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Abstract. Ecosystems are important and dynamic compo-

nents of the global carbon cycle, and terrestrial biospheric

models (TBMs) are crucial tools in further understanding

of how terrestrial carbon is stored and exchanged with the

atmosphere across a variety of spatial and temporal scales.

Improving TBM skills, and quantifying and reducing their

estimation uncertainties, pose significant challenges. The

Multi-scale Synthesis and Terrestrial Model Intercompari-

son Project (MsTMIP) is a formal multi-scale and multi-

model intercomparison effort set up to tackle these chal-

lenges. The MsTMIP protocol prescribes standardized envi-

ronmental driver data that are shared among model teams to

facilitate model–model and model–observation comparisons.

This paper describes the global and North American environ-

mental driver data sets prepared for the MsTMIP activity to

both support their use in MsTMIP and make these data, along

with the processes used in selecting/processing these data,

accessible to a broader audience. Based on project needs and

lessons learned from past model intercomparison activities,

we compiled climate, atmospheric CO2 concentrations, ni-

trogen deposition, land use and land cover change (LULCC),

C3 / C4 grasses fractions, major crops, phenology and soil

data into a standard format for global (0.5◦× 0.5◦ resolu-

tion) and regional (North American: 0.25◦× 0.25◦ resolu-

tion) simulations. In order to meet the needs of MsTMIP, im-

provements were made to several of the original environmen-

tal data sets, by improving the quality, and/or changing their

spatial and temporal coverage, and resolution. The resulting

standardized model driver data sets are being used by over

20 different models participating in MsTMIP. The data are

archived at the Oak Ridge National Laboratory Distributed

Active Archive Center (ORNL DAAC, http://daac.ornl.gov)

to provide long-term data management and distribution.

1 Introduction

The need to understand and quantify the role of terrestrial

ecosystems in the global carbon cycle and its climate change

feedbacks has been driving the development of global ter-

restrial biogeochemistry and biogeography models since the

late 1980s (Foley, 1995). Since that time, the carbon cycle

science modeling community has continued to improve un-

derstanding of terrestrial ecosystems in global and regional

carbon cycling (US CCSP, 2011).
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One strategy for doing so has been through several multi-

model intercomparison projects (MIPs) conducted starting in

the 1990s. The Vegetation–Ecosystem Modeling and Analy-

sis Project1 (VEMAP) was a pioneer MIP activity that eval-

uated the sensitivity of terrestrial biospheric models (TBMs)

to altered climate forcings and elevated atmospheric CO2

for the continental United States (Schimel et al., 1997). The

Potsdam net primary production (NPP) MIP was an inter-

comparison activity focusing on annual and seasonal fluxes

of NPP for the land biosphere involving 17 global TBMs

(Cramer et al., 1999). More recently, the GCP-TRENDY2

effort, part of the Global Carbon Project (GCP), organized

and performed a factorial set of models to investigate trends

in net land–atmosphere carbon exchange of dynamic vege-

tation models (DGVMs) over the time period from 1980 to

2009 (Sitch et al., 2008).

Huge challenges still remain, however, especially in de-

veloping approaches for evaluating model predictions and

assessing the uncertainties associated with model estimates

(e.g., Randerson et al., 2009; USCCSP, 2011; Schwalm et

al., 2013). The challenges associated with representing ter-

restrial ecosystem fluxes of carbon dioxide are illustrated by

the huge variability in model predictions observed as part of

the recent North American Carbon Program (NACP) regional

and site interim synthesis activities (e.g., Huntzinger et al.,

2012; Schaefer et al., 2012). The results from these activities

confirmed the large uncertainties associated with our ability

to represent terrestrial ecosystem carbon fluxes, but the re-

liance of the regional synthesis on off-the-shelf simulations

without a prescribed protocol or standardized driver data sets

limited the degree to which the observed variability could be

attributed to specific sources of uncertainty.

Four types of uncertainties drive differences between pre-

dictions of terrestrial carbon flux (e.g., Enting et al., 2012):

uncertainty associated with (1) the choice of driver data,

(2) parameter values, (3) initial conditions as well as (4) the

choice of processes to include and how these processes are

represented within the model (i.e., structural uncertainty).

Estimating and reducing these uncertainties are both critical

to improving model performance, and consequently to un-

derstanding the role of terrestrial ecosystems in the global

carbon cycle.

In response to this need, the Multi-scale Synthesis and Ter-

restrial Model Intercomparison Project (MsTMIP) was es-

tablished to build on previous and ongoing MIPs to provide

a consistent and unified modeling framework to interpret and

address structural and parameter uncertainties. Huntzinger

et al. (2013) discusses the philosophy of MsTMIP and how

past and ongoing MIP activities impacted and inspired its de-

sign. Similar to VEMAP, the Potsdam NPP MIP, and GCP-

1The Vegetation–Ecosystem Modeling and Analysis Project

http://www.cgd.ucar.edu/vemap/
2Trends in net land–atmosphere carbon exchange http://dgvm.

ceh.ac.uk/node/21

TRENDY, MsTMIP prescribes standardized environmental

driver data and a consistent spin-up protocol for all model

simulations. VEMAP, as a pioneer in model intercompari-

son activities, provided a valuable backdrop against which

the approach for preparing modeling input data sets was de-

veloped (Kittel et al., 1995, 2004). Although focused only

on the conterminous United States, VEMAP was one of the

first MIP activities that applied a consistent set of input data

and boundary conditions to multiple models in order to iso-

late the impact of model choice on across-model variability.

Thus, providing standardized input for MsTMIP greatly re-

duces the inter-model variability caused by differences in en-

vironmental drivers, initial conditions and the process used

for defining steady-state conditions, and helps to focus the

analysis on the ways in which the structure of TBMs (i.e.,

their choice and formulation of ecosystem processes) and as-

sociated internal parameters impact a model’s estimates of

terrestrial ecosystem carbon dynamics.

This paper describes the driver data needs of MsTMIP

and outlines the environmental driver data sets compiled and

synthesized for the MsTMIP activity. In doing so, this pa-

per aims to address the needs of multiple communities and

audiences. First, it provides the detailed background about

environmental driver data choices that are necessary for the

scientific interpretation of modeling results coming out of

the MsTMIP effort. As such, it addresses the needs of re-

searchers focusing on the scientific interpretation of the MsT-

MIP results. Second, it provides the rationale for the choice

of specific environmental driver data and the details associ-

ated with their processing. Thus, the paper also aims to ad-

dress the needs of researchers who wish to leverage the work

reported here by using the driver data for follow-on studies or

related applications. Third, this paper reports on the decision-

making and implementation process involved in putting to-

gether common driver data for large modeling studies and

intercomparison efforts, including lessons learned that are in-

dependent of the specific applications addressed by MsTMIP.

As such, this paper also aims to inform future efforts focused

on assembling consistent data sets for use by multiple mod-

eling teams.

