
The Next Generation of Ground Operations Command and
Control;

Scripting in C# and Visual Basic

George RitterI
Computer Science Corporation (CSC), Huntsville, Alabama, 35806

And
Ramon Pedot02

COLSA Corporation, Huntsville, Alabama 35806

Scripting languages have become a common method for implementing command and control solutions in
space ground operations. The Systems Test and Operations Language (STOL), the Huntsville Operations
Support Center (HOSC) Scripting Language Processor (SLP), and the Spacecraft Control Language (SCL)
offer script-commands that wrap tedious operations tasks into single calls. Since script-commands are
interpreted, they also offer a certain amount of hands-on control that is highly valued in space ground
operations. Although compiled programs seem to be unsuited for interactive user control and are more
complex to develop, Marshall Space flight Center (MSFC) has developed a product called the Enhanced and
Redesign Scripting (ERS) that makes use of the graphical and logical richness of a programming language
while offering the hands-on and ease of control of a scripting language. ERS is currently used by the
International Space Station (ISS) Payload Operations Integration Center (POIC) Cadre team members. ERS
integrates spacecraft command mnemonics, telemetry measurements, and command and telemetry control
procedures into a standard programming language, while making use of Microsoft's Visual Studio for
developing Visual Basic (VB) or C# ground operations procedures. ERS also allows for script-style user
control during procedure execution using a robust graphical user input and output feature. The availability
of VB and C# programmers, and the richness of the languages and their development environment, has
allowed ERS to lower our "script" development time and maintenance costs at the Marshall POIC.

Nomenclature

ASP	 = Active Server Page
CLI	 = Command Line Interface
CSC	 = Computer Science Corporation
C2	 = Command and Control
C31SR	 = Command, Control, Communications, Intelligence, Surveillance and Reconnaissance
C#	 = `C' "sharp", a programming language
EHS	 = Enhanced HOSC System
EPC	 = Enhanced Personal Computer (MSFC HOSC Telemetry and command tool-set)
ERS	 = Enhanced and Redesigned Scripting Language
HOSC = Huntsville Operations Support Center
HTML = Hypertext Markup Language
ISS	 = International Space Station
MSFC = Marshall Spaceflight Center
PHP	 = Hypertext Preprocessor
POIC	 = Payload Operations Integration Center
SCL	 = Systems Control Language
SLP	 = Scripting Language Processor
STOL	 = Systems Test and Operations Language
TSTOL = The System Test and Operations Language
VB	 = Visual Basic
VS	 = Visual Studio

' Software Development Team Lead, Software Engineering, CSC, 310 Bridge St., Huntsville, Al. 35806
2 Computer Scientist, Software Engineering, COLSA Corporation, 6728 Odyssey Drive, Huntsville, Al. 35806

1
American Institute of Aeronautics and Astronautics

I. Introduction
Script serves as a pre-planned set of instructions to execute or perform a task such as the dialog in a play or a
small job in a computer. While traditional programming languages evolved primarily for the purpose of

solving complex; computational intensive problems, scripting languages or scripts have become mainstream tools
for solving more of the "house-keeping" computer problems like managing file systems. Where the focus on
compiled programming languages is on performance, script commands are geared towards ease of use. In the typical
script cornrnand, task performance is less of an issue permitting the use of an interpreted environment.

Control of space systems from ground operations sites requires a certain amount of repetitive or scripted actions to
control remote systems. The ease of use of script commmands makes creation and modification of ground initiated
flight procedures simple and less prone to error. A number of flight operation scripting languages have evolved from
today's commonly used computer scriptin g languages. These scripting languages integrate with the native command
and telemetry systems through unique script commands.

The Marshall Space Flight Center's (MSFC) Huntsville Operations Support Center (HOSC) has developed a tool
called the Enhanced and Redesigned Scripting Language (ERS). ERS combines the ease of use and low risk
potential of the typical interpreted scripting language with the power and richness of a frill programming language.
ERS has streamlined development of scripts and enhanced remote control of on-board systems at the Huntsville
Payload Operations Integration Center (POIC).

II. The Value of Scripting in Flight Operations
Since the beginning of scripting languages like IBM Job Control Langua ge (JCL) to the current object oriented

languages like Ruby and Perl, system administrators and software developers have sought to "avoid the compiler" in
an effort to simplify cornrnon and repetitive tasks that are not performance oriented- Space ground systems have
adapted and extended scripting concepts to the command and telemetry processing domains. Vdhat makes the
interpreted languages so useful in the Space Operations world? Is there a more advanced solution that combines the
graphical richness of a complied language with the ease and flexibility of a script development environment?

