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THE NUCLEAR SHELL MODEL

1 One-Particle Excitations

1.1 Introduction

For a set of quantum numbers a and a complete coordinate system r, the
function ϕa(r) is a solution to the Schrödinger one-body equation if

(T + U(r))ϕa(r) = εaϕa(r).

For A independent nucleons, the Hamiltonian, its eigenfunctions and energy
can be written as

H0 =

A∑
i=1

(Ti + U(ri))

Ψa1,..., aA(r1, . . . , rA) =

A∏
i=1

ϕai(ri)

E0 =

A∑
i=1

εai .

If the nucleons are identical, the wave function needs to be antisymmetrised
by means of a Slater determinant,

Ψa1,..., aA(r1, . . . , rA) =
1√
A!

∣∣∣∣∣∣∣
ϕa1(r1) . . . ϕa1(rA)

. . .

ϕaA(r1) . . . ϕaA(rA)

∣∣∣∣∣∣∣ .
For two particles this becomes

Ψa1,a2(r1, r2) =
1√
2

(ϕa1(r1)ϕa2(r2)− ϕa1(r2)ϕa2(r1)).

The average field U(r) is an approximation for the actual two-body interac-
tion Vi,j as defined by the residual Hamiltonian Hres,

H =

A∑
i=1

Ti +
1

2

A∑
i,j=1

Vi,j

=

A∑
i=1

(Ti + U(ri)) +
1

2

A∑
i,j=1

Vi,j −
A∑
i=1

U(ri)

= H0 +Hres.

The derivation of a good average field from a given two-body interaction is
carried out by the Hartree-Fock algorithm. For this we need wave functions
that are fair approximations to the actual wave function. We shall obtain them
from the easier case of independent motion in a harmonic oscillator potential.
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1.2 The Harmonic Oscillator

Using commutation relations one derives

l2 = (r× p) · (r× p)

= r2p2 − r(r · p) · p + 2i~r · p

= r2p2 + ~2 ∂

∂r
(r2 ∂

∂r
).

The kinetic energy then becomes

T =
p2

2m

=
l2

2mr2
− ~2

2mr2

∂

∂r
(r2 ∂

∂r
).

Setting l2 = ~2λ and choosing an eigenfunction ϕ(r), the Schrödinger equa-
tion of a central potential is now given by(

− ~2

2mr2

∂

∂r
(r2 ∂

∂r
) +

~2λ

2mr2
+ U(r)

)
ϕ(r) = Eϕ(r).

We aim at a solution of the form

ϕ(r) =
u(r)

r
Y (θ, ϕ)

such that

r3

u(r)Y (θ, ϕ)

(
− ~2

2mr2

∂

∂r
(r2 ∂

∂r
) +

~2λ

2mr2
+ U(r)− E

)
u(r)

r
Y (θ, ϕ) = 0

− r2

u(r)

~2

2m

∂2u(r)

∂r2
+

1

Y (θ, ϕ)

~2λ

2m
Y (θ, ϕ) + (U(r)− E)r2 = 0

and after separation of variables,

− ~2

2m

d2u(r)

dr2
+

(
`(`+ 1)~2

2mr2
+ U(r)

)
u(r) = Eu(r)

with boundary and normalisation conditions

u(∞) = 0

u(0) = 0∫ ∞
0

u2(r)dr = 1.

For a harmonic oscillator

U(r) =
1

2
mω2r2

this becomes a Laguerre equation

d2u(r)

dr2
+

(
2m

~2
E − m2ω2r2

~2
− `(`+ 1)

r2

)
u(r) = 0
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the solutions of which are

ukl(r) = Nklr
l+1e−νr

2/2L
l+1/2
k (νr2)

where ν = mω/~ and L
l+1/2
k (νr2) are the associated Laguerre polynomials.

The energy eigenvalues are found from the identification

E = ~ω(2k + `+
3

2
)

and therefore

N = 2k + ` = 0, 1, . . .

` = N − 2k = N,N − 2, . . . , 1 or 0

k = (N − `)/2 = 0, 1, . . . , (N − 1)/2 or N/2.

Instead of the radial quantum number k, one often uses the number of nodes
n in the interval [0,∞[,

n = k + 1 = (N − `+ 2)/2.

The energy degeneracy of the sets of (k, l) values for the same N gives rise
to magic numbers at 2, 8, 20, 40, 70. The degeneracy, however, is lifted by
introducing a spin-orbit term. Including spin space the unperturbed single-
particle wave function is expressed by

|nljm〉 =
unl(r)

r
[Yl(θ, ϕ)⊗χχχ1/2(σσσ)](j)m

and its unperturbed energy, independent of spin orientation, is given by

〈nljm|h0|nljm〉 = ε0
nlj .

The spin-orbit interaction is a perturbation in the Hamiltonian

h = h0 + ζ(r) l · s

= h0 + ζ(r)
1

2
(j2 − l2 − s2)

and the perturbed energy is found from

εnlj = ε0
nlj + 〈nljm|ζ(r)

1

2
(j2 − l2 − s2)|nljm〉

= ε0
nlj +

1

2

(
j(j + 1)− `(`+ 1)− 3

4

)∫
u2
nl(r)ζ(r)dr

=

{ ε0
nlj +

`

2

∫
u2
nl(r)ζ(r)dr

ε0
nlj −

`+ 1

2

∫
u2
nl(r)ζ(r)dr.

A common expression for the interaction is

ζ(r) = −Vlsr2
0

1

r

∂U(r)

∂r
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with the Woods-Saxon potential

U(r) =
−V0

1 + e(r−R)/a

in which a is called the diffusiveness (typically 0.5 fm) and R = r0A
1/3 is

the nuclear radius (r0 ≈ 1.2 fm and A is the mass number). An additional term
proportional to l2 is then added to recover the magic numbers 2, 8, 20, 28, 50,
82, 126 with correct spacings.

1.3 The Hartree-Fock Method

We want to derive the average field U(r) from a microscopic starting point.
The nuclear density is composed from the occupied single-particle states as

%(r) =
∑
a∈F

ϕ∗a(r)ϕa(r).

The potential at a point r generated by the two-body interaction V (r, r′) is
found from

UH(r) =
∑
a∈F

∫
ϕ∗a(r′)V (r, r′)ϕa(r′)dr′.

The precise Schrödinger equation, however, includes an exchange term,

− ~2

2m
∇2ϕi(r) +

∑
a∈F

∫
ϕ∗a(r′)V (r, r′)(ϕa(r′)ϕi(r)− ϕa(r)ϕi(r

′))dr′ = εiϕi(r).

Introducing the notation

UF (r, r′) =
∑
a∈F

ϕ∗a(r′)V (r, r′)ϕa(r)

we obtain the Hartree-Fock equations

− ~2

2m
∇2ϕi(r) + UH(r)ϕi(r)−

∫
UF (r, r′)ϕi(r

′)dr′ = εiϕi(r)

where the parts containing UH(r) and UF (r, r′) are called the Hartree and
Fock terms, or direct and exchange terms, respectively. For a chosen interaction
V (r, r′) and a set of wave functions ϕa(r) one then calculates iteratively the new
eigenfunctions till the energy of the system is minimised,

δ 〈
A∏
i=1

ϕi(ri)|H|
A∏
i=1

ϕi(ri)〉 = 0.

This minimisation is only possible if strong short-range correlations and
density-dependent interactions are excluded.
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2 Two Identical Nucleons

2.1 Two-Particle Wave Functions

The two-particle wave function

ψ(j1(1)j2(2); JM) =
∑
m1,m2

〈j1m1, j2m2|JM〉ϕj1m1
(1)ϕj2m2

(2)

is an eigenfunction of the unperturbed Hamiltonian

H = H0 +

2∑
i=1

h0(i)

where H0 describes a closed core and h0(i) the valence nucleon i. The energy
shift induced by a residual interaction V12 is found from

∆E(j1j2; J) = 〈j1j2; JM |V12|j1j2; JM〉.

However, since we consider identical particles, we should not forget to anti-
symmetrise. If j1 6= j2,

ψAS(j1j2; JM)

= N
∑
m1,m2

〈j1m1, j2m2|JM〉(ϕj1m1
(1)ϕj2m2

(2)− ϕj2m2
(1)ϕj1m1

(2))

=
1√
2

(
ψ(j1j2; JM)− (−)j1+j2−Jψ(j2j1; JM)

)
.

If j1 = j2,

ψAS(j2; JM)

= N ′
∑
m1,m2

〈jm1, jm2|JM〉(ϕjm1(1)ϕjm2(2)− ϕjm2(1)ϕjm1(2))

= N ′
∑
m1,m2

(〈jm1, jm2|JM〉 − 〈jm2, jm1|JM〉)ϕjm1
(1)ϕjm2

(2)

= N ′(1− (−)2j−J)
∑
m1,m2

〈jm1, jm2|JM〉ϕjm1(1)ϕjm2(2)

=
1

2
(1− (−)2j−J)ψ(j2; JM).

For the latter case it follows that

J = 0, 2, . . . , 2j − 1.

The two-body matrix elements become

∆E(j1j2; J) = 〈j1j2; JM |V12|j1j2; JM〉 − (−)j1+j2−J〈j1j2; JM |V12|j2j1; JM〉

∆E(j2; J) = 〈j2; JM |V12|j2; JM〉
or taking both formulae together, we can symbolically write

∆E(J) =
1

1 + δj1,j2
∆E(j1j2; J).
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2.2 Two-Particle Residual Interaction

An effective interaction can be constructed empirically when the single-
particle energies and the two-body matrix elements are taken as free parameters
and fitted to experimental data. The Brussaard-Glaudemans and Cohen-Kurath
interactions are well-known choices for the p shell, Wildenthal-Brown for the sd
and Brown-Richter for the fp shells.

Realistic forces contain an interaction with an analytical structure, the pa-
rameters of which are fitted to experimental data to reproduce the proper
strengths. The Hamada-Johnston potential is an example

V = VC(r) + VT (r)S12 + VLS(r)l · S + VLL(r)L12

S12 =
3

r2
(σσσ1 · r)(σσσ2 · r)− σσσ1 · σσσ2

L12 = (σσσ1 · σσσ2)l2 − 1

2
((σσσ1 · l)(σσσ2 · l) + (σσσ2 · l)(σσσ1 · l)) .