The remainder of this paper is structured to address the

needs of the three intended audiences described above. For

each data category, we first provide a brief review of the data

source chosen for MsTMIP and the rationale for the choice,

along with a description of other similar data sources cur-

rently available and data products used in past and/or ongo-

ing MIPs. We then describe the processing and analysis com-

pleted to convert the original data source into a form meeting

the needs of the MsTMIP activity, and in some cases to im-

prove the quality of the original data source. We also provide

a brief evaluation of standardized MsTMIP data products,

and suggestions on how the data should be used in terres-

trial biosphere modeling. Finally, we introduce some lessons

learned on data processing and management, to guide future

data-intensive projects.
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2 Driver data needs of MsTMIP

The overarching goal of the MsTMIP activity is to pro-

vide a unified intercomparison framework that allows for

the critical synthesis, benchmarking, evaluation and feed-

back needed to improve TBMs (Huntzinger et al., 2013). To

meet this goal, the MsTMIP activity conducts a suite of sim-

ulations that can be used to quantify (1) the impact of the

scale and spatial resolution of model simulations on model

estimates and (2) the additive influence of a suite of time-

varying environmental drivers or forcing factors on model

estimates of carbon stocks and fluxes. As such, MsTMIP in-

cludes simulations over two spatial domains and resolutions:

globally at 0.5◦× 0.5◦ resolution and regionally over North

America at 0.25◦× 0.25◦ resolution. To evaluate the additive

impacts of different types of forcing, e.g., climate, land use

and land cover change (LULCC), atmospheric CO2 concen-

trations and nitrogen deposition, on model estimates of car-

bon fluxes and stocks, a series of sensitivity simulations are

prescribed at both spatial scales for a simulation period from

1801 to 2010 (Huntzinger et al., 2013). Inherent to MsT-

MIP’s experimental design is the focus on controlling for as

many sources of variability in TBM predictions as possible,

to isolate and quantify the impact of the model itself (i.e.,

structural and parameter uncertainties) on estimates.

One source of variability in model estimates is the choice

of (and uncertainty associated with) environmental driver

and input data sets. Most uncoupled TBMs require, at a min-

imum, a land–water mask, climate forcing data, soil char-

acteristics and atmospheric CO2 concentrations to simulate

how carbon is exchanged between the land and atmosphere.

Many models also require additional information such as

LULCC, phenology, nitrogen deposition rates and distur-

bance history. Ideally, the temporal resolution of drivers

should be fine enough to enable prediction at sub-daily tem-

poral resolution; thus, making it possible to investigate the

diurnal cycle of carbon and energy fluxes. To meet the objec-

tives of MsTMIP’s experimental design, the goal was to pro-

vide modeling teams, to the extent possible, with a complete

and consistent set of environmental driver data. In addition

to being of high quality, the environmental driving and input

data chosen for MsTMIP also needed to meet the following

requirements:

– data sets must be compatible with over 20 different

TBMs;

– data sets must provide consistent spatial coverage for

the land surface within the two simulation domains:

(1) North American: 10–84◦ northern latitude; 50–170◦

western longitude, and (2) global: all land surface areas

excluding Antarctica;

– Spatial resolutions must be compatible with the two sets

of simulations: (1) North American (0.25◦× 0.25◦) and

(2) global (0.5◦× 0.5◦ );

– Temporal resolution and extent must be compatible with

the two sets of simulations: (1) North American (3-

hourly, 1801–2010) and (2) global (6-hourly, 1801–

2010);

– data sets must provide smooth transitions in time, with-

out any unrealistic spikes or discontinuities;

– data sets must be physically consistent with one another.

For example, climate, soil and land cover change history

needed to represent the same land domain as indicated

in the land–water mask, and the prescribed phenology

data needed to be consistent with the time-varying land

cover data for each time step.

The environmental driver and input data sets chosen for

the MsTMIP activity are a reflection of these overall project

needs and requirements.

3 Environmental driver data sets

MsTMIP environmental driver and associated data products

include data sets describing climatology, time-varying atmo-

spheric CO2 concentrations, time-varying nitrogen deposi-

tion, LULCC, C3 / C4 grasses fractions, major crop distribu-

tion, phenology, soil characteristics and a land–water mask,

all at 0.5◦× 0.5◦ for the global domain and 0.25◦× 0.25◦ for

the North American domain (Table 1). All MsTMIP model

driver data files are stored in Climate and Forecast (CF)3

1.4 convention compliant netCDF version 3 format, which

is supported by a wide range of programming APIs (e.g., C,

C++, Fortran, Java, Perl) and multiple operating systems

(e.g., Linux, Unix, Mac OS X, Windows). All drivers are

saved in Greenwich mean time (GMT) with all sub-monthly

drivers (e.g., climate) including leap years.

For most data categories, the North American data sets

are based on the same data sources as the global prod-

ucts. We did, however, choose different climatology and soil

data products for the two domains. This decision was driven

primarily by the availability of these drivers at the spatial

and temporal resolution needed for the regional simulations.

However, by holding the source of other drivers constant be-

tween the global and North American simulations, we are

also creating an opportunity to test the impact of the choice

of climate and soil characteristics on model estimates.

3.1 Climate

3.1.1 Global climate: CRU–NCEP

Several reanalysis and observation-based gridded global

climatology data sets exist, including products produced

3NetCDF Climate and Forecast (CF) Metadata Con-

ventions, version 1.4. http://cfconventions.org/Data/

cf-conventions/cf-conventions-1.4/build/cf-conventions.html

(http://cfconventions.org/).

www.geosci-model-dev.net/7/2875/2014/ Geosci. Model Dev., 7, 2875–2893, 2014

http://cfconventions.org/Data/cf-conventions/cf-conventions-1.4/build/cf-conventions.html
http://cfconventions.org/Data/cf-conventions/cf-conventions-1.4/build/cf-conventions.html
http://cfconventions.org/


2878 Y. Wei et al.: The NACP MsTMIP-environmental driver data

Table 1. The MsTMIP environmental driver data summary.

Category Name Spatial extent &

resolution

Native temporal

period, resolution

Extended temporal

period, resolutiona
Variables

Climate

CRU–NCEPb Global (0.5◦ ) 1901–2010, 6-hourly 1801–2010, 6-hourly

– precipitation

– air temperature

– air specific humidity

– air relative humidity (NA only)

NARR North America

(NA) (0.25◦)

1979–2010, 3-hourly 1801–2010, 3-hourly

– pressure

– downward longwave radiation

– downward shortwave radiation

– wind speed

Land-water mask CRU–NCEP Global (0.5◦) constant constant binary land vs. water map

NARR NA (0.25◦)

CO2 Extended

GLOBALVIEW-CO2

Global (0.5◦), NA

(0.25◦)

1801–2010, monthly 1801–2010, monthly atmospheric CO2 concentration

Nitrogen deposition Enhanced Dentener Global (0.5◦), NA

(0.25◦)

1860–2010, annual 1801–2010, annual NHx-N deposition

NOy-N deposition

Land cover change SYNMAP+

Hurtt

Global (0.5◦), NA

(0.25◦)

1801–2010, annual 1801–2010, annual land cover state maps

C3 / C4 grass C3 / C4 grass fraction Global (0.5◦), NA

(0.25◦)

constant constant relative fractions of C3 / C4 grasses

Major crops Monfreda et al. (2008) Global (0.5◦), NA

(0.25◦)

constant constant fraction of harvest area in each grid cell

for maize, rice, soybean, and wheat

Phenology GIMMSg Global (0.5◦), NA

(0.25◦)

1801–2010, monthly 1801–2010, monthly NDVI, LAI, and fPAR

Soil

HWSD v1.1 Global (0.5◦) constant constant

– soil layers

– dominant soil type

– reference soil depth

– clay/sand/silt fractions

– pH

STATSGO2 (US) SLC

3.2&2.2 (CA)

HWSD v1.1 (Other)

NA (0.25◦) constant constant

– organic carbon

– cation exchange capacity

– reference bulk density

– gravel content

a Native temporal periods of environmental driver data sets compiled for MsTMIP are extended to be compatible with the simulation time period (1801–2010) defined by MsTMIP. Please refer to Sect. 4. spin-up data

package to see how data with shorter native temporal period are extended back to 1801 to address the needs of MsTMIP simulations. b CRU–NCEP: Climate Research Unit and National Centers for Environmental

Prediction; NARR: North American Regional Reanalysis; SYNMAP: SYNergetic land cover MAP; GIMMSg: Global Inventory Monitoring and Modeling System version g; NDVI: normalized difference vegetation

index; LAI: leaf area index; fPAR: fraction of photosynthetically active radiation; HWSD: Harmonized World Soil Database; STATSGO2: State Soil Geographic data version 2; SLC: Soil Landscapes of Canada.