A. Mini-History of Scripting Languages
In the early 1960's IBM introduced Job Control Language (JCL) on their OS/360 where files could be copied

from one location to another using only 9 lines of instructions! JCL was followed by Data General's Command
Line Interface (CLI) and later followed by the Unix Bourne Shell. These Scripting Languages store a series of
cornrnands in a tile. Data General called them "macros". Unix called them "shell scripts." In all cases; the scripts
ran as interpreted statements where no time was spent compiling. Local variables and flow control were slowly
added. As complexity grew, these languages continued to be interpreted, most likely because compute power was
also increasing.

A small list of the more popular scripting languages of today, often calling themselves dynamic programming
languages, includes Perl; Python, Ruby, Hypertext Preprocessor (PHP), Active Server Page (ASP). and JavaScript.
Pearl is known for its textprocessing capabilities, Python for readability and object oriented constructs; Ruby for
object oriented, and PHP, ASP, and JavaScript for their ability to be used on Web applications inside Hypertext
Markup Language (HTML) files.

Today's scripting languages have progressed beyond simple file manipulation to common (and even complex)
programming tasks. They satisfy the needs of providing fast-to-develop and easy-to-maintain programming
solutions in many of today's computer problem domains.

B. Some Space Ground Operations Scripting Languages
Companies such as SRA International and some NASA Centers have found scripting langua ges very powerful

for space operations applications.
Systems Control Language (SCL) developed by SRA International "is a fidl featured scripting language with

which you can easily build, test and operate diverse control systems across mission critical command and control
(C2) and Command, Control, Communications, Intelligence, Surveillance and Reconnaissance (C3ISR) domains.
SCL greatly reduces workload and automates routine tasks through procedural, time-sequenced and event based

American Institute of Aeronautics and Astronautics

responses to real-time data. " We would have to have a closer relationship with SRA to show more details of SCL,
but they do go on to list features of SCL that include "Full featured scripting language."' SCL also provides
interfaces to let you adapt your proprietary C2 and telemetry acquisition systems to the SCL engine. SCL was chosen
by Kennedy Space Center as the script engine for the Constellation Launch Control System.

The Systems Test and Operations Lan age (TSTOL) is an interpreted language developed at Goddard Space
Flight Center and "is derived from generations of the Systems Test and Operations Language (STOL) used in
existing NASA satellite control centers. TSTOL is a procedural command language consisting of a core set of
generic commands, supplemented by mission-.specific extensions- ,2 TSTOL includes typical programming
capabilities such as various data types; arithmetic, logical, and relational operators, global and local variables, and
looping constructs. TSTOL also has built in "procedures" or connnands specific to the Goddard Mission Systems.
TSTOL allows for the creation of custom procedures or commnands so that the language can be adapted to new
programs and interfaces_

The Scripting Language Processor (SLP) at the MSFC POIC and also currently used by the Chandra X-ray
Observatory Control Center is based on the TSTOL design and provides the operations teams with the ability to
develop scripts and to control script execution. SLP scripts consist of text files made up of statements, called
directives, which the SLP interpreter can recognize and execute. In SLP many of the same things can be done as in
TSTOL with respect to arithmetic, logical, and looping functions. The SLP directives also include POIC (and
Chandra) spacecraft command and telemetry specific actions for remote control of the ISS Payload (and Chandra
spacecraft).Examples of the SLP directives are included in Table 1.

Table 1. Sample SLP Directives
ask prompt [variable/ Prompts the operator for input and waits until a resume directive is entered. The

value entered is stored in variable. If variable is not specified, the process is halted
until the user enters a resume directive. Prompt is a quoted string that will be

ydisplayed to the operator.
Sample next Samples the oldest unread received value(s) of the specified MSID, and stores the
MSID_identifrer frmction returned telemetry value(s) into the local or global script variable specified.
update command Updates a variable length DLC command. The file must be in the predefined binary
command mnemonic from image format, and may not contain more data than can fit in a single command. The
file binar1,_image filename file must reside on the PIMS server. See Appendix C: Data Load Commands.
uplink command Initiates the transmission or uplink to the spacecraft for the coimnand referenced
mnemonic [verify by a unique mnemonic as defined in the Operational Connnand Database.
car/fsv/crr

C. Why Scripts for Ground Operations
Compared to compiled languages, scripts are easier to write due to the simple and limited language syntax.