The local force comprises a central interaction VC and a non-central tensor
force VTS12. The tensor force only acts on the S = 1 state and is the formal
equivalent of a classical dipole-dipole field. For a classical magnetic dipole field

B(r) =
3n(n ·µµµ)−µµµ

r3

the dipole-dipole interaction is indeed written as

−µµµ1 ·B2 =
1

r3

(
µµµ1 ·µµµ2 −

3(r ·µµµ1)(r ·µµµ2)

r2

)
.

The non-local forces are the spin-orbit interaction VLSl · S, again only for
S = 1, and a quadratic spin-orbit contribution VLLL12. The radial functions are
multiparameter functions that are essentially built from the Yukawa function

V (r) =
e−µr

µr

with 1/µ = ~/mπc the Compton wavelength of the pion. At large distances
they must converge to the one-pion exchange potential

V (r) = −e
−µr

µr

(
1 +

3

µr
+

3

(µr)2

)
.

However, the strong repulsive core of the potential renders Hartree-Fock and
perturbation theory very difficult. This can be circumvented by introducing the
Brückner G-matrix. If

H0ϕ = Eϕ

then the Schrödinger equation can be rewritten

(H0 − E)ψ = −V ψ

ψ = ϕ− 1

H0 − E
V ψ.
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If we define
Gϕ = V ψ

we obtain the Lippman-Schwinger equation

Gϕ = V ϕ− V 1

H0 − E
Gϕ.

In the nuclear medium is it also known as the Bethe-Goldstone equation. In
operator form it becomes

G = V + V
1

E −H0
G

= V + V
1

E −H0
V + . . .

where the higher-order terms express the hard core that can thus be re-
moved by cutting off the series. An often used realistic force, where the nuclear
potential is replaced by the G-matrix, is the Kuo-Brown interaction. Other
field-theoretical forces include the Argonne, Bonn, Nijmegen, Paris, and Ur-
bana potentials.

Schematic interactions aim at gaining basic insight in the nuclear force.
They are simple mathematical expressions, such as the Yukawa potential, the
Gaussian potential, the Square Well, or the Surface Delta Interaction. They
stress the short range of the nuclear force and allow for analytic results. To
mend their shortcomings, one may add the Bartlett exchange operator

Pσ =
1

2
(1 + σσσ1 · σσσ2).

Indeed
S = s1 + s2

σσσ1 · σσσ2 = 2(S2 − s2
1 − s2

2)

〈σσσ1 · σσσ2〉 = 2S(S + 1)− 3

such that for a parallel state the spin coordinates are symmetric and for an
antiparallel state they are antisymmetric

PσψS=1 = ψS=1

PσψS=0 = −ψS=0.

This allows to define the projection operators

PS,T =
1

2
(1∓ Pσ)

that select the spin singlet and triplet states, respectively. The Heisenberg
operator is the equivalent of the Bartlett term in isospin space.
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2.3 Two-Body Matrix Elements

If it is central, we expand the interaction in Legendre polynomials

V (|r1 − r2|) =

∞∑
k=0

vk(r1, r2)Pk(cos θ12)

with

Pk(cos θ12) =
4π

2k + 1

k∑
m=−k

Y m∗k (Ω1)Y mk (Ω2).

We separate the direct and exchange, radial and angular variables in the
two-body matrix element as

∆E(j1j2; J) =
∑
k

fkF
k − (−)j1+j2−J

∑
k

gkG
k

such that, for the direct term,

fk =
4π

2k + 1
〈j1j2; JM |Yk(Ω1) ·Yk(Ω2)|j1j2; JM〉

F k =

∫
|un1l1(r1)un2l2(r2)|2vk(r1, r2)dr1dr2.

The Wigner-Eckart theorem yields

fk =
4π

2k + 1
(−)J−M

(
J 0 J
−M 0 M

)
〈j1j2; J‖Yk(Ω1) ·Yk(Ω2)‖j1j2; J〉

=
4π

2k + 1

1

Ĵ
〈j1j2; J‖Yk(Ω1) ·Yk(Ω2)‖j1j2; J〉.

The scalar product in this expression is a spherical tensor product of rank
zero. Its reduced matrix element gives

fk =
4π

2k + 1
(−)j1+j2+J

{
j1 j2 J
j2 j1 k

}
〈j1‖Yk‖j1〉〈j2‖Yk‖j2〉.

For the exchange term

gk =
4π

2k + 1
(−)2j2+J

{
j1 j2 J
j1 j2 k

}
〈j1‖Yk‖j2〉〈j2‖Yk‖j1〉

Gk =

∫
un1l1(r1)un2l2(r2)un1l1(r2)un2l2(r1)vk(r1, r2)dr1dr2.

F k and Gk we call Slater integrals. We now choose a delta interaction, the
multipole expansion of which is

δ(r1 − r2) =
∑
k,m

δ(r1 − r2)

r1r2
Y m∗k (r̂1)Y mk (r̂2)

=
∑
k

δ(r1 − r2)

r1r2

2k + 1

4π
Pk(cos θ12).
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The Slater integrals become

F k =
2k + 1

4π

∫
1

r2
|un1l1(r)un2l2(r)|2dr

= (2k + 1)F 0

Gk = (2k + 1)F 0.

With the algebra that can be found in the appendix one can then show

∆E(j1j2; J) =
F 0

2
(2j1 + 1)(2j2 + 1)(1 + (−)l1+l2+J)

(
j1 j2 J
1
2 − 1

2 0

)2

∆E(j2; J) =
F 0

2
(2j + 1)2

(
j j J
1
2 − 1

2 0

)2

so the residual interaction lifts the degeneracy of the J multiplet.

2.4 The Moshinsky Transformation

For a central residual interaction, we want to separate the relative from the
centre-of-mass motion. We write

r = r1 − r2, R =
1

2
(r1 + r2)

p =
1

2
(p1 − p2), P = p1 + p2.

The harmonic oscillator potential and the kinetic energy become

m

2
ω2(r2

1 + r2
2) =

m

4
ω2r2 +mω2R2

1

2m
(p2

1 + p2
2) =

1

m
p2 +

1

4m
P 2

such that for the Hamiltonian

H =
1

m
p2 +

m

4
ω2r2 +

1

4m
P 2 +mω2R2.

We build the wave function from a relative and a center-of-mass part,

ψ = |nlm〉|NΛMΛ〉

related to the independent-particle description by the Moshinsky transfor-
mation,

|n1l1, n2l2;LM〉 =
∑

n,l,N,Λ

〈nl,NΛ;L|n1l1, n2l2;L〉|nl,NΛ;LM〉.

It holds
l1 + l2 = l + Λ

2n1 + `1 + 2n2 + `2 = 2n+ `+ 2N + Λ.
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2.5 Configuration Mixing

Knowing how to calculate matrix elements, we can set up the secular equa-

tion to obtain the eigenvalues. For a basis |ψ(0)
k 〉 with respect to an unperturbed

Hamiltonian H0, the wave function of an excited two-particle state is written

|Ψp〉 =

n∑
k=1

akp|ψ(0)
k 〉.

We obtain the Schrödinger equation

(H0 +Hres)

n∑
k=1

akp|ψ(0)
k 〉 = Ep

n∑
k=1

akp|ψ(0)
k 〉

n∑
k=1

〈ψ(0)
l |H0 +Hres|ψ(0)

k 〉akp = Epalp.

We get l = 1, . . . , n equations for every p, in matrix language{
[Ep] ≡ Ep[I]

Hlk ≡ E(0)
k δlk + 〈ψ(0)

l |Hres|ψ(0)
k 〉

[H][Ap] = [Ep][Ap].

The secular equation is∣∣∣∣∣∣∣∣∣
H11 − Ep H12 . . . H1n

H21 H22 − Ep . . . H2n

. . .

Hn1 Hn2 . . . Hnn − Ep

∣∣∣∣∣∣∣∣∣ = 0.

From the orthonormalisation condition for |Ψp〉 we can diagonalise the Ha-
miltonian

n∑
l=1

alpa
∗
lp′ = δpp′

because the matrix equation above now becomes

n∑
k,l=1

a∗lp′Hlkakp = Epδpp′

[A†p][H][Ap] = [Ep]

with [A†p] the conjugate transpose matrix. Common diagonalisation algo-
rithms include the ones by Jacobi, Householder, or Lanczos. To alleviate the
discussion we now set n = 2 and find the secular equation

λ2 − λ(H11 +H22)−H2
12 +H11H22 = 0

since H12 = H21. Thus

λ =
H11 +H22

2
± 1

2

√
(H11 −H22)2 + 4H2

12

12



∆λ =
√

(H11 −H22)2 + 4H2
12.

If |H11 −H22| � |H12| then

λ ≈ H11 +H22

2
± H11 −H22

2

(
1 +

2H2
12

(H11 −H22)2

)

=

{H11 +
H2

12

H11 −H22

H22 +
H2

12

H22 −H11
.

Having determined the energies we calculate the wave functions

(H11 − λ1)a11 +H12a21 = 0

H2
12

(H11 − λ1)2
a2

21 + a2
21 = 1

a21 =
1√

1 +
H2

12

(H11−λ1)2

et cetera. So if |H11 −H22| � |H12| then

λ1 = H11 and a21 = 1

implying a level swapping

|Ψ1〉 = |ψ(0)
2 〉 and |Ψ2〉 = |ψ(0)

1 〉.
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3 Non-Identical Systems

3.1 Isospin Formalism

We define isospin from the Pauli isospin matrices

τx =

(
0 1
1 0

)
, τy =

(
0 −i
i 0

)
, τz =

(
1 0
0 −1

)
τττ = (τx, τy, τz)

t =
τττ

2

From spin algebra we may copy the following relations

[tx, ty] = itz and cyclic permutations

[t2, ti] = 0, i = x, y, z

t± = tx ± ity
t−t+ = t2 − tz(tz + 1).

We write the proton and neutron wave functions

ϕn(r) = ϕ(r)

(
1

0

)

ϕp(r) = ϕ(r)

(
0

1

)
.

It then follows

tzϕn(r) =
1

2
ϕn(r), tzϕp(r) = −1

2
ϕp(r)

t−ϕn(r) = ϕp(r), t+ϕp(r) = ϕn(r)

t−ϕp(r) = 0, t+ϕn(r) = 0.

We introduce the charge operator

Q

e
=

1

2
(1− τz)

Q

e
ϕp(r) = ϕp(r),

Q

e
ϕn(r) = 0.