by the Climate Research Unit (CRU) (Harris et al.,

2014), the National Centers for Environmental Prediction

(NCEP)/National Center for Atmospheric Research (NCAR)

Reanalysis 1 (Kalnay et al., 1996), and the European Centre

for Medium-Range Weather Forecasts (ECMWF) (Uppala

et al., 2005; Dee et al., 2011). The NCEP/NCAR Reanaly-

sis 1 data was adopted by the Inter-Sectoral Impact Model

Intercomparison Project (ISI–MIP) as one of its climate in-

puts (Warszawski et al., 2013) to assess the influence of the

choice of forcing data on the overall results. However, none

of these available climatology data sets fully met the spa-

tial and temporal requirements of MsTMIP. The CRU Time

Series (TS) 3.2 product covers the time period from 1901

to present at a 0.5◦ spatial resolution, but only at a monthly

temporal resolution. The NCEP/NCAR product, on the other

hand, has a finer temporal resolution (6-hourly), but has a

coarse spatial resolution (2.5◦) and only provides climatol-

ogy back to 1948. The ECMWF product similarly lacks the

temporal coverage required for MsTMIP.

Thus, we combined the strengths of the CRU and

NCEP/NCAR Reanalysis products, fusing them to produce

the CRU–NCEP global climate data set. This new data set

provides a globally gridded (0.5◦× 0.5◦) and sub-daily (6-

hourly) time-varying climatology product that spans the pe-

riod between 1901 and 2010. Earlier versions of CRU–

NCEP data had been used as driver data in past MIP activi-

ties, including GCP-TRENDY. The MsTMIP project updated

the CRU–NCEP data by adopting the latest (version 3.2 at

preparation time) CRU TS data. Details of the CRU–NCEP

fusion method can be found in Supplement 1. MsTMIP

CRU–NCEP contains seven climatology variables, includ-

ing downward longwave and shortwave radiations, pressure,

Geosci. Model Dev., 7, 2875–2893, 2014 www.geosci-model-dev.net/7/2875/2014/
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Figure 1. Comparison of the mean of long-term mean downward

shortwave radiation (1948–2010) on land surface for each 0.5 de-

gree latitudinal band from NCEP/NCAR Reanalysis 1 and CRU–

NCEP data sets.

air specific humidity, precipitation, temperature and wind

(Table 1). In the process of creating this new climatology

product, we also corrected known biases in temperature and

shortwave radiation in the NCEP/NCAR Reanalysis product.

Zhao et al. (2006) showed that NCEP/NCAR Reanalysis cli-

matology overestimates downward shortwave radiation, es-

pecially in non-tropical regions, and underestimates surface

temperature for almost all latitudes. Biases in climatological

variables can introduce substantial errors into gross primary

productivity (GPP) and net primary productivity (NPP) esti-

mates (Zhao et al., 2006). By fusing NCEP/NCAR with the

CRU climatology, we forced the monthly amplitude of the

CRU–NCEP product to be consistent with the observation-

based CRU climatology, while preserving the diurnal vari-

ability in the NCEP/NCAR Reanalysis product. A compar-

ison between the zonal mean of long-term mean downward

shortwave radiation for each 0.5◦ grid cell over land (Fig. 1)

shows that CRU–NCEP has lower downward shortwave ra-

diation than the original NCEP/NCAR data, except at 0–

10◦ north and 50–55◦ south, where CRU–NCEP downward

shortwave radiation is similar to NCEP/NCAR Reanalysis 1.

3.1.2 North American climate: NARR

Several climatology products are available for North Amer-

ica at finer spatial and temporal resolutions than the

new CRU–NCEP product. In addition to better address-

ing the resolution needs of MsTMIP regional simulations

(0.25◦× 0.25◦ spatial and 3-hourly temporal resolution), us-

ing a different climate driver data product for the North

American simulations (1) makes it possible to test the in-

fluence of the choice of climate drivers on model estimates,

and (2) provides a closer linkage between model estimates

and fine-scale ground-based observations. Both the Daymet

(Thornton et al., 2012) and Parameter elevation Regression

on Independent Slopes Model (PRISM)4 products provide

temperature and precipitation data at high spatial resolution

(e.g., 1 km) for North America. However, the temporal reso-

lutions of these products (PRISM: monthly; Daymet: daily)

do not meet the needs of MsTMIP, and these data products

also do not cover the full spatial extent of the North Ameri-

can simulations (10–84◦ north; 50–170◦ west).

The NCEP North America Regional Reanalysis (NARR),

on the other hand, provides long-term high-resolution high-

frequency atmospheric and land surface meteorological data

for the North American domain (Mesinger et al., 2006). The

NARR climatology begins in 1979 and extends to present at

3-hourly temporal and 32 km spatial resolutions. Although

the temporal coverage is shorter than desired, the NARR

product was selected for the MsTMIP activity because it best

matched the needs of the North American simulations, and

the time covered by the data set was extended as described

in Sect. 4. The original NARR data were provided by the

NOAA/OAR/ESRL PSD5, available at http://www.esrl.noaa.

gov/psd/ (last access: 14 January 2011).

The NARR variables were regridded to a spatial resolu-

tion of 0.25◦× 0.25◦, from their original Lambert Confor-

mal Conic Projection at 32 km resolution using both area-

weighted and distance-weighted averages. An area-weighted

averaging method was used for precipitation and radiation

flux variables in order to conserve their total magnitude for

North America. For highly spatially auto-correlated state

variables (e.g., air temperature, humidity), distance-weighted

averaging was used because values for these variables tend to

cluster together in space. The U direction (along longitude)

and V direction (along latitude) wind speeds were combined

into an overall surface wind velocity variable prior to the re-

gridding process.

In a study of rain gauge and NARR data, Sun and Bar-

ros (2010) found that, although NARR reproduces the spa-

tial patterns of precipitation, it underestimates the frequency

and magnitude of large rainfall events. In addition, Xie et

al. (2003) found that the Global Precipitation Climatology

Project (GPCP) monthly gridded (2.5◦× 2.5◦) precipitation

product, derived from satellite and gauge measurements, re-

produced spatial patterns of total precipitation with relatively

high quality especially over land. Thus, to remove biases in

the precipitation, we rescaled the NARR 3-hourly precipita-

tion using the GPCP v2.1 (Adler et al., 2003). Although the

GPCP product has a relatively coarse spatial resolution of

2.5◦, it has the advantage of including a correction to com-

pensate for systematic biases in gauge measurements due to

wind, gauge wetting and gauge evaporation. Applying this

4PRISM Climate Group, Oregon State University, http://prism.

oregonstate.edu, created 4 February 2004.
5NOAA/OAR/ESRL PSD: National Oceanic & Atmospheric

Administration/Oceanic and Atmospheric Research/Earth System

Research Laboratory Physical Sciences Division, Boulder, Col-

orado, USA.
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Figure 2. Difference map between the long-term mean (1979–

2010) annual total precipitation from rescaled NARR and original

NARR (rescaled NARR precipitation – original NARR precipita-

tion).

rescaling allowed us to retain the advantages provided by the

NARR data product, while also leveraging the information

provided by GPCP. To rescale the NARR precipitation, for

each month, precipitation of all 3-hourly 0.25◦ NARR grids

within each 2.5◦ GPCP grid was summed up along time, av-

eraged over space and linearly rescaled to match the magni-

tude of the total monthly GPCP precipitation. Figure 2 uses a

special color scheme to present the difference map between

the long-term mean (1979–2010) annual total precipitation

from rescaled NARR and original NARR products. An in-

teresting pattern can be observed in Fig. 2, where rescaling

decreases precipitation in the northern part of North Amer-

ica while it increases in the southern part. Specifically, the

rescaled product better represents the magnitude of extreme

rainfall events at the coastline of Gulf of Alaska and Central

America, while generally preserving both the magnitude and

spatial pattern in most other areas of North America. This

rescaling, however, does not alter the frequency of rainfall

events.