When the language is simple, training time is decreased and the need for language experts is lessened. Scripts are
also faster to develop because each statement does lots of work. i.e., "uplink command," and because the script
developer gets immediate feedback from the interpreter. Scripting languages also provide easy to use constructs for
user-controlled program flow. In many operations scenarios, it is necessary to have flight operations personnel
monitor the script or operations procedure progress and respond to queries. With SCL, TSTOL, and SLP, the script
user has many control options.

Scripting languages are not historically known for being rich in graphic capabilities. At the MSFC POIC, the
operations Cadre personnel use a combination of scripts (SLP and now ERS), a data display tool, and custom
programs or comps (compiled langua ges) to provide them with the best combination of all the features they need to
automate their flight operations tasks-

We wondered if it was possible to combine the features of a scripting language like TSTOL and SLP with the
graphical richness of a simple programming language like Visual Basic. Some of the scriptin g language syntax for
standard program operations had become more complex and more work to maintain just to provide features that
basic programming languages already offer. Visual Basic and C# pro grammers are becoming more readily available.
The idea was to let programming languages do what they do best, and add in classes and methods (script commands
or directives) that do lots of work, i.e. "uplink cominand." We also had to develop a way to provide run-time
"script" control that made execution feel and act like a script. Thus was born the Enhanced and Redesigned
Scripting language or ERS.

American Institute of Aeronautics and Astronautics

III. ERS
The Enhanced and Redesigned Scripting (ERS) is one of a suite of applications of the Enhanced Personal

Computer (EPC) tool at the MSFC POIC. EPC is a Windows based tool-set that allows local and remote POIC users
to display and analyze telemetry, and uplink commands to the ISS payload systems for control purposes. ERS is the
latest "scripting" product developed at Marshall to support procedural style remote operations control.

A. Script Creation and Script Help
ERS uses the Microsoft Visual Studio progranuning environment for development and also offers custom

controls that enable an ERS developer to extend the Visual Basic and Visual C# languages to interface with the
POIC telemetry and command system. Although the "pro grams" are compiled, ERS offers execution control
features that make an ERS program feel and operate like a script. Visual Basic and Visual C# provide a rich set of
graphical development tools that make for an extremely user friendly end-product. In ERS, the richness of a full
featured programming language is combined with the flexibility and user control of a script. ERS consists of ERS
Operations, Microsoft Visual Studio, and a number of custom wizards developed at Marshall to provide point and
clink integration with the POIC ground system's core libraries.

Bp	 -	 _ a . s1! (EHS 12J).Ae0.iA100•

_File	 'Maw	 Options

pA	 I	 y(;,! }s v^	 Data Made: Realtime v	 TD8 Version:	 Baseline - PROP vl

Script Projects: Active Scripts:
O E^ ERS Scripts

p *4Demol

+p ,*$ LogMSID

O+ C] Legacy Scripts

Assembly	 Class

Messages:

Figure 1. ERS Operation Main Window

The ERS Operations application, Fig. 1, is the main entry-point into the ERS system. Here the user can create,
edit, delete, and run ERS scripting projects. Each ERS "script" is actually a .NET project that must be first compiled
before it is run. Part of the compiling phase includes steps that validate the correctness of an ERS script. From ERS
Operations, scripts can be validated and then run in various data modes including real-time and playback.. ERS
Operation also displays any currently running ERS scripts.

When creating a new ERS project, the ERS developer selects "add new script" from the File menu option in ERS
Operation; which will launch Visual Studio's New Project Wizard, Fi g . 2. In the New Project Wizard, the user then
selects a desired programming language, the ERS Script Project template and a project name.

American Institute of Aeronautics and Astronautics

r	 ^ IIW

Project types:	 Templates: 	 .NET Framework 3.5	 JU e
Reporting)	 Visual Studio installed templates	 ^^

..... Test
-- WCF

Workflow	 _GIB

E0 Visual C# ERS Script
I] Other Languages	 Project

O Visual Basic

Ij • Visual Basic 	
My Templates

ERS

t Visual C	 _
Other ProjectckTypes

[D Test Projects
31	 Search Online	 v

Creates an ERS script project.