For a many-nucleon system we define

T =

A∑
i=1

ti

Tz =

A∑
i=1

(tz)i

so we obtain

Tz =
1

2
(N − Z)

14



and for a given nucleus

T = |Tz|, |Tz|+ 1, . . . ,
A

2
.

Within an isospin multiplet it holds

T±|T, Tz〉 =
√
T (T + 1)− Tz(Tz ± 1) |T, Tz ± 1〉.

3.2 Charge Independence

Conservation of charge implies

[H,Tz] = 0

while for charge independence

[H,T±] = 0.

The isoscalar Hamiltonian becomes

H = −
N∑
i=1

~2

2mn
(∇2

n)i −
Z∑
i=1

~2

2mp
(∇2

p)i +
1

2

A∑
i,j=1

Vi,j +

Z∑
i<j

e2

|ri − rj |
.

However, introducing a mass difference

m =
mn +mp

2

∆m = mn −m = m−mp

1

mn
≈ 1

m
(1− ∆m

m
)

1

mp
≈ 1

m
(1 +

∆m

m
)

and making use of

1

4
(1− (τz)i − (τz)j + (τz)i(τz)j) =

{
1 for i, j protons

0 otherwise

we should rewrite

H ≈ −
A∑
i=1

~2

2m
∇2
i +

A∑
i=1

~2∆m

m2
(tz)i∇2

i +
1

2

A∑
i,j=1

Vi,j

+

A∑
i<j

e2

4|ri − rj |
−

A∑
i<j

e2

2|ri − rj |
((tz)i + (tz)j) +

A∑
i<j

e2

|ri − rj |
(tz)i(tz)j .

The Hamiltonian is now seen to contain isovector and isotensor terms and
is no longer charge independent. Therefore

H = H
(2)
0 +H

(1)
0 +H

(0)
0
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and we apply the Wigner-Eckart theorem

〈T, Tz|H|T, Tz〉 = (−)T−Tz

(
T 0 T
−Tz 0 Tz

)
〈T‖H(0)‖T 〉

+(−)T−Tz

(
T 1 T
−Tz 0 Tz

)
〈T‖H(1)‖T 〉

+(−)T−Tz

(
T 2 T
−Tz 0 Tz

)
〈T‖H(2)‖T 〉

such that we find the isospin dependence of the energy

〈T, Tz|H|T, Tz〉 = a(T ) + b(T )Tz + c(T )T 2
z .

This is called the isobaric multiplet mass equation (IMME).

3.3 Isospin Wave Functions

The isospin spinors ζ
1/2
tz allow us to construct the two-nucleon isospin eigen-

vectors

ζ(
1

2

1

2
;TTz) =

∑
tz,t′z

〈1
2
tz,

1

2
t′z|TTz〉ζ

1/2
tz (1)ζ

1/2
t′z

(2)

in particular the symmetric triplet

ζ(
1

2

1

2
; 1, 1) = ζ

1/2
+1/2(1)ζ

1/2
+1/2(2)

ζ(
1

2

1

2
; 1,−1) = ζ

1/2
−1/2(1)ζ

1/2
−1/2(2)

ζ(
1

2

1

2
; 1, 0) =

1√
2

(ζ
1/2
+1/2(1)ζ

1/2
−1/2(2) + ζ

1/2
−1/2(1)ζ

1/2
+1/2(2))

and the antisymmetric singlet

ζ(
1

2

1

2
; 0, 0) =

1√
2

(ζ
1/2
+1/2(1)ζ

1/2
−1/2(2)− ζ1/2

−1/2(1)ζ
1/2
+1/2(2)).

For the proton-neutron case, the spatial-spin wave function can be written

ψ±pn(jajb; JM) = N
∑
ma,mb

〈jama, jbmb|JM〉 (ϕa(1)ϕb(2)± ϕa(2)ϕb(1)) .

We then impose antisymmetry on the full wave function

ψ+
pn(jajb; JM)

= N
∑
ma,mb

〈jama, jbmb|JM〉 (ϕa(1)ϕb(2) + ϕa(2)ϕb(1)) ζ(
1

2

1

2
; 0, 0)

ψ−pn(jajb; JM)

= N
∑
ma,mb

〈jama, jbmb|JM〉 (ϕa(1)ϕb(2)− ϕa(2)ϕb(1)) ζ(
1

2

1

2
; 1, 0).
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For two particles in a single j-shell we find

ψ(j2; JM, TTz) = N ′(1− (−)2j−J+1−T )

×
∑
m,m′

〈jm, jm′|JM〉
∑
tz,t′z

〈1
2
tz,

1

2
t′z|TTz〉ϕjm(1)ϕjm′(2)ζ

1/2
tz (1)ζ

1/2
t′z

(2)

from which it follows
J + T = odd.

3.4 Two-Body Matrix Elements

For an interaction
V = V0δ(r1 − r2)

with Slater integral

A0 =
V0

4π

∫
1

r2
|un1l1(r)un2l2(r)|2dr

one can prove that

〈j1j2; JM, TTz|V |j1j2; JM, TTz〉 =
A0

2
(2j1 + 1)(2j2 + 1)

×

(
(1− (−)`1+`2+J+T )

(
j1 j2 J
1
2 − 1

2 0

)2

+ (1 + (−)T )

(
j1 j2 J
1
2

1
2 −1

)2
)

and if j1 = j2

〈j2; JM, TTz|V |j2; JM, TTz〉 =
A0

4
(2j + 1)2

×

(
(1− (−)J+T )

(
j j J
1
2 − 1

2 0

)2

+ (1 + (−)T )

(
j j J
1
2

1
2 −1

)2
)
.

From this one can derive the parabolic rule of Paar

∆E(J) = −3

4

(u2(p)− v2(p))(u2(n)− v2(n))

2jp2jn(2jp + 2)(2jn + 2)
(J(J+1)−jp(jp+1)−jn(jn+1)

+ (J(J + 1)− jp(jp + 1)− jn(jn + 1))2)

where v2 is the occupation probability of a given orbital and

u2 + v2 = 1.

The parabola is concave down for particle-particle and hole-hole configura-
tions but it is concave up otherwise.
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Summary:
large-scale shell-model calculations

• One determines the nearby closed shells so as to fix the number of valence
protons np and neutrons nn.

• The active particles (or holes) define the single-particle orbitals jp1 , ... and
jn1

, ... that determine the properties at low energy when constructing the
model space.

• One sets up the model space and the configurations that span the space
for each Jπ value. The basis configurations are denoted |(jp1jp2 ...)npJp,
(jn1jn2 ...)

nnJn; JM〉, meaning that one constructs the proton np particle
state Jp and multiplies it by the neutron nn particle state Jn, coupling
both to total spin J . The basis has n(J) basis configurations.

• Starting from the single-particle energies εjpi , εjni
and the two-body ma-

trix elements for identical and non-identical nucleons, one builds up the
energy matrix [Hij ] and diagonalises the n(J)×n(J) energy matrix. Thus
one obtains the n(J) energy eigenvalues and n(J) corresponding eigenfunc-
tions.

• With the wave functions ψi(J
πi
i ) and ψf (J

πf

f ) we calculate the physical
observables that we compare with data and so improve iteratively upon
the procedure above.
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ELECTROMAGNETIC PROPERTIES IN THE
SHELL MODEL

4 The Electromagnetic Field

4.1 Introduction

For a photon described by a plane wave and energy relation

1√
(2π)3

eik·r

E = ~ck
the density of states in an elementary volume V = (2π)3 is given by

dN

dE
=

1

(2π~)3

d

dE

∫
d3x

∫
d3p

=
1

~3

dp

dE

d

dp

∫
p2dpdΩ

=
k2

~c

∫
dΩ.

Fermi’s Golden Rule

w =
2π

~
dN

dE
|Mfi|2

can be written

dw =
2π

~
k2

~c
|Mfi|2dΩ.

The interaction Hamiltonian is given by1

H = −1

c

∫
j ·A dr.

We build the electrical field from the helicity unit vectors êk,λ=±1

EEE = −1

c

∂A

∂t

=
iω

c

∑
λ

A0
ei(k·r−ωt)√

2
êkλ + cc

such that

E2 =
ω2

c2
A2

0

while for the energy density of the photon

E2

4π
=

~ω
(2π)3

.

Therefore

A(r, t) =

√
~c2

2π2ω

∑
λ

ei(k·r−ωt)√
2

êkλ + cc.

1We use Gaussian or cgs units. For the conversion SI ↔ cgs, use ε0 ↔ 1/4π and B ↔ B/c
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4.2 Second Quantisation

In second quantisation the previous formula becomes

A(r, t) =

√
~c

2π2

∑
λ

∫
dk√
2k

(bλ(k) êkλe
i(k·r−ωt) + b†λ(k) ê∗kλe

−i(k·r−ωt)).

For the creation and annihilation operators it holds

[bλ(k), b†λ′(k
′)] = δ(k− k′)δλλ′

=
δ(k − k′)
kk′

δ(k̂− k̂′)δλλ′ .

If the photon takes an angular momentum, we need to project it onto the
axis that defines the components m, l by means of the Wigner D matrices. For
a photon moving along k with helicity λ we write

|kλ〉 =
∑
l

|klλ〉〈klλ|kλ〉

=
∑
lm

Dl
mλ(k̂)|klm〉〈klλ|kλ〉.

We use the orthogonality relation∫
Dl∗
mλ(k̂)Dl′

m′λ(k̂) dΩk =
4π

2l + 1
δll′δmm′

to find that

|klm〉〈klλ|kλ〉 =
2l + 1

4π

∫
Dl∗
mλ(k̂)|kλ〉 dΩk

and thus

〈klm|klm〉〈klλ|kλ〉2 =

(
2l + 1

4π

)2 ∫
Dl∗
mλ(k̂)Dl

mλ(k̂′)〈k′λ|kλ〉 dΩkdΩk′

〈klλ|kλ〉 =

√
2l + 1

4π
.

Because of

|kλ〉 =
∑
lm

√
2l + 1

4π
Dl
mλ(k̂) |klm;λ〉

we define by analogy

b†λ(k) =
∑
lm

√
2l + 1

4π
Dl
mλ(k̂) b†lm;λ(k).

