length)

ADD DWHNLINK FILE ADD FILE TG DOWNLIMK _TELEMETRY QUEUE ARCTIC-1 N

ADD_DWHNLINK_FILEZ ADD_FILE_TO_DOWNLINK_TELEMETRY_QUELE ARCTIC-2Z N

CLEAR_FILENO_QUEUE CLEAR_FILE_MUMBER_FROM_TELEMTRY _DOWNLINK_QUEUE ARCTIC-1 N

CLEAR_FILENO_QUEUEZ CLEAR_FILE_MUMEBER_FROM_TELEMTRY_DOWNLINK_QUEUE ARCTIC-2 N —_

CLEAR THERM_PROFILE CLEAR _All PROGRAMMABLE THERMAL PROFILE_ENTRIES ARCTIC-1 N

CLEAR_THERM_PROFILEZ CLEAR_ALL PROGRAMMAELE_THERMAL_PROFILE_ENTRIES ARCTIC-Z2 N

DELETE FILE DELETE FILE ARCTIC-1 N

DELETE_FILEZ DELETE_FILE ARCTIC-Z2 N

EME DISABLE TELEMTRZ EMNABLE/DISABLE DOWMLINE TELEMETEY ARCTIC-2 N

ENB_DISABLE_TELEMTRY ENABLE/DISABLE DOAWNLINK _TELEMETRY ARCTIC-1 N

ENE_DIS_DDOR_DET EMABLE/DISABLE_DOQOR_OPEN_DETECTION ARCTIC-1 N

EME DIS DOOR DET2 EMABLE/DISABLE DOOR OPEN_DETECTION ARCTIC-2 N

FILE_UPLINK_XFER FILE_UPLIMK_TRANSFER ARCTIC-1 M

FILE_IJPLINK_XFERZ FILE_UPLINK_TRANSFER ARCTIC-Z2 N

GET_DIR GET_DIRECTORY ARCTIC-1 N

GET_DIRZ GET_DIRECTORY ARCTIC-2 N v

Found 62 Commands

I Salact] ’ Search I [Clzar] { Closa

Figure 9. Select Command Dialog
9
American Institute of Aeronautics and Astronautics

C. Script Control

ERS scripts can be controlled at creation time in debug mode inside the Visual Studio debugger where the script
developer is provided with a rich set of the latest source level debug tools provided by Microsoft.

ERS provides script control for a verified ERS script at run-time through ERS provided input/output methods.
These include methods to write out messages and to prompt a user for input. An ERS script that performs input and
output is assigned its own logging window where both the input prompts and output messages are displayed. Figure
10 is an example of an ERS script prompting the user for a number, which it then uses to output a measurement
sample that number of times.

Note that both the input and output of an ERS script are tagged with a time stamp. This is because, by default, all
mput/output generated by a script 1s also logged to a standard file associated with that script. The log files can be
accessed from the logging window itself or via the ERS Operations application for post flight analysis.

L 9 DemoScript - ISS:TS8T1:Test, dt1nas... @@@ L 3 DemoScript - IS5: TST1: Test, di1nas. .. Q@
[} view (—y Logs [} View (5] Logs

2010:040:00:05:42 Enter number of samples: 2010:040:00:05:42 Prompt Reguest: Enter number of
“ ‘ zamples:

[O,] [Cancel] 2010:040:00:06:34 Prompt Reply: 5

2010:040:00:06:34 1 123.455953305234%
2010:040:00:06:34 2 123.455933552324
2010:040:00:06:35 3 123.4559338525324
2010:040:00:06:36 4 123.455933652324
2010:040:00:06:3F 5 123.3559930523%4
2010:040:00:06:37 The script has completed.

Exit | [mestart

Figure 10. ERS Input and Output Windows

IV. Conclusion

Seripts for flight operations control have proven to be very useful. They offer a relatively simple syntax that does
not require specialized training and an environment that is integrated well with the host ground system. Seripts also
offer flow-control functions that make them ideal for remote control including execution confirmation. Other than
the very newest Web-oriented scripting languages, most are graphically challenged and maintaining the typical
program constructs that are not specific to ground systems functions becomes time consuming and even
unnecessary.

ERS makes use of Microsoft’s Visual Basic (and C#) language which 1is also simple to understand and easy to
leamn. ERS adds “Wizards” to allow program access to the ground systems telemetry and command objects. Using a
standard programming language removes the need to maintain basic programming syntax in a script interpreter and
frees us to concentrate on new ways to interface to our base system. ERS also provides a powerful input/output
flow-control feature that allows for the user to monitor progress and for confirmation execution of critical tasks if
necessary, while also recording all actions in textual log files.