As mentioned previously, biases in shortwave radiation

can have a strong impact on model estimates of GPP.

Kennedy et al. (2010) showed that between 1999 and 2001

the NARR product overestimates downward shortwave ra-

diation flux relative to the Atmospheric Radiation Measure-

ment (ARM) southern Great Plains (SGP) site observations

by about 10 % under clear sky and by about 30 % under all-

sky conditions. We also compared NARR downward short-

wave radiation flux with observations from 23 FLUXNET6

sites across North America. For the FLUXNET sites exam-

ined, NARR overestimates downward shortwave radiation

by about 30 %, with higher positive bias under cloudy con-

6FLUXNET, a “network of regional networks”, coordinates re-

gional and global analysis of observations from micrometeorologi-

cal tower sites. http://fluxnet.ornl.gov.

Figure 3. Comparison of shortwave radiation from original and re-

analyzed NARR against observations averaged over 23 FLUXNET

sites across North America.

ditions (Fig. 3). The weather simulation model MTCLIM7

version 4.3 was used to reduce the shortwave radiation bias

in the NARR product. Given input data from one location,

MTCLIM generates weather information for another loca-

tion based on different elevation, slope and aspect relative to

the input location (Running et al., 1987; Thornton and Run-

ning, 1999). Bohn et al. (2013) found that, with the excep-

tion of coastal areas (which had a negative bias of about

−26 %), MTCLIM performed reasonably well at estimat-

ing downward shortwave radiation under most climate con-

ditions for the global land surface. They also showed that

MTCLIM v4.3’s snow correction significantly reduced the

bias in snow-covered areas. We calculated the total daily

shortwave radiation for each grid cell using the MTCLIM

model driven by gridded daily maximum and minimum tem-

perature and total daily precipitation derived from the 3-

hourly NARR original temperature and rescaled precipita-

tion. The original 3-hourly NARR downward shortwave ra-

diation values were then linearly rescaled to match the to-

tal daily downward shortwave radiation generated from the

MTCLIM model. This process was effective at reducing the

overall positive bias in shortwave radiation (Fig. 4), such that

the rescaled NARR product better matches observed radia-

tion at FLUXNET sites (Fig. 3).

3.1.3 Comparison of global and North American

climate data

One of the goals of MsTMIP is to test the influence of both

spatial resolution and changing driver data on model esti-

mates (Huntzinger et al., 2013). A comparison between the

MsTMIP global (CRU–NCEP) and North American (NARR)

climate data over the years 1979–2010 reveals that MsT-

MIP’s MTCLIM-calibrated NARR downward shortwave ra-

diation has much higher seasonal variability than CRU–

NCEP in North America. MsTMIP’s MTCLIM-calibrated

NARR downward shortwave radiation also has a decreas-

ing trend in the 1980s and an increasing trend after 1990,

7MTCLIM, a mountain microclimate simulation model, http://

www.ntsg.umt.edu/project/mtclim.
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Figure 4. Comparison of the latitudinal zonal (0.25◦) mean of long-

term mean downward shortwave radiation (1979–2010) on land sur-

face from original NARR and reanalyzed NARR data sets.

which is consistent with the findings reported in Wild et

al. (2005) and Pinker et al. (2005). However, this decreasing–

increasing trend was not observed in the CRU–NCEP data.

MsTMIP’s NARR and CRU–NCEP downward longwave ra-

diation products share similar seasonal variability and spa-

tial distribution patterns, while NARR has much finer spa-

tial details due to higher spatial resolution. Though sharing

similar seasonal variability and spatial distribution patterns,

MsTMIP’s GPCP-rescaled NARR precipitation was higher

than that of CRU–NCEP, especially before 2003, and had

a decreasing trend between 1979 and 2010. This decrease

in the rescaled NARR precipitation had a significant im-

pact on MsTMIP regional-scale sensitivity simulations. MsT-

MIP’s NARR and CRU–NCEP generally share similar sea-

sonal variability, trend and spatial distribution patterns for

other climate variables. Details of this comparison can be

found in Supplement 2.

3.2 Land–water mask

The land–water mask specifies the land grid cells on which

MsTMIP global and regional simulations are run, and needs

to be consistent with the climate driver data. We therefore

based the global land–water mask on the CRU–NCEP land–

water mask, and the North American land–water mask on

the original NARR mask regridded to a spatial resolution of

0.25◦× 0.25◦ using an area-weighted method to preserve the

total amount of land area. Since a regridding process was

involved for the preparation of North American land–water

mask, to preserve only those 0.25◦ grid cells covered primar-

ily by land, a threshold of 50 % was then applied to define

land grid cells.

3.3 Atmospheric CO2 concentration

Atmospheric CO2 concentrations have risen more than 40 %

over pre-industrial levels. Increased atmospheric CO2 con-

tent influences global climate not only through its green-

house radiative effect, but also through its physiological ef-

fect (Sellers et al., 1996a; Ainsworth and Long, 2005). Under

elevated CO2 concentration, plant stomata open less widely,

leading to reduced plant transpiration (Cao et al., 2010; Shi

et al., 2011). In natural ecosystems, this CO2 fertilization ef-

fect is modulated by many other factors, including access to

light, water and other nutrients. Furthermore, the net terres-

trial sink inferred from analysis of atmospheric CO2 distribu-

tions (e.g., Gurney et al., 2002) is due not only to increased

productivity of natural ecosystems but also to historical land

use (e.g., Pacala et al., 2001). Models are useful for sim-

ulating the complex interplay of these factors, and studies

have suggested that of the major factors affecting simulated

net carbon exchange between the atmosphere and the ter-

restrial biosphere, CO2 fertilization may have the strongest

decadal trend (e.g., Norby et al., 2005; Kicklighter et al.,

1999; McGuire et al., 2001). A realistic CO2 concentration

history was therefore needed for the entire MsTMIP simula-

tion period.

The atmospheric CO2 concentration data prepared for

the MsTMIP are consistent with the GLOBALVIEW-CO2

(2011) data product (henceforth GV), the time series of his-

toric atmospheric CO2 from Antarctic ice cores (MacFar-

ling Meure et al., 2006), fossil fuel emissions (Marland et

al., 2008) and atmospheric CO2 observations at Mauna Loa

(MLO) and the South Pole (SPO). During the period 1979–

2010, when the temporally and meridionally resolved GV

product is available, atmospheric CO2 concentrations are

set directly to the GV marine boundary layer reference sur-

face interpolated to the MsTMIP global and North Ameri-

can grids. Prior to 1979, we preserve the 1979–2010 mean

annual cycle from GV, and impose onto it a modeled CO2

surface that represents annual mean concentrations and a

time-evolving meridional gradient. Following Conway and

Tans (1999), the annual mean difference between MLO and

SPO in the GV product is modeled as a linear function of

fossil fuel (FF) emissions (Marland et al., 2008). Extrap-

olated to zero FF emissions, the pre-industrial MLO–SPO

difference estimated in this manner is 0.3 ppm. Performing

this same exercise using Scripps CO2 program observations,

at MLO and SPO instead of GV, yields a stronger depen-

dence of the meridional gradient on FF emissions and a pre-

industrial MLO–SPO difference of −1.2 ppm. While it is

possible that pre-industrial Southern Hemisphere CO2 val-

ues exceeded those in the Northern Hemisphere (Conway

and Tans, 1999), we judge that it is more parsimonious to as-

sume a small pre-industrial inter-hemispheric CO2 gradient,

which the GV-based scheme achieves natively. The MsTMIP

atmospheric CO2 product agrees well with Scripps CO2 data

before 1979 at SPO and MLO (Fig. 5a), and with Law Dome

ice core data in Antarctica (MacFarling Meure et al., 2006;

Fig. 5b) data. The MsTMIP atmospheric CO2 product be-

fore 1979, however, does not represent inter-annual variabil-

ity other than that derived from variability in FF emissions,
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Figure 5. Comparison of MsTMIP driver data atmospheric CO2

with independent data. (a) Comparison of MsTMIP and Scripps

CO2 program data at Mauna Loa and South Pole from 1958 to 2010,

and (b) comparison with Law Dome ice core records of atmospheric

CO2 (MacFarling Meure et al., 2006).

and it does not include speculative changes in the magnitude

or phase of annual cycles of CO2 in the atmosphere.