Name;	 Custom

Location:	 C: %Documents and 5ettings ktest kDe5ktop kCode	 v^	 Browse...

Solution:	 Create new Solution 	 Iv, q Create directory for solution

Solution Name: 	 Custom 1	 q Add to Rational ClearCase (must be in a view)

6K	 Cancel

Figure 2. Visual Studio New Project Wizard

Clicking "okay" brings up the ERS New Project Wizard, Fig. 3, and the user must select an active EPC session
to run against. The EPC session selection connects the ERS project to a specific set of telemetry and command
meta-data within the POIC ground system. Clicking "okay" causes this Wizard to create a new NET project that
contains a code file plus an ERS-specific Validation File (Fig. 4: "DemoScript.Validation.ers"). The code file is
where the user-defined scripting logic is inserted. The validation file is used to map EPC telemetry and commanding
objects into the project. V These objects then become accessible in the user-defined code.

Project Name

Demo

Location

#^

r. r

MOP: None
Folder: C:1Documents and SettingskpedotrwkDesktopkGcdekDemo

View

Create Project	 Cancel

Figure 3. ERS New Project Wizard

In programming terms, an ERS script is just a custom .NET class that extends a base class called "ScriptEngine".
This base class is defined in the ERS library and contains many useful EPC-related methods. These methods will
appear in Visual Studio's Intellisense, Fig. 4. whenever the user types code. Included in the Intellisense are
descriptions for each method. A list and description of some of the ERS methods available for use within ERS
script classes are found in Table 2. Notice the similarities between these methods and the directives in Table 1 for
the SLP.

American Institute of Aeronautics and Astronautics

File Edit View Project Build Debug ClearCase Data 	 iools Test Analyze 1+^;indow

Solution Explorer - Demo 	 X /bemoscript.v6*^

- -L=P & 0 &	 tDemoscript
Solution'Demd (1 project) 	 Option Strict O££

p- ON Demo
Option Explicit On

;J My Project
-	 Demo5cript, validation. ers

-•-	 Demo5cript.yb	
Imports ER5Library

Imports System

Imports System . Collections.Generic

Imports System.Text

Help
X

vl -G9 Run(ParamArray String{})	 U

I_

Partial Public Class DernoSoript

Inherits ScriptEngine

Public Overrides Sub Run(ByVal ParamArray args() As String)

' Insert scripting code here.

Upl

-^ UpdateCommandForm

-v UpdateCommandFromDataset
-v UpdatePseudo
a UpdatePseudos
,q

	 [de

ublic Sub UplinkCommand (cmdMnem As String) (+ 2 overloads)
nitiates the transmission or uplinkto the spacecraft for the command rE

Common	 All	 fined in the Operational Command Database, The actual command tr¢
ommand System Services processes.

End IJhile

End Sub

<Syst en. 5TAThreadAttribute(I>

I Z Error List l ;p Pe riding Solution Chec kin sI q_--^ Output) 7; Find Results 1I V, Find Symbol

Figure 4. ERS Development Showing Intelescense

Table 2. A Sample of ERS Methods
Ask(variable) Prompts the operator for input and waits until a resume directive is

entered.	 The value entered is stored in variable. 	 If variable is not
.specified, the process is halted until the user enters a resume directive.

Ask<(Of <(T>)>)(variable) Prompts the operator for input and waits until a resume directive is
entered.	 The value entered is stored in variable. 	 If variable is not
specified, the process is halted until the user enters a resume directive.

AskPulldown(String, Create a dialog box that will prompt the operator to select a sin gle answer
array<String> []O[]) to a prompt by clicking a selection from a list of text items in a pulldown

ylist.
AskPushButton(String. Creates a dialog box that will prompt the operator to select a single
arrav<String>[]O[]) answer to a prompt by pressing a pushbutton with the specified text.
LoggingOptions Contains various options for controlling logging behavior. These options

must be set prior to calling any logging methods. Upon calling the first
logging method, these options become read-only.

Sam leLatest)O(Updates all MSIDs with their latest p acket values.
SampleMSID<(Of 	 <(T>)>)(String. Initializes a MSID object from which values and statuses will be sampled.
Processing, Boolean, Boolean)
Sam leNext))() Updates all MSIDs with their next packet values.
StartDisplay(String) Starts the identified display within an instance of the Display Operations

application.