The electromagnetic field now appears like

A(r, t) =

√
~c

8π3

∑
lmλ

√
2l + 1

∫
k2dk√

2k
(blm;λ flm;λe

−iωt + b†lm;λ f∗lm;λe
iωt)
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with

flm;λ =

∫
Dl∗
mλ(k̂) êkλe

ik·rdΩk.

We would like to decompose the field in electric and magnetic multipoles.
We consider the reflection operator P

P |kλ〉 = | − k,−λ〉

P |klm;λ〉 = (−)l|klm;−λ〉

and therefore
Pb†lm;λP

−1 = (−)lb†lm;−λ.

Introducing the polarisation variable σ = 0, 1, the creation operator that
takes parity properly into account is expressed by

b
(σ)†
lm =

1√
2

(b†lm;1 + (−)σb†lm;−1)

such that
Pb

(σ)†
lm P−1 = (−)l+σb

(σ)†
lm .

For electric multipoles of order 2l, σ = 0 and the parity is (−)l while for
magnetic multipoles of order 2l, σ = 1 and the parity is (−)l+1. The photon is
written

|kσ〉 =
1√
2

(|k, 1〉+ (−)σ|k,−1〉).

Defining

f
(σ)
lm =

1√
2

(flm;1 + (−)σflm;−1)

we obtain∑
σ

b
(σ)
lm f

(σ)
lm =

1

2

∑
σ

(blm;1 + (−)σblm;−1)(flm;1 + (−)σflm;−1)

=
∑
λ

blm;λflm;λ

such that for the electromagnetic field

A(r, t) =

√
~c

8π3

∑
lmσ

√
2l + 1

∫
k2dk√

2k
(b

(σ)
lm f

(σ)
lm e−iωt + b

(σ)†
lm f

(σ)∗
lm eiωt).

We note

[b
(σ)
lm (k), b

(σ′)†
l′m′ (k′)] =

δ(k − k′)
kk′

δll′δmm′δσσ′ .
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4.3 Matrix Elements

The matrix element can be expanded as

Mfi(kσ) = 〈f ; kσ|H|i; 00〉

=
∑
lmσ′

〈kσ|lmσ′〉〈f ; lmσ′|H|i; 000〉

=
∑
lmσ′

〈kσ|lmσ′〉〈f ; 000|[b(σ
′)

lm , H]|i; 000〉

= −1

c

∑
lmσ′

〈kσ|lmσ′〉
∫
dr 〈f |j|i〉 · 〈000|[b(σ

′)
lm ,A]|000〉.

We insert the expression for the field

〈000|[b(σ
′)

lm ,A]|000〉

= 〈000|
√

~c
8π3

∑
l′m′σ

√
2l′ + 1

∫
k2dk√

2k
[b

(σ′)
lm , b

(σ)†
l′m′ ] f

(σ)∗
l′m′ e

iωt|000〉

= 〈000|
√

~c
16π3k

√
2l + 1 f

(σ′)∗
lm eiωt|000〉

and we find

Mfi(kσ) = −
√

~
16π3kc

∑
lmσ′

〈kσ|lmσ′〉
√

2l + 1 〈f |
∫

f
(σ′)∗
lm · j dr|i〉.

We decompose according to helicity

〈kσ|lmσ′〉 =
1

2
(〈k, 1|+ (−)σ〈k,−1|)(|klm; 1〉+ (−)σ

′
|klm;−1〉)

=
1

2
(〈k, 1|klm; 1〉+ (−)σ+σ′〈k,−1|klm;−1〉)

and recalling the earlier result

|klm;λ〉 =

√
2l + 1

4π

∫
Dl∗
mλ(k̂)|kλ〉 dΩk

we calculate

〈kσ|lmσ′〉

=

√
2l + 1

16π

∫
(Dl∗

m,1〈k, 1|k, 1〉+ (−)σ+σ′Dl∗
m,−1〈k,−1|k,−1〉)k2dkdΩk

=

√
2l + 1

16π
(Dl∗

m,1 + (−)σ+σ′Dl∗
m,−1).

The matrix element becomes

Mfi(kσ) = − 1

16π2

√
~
kc

∑
lmσ′

(2l + 1)(Dl∗
m,1 + (−)σ+σ′Dl∗

m,−1)〈f |M (σ′)
lm |i〉
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with the nuclear structure in the transition determined by

M
(σ′)
lm =

∫
f

(σ′)∗
lm · j dr.

We apply the Wigner-Eckart theorem

〈f |M (σ′)
lm |i〉 = (−)Jf−Mf

(
Jf l Ji
−Mf m Mi

)
〈Jf‖M (σ′)

l ‖Ji〉

and observe the conditions

|Jf − Ji| ≤ l ≤ Jf + Ji

Mf = Mi +m

to obtain the transition rate

dw

dΩ
=

k

128π3~c2
∑

ll′σ′σ′′

(2l + 1)(2l′ + 1)

(
Jf l Ji
−Mf m Mi

)(
Jf l′ Ji
−Mf m Mi

)
× (Dl∗

m,1 + (−)σ+σ′Dl∗
m,−1)(Dl′

m,1 + (−)σ+σ′′Dl′

m,−1)

×〈Jf‖M (σ′)
l ‖Ji〉〈Jf‖M (σ′′)

l′ ‖Ji〉.
If the initial system is equally populated in all its magnetic substates and

the final magnetic substate is not detected, we must average over Mi and sum
over Mf . We rely on the unitarity of the Wigner symbols to write

dw

dΩ
=

k

128π3~c2
∑
lσ′σ′′

2l + 1

2Ji + 1
(Dl∗

m,1 +(−)σ+σ′Dl∗
m,−1)(Dl

m,1 +(−)σ+σ′′Dl
m,−1)

× 〈Jf‖M (σ′)
l ‖Ji〉〈Jf‖M (σ′′)

l ‖Ji〉.

Conservation of parity l+σ′ implies that only one σ′ survives for every l, as
determined by the final polarisation σ

dw

dΩ
=

k

128π3~c2
∑
l

2l + 1

2Ji + 1
|Dl

m,1 + (−)σ+σ′Dl
m,−1|2〈Jf‖M

(σ′)
l ‖Ji〉2.

If we do not detect the polarisation nor the magnetic quantum number of
the emitted photon we sum over σ and m. We use the relation∑

m

Dl
mµD

l∗
mµ′ = δµµ′

to arrive at

dw

dΩ
=

k

128π3~c2
∑
lmσ

2l + 1

2Ji + 1
|Dl

m,1 + (−)σ+σ′Dl
m,−1|2〈Jf‖M

(σ′)
l ‖Ji〉2

=
k

64π3~c2
∑
lm

2l + 1

2Ji + 1
(|Dl

m,1|2 + |Dl
m,−1|2)〈Jf‖M (σ′)

l ‖Ji〉2

=
k

32π3~c2
∑
l

2l + 1

2Ji + 1
〈Jf‖M (σ′)

l ‖Ji〉2.

23



5 Electromagnetic Transitions and Moments

5.1 Transition Probability

In the expression for the nuclear matrix element

M
(σ)
lm =

∫
f

(σ)∗
lm · j dr

we can develop the plane wave f
(σ)∗
lm in spherical Bessel functions

eik·r = 4π
∑
λµ

iλ Yλµ(r̂)Y ∗λµ(k̂)jλ(kr).

For the long wavelength limit kr � 1 (with r the nuclear radius, the transi-
tion energy should be E < 3 MeV) and

jλ(kr) ≈ (kr)λ

(2λ+ 1)!!
.

Working through it with some application one can show that

M
(σ)
lm ≈

8π2c(−ik)l

(2l + 1)!!

√
l + 1

πl(2l + 1)
Q

(σ)
lm

with

Q
(E)
lm =

∫
rlY ∗lm ρ dr

Q
(M)
lm = −1

c

∫
rlY ∗lm

(
1

l + 1
∇∇∇ · (r× j) + c∇∇∇ ·m

)
dr.

The transition rate becomes

dw

dΩ
=

2

~
∑
l

l + 1

l((2l + 1)!!)2

k2l+1

2Ji + 1
〈Jf‖Q(σ′)

l ‖Ji〉2

and if we introduce the reduced transition probability

B(σl) =
1

(2Ji + 1)e2
〈Jf‖Q(σ)

l ‖Ji〉
2

then the partial transition rates are given by

wσl =
8πe2

~
l + 1

l((2l + 1)!!)2
k2l+1B(σl).

The transition rates thus show a 2l + 1 dependence on the energy that is
removed from the reduced rates.
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5.2 Single-Particle Estimates

If we consider the nucleus as a system of point charges then

ρ(r) =

A∑
i=1

ẽiδ(r− ri)

j(r) =

A∑
i=1

ẽi
m

piδ(r− ri)

m(r) =

A∑
i=1

µisiδ(r− ri).

For electric transitions

B(El) =
1

(2Ji + 1)e2
〈Jf‖

∫
ρ(r)rlY∗l dr‖Ji〉2

=
1

2Ji + 1
〈Jf‖

∑
i

ẽi
e
rliY

∗
l (θi, ϕi)‖Ji〉2.

For magnetic transitions we use integration by parts

B(Ml) =
1

(2Ji + 1)e2
〈Jf‖ −

1

c

∫
rlY∗l

(
∇∇∇ · (r× j)

l + 1
+ c∇∇∇ ·m

)
dr‖Ji〉2

=
1

(2Ji + 1)e2
〈Jf‖

1

c

∫
∇∇∇(rlY∗l ) ·

(
r× j

l + 1
+ cm

)
dr‖Ji〉2

=
1

(2Ji + 1)e2
〈Jf‖

∑
i

∇∇∇i(rliY∗l ) ·
(

ẽi~
(l + 1)mc

li + µisi

)
‖Ji〉2

=
1

2Ji + 1
〈Jf‖

∑
i

~
mc
∇∇∇i(rliY∗l ) ·

(
ẽi

e(l + 1)
li +

1

2
gsi si

)
‖Ji〉2

where we have introduced the spin gyromagnetic ratio gs, expressing the
magnetic moment in units of nuclear magneton µN

µ = µNg
s =

e~
2mc

gs.

For one particle outside the core the electric transition rate becomes

B(El) =
1

2Ji + 1
〈JfLf‖

ẽ

e
rlY∗l ‖JiLi〉2

=

(
ẽ

e

)2
1

2Ji + 1
〈JfLf‖Y∗l ‖JiLi〉2〈rl〉2

=
1

4π

(
ẽ

e

)2

(2Jf + 1)(2l + 1)

(
Jf l Ji
− 1

2 0 1
2

)2

〈rl〉2.