3.4 Nitrogen deposition

Nitrogen enrichment, increasing atmospheric nitrogen de-

position in particular, has been recognized as one of the

most significant global changes since it could stimulate plant

growth, enhance terrestrial carbon sequestration capacity and

thus mitigate global climate warming (e.g., Holland et al.,

1997; Pregitzer et al., 2008; Reay et al., 2008; De Vries et

al., 2009). Models failing to capture nitrogen input and ni-

trogen cycling may overestimate ecosystem carbon uptake

(Hungate et al., 2003). Up to now, more and more TBMs

include nitrogen deposition as an important driving force.

However, few global and North American nitrogen deposi-

tion products are available over the full period required by

MsTIMP. Monitoring networks of nitrogen deposition in the

United States and Europe were launched in the late 1970s,

while other countries began such nationwide observations

later (Holland et al., 2005; Lu and Tian, 2007). The Dentener

global nitrogen deposition data product was generated using

a three-dimensional chemistry transport model that estimated

atmospheric deposition of total inorganic nitrogen (N), NHx

(NH3 and NH+4 ), and NOy (all oxidized forms of nitrogen

other than N2O) for the years 1860, 1993 and 2050 at a spa-

tial resolution of 5◦ longitude by 3.75◦ latitude (Dentener,

2006; Galloway et al., 2004). Most TBMs that include ni-

trogen deposition as an input driver do so by linearly inter-

polating Dentener’s three-year maps into annual time series

data, ignoring the different changing trends among different

regions and different periods (Jain et al., 2009; Zaehle et al.,

2010).

To address the above issue, we used a different approach

as described in Tian et al. (2010) and Lu et al. (2012) to

create a time-varying annual nitrogen deposition data set

for both global (0.5◦× 0.5◦ resolution) and North American

(0.25◦× 0.25◦ resolution) simulations based on Dentener’s

maps and introduce spatial and temporal variations from ni-

trogen emissions. This approach took the following assump-

tions (details can be found in Supplement 3). For the time

period between 1890 and 1990, annual variations in nitro-

gen deposition rate (NHx–N and NOy–N) were defined by

assuming that temporal trends of N-deposition are consistent

with EDGAR-HYDE 1.3 nitrogen emission data (Van Aar-

denne et al., 2001). The EDGAR-HYDE product provides

gridded (1◦× 1◦ resolution) annual total emissions of NH3

and NOx from 10 anthropogenic sources. Nitrogen deposi-

tion was assumed to change linearly over the remaining time

periods (1860–1890 and 1990–2010).

3.5 Land use and land cover change

LULCC has considerable influence on the biogeochemical

cycling of carbon (e.g., Friedlingstein et al., 2010; Pielke Sr.

et al., 2011; Sohl et al., 2012). Activities such as afforesta-

tion (Potter et al., 2007) or deforestation (Ramankutty et

al., 2007) can alter carbon stocks. Similarly, biomass burn-

ing used in land clearing results in direct carbon emissions

(Giglio et al., 2010). Despite its importance in carbon cycle

dynamics, LULCC-caused CO2 emissions are poorly con-

strained and highly uncertain with a global mean (2000–

2009) value of 1.0± 0.5 Pg C year−1 (Le Quéré, 2013).

Many global data products describing historical LULCC

are available (e.g., Hurtt et al., 2011; Klein Goldewijk et

al., 2011). In an effort to hold as many of the environmen-

tal drivers constant as possible in the MsTMIP activity, we

chose to prescribe LULCC by merging a static satellite-based

land cover product, SYNergetic land cover MAP (SYNMAP)

(Jung et al., 2006), with the time-varying land use harmo-

nization (LUH) data for the fifth Assessment Report (AR5)

of the Intergovernmental Panel on Climate Change (IPCC)

(Hurtt et al., 2011). We chose the LUH product based on its

global coverage, inclusion of land use change fractions (re-

quired for a subset of participating models), overlap with the

time horizon of MsTMIP simulations, and use in the IPCC

process. The LUH product was derived using a bookkeeping

approach based on historical time series of crop and pasture

data, national wood harvest, shifting cultivation, and popu-

lation (Hurtt et al., 2011). LUH product provides mapped
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fractional coverages and underlying annual land use transi-

tions for six land use classes (primary land, secondary land,

cropland, pasture, urban, and barren) at 0.5◦× 0.5◦ spatial

resolution. The historical LUH data (1801–2005) were com-

bined with a future projection (2006–2010) to match the time

horizon of MsTMIP model simulations (1801–2010). This

future projection was based on the Representative Concen-

tration Pathway (RCP) (van Vuuren et al., 2011) 4.5 scenario,

which hypothesizes a net radiative forcing of 4.5 W m−2

(∼ 650 ppm CO2 eq) by the end of the century based on a

set of greenhouse gas emissions and concentrations as well

as land use trajectories.

As TBMs require a different land use/cover scheme than

the six classes associated with the LUH, we merged the

1801–2010 LUH with the static 2000/2001 SYNMAP land

cover product (Jung et al., 2006). Although numerous land

cover products exist, we chose SYNMAP due to its (1) recon-

ciliation of multiple global land cover products, i.e., Global

Land Cover Characterization Database (GLCC) (Hansen et

al., 2000; Loveland et al., 2000), GLC2000 (2003) and

the 2001 MODIS land cover product (Friedl et al., 2002);

(2) global coverage at 1 km resolution; and (3) general def-

inition of classes based on life form, leaf type and leaf

longevity which allowed for simple crosswalks to plant func-

tional types (PFTs) used in different TBMs. Generality was a

key concern as PFT schemes used in TBMs vary widely. The

SYNMAP product contains 47 land cover classes such that a

PFT scheme for a given TBM is a subset of SYNMAP classes

based on a crosswalk between the two different schemes.

To provide annual maps of LULCC, LUH and SYNMAP

were merged using a set of one-to-one and one-to-many map-

ping rules based on map intersection during their period of

overlap, i.e., both products exist for 2000–2001. These in-

variant grid cell-specific mappings were then used to trans-

late the six LUH classes to the 47 SYNMAP classes (Jung et

al., 2006) for each annual LUH map. For example, assume a

grid cell with LUH pasture at a fractional coverage of 0.5 for

2000–2001, in that same grid cell the SYNMAP product has

only two eligible target classes: the shrubs and the grasses

classes with fractional coverages of 0.2 and 0.4, respectively.

This map intersection forms the basis of a one-to-many map-

ping, i.e., 0.5 LUH pasture is equivalent to 0.17 SYNMAP

shrubs plus 0.33 SYNMAP grasslands, which preserve the

original shrubs / grasslands ratio in SYNMAP for that grid

cell. This scalable mapping rule is used for all other time

steps for this grid cell and reflects the legacy of grid cell-

specific changes in land use/cover through time.