ERS programs are not scripts. But ERS programs offer the same features as many scripting languages, such as the
HOSC’s SLP, while also including the ability to include rich graphical components. ERS is an Enhanced and
Redesigned Scripting environment that is lowering our scripting development and maintenance costs while
increasing our ground systems automation capability.

10
American Institute of Aeronautics and Astronautics

Appendix

ERS Development Architecture

The development environment for ERS consists of a computer with both EPC (version 6.5 or higher) and Visual
Studio 2008 (or later) installed. As part of the EPC installation, Visual Studio is extended to include an ERS project
wizard and a new editor for an ERS-specific file type. Once installed, creating ERS “scripts™ consists of three
distinct stages discussed below.

1. Develop 2, Validate 3. Run

A A AL
Bt N

~
= : Display Ops /
New Project Wizard R / Scratchpad Line
o ’ .NET
Validation Resource Compile
file Assembly
.NET Project DLL/EXE |~ —»

L Script Ops
egacy :
Script Conversion l / \

etc...

Validation
.NET Assembly | Resource
DLL or EXE file
EaRS
Ligi;ry NET
Framework,
COM,
etc.
Other EPC Libraries

1. Development Stage

A new ERS project 1s created within Visual Studio via a custom ERS project wizard. This creates a NET
project consisting of code files, written in either C# or VB.NET, plus an ERS-specific file used to map EPC’s
telemetry and commanding objects into the project. The code includes methods defined in the ERS Library to do
Enhanced HOSC System (EHS)-related directives, as well as any other user code that 1s allowed by the NET
languages. All the Visual Studio IDE features such as IntelliSense, help, and debugging are now part of the
scripting development experience.

In programming terms, an ERS “script” is just a NET class that extends a base ERS class called
“ScriptEngine”. This base ERS class contains EHS-related methods. In addition to using the EHS-related methods,
the user can work with EPC telemetry measurements and commands. These are represented as NET objects with
various methods and properties that the user can code against. Telemetry and commanding objects are introduced
mnto an ERS project by way of a custom editor provided by ERS. The custom editor 1s associated with a “validation™
file that 1s part of the ERS project. From this editor, the user can select various telemetry measurements and
commands. Once selected, they become mapped to a variable and, thereafter, are accessible by code.

2. Validation Stage

Building a scripting NET project is similar to building a regular NET project, except the script project has an
additional custom build step that handles validation. Building a project and validating a project go hand-in-hand.
Validation involves converting the validation file of an ERS project into proper set of NET variables, by generating
“behind the scenes” code. This generated code is then compiled together with the user code. The final output of this
build is a NET assembly .dll. This assembly contains the ERS validation information, “script” code, and any other
code and/or resources the user included into the project.

11
American Institute of Aeronautics and Astronautics

A script project can be validated in one of two ways. The first way, as mentioned above, is by building the ERS
project inside of the Visual Studio IDE. Alternatively, an EPC application called Bulk Validation, can be used to
build one or more ERS projects.

3. Run Stage

A NET assembly containing ERS scripting code can be run via the EPC Scratchpad Line, a scratchpad line in
Display Operations (i.e. button) or via Script Operations. Additionally, because it in a .dll form, ERS scripting code
can be used as a method by other libraries or executables. Alternatively, an ERS project can be converted into an
EXE project type and run as a standalone application.

Regardless of how it 1s started, before any ERS -related methods are executed the ERS code must imtialize itself
with an EPC session. This imitialization process verifies that the ERS code was validated correctly against the same
database version in the EPC session. Referenced telemetry measurements and commands are further checked to
make sure they exist in the specified EPC session.

Script Syntax Compared

Sample Unix Shell Script that accepts one argument:
if[$#=10]; then

echo Error! Parameter required.

exit 1

fi

if ["$1" = "Dog" |; then

echo Bow Wow!

elif ["$1" = "Cat"]; then

echo Meow!

else

echo Error!: Invalid Parameter

fi

Scripts that update a command's bandwidth field and then uplinks the command:

SLP Script ERS “Script”
begin script script_name With SetTempBandwidth. Fields
declarations .Bandwidth = 10

system_section End With

global section SetTempBandwidth. Update()

local section SetTempBandwidth. Uplink()
end_declarations Or
update command SET TEMP BANDWIDTH fields SetTempBandwidth.Update(10)

BANDWIDTH = 10 SetTempBandwidth. Uplink()
endupdale
uplink command SET TEMP BANDWIDTH
end script
References

! SRA International, http://www.sra.com/scl/, 2010.

? TSTOL Manual, The Systems Test and Operations Language, Goddard Spaceflight Center, 1993.

3Seripting Language and Scratchpad Line Detailed Specification HOSC-EHS-2057. March 2000

12
American Institute of Aeronautics and Astronautics