We choose a radial wave function given by

R(r) =

{
C for 0 < r < R

0 for r ≥ R
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for which the normalisation condition

C2

∫ R

0

r2dr = 1

yields

C =

√
3

R3
.

Therefore

〈rl〉 =
3

R3

∫ R

0

rl+2dr

=
3

l + 3
Rl.

If we consider a transition L+ 1/2→ 1/2 then L = l and the single-particle
estimate is called the Weisskopf estimate. Assuming ẽ = e,

WE(L) =
1

2π
(2L+ 1)

(
1
2 L L+ 1

2
− 1

2 0 1
2

)2(
3

L+ 3

)2

R2L

=
1.22L

4π

(
3

L+ 3

)2

A2L/3 (fm)2L

with the approximation

R = 1.2 A1/3fm.

The nabla operator reduces the angular momentum rank of the magnetic
transitions with one unit such that the photon carries away ∆L = L − 1. A
transition L + 1/2 → 1/2 is thus a spin-flip event and one can show that the
Weisskopf estimate

WM (L) =
10

π
(1.2)2L−2

(
3

L+ 3

)2

A(2L−2)/3

(
~

2mc

)2

(fm)2L−2.

While for free nucleons

ẽp = e, gsp = 5.58

ẽn = 0, gsn = −3.82

it appears that experimental values are better reproduced by introducing
effective charges, for instance

ẽp ≈ (1− Z

A
)e

ẽn ≈ −
Z

A
e.
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5.3 Quadrupole Moment

The electrostatic quadrupole moment is defined by

Q =

∫
(3z2 − r2)ρ(x)d3x

or for a quantummechanical system of point charges, where by convention
it is divided by the electrical charge and evaluated for the maximally aligned
state,

Q = 〈J,M = J |
√

16π

5

∑
i

ẽi
e
r2
i Y20(θi, ϕi)|J,M = J〉.

The Wigner-Eckart theorem yields

Q =

√
16π

5

(
J 2 J
−J 0 J

)
〈J‖

∑
i

ẽi
e
r2
iY2‖J〉

=

√
16π

5

2(3J2 − J(J + 1))√
(2J + 3)(2J + 2)(2J + 1)2J(2J − 1)

〈J‖
∑
i

ẽi
e
r2
iY2‖J〉

=

√
16π

5

(
J(2J − 1)

(2J + 3)(2J + 1)(J + 1)

)1/2

〈J‖
∑
i

ẽi
e
r2
iY2‖J〉.

We insert the reduced matrix element

〈J‖Y2‖J〉 =

√
5

4π

( 3
4 − J(J + 1))(2J + 1)√

J(J + 1)(2J − 1)(2J + 1)(2J + 3)

to see that, for one particle outside the core,

Q = 2
( 3

4 − J(J + 1))

(J + 1)(2J + 3)

ẽ

e
〈r2〉

= −
J − 1

2

J + 1

ẽ

e
〈r2〉.

A charge distribution for which the intrinsic quadrupole moment Q < 0 we
call oblate, while if Q > 0 we call it prolate.
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5.4 Magnetic Dipole Moment

We define, in units of nuclear magneton and for a maximally aligned state,

µ = 〈J,M = J |
∑
i

glilz,i +
∑
i

gsi sz,i|J,M = J〉.

We rewrite and apply the Wigner-Eckart theorem

µ = 〈J, J |
∑
i

glijz,i +
∑
i

(gsi − gli)sz,i|J, J〉

=

(
J 1 J
−J 0 J

)
〈J‖

∑
i

gliji +
∑
i

(gsi − gli)si‖J〉

=
J√

(2J + 1)(J + 1)J
〈J‖

∑
i

gliji +
∑
i

(gsi − gli)si‖J〉.

It can be shown that

〈J‖j‖J〉 =
√

(2J + 1)(J + 1)J

〈J‖s‖J〉 =
1

2

√
2J + 1

(J + 1)J
(J(J + 1) +

3

4
− l(l + 1))

such that the single-particle Schmidt limits become

µ = Jgl +
1

2(J + 1)
(J(J + 1) +

3

4
− l(l + 1))(gs − gl)

=

{ Jgl +
1

2
(gs − gl) for J = l + 1

2

Jgl − J

2(J + 1)
(gs − gl) for J = l − 1

2 .

For free nucleons, one sets gln = 0 and glp = 1.
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SUPPLEMENTARY
MATERIALS

Selected Experimental Techniques

Beam purification

Nowadays much of the experimental research that is related to the shell
model concerns nuclear structure at low energy of exotic nuclei far from stability.
The nuclei of interest are often produced at low rates within an overwhelming
background of contaminants. The purity of the extracted beam becomes of
utmost importance and techniques for its purification are among the central
topics of instrumentation. As examples we cite lasers, ion traps, coincidence
measurements.

Resonant laser ionisation

The atomic emission or absorption spectrum, ie the position of the electronic
levels in the atomic shell structure, is unique for a every chemical element.
Resonant laser ionisation therefore offers an opportunity to select, among the
many residues of a nuclear reaction, one given element of interest. It is the
idea behind the laser ion source, that when coupled to an electromagnetic mass
separator, allows to extract a beam that is isotopically pure.

The hyperfine interaction between the nucleus and the electron that is ex-
cited by the laser light leads to a splitting of the energy levels. The effect is
visible with lasers the bandwidth of which is sufficiently narrow and it opens
up the possibility of intrasource laser spectroscopy, yielding access to nuclear
charge radii and magnetic moments.

Ion traps

The Laplace equation shows that any constraining movement in one direction
is always accompanied by a diverging movement in another direction. In a Paul
trap, however, a quadrupolar electrical RF potential is successfully employed
to confine charged particles of a given mass. In a Penning trap confinement
happens by means of an axial magnetic field combined with a quadrupolar
electrostatic potential.

When exciting the eigenmovement of ions in a trap, in particular the one
given by the cyclotron frequency ωc = qB/m, the Penning trap becomes a mass
filter. A series of several Penning traps then allows for mass measurements with
precisions of up to 10−8 for radioisotopes, 10−11 for stable nuclei.

Coincidence measurements

The occurrence of simultaneous events that are physically correlated is a
clever and efficient tool to reduce experimental background. For example, the
γ transitions from a β emitter will come out more clearly if one requires that a
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β particle was detected together with the γ ray, or nuclear levels populated in
a (d,p) transfer reaction will be better visible if one imposes a time coincidence
between the escaping proton and the heavy ejectile.

Spectroscopy at rest

Spectroscopy at rest may pertain to those techniques that are commonly
known as isotope separation on-line or to reaction products from in-flight tech-
niques that are subsequently stopped. They include α, β, γ decay spectroscopy,
high-precision mass measurements through trap spectroscopy, high-precision
moment measurements through collinear laser spectroscopy.

In-flight spectroscopy

Under this heading we place the study of ejectiles that emerge from nuclear
reactions at energies of tens to hundreds of MeV/A as well as reaction products
from isotope separation on-line that are post-accelerated. According to impact
parameter and energy regime, one may distinguish between Coulomb excitation;
transfer and knock-out reactions; deep inelastic and fragmentation reactions;
fusion-evaporation, fusion-fission and multifragmentation. Multi-detectors such
as staged silicon arrays, BaF2, CsI, or LaBr3 scintillator arrays, or germanium
semi-conductors grow increasingly complex. Half-lives of nuclear levels can be
measured with the plunger technique.

Nuclear forensics

These days the applications of nuclear physics are numerous. Energy, aerospace,
medicine, datation, detection (airport or container security) are examples but
we can also mention non-proliferation and verification of international treaties,
known as nuclear forensics or sometimes nuclear archeology.

Emerging over the last few years as a new discipline in its own right, the
purpose of nuclear forensics is to determine the origin and history of environ-
mental contaminations or confiscated nuclear materials. Nuclear spectroscopy
by means of α, β, γ ray detection is capable of establishing a fingerprint with a
precision that goes down to a picogram. With Resonance Ionisation Mass Spec-
troscopy (Rims), resonant laser ionisation is used to select the element of interest
while a time-of-flight measurement will determine the mass of the isotope. This
technique is directly related to the physics of superheavy or exotic nuclei and
can detect traces of radioactivity down to 106-107 atoms, ie femtograms.
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Selected articles from scientific journals

Persistence of magic numbers (in-flight γ spectroscopy)

• R Bengtsson and P Möller, Nature 449, 411 (2007)

• D Seweryniak et al, Physical Review Letters 99, 22504 (2007)

Persistence of magic numbers (post-acceleration & particle spectroscopy)

• P Cottle, Nature 465, 430 (2010)

• K Jones et al, Nature 465, 454 (2010)

Disappearance of magic numbers (in-flight γ spectroscopy)

• B Bastin et al, Physical Review Letters 99, 22503 (2007)

Superheavy elements (coincidence technique)

• M Stoyer, Nature 442, 876 (2006)

• R Herzberg et al, Nature 442, 896 (2006)

Superheavy elements (ion trap)

• G Bollen, Nature 463, 740 (2010)

• M Block et al, Nature 463, 785 (2010)

Isospin (in-flight γ spectroscopy)

• B Cederwall et al, Nature 469, 68 (2011)

Paar parabola (ion traps & intrasource spectroscopy)

• J Van Roosbroeck et al, Physical Review Letters 92, 112501 (2004)

Electromagnetic transitions (Coulomb excitation)

• J Van de Walle et al, Physical Review Letters 99, 142501 (2007)

Electromagnetic moments (intrasource spectroscopy)

• T Cocolios et al, Physical Review Letters 103, 102501 (2009)

Nuclear forensics (βγ spectroscopy & resonant laser ionisation)

• M Kalinowski et al, Complexity 14, 89 (2008)

• M Nunnemann et al, Journal of Alloys and Compounds 271, 45 (1998)
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Appendix

§1. The associated Laguerre polynomials

Lan(x) =

n∑
k=0

(−)k

k!

(
a+ n

n− k

)
xk

are the solutions of the Laguerre equation

xy′′ + (a+ 1− x)y′ + ny = 0

y = Lan(x).