Few models use these 47 SYNMAP classes directly in

their simulations. For example, the Simple Biosphere (SiB)

model uses 12 biome classes (Sellers et al., 1996b). In such

instances, model teams developed crosswalks from the 47

SYNMAP classification scheme to their internal schemes.

Given that many SYNMAP classes are mixed classes, e.g.,

“shrubs and crops” and “trees and crops”, which cannot be

accommodated by some models, we created maps of pure

biome classes by assuming each component in a mixed class

was half the total area. Finally, as several models require in-

formation on the photosynthetic pathway in grasslands as

well as crop types, we also provided invariant maps for

C3 / C4 grass types (Sect. 3.6) and major crops (Sect. 3.7).

3.6 C3 and C4 grass fractions

Because photosynthesis can vary significantly between

species using the C3 and C4 photosynthetic pathways

(Ehleringer and Cerling, 2002), most TBMs use separate al-

gorithms for estimating the GPP of C3 and C4 plant types. In

order to provide the required spatial distribution of ecosys-

tems dominating each of these pathways, we used an ap-

proach described in Still et al. (2003) based on growing

season temperature. Since the C4 pathway is largely found

in warm season grass species, we created a global grid-

ded (0.5◦× 0.5◦) map of the relative fraction of C3 and C4

grasses using the present climate state based on the CRU–

NCEP mean monthly precipitation and temperature data for

2000–2010. For grid cells characterized as grasslands (or

containing grasslands) the relative fraction map defines the

fraction of those grasses that are C3 or C4, so that in each of

those grid cells the C3 and C4 grass fractions sum to 1 re-

gardless of the total percentage of grassland contained in the

grid cell.

SYNMAP contains 13 land cover classes that include

grasses, with 12 of these mixtures of grasses with trees,

shrubs, crops or barren land. For the mixed classes, we as-

sumed that grasses account for 50 % of the area of these

mixed classes contained in each cell. The SYNMAP grass

fraction in each cell was calculated as the sum of the grass

fraction of all different classes, including both pure and

mixed classes, in the cell. Figure 6 shows the relative fraction

of C3 (top) and C4 (bottom) grassland globally (0.5◦) under

present (2000–2010) climate conditions. The actual C3 and

C4 grassland fractions depend on the overall grass coverage

and can be zero if no grass is present in a particular grid cell.

The North American (0.25◦× 0.25◦) C3 and C4 relative

grassland fraction maps were created using the same ap-

proach, except that the NARR climate was used instead

of CRU–NCEP. MsTMIP only provides a constant C3 / C4

data product under present climate conditions. For models

that need time-varying C3 / C4 grass fractions, the same

approach can be applied to historical land cover data and

historical precipitation/temperature climate data to generate

C3 / C4 grassland maps for previous years.

3.7 Major crops

The SYNMAP land cover map indicates which areas are pre-

dominantly crop but does not provide additional information

about the crop types contained within each grid cell. This

can be important when, for example, a C4 crop like maize

dominates a grid that would normally be covered by C3 veg-
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Figure 6. Relative fractions of C3 (top) and C4 (bottom) grassland

on global 0.5◦ scale under the present climate (2000–2010).

etation, and vice-versa. Some models make use of such addi-

tional information to implement crop specific algorithms that

capture some aspects of crop physiology and management

including planting and harvesting phenology, fertilizer appli-

cations, irrigation or tillage practices. We therefore identified

and extracted the four globally significant crop types (maize,

rice, soybean and wheat) from the Monfreda et al. (2008)

global crop database. The original Monfreda global crop

product is a detailed database of global agricultural prac-

tices and describes the areas and yields of 175 different in-

dividual crops in 2000 at a 5 min× 5 min (approximately

10 km× 10 km) spatial resolution. We resampled the original

Monfreda crop data to 0.5◦× 0.5◦ (global) and 0.25◦× 0.25◦

(North American) spatial resolutions. These major crop des-

ignations do not provide detailed model simulation prescrip-

tion, but rather guidance for models that need to specify crop

types or cropping systems.

3.8 Phenology

Some models do not have prognostic canopies and use

remote-sensing products to prescribe plant phenology to cal-

culate GPP or NPP. Consequently, we constructed monthly

maps of normalized difference vegetation index (NDVI), leaf

area index (LAI) and absorbed fraction of photosyntheti-

cally active Radiation (fPAR) consistent with the MsTMIP

LULCC data on both global and North American grids for

1801–2010. For NDVI data, we chose the Global Inventory

Monitoring and Modeling System version g (GIMMSg) data

set (Tucker et al., 2005), because it provides the longest

global observation-based product. The Postdam NPP MIP

also used the GIMMS product to define NDVI; however,

their protocol did not mandate consistent driver data across

all its participating models (Cramer et al., 1999). GIMMSg

consists of 15-day maximum value composites at about 8 km

spatial resolution from 1982 to 2010 adjusted for missing

data, satellite orbit drift, sensor degradation and volcanic

aerosols (Tucker et al., 2005). We used the average sea-

sonal cycle in NDVI for the entire time period from 1801

to 2010, since switching to observed values in 1982 would

create abrupt changes in model output that would be difficult

to interpret. The 15-day GIMMSg NDVI was first regridded

to 0.5◦× 0.5◦ (global) and 0.25◦× 0.25◦ (North American)

resolutions using area-weighted averaging. The NDVI data

were fitted to the MsTMIP land masks using the nearest-

neighbor technique to gap fill missing points. To minimize

noise due to cloud and aerosol contamination, we converted

the regridded 15-day GIMMSg NDVI to monthly maximum

value composites and then calculated the average of all Jan-

uary maps, the average of all February maps, etc., to create

the average NDVI seasonal cycle. We calculated fPAR and

LAI from the average seasonal cycle of GIMMSg NDVI us-

ing methods described in Sellers et al. (1996b) and Schaefer

et al. (2002).

To harmonize phenology data with the LULCC used in

MsTMIP, we assumed that a pixel would consist of tiles,

each corresponding to a different land use/cover class with

fractional areas set by the MsTMIP LULCC coverage maps

as a function of year from 1801 to 2010. We first calculated

maps of LAI and fPAR assuming the entire land surface was

one of the 12 SiB biome classes (Sellers et al., 1986) result-

ing in 12 sets of LAI and fPAR maps corresponding to the

12 SiB biome classes, all calculated from the same NDVI

values but using different parameter values unique to each

biome (Sellers et al., 1996b). We then mapped the 12 SiB

biomes to the 47 SYNMAP land use/cover classes using one-

to-one or one-to-many mapping, resulting in 47 sets of LAI

and fPAR maps corresponding to the 47 SYNMAP classes.

This two-step process was required because the parameters

used to calculate LAI and fPAR are not available for each

of the 47 SYNMAP types. By combining these 47 sets of

LAI and fPAR maps and the yearly MsTMIP LULCC data,

the time-evolving and land use/cover class explicit LAI and

fPAR data products were created. If a grid cell did not con-

tain a particular SYNMAP class in a specific year, a standard

missing value was inserted into the corresponding LAI and

fPAR maps. A model would then extract the LAI and fPAR

values for a particular SYNMAP class in each year and use

it for the corresponding tile.
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3.9 Soil

The Food and Agriculture Organization – United Na-

tions Educational, Science and Cultural Organization (FAO-

UNESCO) digitized soil map of the world (FAO, 1971–1981,

1995, 2003), originally published in 1974, is commonly used

in terrestrial biosphere modeling. Recently, however, signif-

icant improvements in soil mapping and databases of soil

properties have led to a new generation of regional and global

scale soil maps, such as the International Soil Reference and

Information Centre (ISRIC) World Inventory of Soil Emis-

sion Potentials (ISRIC-WISE) (Batjes, 2008) and the harmo-

nized world soil database (HWSD) (FAO/IIASA/ISRIC/ISS-

CAS/JRC, 2011). This new generation of soil products have

increased details in the spatial distribution of soil types and

more accurate characterizations of soil physical and chemical

properties.