UpdateConunandForm(String) Shows the update form for the specified command.

UplinkColmnand(String, Verify) Initiates the transmission or uplink to the spacecraft for the conunand
referenced by a unique mnemonic	 as	 defined in the	 Operational
Colmnand Database-

6
American Institute of Aeronautics and Astronautics

Wait(Int32) Suspends execution until the time has elapsed and then resumes execution
with the next statement in the script.

Write(Object, array<Object>[]()[]) Constructs a string of text and displays it on the operator's screen.
Expressions may consist of user defined variables, intrinsic functions, and
quoted strings- All expressions will be formatted in ASCII. The message
will NOT be sent to Message Handler-

WriteFormat(String, Logs a string using the composite formatting feature of the 	 NET
array<Obj ect>[] ()[]) Framework-

More detailed help is also available for each method by pressing the F 1" key while in the Visual Studio IDE.
This brings up the full set of ERS documentation, Fig. 5, which contains all the methods and objects that can be used
in an ERS project. ERS Help is also searchable by keywords.

File Edit View Tools Window Help

©Back	 _-^ W-1 i& A 16HOw DOI - Q,5earch ILaIndex OCOntentsHelp Favorites	 ..K	 l !^.)MSDN Forums
Index	 + 4 X : -ScriptEngine Members) + X

Filtered by: FI Options:	 (choose) - URL:	 ms-help:i1m5.V5CC.vg olms.V51PCC.vg0 -
'^`^ ^'^^^(unFiltered)	 L-0 k Collapse All	 0 Code: Multiple

•IET Framework Cl— Library

ScriptEngine Members

0 Members: Show All
Lookfor:

Ex pre ssionDTE property 	 L
ExRression1lementinit method ScriotEnoine Class Constructors Methods 	 Properties	 See Alsa Send Feedback
Expression.Equal method

-T "°'•r'G1V°'
Lit

Express ton.Exdusiveor method
Expression.Expression constructor -0 StartSemolino Starts the MSID data stream. Once started, this will
Expression.ExpressionText property populate all the MSID variables with their respedive
Expression.Field method MSID sample data. The update rate at which to buffer
Expression.GeUctionType method incoming data, A value of 0 should be used if all the
Expression.GetFunciype method data is necessary, while Y is suitable for latest data.
Expression.Greaterihan method

Expression.GreaterihanOrEqual meth, Stop AllCOmputations Stops all computations currently executing on the EHS
Expression.Invoke method login server under the caller's Epc login session.
Expression.IsValidValue property aQ StopAll Displays Stops all displays currently executing under the
Expressionlambda method caller's Epc login session.
Expression,LeftShiFt method
Expression,LessThan method -0 StopAIIERSSCripts Stops all ERS scripts executing on the local host under
Expression,LessThanOrEqual method the caller's Epc login session.
Expression1isteind method StooAll LeeacvScriots Stops all legacy scripts executing an the local host
Expression1istlnit method under the caller's Epc login session,
ExpressionVakel3mary method
Expression, MakeMemberAccess meths =G StopAllSCripts Stops all ERS and legacy scripts executing on the local
Expression,MakeUnary method host under the caller's Epc login session.
Expression.Membe,Bind method =Q Stoo COmoutation overloaded.Expression.memberinit method
Expression.modulo method '0 Stop Display overloaded.
Expression.Multiply method
Expression.MultiplyChecked method StopERSScript Stops the caller identified ERS script.
Expression.Name property	 v^Fvnressi	 i

-p Stop 1_.Q py S.rlpt Stops the caller identified legacy script.

in 	 aCo....In,,,	 MHe...^ Stop Pseudas

Ready

Figure 5. ERS Detailed Help

B. Measurements and Commands as Script Variables
To properly use many of the methods or procedures previously presented, individual telemetry mnemonics or
Measurement Stimulus Identifiers (MSIDs) and Command Mnemonics must be assigned to variables in the
program. The validation file (Fig. 4: "Demo S cript.Validation. ers") that was generated at project creation time is
used to map these objects into an ERS project. Double-clicking on the validation file will display the validation
dialog shown in Fig. 6. Here the user can define the telemetry measurements and commands to include in the code
proj ect.