If now
y = x

a−1
2 e−x/2Lan(x)

then one verifies that

xy′′ + 2y′ +

(
2n+ a+ 1

2
− x

4
− a2 − 1

4x

)
y = 0.

The equation

xy′′ + 2y′ +

(
2n+ a+ 1

2
νx− ν2x3

4
−
a2 − 1

4

4x

)
4y = 0

is solved by

y = x
2a−1

2 e−νx
2/2Lan(νx2).

It can be rewritten
y =

u

x

a = `+
1

2
, n = k

u′′ +

(
(4k + 2`+ 3)ν − ν2x2 − `(`+ 1)

x2

)
u = 0

and its solution becomes

u = x`+1e−νx
2/2L

`+1/2
k (νx2).

Here the Laguerre functions are defined through the gamma function instead of
factorials. So we introduce the Pochhammer symbol

(x)n =
Γ(x+ n)

Γ(x)

and we express the Laguerre functions for non-integer a by

Lan(x) =
(a+ 1)n

n!

∞∑
k=0

(−n)k
(a+ 1)k

xk

k!
.

Indeed, for integer a this reduces as follows

Lan(x) =

∞∑
k=0

Γ(a+ n+ 1)Γ(k − n)

n!Γ(−n)Γ(a+ k + 1)

xk

k!

=

∞∑
k=0

(a+ n)!

n!(a+ k)!
(−n)(−n+ 1) . . . (−n+ k − 1)

xk

k!

=

∞∑
k=0

(a+ n)!

n!(a+ k)!

(−)kn!

(n− k)!

xk

k!

=

∞∑
k=0

(−)k

k!

(
a+ n

n− k

)
xk.

32



§2. Two angular momentum states can be coupled to a total angular momentum of
zero. Normalised and antisymmetrised we write

|Φ0〉 =
∑
m

(−)j−m√
2j + 1

|j,m〉|j,−m〉.

Introducing the Wigner 1j-symbol(
j

mm′

)
= (−)j+mδm,−m′ = (−)j−m

′
δm,−m′

this becomes

|Φ0〉 = −
∑

m1,m2

1√
2j + 1

(
j

m1m2

)
|jm1〉|jm2〉.

For non-zero couplings we define the Clebsch-Gordan coefficients,

|j1j2; jm〉 =
∑

m1,m2

〈j1m1, j2m2|jm〉|j1m1〉|j2m2〉.

There exist many symmetry relations, such as

〈j1m1, j2m2|jm〉 = (−)j1+j2−j〈j2m2, j1m1|jm〉.

When we couple three angular momentum states to a total momentum of zero,
we may write

|Ψ0〉 = −
∑

m1,m2,m3

(
j1 j2 j3
m1 m2 m3

)
|j1m1〉|j2m2〉|j3m3〉

where the Wigner 3j-symbols are given by(
j1 j2 j3
m1 m2 m3

)
=

(−)j1−j2−m3

√
2j3 + 1

〈j1m1, j2m2|j3 −m3〉.

For j2 = m2 = 0 one indeed verifies that

|Ψ0〉 = −
∑

m1,m3

(−)j1−m3

√
2j3 + 1

〈j1m1, 00|j3 −m3〉|j1m1〉|00〉|j3m3〉

= −
∑

m1,m3

(−)j1−m3

√
2j3 + 1

δj1,j3δm1,−m3 |j1m1〉|j3m3〉

= |Φ0〉.

It can be seen that swapping two columns in the 3j-symbol introduces a phase
factor (−)j1+j2+j3 . Among the many other symmetry properties we quote the
unitarity relation∑

m1,m3

(
j1 j2 j3
m1 m2 m3

)(
j1 j′2 j3
m1 m′2 m3

)
=

1

2j2 + 1
δj2j′2δm2m

′
2
.

When coupling three angular momenta, several choices can be made for the
intermediate state. The transformation between the different sets of eigenvectors
is given by (we use the shorthand notation Ĵ =

√
2J + 1)

|j1(j2j3)J23; JM〉

=
∑
J12

〈(j1j2)J12j3; J |j1(j2j3)J23; J〉|(j1j2)J12j3; JM〉
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=
∑
J12

(−)j1+j2+j3+J Ĵ12Ĵ23

{
j1 j2 J12
j3 J J23

}
|(j1j2)J12j3; JM〉.

The 6j-symbol can be written as a contraction over products of 3j-symbols. It
holds∑

k

(2k + 1)

{
j1 j2 J
j4 j3 k

}(
j1 k j3
− 1

2
0 1

2

)(
j2 k j4
− 1

2
0 1

2

)
= (−)j2+j3+2j4

(
j2 j1 J
− 1

2
− 1

2
1

)(
j3 j4 J
− 1

2
− 1

2
1

)
,

∑
k

(2k + 1)(−)k
{
j1 j2 J
j4 j3 k

}(
j1 k j3
− 1

2
0 1

2

)(
j2 k j4
− 1

2
0 1

2

)
= (−)j1+j2−2j4

(
j2 j1 J
− 1

2
1
2

0

)(
j3 j4 J
1
2
− 1

2
0

)
.

When coupling four angular momenta, one defines the 9j-symbol,

|(j1j3)J13(j2j4)J24; JM〉

=
∑

J12,J34

Ĵ13Ĵ24Ĵ12Ĵ34


j1 j2 J12
j3 j4 J34
J13 J24 J

 |(j1j2)J12(j3j4)J34; JM〉.

The 9j-symbol also can be written as a contraction over products of 3j-symbols.
We note the following property{

j1 j2 J
j4 j3 k

}
= (−)j2+J+j3+kĴ k̂


j1 j2 J
j3 j4 J
k k 0

 .

The Wigner-Eckart theorem allows to separate matrix elements of spherical ten-
sor operators in a geometrical and a physical part, the latter called the reduced
matrix element,

〈αjm|T (k)
κ |α′j′m′〉 = (−)j−m

(
j k j′

−m κ m′

)
〈αj‖T(k)‖α′j′〉.

If now the tensor operator is a spherical tensor product

T (k)
κ (1, 2) =

[
T(k1)(1)⊗T(k2)(2)

](k)
κ

=
∑
κ1,κ2

〈k1κ1, k2κ2|kκ〉T (k1)
κ1

(1)T (k2)
κ2

(2)

then one can show that

〈α1j1, α2j2; J‖T(k)(1, 2)‖α′1j′1, α′2j′2; J ′〉

= Ĵ Ĵ ′k̂


j1 j2 J
j′1 j′2 J ′

k1 k2 k

 〈α1j1‖T(k1)‖α′1j′1〉〈α2j2‖T(k2)‖α′2j′2〉.

If one of both operators is the unit operator then this simplifies to

〈α1j1, α2j2; J‖T(k)(1)‖α′1j′1, α′2j′2; J ′〉

= Ĵ Ĵ ′(−)j1+j2+J
′+k
{
j1 j2 J
J ′ k j′1

}
〈α1j1‖T(k)‖α′1j′1〉δj2j′2δα2α

′
2
.
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We define the scalar product as a spherical tensor product of rank zero

T(k) ·U(k) = (−)kk̂
[
T(k) ⊗U(k)

](0)
0

= (−)kk̂
∑
κ

〈kκ, k −κ|00〉T (k)
κ U

(k)
−κ

=
∑
κ

(−)κT (k)
κ U

(k)
−κ

for which case the reduced matrix element becomes

〈α1j1, α2j2; J‖T(k)(1) ·U(k)(2)‖α′1j′1, α′2j′2; J ′〉

= (−)kk̂Ĵ Ĵ ′


j1 j2 J
j′1 j′2 J ′

k k 0

 〈α1j1‖T(k)‖α′1j′1〉〈α2j2‖U(k)‖α′2j′2〉

= (−)j2+J+j
′
1 Ĵ

{
j1 j2 J
j′2 j′1 k

}
〈α1j1‖T(k)‖α′1j′1〉〈α2j2‖U(k)‖α′2j′2〉δJJ′ .

§3. Any vector a(x, y, z) is a spherical tensor of rank 1 with components

a+1 = − 1√
2

(x+ iy)

a0 = z

a−1 =
1√
2

(x− iy).

Knowing that (
j 1 j
−m 0 m

)
= (−)j−m

m√
(2j + 1)(j + 1)j

we can apply the Wigner-Eckart theorem to find that

〈jm|z|jm〉 = (−)2j
m√

(2j + 1)(j + 1)j
〈j‖a‖j〉.

We note furthermore the results

〈j‖j‖j〉 =
√

(2j + 1)(j + 1)j

〈j‖σσσ‖j〉 =

√
2j + 1

(j + 1)j
(j(j + 1) + 3

4
− l(l + 1)).

From the reduction rules for spherical tensor operators one obtains

〈l 1
2
; j‖Yk‖l′ 12 ; j′〉 = ĵĵ′(−)l+1/2+j′+k

{
l 1

2
j

j′ k l′

}
〈l‖Yk‖l′〉.

Calculating

〈l‖Yk‖l′〉 = (−)l
l̂l̂′k̂√

4π

(
l k l′

0 0 0

)
it can be shown that

〈l 1
2
; j‖Yk‖l′ 12 ; j′〉 = (−)l+l

′+1/2−j′ ĵĵ
′k̂√
4π

(
j k j′

− 1
2

0 1
2

)
1

2
(1 + (−)l+l

′+k).
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Using the relation(
j 2 j
−m 0 m

)
= (−)j−m

2(3m2 − j(j + 1))√
(2j + 3)(2j + 2)(2j + 1)2j(2j − 1)

we find in particular

〈l 1
2
; j‖Y2‖l 12 ; j〉 =

√
5

4π

2( 3
4
− j(j + 1))(2j + 1)√

(2j + 3)(2j + 2)(2j + 1)2j(2j − 1)
.