For MsTMIP, we selected and synthesized the HWSD

v1.1 for global simulations because it was the most recent

global soil database that incorporates updated soil data from

Europe, Africa, and China. However, in both the ISRIC-

WISE and HWSD databases, soil information for North

America is based on an outdated FAO-UNESCO soil map

from the 1970s. Thus, even in the most updated global soil

databases, North America is less reliable than the other re-

gions due to the use of an obsolete database (Batjes, 2005;

FAO/IIASA/ISRIC/ISS-CAS/JRC, 2011). We therefore de-

veloped the Unified North American Soil Map (UNASM) by

fusing the United States Department of Agriculture Natural

Resources Conservation Services (USDA-NRCS) State Soil

Geographic (STATSGO2) data set with both the soil land-

scapes of Canada (SLC) version 3.2 and 2.2 products, and

the HWSD v1.1 (Liu et al., 2013).

Both data prepared for MsTMIP, the gridded 0.5◦ HWSD

for global simulations and 0.25◦ UNASM for North Amer-

ican simulations, contain two standardized soil layers. The

topsoil layer ranges from 0 to 30 cm and the subsoil layer

ranges from 30 to 100 cm. For each soil layer, eight physical

and chemical soil properties, including clay/sand/silt frac-

tions, pH, organic carbon, cation exchange capacity, refer-

ence bulk density and gravel content, were compiled (Ta-

ble 1). These variables are used by TBMs to calculate soil

column hydrological characteristics that determine the dy-

namics of available soil water for plant transpiration and soil

evaporation. Organic carbon content is provided for models

that make use of an estimate for initialization.

3.9.1 Global soil: gridded HWSD

The HWSD had been widely used as input for global-scale

carbon cycle modeling and MIP activities (e.g., ISI-MIP;

Warszawski et al., 2013), and therefore was used to define

MsTMIP global soil data. The original HWSD is a 30 arcsec

raster database with over 16 000 different soil mapping units

that combines existing regional and national updates of the

soil information worldwide, including the Soil and Terrain

database (SOTER), European Soil Database (ESD), Soil Map

of China, and WISE, with the information contained within

the 1 : 5 000 000 scale FAO-UNESCO soil map of the world

(FAO/IIASA/ISRIC/ISSCAS/JRC, 2011).

Each soil mapping unit in the HWSD is composed of

several different soil units (or soil types) defined by ma-

jor soil group code following a combined FAO-74/FAO-

85/FAO-90 soil classification system. For the global simu-

lations, the original HWSD was regridded to a spatial resolu-

tion of 0.5◦× 0.5◦ by selecting the dominant soil type within

each grid cell. Eight physical and chemical soil properties as-

sociated with the dominant soil type in each soil layer were

then selected. In addition to physical and chemical soil prop-

erties for each dominant soil type, we also provided modelers

with the HWSD reference soil depth, as a proxy for mineral

soil depth, even though this reference soil depth is not pre-

cise.

The reference bulk density values provided in HWSD v1.1

were calculated following the method developed by Sax-

ton et al. (1986) that relates bulk density to soil texture.

This method, although generally reliable, tends to overes-

timate the bulk density in soils that have a high porosity

(e.g., Andosols) or that are high in organic matter content

(e.g., Histosols). Therefore, the bulk density values of these

two soil types were corrected using the corresponding depth-

weighted average values from ISRIC-WISE, version 1.0.

Figure 7 shows the globally gridded HWSD topsoil refer-

ence bulk density before and after correction. The correction

mainly impacts the North American boreal region and a few

places of southeastern Asia where Andosols and Histosols

dominate.

3.9.2 North American soil: Unified North American

Soil Map (UNASM)

A new gridded database of harmonized soil physical and

chemical properties for North America was created for MsT-

MIP by fusing the most recent regional soil information from

US STATSGO2, SLC version 3.2 and 2.2, and the HWSD

v1.1. The fused database was then harmonized into two stan-

dardized soil layers as for the HWSD. The top soil layer

ranges from 0 to 30 cm and the sub-soil layer ranges from 30

to 100 cm. The comparison with the subset of HWSD demon-

strates the pronounced difference in the spatial distributions

of soil properties and soil organic carbon mass between the

UNASM and HWSD, but overall the UNASM provides more

accurate and detailed information particularly in Alaska and

central Canada. The methods used to develop the UNASM

and the comparisons with HWSD are described in detail in

Liu et al. (2013).
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Figure 7. HWSD topsoil reference bulk density before (top) and

after (bottom) correction at 0.5◦ resolution.

4 Spin-up data package

A consistent spin-up data package shared among models

eliminates any differences in prediction due to spin-up data

choices. We created the spin-up data package using the stan-

dardized environmental driver data sets described above.

MsTMIP requires that all simulations assume steady-state

initial conditions in 1801. The spin-up driver data package

contains a 100-year time series for each required environ-

mental driver data product (Table 2) that can be recycled until

steady state is reached. For climatology, the 100-year spin-up

time series was created by randomly selecting from the first

30 (1901–1930, global) or 15 (1979–1993, North America)

years of climate driver data on the yearly time step. Using the

first 30 or 15 years of climate driver data ensures a smooth

transition from the spin-up to transient simulations, while

preserving the seasonal cycle of the meteorological variables.

A 100-year period for the spin-up package was chosen to

minimize any long-term trend in spin-up climate data; thus,

minimizing drift in reference simulations, which use con-

stant driver data (Huntzinger et al., 2013). Nitrogen deposi-

tions were held constant at 1860 values and atmospheric CO2

concentrations were held constant at 1801 values to repre-

sent near-pre-industrial conditions and ensure a smooth tran-

sition between spin-up and transient simulations. Similarly,

LULCC and phenology data were held constant at 1801 val-

ues so that near-pre-industrial land cover characteristics and

corresponding phenology could be captured in model spin-

up. Soil data was assumed to be constant across the whole

spin-up period.

All transient simulations defined by MsTMIP re-

quire driver data sets covering the period of 1801–2010

(Huntzinger et al., 2013). However, several of the environ-

mental driver data sets, including climate, nitrogen deposi-

tion, and soil, do not cover the full period. The spin-up data

package was thus recycled to fill these temporal gaps. For

global climate data, the spin-up data were used directly to

fill the gap between 1801 and 1900. For the NARR climate

(North American) data, the full 100-year time series plus the

first 78 years of the North American spin-up climate data

were used to fill the gap between 1801 and 1978. The ni-

trogen deposition data in 1860 were repeated to fill the gap

between 1801 and 1859 for nitrogen deposition driver data.

Finally, constant soil data were used throughout the simula-

tion period of 1801–2010.

5 Lessons learned

Some of the lessons learned in the process of data prepara-

tion and distribution for MsTMIP have implications beyond

the MsTMIP project. These are described here in order to

provide some guidance for future data-intensive activities,

especially those that involve assembling consistent data sets

for use by multiple modeling teams. Some of these lessons

have previously been described in the context of other MIPs

(e.g., Kittel, et al., 1995 and 2004), but continue to present

challenges and should therefore be taken into account in the

design of future efforts.

1. Study the past

Scientific discoveries rely heavily on findings from

past activities. This is especially true for data-intensive,

multi-partner MIP activities like MsTMIP. Beginning

with VEMAP in the 1990s, there have been several

MIPs conducted that have advanced our understanding

of ecosystem dynamics and supported model develop-

ment. The preparation of environmental driver data sets

for MsTMIP has been inspired by past/current MIPs,

such as VEMAP, GCP-TRENDY and NACP interim

synthesis activities. The design of the MsTMIP envi-

ronmental driver data sets benefited from studying the

lessons learned from these past activities and helped us

to avoid pitfalls (e.g., biases in some reanalysis climate

variables) or duplicate work unnecessarily (e.g., lever-

aging climate data prepared for GCP-TRENDY), and

thus helped to reduce data preparation time.