7
American Institute of Aeronautics and Astronautics

ERS	 e-tl

input MSIDs

MSID

PKT1D61 -0008

r

Output. NISIOS	 Comrnands	 U^DES	 Advanced

I	 Processing	 , All Samples	 Limitsf ES Variable Type 	 Variable Na

CALIBRATED I '•"I	 q 	 qO	 STRING ^I C
GC]NVERTED IYI	 REAL.	 wI	 r	 NINE

Add MS•ID(s]	 Edit 	 Details,..	 Remove

save Validate	 Cancel

Description

Figure 6. Validation Dialog

The validation dialog (Fig. 6) maps an EPC object (i.e., a measurement, command, etc.) to a variable name. The
variable can then be addressed by the user in the code file. The variable itself exposes properties and methods that
make sense for that particular EPC object t ype. For example, a measurement variable will have properties that return
a sampling status or value. In the code segment below, the "r" measurement variable is being inspected for new
data-

If STRING. IsDataNew Then
Write("New data is available!

End If

A search dialo g is used to select the telemetry measurement for variable assi gnment (Fig- 7). Measurements can be
searched on several criteria; including whether or not t he measurements have pre-defined limits or expected states.

y=ard•, cr;t^ia

MSID	 PKT100I

Te_hril—I Name

EM Error D eeriptlon

O-.vner ID	 I	 Limits{Expecte Statysq

MSID li ethnical Name Oviner ID	 I EM Error DescirptM I

PKT1O61101404 COUNTER. 117EASURNIENT POL-PKT1001
PKT10D3-0405 CtOUNTER2 MEASURNIENT PDL-PKT1001
PKT_10O1-D006 RANGE MEASURME:NT PCL-PKT1001
PKT_10

DJ_
D007 Bit Non-Conitiguous Group IUNS PCL-PKT1001

PKTIOD3-0003 Single Bit Discrete PDL-PKT1001
PKfIDDI-DOO9 Single Bit _•iscrz[e D=OFF, I=ON PCL-PKT1001
PKfIDDI - DO1D 32 Bit Signe _ Integer -wos Camp "•.-:crd Swap PCL-PK71001
PKT_I001-0011 Multisyilable Range-dependent pararneter PDL-PKT1001
PKT_1 D61-DO12 Bit Non-Contiguous Super PCL-PKT1001
PKT3001-0013 Mu}tisllable Curter-de enden' JCL-PKT1001

PKf1 DD3-0615 Bit Non-CCn[igucus Super Samplec i0hC ?CL-PKT1001
PKfIDDI - D616 Bit-COntiguc	 Ccurdar Dep =IBM PCL-PKT1001
PKfIDDI-DO17 Bit Non-COntiguc.is Center-dependent PCL-PKT1001
PKr1001-0018 Bit-COnitiguous Group FSPL POL-PKT1001
PKr1001-0019 Multisyilable Super Sampled FVAX POL-PKT1001

Found 100 MSIDs

EE] Search	 Clear	 Clcsz

Figure 7. Select MSIDs

American Institute of Aeronautics and Astronautics

From the measurement search dialog, the details of each displayed measurement can be examined, Fig. 8.

General

MSID Name I wrlool-0014

Owner IC PDL-PKTIOCI

Technical Name Typical Super Sampled FEEE

EM Error Description

Description	
I Typical Super Sampled F EEE	 7

q Proprietary q EHS Header

Converted
Raw Data Tvpe FEEE

Converted Type EML_c_FLOAT

Max Sample Rate S

Low Raw 3Dunt D

High Raw Count D

Total Length 132

Calibrated
Calibration NO_CALS

Calibrated Type EML_e_DOUBL E

Engineenng Unit

Min Engineering Units

Max Engineering Units

Default Set Number

Switch MSID

Close

Figure 8. Measurement Detail

Conunands can also be added to an ERS project via the command tab back on the Validation Dialog, Fig. 6. Like
MSIDs, the commands available are searchable by name (Fig. 9). From the Select Commands dialog, the details of
each command can be examined in a window similar to Fig. 8.