§4. Combining the results of the previous sections we can now show that∑
k

fkF
k =

∑
k

4πF 0(−)j1+j2+J
{
j1 j2 J
j2 j1 k

}
〈j1‖Yk‖j1〉〈j2‖Yk‖j2〉

=
∑
k

F 0(−)J+1(2j1 + 1)(2j2 + 1)(2k + 1)

×
{
j1 j2 J
j2 j1 k

}(
j1 k j1
− 1

2
0 1

2

)(
j2 k j2
− 1

2
0 1

2

)
1

2
(1 + (−)k)

=
F 0

2
(2j1 + 1)(2j2 + 1)

[
(−)1+j1−j2−J

(
j2 j1 J
− 1

2
− 1

2
1

)(
j1 j2 J
− 1

2
− 1

2
1

)

+(−)1+j1−j2−J
(
j2 j1 J
− 1

2
1
2

0

)(
j1 j2 J
1
2
− 1

2
0

)]

=
F 0

2
(2j1 + 1)(2j2 + 1)

[(
j1 j2 J
− 1

2
− 1

2
1

)2

+

(
j1 j2 J
1
2
− 1

2
0

)2
]

and in a similar way∑
k

gkG
k =

F 0

2
(2j1 + 1)(2j2 + 1)(−)−j1−j2−J

×

[(
j1 j2 J
− 1

2
− 1

2
1

)2

− (−)l1+l2+J
(
j1 j2 J
1
2
− 1

2
0

)2
]

such that

∆E(j1j2; J) =
∑
k

fkF
k − (−)j1+j2−J

∑
k

gkG
k

=
F 0

2
(2j1 + 1)(2j2 + 1)

[(
j1 j2 J
− 1

2
− 1

2
1

)2

+

(
j1 j2 J
1
2
− 1

2
0

)2

−
(
j1 j2 J
− 1

2
− 1

2
1

)2

+ (−)l1+l2+J
(
j1 j2 J
1
2
− 1

2
0

)2
]

=
F 0

2
(2j1 + 1)(2j2 + 1)(1 + (−)l1+l2+J)

(
j1 j2 J
1
2
− 1

2
0

)2

.
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§5. Starting from the definition

flm;λ =

∫
Dl∗
mλ(k̂) êkλe

ik·rdΩk

developing a plane wave in spherical Bessel functions

eik·r = 4π
∑
λµ

iλ Yλµ(r̂)Y ∗λµ(k̂)jλ(kr)

and rotating the helicity vectors to spherical unit tensors of first rank

ê∗k1 = −
∑
ν

D1
ν,−1(k̂) ûν

we can write

f
(σ)∗
lm =

1√
2

(f∗lm;1 + (−)σf∗lm;−1)

=
1√
2

∫
Dl
m1(k̂) ê∗k1e

−ik·r + (−)σDl
m,−1(k̂) ê∗k,−1e

−ik·rdΩk

=
1√
2

∫
Dl
m1(k̂) ê∗k1e

−ik·r − (−)σ+lDl
m1(k̂) ê∗k1e

ik·rdΩk

=
1√
2

∫
Dl
m1(k̂) ê∗k1(e−ik·r − (−)σ+leik·r) dΩk

=
4π√

2

∑
λµ

iλ((−)λ − (−)σ+l)jλ(kr)Y ∗λµ(r̂)

∫
Dl
m1(k̂) ê∗k1Yλµ(k̂) dΩk

= − 4π√
2

∑
λµν

iλ((−)λ − (−)σ+l)jλ(kr)Y ∗λµ(r̂)

∫
Dl
m1(k̂)D1

ν,−1(k̂)Yλµ(k̂) ûν dΩk.

We now use the identities

Dλ
µ0(k̂) =

√
4π

2λ+ 1
Y ∗λµ(k̂)

Dl1
m1m

′
1
Dl2
m2m

′
2

=
∑
l3

(2l3 + 1)

(
l1 l2 l3
m1 m2 m3

)(
l1 l2 l3
m′1 m′2 m′3

)
Dl3
m3m

′
3∫

Dl
mµ(k̂)Dl′∗

m′µ(k̂) dΩk =
4π

2l + 1
δll′δmm′

to pursue

f
(σ)∗
lm = −

√
2π
∑
λµν

iλ((−)λ − (−)σ+l)
√

2λ+ 1 jλ(kr)Y ∗λµ(r̂)

∫
Dl
m1(k̂)D1

ν,−1(k̂)Dλ∗
µ0(k̂) ûν dΩk

= −
√

2π
∑
λλ′µν

iλ((−)λ − (−)σ+l)
√

2λ+ 1 (2λ′ + 1)

(
l 1 λ′

m ν µ

)(
l 1 λ′

1 −1 0

)
jλ(kr)Y ∗λµ(r̂)

×
∫
Dλ′
µ0(k̂)Dλ∗

µ0(k̂) ûν dΩk

= −
√

32π3
∑
λµν

iλ((−)λ − (−)σ+l)
√

2λ+ 1

(
l 1 λ
m ν µ

)(
l 1 λ
1 −1 0

)
jλ(kr)Y ∗λµ(r̂) ûν .

For electric multipoles, σ = 0 so only if λ = l± 1 the 3j-symbols survive. Then

f
(E)∗
lm =−

√
128π3

∑
µν

(
(−i)l−1

√
2l − 1

(
l 1 l − 1
m ν µ

)(
l 1 l − 1
1 −1 0

)
jl−1(kr)Y ∗l−1,µ(r̂) ûν

+ (−i)l+1
√

2l + 3

(
l 1 l + 1
m ν µ

)(
l 1 l + 1
1 −1 0

)
jl+1(kr)Y ∗l+1,µ(r̂) ûν

)
.
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It holds (
l 1 l − 1
1 −1 0

)
= (−)l−1

√
l + 1

2(2l − 1)(2l + 1)(
l 1 l + 1
1 −1 0

)
= (−)l+1

√
l

2(2l + 1)(2l + 3)

therefore

f
(E)∗
lm =−

√
64π3

∑
µν

(
il−1

√
l + 1

2l + 1

(
l 1 l − 1
m ν µ

)
jl−1(kr)Y ∗l−1,µ(r̂) ûν

+ il+1

√
l

2l + 1

(
l 1 l + 1
m ν µ

)
jl+1(kr)Y ∗l+1,µ(r̂) ûν

)
.

In classical electrodynamics one can show that

A
(E)∗
lm = (−)l

∑
µν

(√
l + 1

(
l 1 l − 1
m ν µ

)
jl−1Y

∗
l−1,µûν −

√
l

(
l 1 l + 1
m ν µ

)
jl+1Y

∗
l+1,µûν

)

such that we may identify

f
(E)∗
lm = 8π2 (−i)l−1√

π(2l + 1)
A

(E)∗
lm .

If σ = 1 then λ = l and a similar result can be obtained for the magnetic case.
We use (

l 1 l
1 −1 0

)
=

(−)l+1√
2(2l + 1)

A
(M)∗
lm = (−)l

∑
µν

√
2l + 1

(
l 1 l
m ν µ

)
jlY
∗
lµûν

and find

f
(M)∗
lm = −

√
128π3

∑
µν

(−i)l
√

2l + 1

(
l 1 l
m ν µ

)(
l 1 l
1 −1 0

)
jl(kr)Y

∗
lµ(r̂) ûν

=
√

64π3
∑
µν

il
(
l 1 l
m ν µ

)
jl(kr)Y

∗
lµ(r̂) ûν

= 8π2 (−i)l√
π(2l + 1)

A
(M)∗
lm .
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§6. For a free field the Maxwell equations of the vector potential reduce to the wave
equations

∇2A− 1

c

∂2A

∂t2
= 0

∇∇∇ ·A = 0

the general solution of which is, for magnetic multipole radiation,

A
(M)
lm = − 1√

l(l + 1)
(r×∇∇∇)(jl(kr)Ylm(r̂))

≈ − kl

(2l + 1)!!
√
l(l + 1)

(r×∇∇∇)(rlYlm(r̂)).

The electric field that is free of sources is defined by the Maxwell equation

EEE =
i

k
∇∇∇×BBB.

Above we have seen that there exists a phase factor −i when rotating from f
(E)∗
lm

to f
(M)∗
lm hence there also is a phase −i from f

(M)
lm to f

(E)
lm and we only need a

factor −1 from A
(M)
lm to A

(E)
lm . The relation

∇∇∇× (r×∇∇∇) = r∇2 −∇∇∇(1 + r
∂

∂r
)

then allows to obtain the electric solution

A
(E)
lm =

1

k
√
l(l + 1)

∇∇∇× (r×∇∇∇)(jl(kr)Ylm(r̂))

=
1

k
√
l(l + 1)

(
r∇2 −∇∇∇(1 + r

∂

∂r
)

)
(jl(kr)Ylm(r̂))

= − 1

k
√
l(l + 1)

∇∇∇
(
∂

∂r
(rjl(kr)Ylm(r̂))

)
≈ − kl−1

(2l + 1)!!

√
l + 1

l
∇∇∇(rlYlm(r̂)).
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§7. Applying the continuity equation to the emission of a photon

〈f |∇∇∇ · j|i〉 = −〈f |∂ρ
∂t
|i〉

= − i
~
〈f |[H, ρ]|i〉

= − i
~

(Ef − Ei)〈f |ρ|i〉

= −ikc 〈f |ρ|i〉

and recalling our earlier result

M
(σ)
lm =

∫
f
(σ)∗
lm · j dr

the electric matrix element becomes

M
(E)
lm = 8π2 (−i)l−1√

π(2l + 1)

∫
A

(E)∗
lm · j dr

= −8π2 (−ik)l−1

(2l + 1)!!

√
l + 1

πl(2l + 1)

∫
∇∇∇(rlY ∗lm(r̂)) · j dr

= 8π2 (−ik)l−1

(2l + 1)!!

√
l + 1

πl(2l + 1)

∫
rlY ∗lm(r̂)∇∇∇ · j dr

= 8π2c
(−ik)l

(2l + 1)!!

√
l + 1

πl(2l + 1)

∫
rlY ∗lm(r̂) ρ dr.

The magnetic matrix element is written2

M
(M)
lm = −8π2 (−ik)l

(2l + 1)!!
√
πl(l + 1)(2l + 1)

∫
(r×∇∇∇)(rlY ∗lm(r̂)) · j dr

= −8π2 (−ik)l

(2l + 1)!!
√
πl(l + 1)(2l + 1)

∫
∇∇∇(rlY ∗lm(r̂)) · (j× r) dr

= 8π2 (−ik)l

(2l + 1)!!
√
πl(l + 1)(2l + 1)

∫
rlY ∗lm(r̂)∇∇∇ · (j× r) dr.

At this point it is appropriate to introduce spin as a manifestation of intrinsic
magnetisation (we use a shortcut notation for the numerical factor)

M
(M)
lm = κ(l)kl

∫
rlY ∗lm(r̂)∇∇∇ · ((j + c∇∇∇×m)× r) dr.