2. Resources for data planning, preparation

and management

Dedicated funding and expertise are needed to develop

a plan with the modeling teams and to conduct the

Geosci. Model Dev., 7, 2875–2893, 2014 www.geosci-model-dev.net/7/2875/2014/
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Table 2. The MsTMIP spin-up environmental driver data summary.

Category Global Regional (North American)

Climate A 100-year time series with no signifi-

cant trend by randomizing CRU–NCEP

in 1901–1930 (30 years)

A 100-year time series with no signif-

icant trend by randomizing NARR in

1979–1993 (15 years)

Atmospheric CO2concentration A 100-year time series by repeating atmospheric CO2 concentration driver data in

1801

Nitrogen deposition A 100-year time series by repeating nitrogen deposition driver data in 1860

Land cover and land cover change A 100-year time series by repeating harmonized Hurtt-SYNMAP land cover

change driver data in 1801

Phenology A 100-year time series by repeating phenology driver data in 1801

Soil Constant gridded HWSD Constant UNASM

Land–water mask Constant global land–water mask Constant North American land–water

mask

driver data compilation. The preparation of standard-

ized model input driver data sets, especially for a project

with many different collaborators, takes a significant

amount of time and effort. Besides data processing, de-

tailed documentation has to be compiled to capture all

the processing steps and trace the origin of each data

file. A long-term data management plan is needed to

preserve and share the data after a project ends and max-

imize the value of the data products whenever they are

used. Data centers should be identified for long-term

data preservation, and the data center’s requirements for

metadata and documentation should be established at

the beginning of the project.

3. Collaboration between informatics and science

researchers

For a project like MsTMIP, informatics personnel and

modeling teams need to work closely together to de-

velop a shared set of requirements for the data prod-

ucts and to ensure that useful data products suitable for

long-term preservation are produced. Close collabora-

tion is required for acquisition, harmonization and or-

ganization of the scientific data products both for the

project and for future use.

4. Proper data formats and standards

Non-proprietary and standard data and metadata for-

mats (e.g., netCDF, comma-separated values (CSV),

geotiff, CF metadata convention, or FGDC metadata

standard8) should be used to maximize the interoper-

ability of the data. Standards make data easier to un-

derstand and minimize the ambiguity and potential er-

rors when using a given data product, especially beyond

its original intended use.Standards also help with the

8Federal Geographic Data Committee geospatial metadata, http:

//www.fgdc.gov/metadata.

long-term preservation and usability of data (Hook et

al., 2010). In addition, a data management effort should

consider both current and future needs when choosing

appropriate data and metadata formats.

5. Version control of data files

A controlled repository and versioning system should

be used to control data files, not only for final data prod-

ucts to be released to modeling teams and the commu-

nity but also for intermediate data to be shared between

different processing steps and among project collabora-

tors. When working with a large volume of data files

with complicated data processing steps, version control

is critical for ensuring that intermediate data files are

self-consistent, that the provenance of data is correctly

captured, and that final data products are properly dis-

tributed to data users.

6. Workflow systems to improve reproducibility and

collaboration among team members

Data processing is an error-prone activity. Even if every

processing step is performed correctly, the processing

algorithms themselves usually need adjustments to cre-

ate better quality data products. Requirements on final

data products sometimes change unexpectedly. In prac-

tice, therefore, similar data processing activities will

usually be done multiple times before data products are

finalized. In MsTMIP, a workflow system (e.g., Vis-

Trails9 and Kepler10) was not used, and as a result sig-

nificant dedicated time was required to properly capture

and adjust the settings and executing environment as-

sociated with each processing step. If a workflow sys-

tem had been used, different data processing steps could

have been packaged as individual modules and chained

9VisTrails, http://www.vistrails.org.
10Kepler, https://kepler-project.org.
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together as workflows, minimizing the time required

to trace and reproduce processing steps (Santos et al.,

2013). In addition, data reprocessing could have been

automated.

7. QA/QC

Quality assurance and quality control (QA/QC) is nec-

essary not only for the final data products, but also

for any intermediate data product produced. Depending

on the characteristics of data products, different man-

ual and automatic QA/QC approaches (e.g., visualiza-

tion, statistics and long-term trend analysis) can be used

to identify potential errors. The best way to QA/QC

data products is always to collaborate with domain re-

searchers and test data with real science applications.

8. On-demand approach to distribute data

For a project such as MsTMIP that involves over 20

modeling teams, it is not possible to prepare a single set

of data that meets the requirements of all models. TBMs

have different native temporal resolutions, for example,

and modelers may therefore need to regrid data. Sim-

ilarly, if the products are used for future applications

(outside the projects for which they were created), they

may need to be subset to a smaller geographic region,

rescaled to a different spatial resolution, or translated to

a different geographic projection. On-demand data dis-

tribution systems, like the Thematic Realtime Environ-

mental Distributed Data Services11 (THREDDS) data

server and Open Geospatial Consortium (OGC) Web

Coverage Services (WCS), can perform spatial and tem-

poral subsetting, as well as resampling, and can there-

fore help address the diverse needs of different research

activities (Wei et al., 2009).

9. “Better is the enemy of good enough”

There is constant pressure to create the best data sets

possible, but this must be balanced against the overall

priority of completing the simulations. If too much time

is spent improving the driver data, the time available for

model simulations and the evaluation of modeling re-

sults is compromised. Therefore, in order to maintain

momentum, there comes a time when a decision has

to be made to freeze data improvement activities and

release a specific version of data products to modeling

teams.

6 Conclusions

This paper presents the reasoning for, and a description of,

driver data and spin-up procedures used in the setup of

11Thematic Realtime Environmental Distributed Data Ser-

vices (THREDDS), http://www.unidata.ucar.edu/software/thredds/

current/tds/

the global and North American simulations that are part of

the MsTMIP activity. These data sets include climate, at-

mospheric CO2 concentration, nitrogen deposition, LULCC,

C3 / C4 grasses fraction, major crop, phenology, soil data

and land–water mask information. In many cases, we found

it necessary to develop new or enhanced data sets to serve

the needs of long-term, high-resolution TBM simulations. In

addition, the need for the data sets to be compatible with over

20 participating TBMs resulted in strict requirements for all

data sets considered. These standardized drivers are designed

to provide consistent inputs for models participating MsT-

MIP to minimize the inter-model variability caused by differ-

ences in environmental drivers and initial conditions. Thus,

these consistent driver inputs, together with the sensitivity

simulations defined by MsTMIP, enable better interpretation

and quantification of structural and parameter uncertainties

of model estimates.

In addition to serving the needs of the MsTMIP activity,

this work is intended to serve the needs of researchers wish-

ing to leverage the data products produced by MsTMIP for

follow-on studies or related applications. Finally, we offer

our experience with MsTMIP as a case study in the develop-

ment of data sets for collaborative scientific use. The lessons

learned from the work reported here, including the need for

dedicated support for data development and sharing, for it-

erative product development, and for the generation of eas-

ily accessible and traceable products, among others, are thus

broadly applicable. As such, we aim for this work to inform

future efforts focused on assembling consistent data sets for

use by multiple modeling teams.

All standardized model input driver data sets are archived

in the ORNL DAAC to provide long-term data management,

preservation, and distribution to the community (Wei et al.,

2014).

The Supplement related to this article is available online

at doi:10.5194/gmd-7-2875-2014-supplement.
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