Search Criteria

Mnemonic C

Search Results

Mnemonic Technical Name Owner ID Variable Length ^

ADD _DWNLINK_FILE ADD_FLiLE TO DOWNLINK_ TELEMETRY-QUEUE ARCTIC-1 N
ADD DYJNLINK FILE2 ADD FILE TO DO'.'JNLINK TELEMETRY QUEUE ARCTIC-2 N
CLEAR_FILENO_QUEUE CLEAR FILE_NUMBER FROM TELEMTRY DOWNLINK_QUEUE ARCTIC-1 N
CLEAR FILENO_QUE'JE2 CLE4R_FILE_NUMBER_FROM TELEMTRY_COWNLINK_QUE'JE ARCTIC-2 1. L
CLEAR THERM PPOFILE CLEAR _ALL_PROGRAMMABLE _THERMAL 	 _ENTRIES_PROFILE ARCTIC-1 1,
CLEAR_THERM_PROFILE2 CLEAR _ALL_PROG RAM MABLE_THERMAL_PROFLLE —ENTRIES ARCTIC-2 1,
DELETE FILE DELETE FILE ARCTIC-1 1,
DELETE_FILE2 DELETE FILE ARCTIC-2 N
ENB DI5ABLE TELENTR2 ENABLE DISABLE DONJNLINK T, LEMET-(ARCTIC-2 1.

i	 : :	 1

ENB_DIS_DOOR_DET ARCTIC-1 N
ENB_DI5_ DOOR _DET2

ENABLE(DISAELE_DOOR_OPEN_DETECTION
ENABLE{DISABLE_ DOOR_ OPEN DETECTION ARCTIC-2 N

FILE UPLINK XFER FILE UPLINK TRANSFER ARCTIC-1 N
FILE_UPLINK_XFER1 =ILE_UPLTNK_TRANSFER ARCTIC-2 N
GET DIP, GET_CIRECTORY ARCTIC-1 N
GET_DIR2 GET DIRECTORY ARCTIC-2 N ^v

Found 62 : ornmands

Selzd Search	 Clear Close

Figure 9. Select Command Dialog
9

American Institute of Aeronautics and Astronautics

Figure 10. ERS Input and Output Windows

C. Script Control
ERS scripts can be controlled at creation time in debug mode inside the Visual Studio debugger where the script

developer is provided with a rich set of the latest source level debug tools provided by Microsoft.
ERS provides script control for a verified ERS script at run-time through ERS provided input/output methods.

These include methods to write out messages and to prompt a user for input. An ERS script that performs input and
output is assigned its own logging window where both the input prompts and output messages are displayed. Figure
10 is an example of an ERS script prompting the user for a number ; which it then uses to output a measurement
sample that number of times.
Note that both the input and output of an ERS script are tagged with a time stamp. This is because, by default, all
input/output generated by a script is also logged to a standard file associated with that script. The log files can be
accessed from the logging window itself or via the ERS Operations application for post flight analysis.

view t-A Lags

2010:040:00:05:42 Prompt Request: Enter number of
sa-n ples:

2010:040:00:06:34 Prompt Reply: 5

2010.040;00:06.34 1	 123.1155993-552314

2010:040:00:06:34 2	 123.45.59936.52344

2010:040:00:06:35 3	 123.455993552344

2010:040:00:06:36 4	 123.455993652344

2010:040:00:06:37 5	 123.4559930523

2010:040:00:06:37 The script has ccrnpletsd.

Exit	 Restart

IV. Conclusion

Scripts for flight operations control have proven to be very useful. They offer a relatively simple syntax that does
not require specialized training and an environment that is integrated well with the host ground system. Scripts also
offer flow-control functions that make them ideal for remote control including execution confirmation. Other than
the very newest Web-oriented scripting languages, most are graphically challenged and maintaining the typical
program constructs that are not specific to ground systems functions becomes time consuming and even
unnecessary.

ERS makes use of Microsoft's Visual Basic (and C#) language which is also simple to understand and easy to
learn. ERS adds "Wizards" to allow program access to the ground systems telemetry and command objects. Using a
standard progratnniing language removes the need to maintain basic programming syntax in a script interpreter and
frees us to concentrate on new gays to interface to our base system. ERS also provides a powerful input/output
flow-control feature that allows for the user to monitor progress and for confirmation execution of critical tasks if
necessary, while also recording all actions in textual log files.

ERS programs are not scripts. But ERS programs offer the same features as many scripting languages, such as the
HOSC's SLP, while also including the ability to include rich graphical components. ERS is an Enhanced and
Redesigned Scripting environment that is lowering our scripting development and maintenance costs while
increasing our ground systems automation capability.