Knowing that
∇∇∇× r = 0

while for any vector field a(r)

(r×∇∇∇) · (∇∇∇× a) = −∇2(r · a) +
1

r

∂

∂r
(r2∇∇∇ · a)

∇2(r · a) = r · (∇2a) + 2∇∇∇ · a

and using the Helmholtz equation for a spatial wave

(∇2 + k2)m = 0

2We use the relation a · (b× c) = c · (a× b)
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we transform the part of M
(M)
lm that expresses intrinsic magnetisation3

M
(M)
lm = cκ(l)kl

∫
rlY ∗lm(r̂)∇∇∇ · ((∇∇∇×m)× r) dr

= cκ(l)kl
∫
rlY ∗lm(r̂) r · (∇∇∇× (∇∇∇×m)) dr

= cκ(l)kl
∫
rlY ∗lm(r̂) (r×∇∇∇) · (∇∇∇×m) dr

= cκ(l)kl
∫
rlY ∗lm(r̂)

(
−∇2(r ·m) +

1

r

∂

∂r
(r2∇∇∇ ·m)

)
dr

= cκ(l)kl
∫
rlY ∗lm(r̂)

(
−r · (∇2m) + r

∂

∂r
(∇∇∇·m)

)
dr

= cκ(l)kl
∫
rlY ∗lm(r̂)

(
k2r ·m− (l + 1)(∇∇∇·m)

)
dr.

In the long wavelength limit kr � 1 the first term disappears so we find

M
(M)
lm ≈ −8π2c

(−ik)l

(2l + 1)!!

√
l + 1

πl(2l + 1)

∫
rlY ∗lm(r̂)∇∇∇·m dr

and therefore

M
(M)
lm ≈ −8π2 (−ik)l

(2l + 1)!!

√
l + 1

πl(2l + 1)

∫
rlY ∗lm(r̂)

(
1

l + 1
∇∇∇ · (r× j) + c∇∇∇·m

)
dr.

If now we hark back to the classical definitions of the electromagnetic moments
that tell us that the electric moments arise from ∇∇∇ · j whereas the magnetic
moments from ∇∇∇ · (r× j), to which one adds the intrinsic magnetisation current
c∇∇∇×m

Q
(E)
lm =

∫
ρ rlY ∗lm dr

Q
(M)
lm = −1

c

∫
rlY ∗lm

(
1

l + 1
∇∇∇ · (r× j) + c∇∇∇ ·m

)
dr

then we may write the relation

M
(σ)
lm ≈

8π2c(−ik)l

(2l + 1)!!

√
l + 1

πl(2l + 1)
Q

(σ)
lm .

3Recall ∇∇∇ · (a× b) = b · (∇∇∇× a)− a · (∇∇∇× b)
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Exercises
1.

〈j2; JT |V |j2; JT 〉 =
A

(T )
0

4
(2j + 1)2

×

(
(1− (−)J+T )

(
j j J
1
2
− 1

2
0

)2

+ (1 + (−)T )

(
j j J
1
2

1
2
−1

)2
)

We apply this for a πf7/2νf7/2 configuration. For T = 0, J is odd:

〈j2; J0|V |j2; J0〉 =
A

(0)
0

2
(2j + 1)2

((
j j J
1
2
− 1

2
0

)2

+

(
j j J
1
2

1
2
−1

)2
)

(
7/2 7/2 1
1/2 −1/2 0

)
= − 1

6

√
1

14

(
7/2 7/2 1
1/2 1/2 −1

)
= 2

3

√
1

7(
7/2 7/2 3
1/2 −1/2 0

)
= 1

2

√
3

154

(
7/2 7/2 3
1/2 1/2 −1

)
= −

√
2

77(
7/2 7/2 5
1/2 −1/2 0

)
= − 5

2

√
3

2002

(
7/2 7/2 5
1/2 1/2 −1

)
= 2

√
5

1001(
7/2 7/2 7
1/2 −1/2 0

)
= 7

6

√
5

286

(
7/2 7/2 7
1/2 1/2 −1

)
= − 1

3

√
35

143

〈10|V |10〉 = 2.095 A
(0)
0

〈30|V |30〉 = 0.987 A
(0)
0

〈50|V |50〉 = 0.939 A
(0)
0

〈70|V |70〉 = 1.632 A
(0)
0

For T = 1, J is even:

〈j2; J1|V |j2; J1〉 =
A

(1)
0

2
(2j + 1)2

(
j j J
1
2
− 1

2
0

)2

(
7/2 7/2 0
1/2 −1/2 0

)
= −

√
1

8(
7/2 7/2 2
1/2 −1/2 0

)
= 1

2

√
5

42(
7/2 7/2 4
1/2 −1/2 0

)
= − 3

2

√
1

154(
7/2 7/2 6
1/2 −1/2 0

)
= 5

2

√
1

858

〈01|V |01〉 = 4.000 A
(1)
0

〈21|V |21〉 = 0.952 A
(1)
0

〈41|V |41〉 = 0.468 A
(1)
0

〈61|V |61〉 = 0.233 A
(1)
0

Given an interaction strength A
(T )
0 = (1 + ατττ1 · τττ2)A0 and α = −0.25, which will

be the ground-state spin and parity of this nucleus 42Sc? Considering figure 3.58, what
would rather be the experimental constraint on α?
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2. The Weisskopf estimate for an E2 transition in 17O is given by

WE(2 ↓) =
1.24

4π

9

25
174/3 fm4

= 2.60 fm4.

However, this assumes a L+ 1/2→ 1/2 transition instead of the actual 1/2→ 5/2
case so we need a statistical factor of 6 instead of 2. Then

B(E2 ↓) = 7.79 fm4.

The experimental value is 6.3 fm4. Therefore the effective charge is

ẽ =

√
6.3

7.79
e

= 0.90 e.

and the neutron would almost behave as if it were a proton. It turns out that
more accurate calculations of 〈r2〉 yield a value that is twice as large, hence an effec-
tive charge that is only half as big.

3. We consider the 0+ → 2+ transition at 1492 keV in 80Zn (J Van de Walle et al,
Physical Review Letters 99, 142501). For this nucleus, a Weisskopf unit equals

WE(2 ↓) =
1.24

4π

9

25
804/3 fm4

= 20.48 fm4.

Experimentally, B(E2 ↑) = 0.073 e2b2 which is 730 e2fm4 (1b = 10−28 m2).
Therefore B(E2 ↓) = 146 e2fm4 which is 7.1 Wu so the transition is collective. The
partial transition rate becomes

wE2 =
8πe2

~6c5
3

2 · 9 · 25
E5 B(E2)

=
4π

75

(4.803× 10−10)2

(6.582× 10−22)6(2.997× 108)5
1.4925 146× 10−60 esu2

MeVms

= 2.12× 108 1

1.602× 10−13

g cm3

kg m3s

= 1.32× 1012 s−1.

Remember that we work in cgs units, for which charge is expressed in esu. In the
cgs system, for two point charges that are spaced 1 centimetre apart the electrostatic
force is equal to 1 dyne. Therefore 1 g cm/s2 = 1 esu2/cm2 and esu =

√
g cm3/s.

Also 1 C = 2.997 × 109 esu resulting in an elementary charge of 4.803 × 10−10 esu.
For the half-life of the excited state we deduce

t1/2 =
ln 2

wE2

= 0.523 ps.
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2011 Examination

1. Describe the mechanism(s) that lift the degeneracies shown in Fig 3.59.
How is this different from the case of Fig. 3.42?

2. In Fig. 2 of the article “Unambiguous identification of three β-decaying
isomers in 70Cu”, describe the single-particle structure of the three isomers that
were observed in the β decay of 70Ni to 70Cu (these are the ground state, one
state at 101 keV, and one state at 242 keV). Explain how the parabolic rule
of Paar is used to interpret the spin values and therefore the existence of these
isomers.

3. The article “Trace analysis of plutonium in environmental samples by
resonance ionization mass spectroscopy” explains how lasers can be used to
detect plutonium in the environment with extremely high sensitivity. If you
would want to use this technique to study nuclear structure, what are the nuclear
observables that you would get access to? Explain briefly.
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2012 Examination

1. Describe the difference between the interaction of identical and non-
identical particles. What is the formal mechanism to express this difference and
why is it justified? How do the matrix elements behave?

2. What is the importance of the isobaric multiplet mass equation from
the theoretical point of view? What is its use from the experimental point of
view? Imagine that you have good knowledge of 36Ar, 36Cl and 36S and that in
each of these you identify a T = 2 state such that you deduce a = −19.4 MeV,
b = −6.0 MeV and c = 0.2 MeV. What are the missing multiplet members? For
which multiplet members will this T = 2 state also be the ground state? What
information do you get from applying the equation? The mass excess of 36S is
-30.7 MeV, which you can use as a reference value for your statements.

3. What are the two most likely values for the spin of 209Bi from the simple
shell model? What is the single-particle configuration for these two possibilities?
What would be the effective charge of the unpaired nucleon in either case,
knowing that experimentally the quadrupole moment is -37(3) fm2? Does your
result for the effective charge favour one of the spin values? Compare with Table
4.2 for typical values of the effective charge.
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2013 Examination

1. Describe why configuration mixing of two nuclear levels leads to a mini-
mum energy with which the levels are shifted (in what direction?) and deduce
the corresponding formula for this minimum energy shift. What is the condition
for mixing to occur?

2. Describe what you learn from figure 3.50. Which are the operators that
allow you to move through the scheme? What is the range (that is, the extreme
values) of the operators? What are the nuclear transitions that these operators
correspond to? Is the level ordering that is shown in this figure consistent with
what you observe in figure 3.58? If it is consistent, what fundamental principle
is this the proof of; but if it is not, what mechanism do you need to explain the
difference?

3. What are the spins and parities that you expect for the ground state
and the first excited state of 54Co (Z = 27)? What are their configurations
according to the shell model? What will be the decay mode of the first excited
state (α, β+, β−, γ, ...)?

4. The measured magnetic moment of the ground state of 17F (Z = 9) is
+4.72 µN . What is the shell-model configuration that you expect for this state
and what does the shell model predict for this magnetic moment? What value
do you extract for the effective g-factor? What is the ground-state configuration
of 19F, knowing that the magnetic moment is +2.63 and that you can use, as a
first hypothesis, the same effective g-factors as for 17F?
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