10
American Institute of Aeronautics and Astronautics

Appendix

ERS Development Architecture
The development environment for ERS consists of a computer with both EPC (version 6.5 or higher) and Visual
Studio 2008 (or later) installed. As part of the EPC installation, Visual Studio is extended to include an ERS project
wizard and a new editor for an ERS-specific file type. Once installed, creating ERS "scripts" consists of three
distinct stages discussed below.

1. Develop	 2. Validate	 3. Run

Display Ops /
Scratchpad Line

ii	 Script Ops

etc...

New Project Wizard
Validation	

NETVa lidation	 Resource	 Compile
file	 Assembly

NET Project	 DLL / EXE
Legacy	 Conversion
Script

U E
Path

Validation
.NET Assembly	 Resource
DLL or EXE	 file

EaRS
Library NET

Framework.
COM,
etc.

Other EPC Libraries

1. Development Stage
A new ERS project is created within Visual Studio via a custom ERS project wizard. This creates a NET

project consisting of code files, written in either C# or VB.NET , plus an ERS-specific file used to map EPC's
telemetry and commanding objects into the project. The code includes methods defined in the ERS Library to do
Enhanced HOSC System (EHS)-related directives, as well as any other user code that is allowed by the NET
languages. All the Visual Studio IDE features such as IntelliSense, help, and debugging are now part of the
scripting development experience.

In programnung terms, an ERS "script' is just a NET class that extends a base ERS class called
"ScriptEngine". This base ERS class contains EHS-related methods. In addition to using the EHS-related methods,
the user can work with EPC telemetry measurements and commands. These are represented as NET objects with
various methods and properties that the user can code against. Telemetry and commanding objects are introduced
into an ERS project by way of a custom editor provided by ERS_ The custom editor is associated with a "validation"
file that is part of the ERS project. From this editor, the user can select various telemetry measurements and
commands. Once selected, they become mapped to a variable and, thereafter, are accessible by code.

2. Validation Stage
Building a scripting NET project is similar to building a regular NET project. except the script project has an

additional custom build step that handles validation. Building a project and validating a project go hand-in-hand.
Validation involves convertin g the validation file of an ERS project into proper set of NET variables, by generating
"behind the scenes" code. This generated code is then compiled together with the user code. The final output of this
build is a NET assembly All. This assembly contains the ERS validation information, "script' code, and any other
code and,-or resources the user included into the project.

11
American Institute of Aeronautics and Astronautics

A script project can be validated in one of two ways. The first way, as mentioned above, is by building the ERS
project inside of the Visual Studio IDE. Alternatively, an EPC application called Bulk Validation, can be used to
build one or more ERS projects.

3. Run Stage
A NET assembly containing ERS scripting code can be rum via the EPC Scratchpad Line, a scratchpad line in

Display Operations (i.e. button) or via Script Operations. Additionally, because it in a .dll form- ERS scripting code
can be used as a method by other libraries or executables. Alternatively, an ERS project can be converted into an
EYE project type and nun as a standalone application.

Regardless of how it is started, before any ERS -related methods are executed the ERS code must initialize itself
with an EPC session. This initialization process verifies that the ERS code was validated correctly against the same
database version in the EPC session. Referenced telemetry measurements and commands are further checked to
make sure they exist in the specified EPC session.

Script Syntax Compared
Sample Unix Shell Script that accepts one argument:
if [$# = 0]; then
echo Error! Parameter required.
exit I
fi
if["$I „ _ „Dog"]; then
echo Bow Wow!
elif ["$1 " = "Cat"]; then
echo Meow!
else
echo Error-.- Invalid Parameter

f

Scripts that update a conunand's bandwidth field and then uplinks the command-
SLP Script ERS "Script"

begin script script name With SetTempBandwidth. Fields
declarations Bandwidth =10

system section End With
global section SetTempBandwidth. UpdateO
local _section SetTempBandwidth. Uplink()

end_ declarations Or
update command SET—TEMP — BANDKIDTHfrelds SetTempBandwidth. Update(]0)

BANDWIDTH = 10 SetTempBandwidth. Uplink()
endupdate
uplink command SET_TEMP_BAND97DTH
end script

References

1 SRA International, http://www.sra.coin/scl/, 2010.

2 TSTOL Manual, The Systems Test and Operations Language, Goddard Spaceflight Center, 1993.

3 Scripting Language and Scratchpad Line Detailed Specification HOSC-EHS-2057. March 2000

12
American Institute of Aeronautics and Astronautics

