THE "OFFICIAL" CHEMISTRY 12 ACID BASE STUDY GUIDE

Multiple Choice Section: This study guide is a compilation of questions from provincial exams since April 1994. I urge you to become intimately familiar with question types. You will notice that questions from one year to another are very similar in their composition. Identification of question types will allow you to be more efficient in answering these questions on the provincial examination. My recommendations for using this study guide are as follows:

- 1. <u>DO ALL THE QUESTIONS</u> in this booklet. These are actual Provincial Exam questions! Your own provincial exam and unit test will include questions similar to the ones in this booklet!
- RESIST THE URGE TO LOOK AT THE ANSWER KEY until you have given all the questions in the section your best effort. Don't do
 one question, then look at the key, then do another and look at the key, and so on. Each time you look at one answer in the study
 guide, your eye will notice other answers around them, and this will reduce the effectiveness of those questions in helping you to learn.
- 3. <u>LEARN FROM YOUR MISTAKES!</u> If you get a question wrong, <u>figure out why!</u> If you are having difficulty, <u>talk to your study partner</u>, or maybe <u>phone someone in your Peer Tutoring group</u>. Get together with group members or other students from class and work on these questions together. Explain how you got your answers to tough questions to others. In explaining yourself to someone else, you will learn the material better yourself (try it!) Ask your teacher to explain the questions to you during tutorial or after school. <u>Your goal should be to get 100% on any Chemistry 12 multiple choice test</u>- learning from your mistakes in this booklet will really help you in your efforts to meet this goal!
- 4. This is REALLY CRUCIAL: DO NOT mark the answer anywhere on the questions themselves. For example, do not circle any of options A B C or D-instead use a different sheet of paper to place your answers on. By avoiding this urge, you can re-use this study guide effectively again, when preparing for your final exam. In the box to the left, put an asterisk or small note to yourself to indicate that you got the question wrong and need to come back to it. If you got the question correct initially, a check mark might be assurance that you understand this type of question and therefore can concentrate on other questions that present a challenge to you.
- 5. Check Off the STATUS box on the PRESCRIBED LEARNING OUTCOMES sheet. I have tried to organize the questions in the identical sequence to which they appear on your Acid Base Prescribed Learning Outcome sheet. By doing this, you can be confident that you know everything you need to know for both the UNIT EXAM and PROVINCIAL EXAM!

TABLE OF CONTENTS

PROPERTIES AND DEFINITIONS.	1
STRONG/WEAK ACIDS AND BASES	7
√w pH. pOH	11
K₃ and K₀ Problem Solving HYDROLYSIS OF SALTS	19
HYDROLYSIS OF SALTS	24
NDICATORS	27
NEUTRALIZATIONS OF ACIDS AND BASES	31
RUFFERS	39
ACID RAIN	42
ANSWERS	45

J01 1. A test that could be safely used to distinguish a strong base from a weak base is A. taste. B. touch. C. litmus paper. D. electrical conductivity. J01 2. To distinguish between a strong acid and a strong base, an experimenter could use A. odour. B. magnesium. C. a conductivity test. D. the common ion test.

J02	3.	
		Which of the following is a property of a base?
		A. a sour taste
		B. turns litmus red
		C. the ability to neutralize CH ₃ COOH
		D. the ability to react with Zn to produce $H_{2(g)}$
J02	4.	
302	٦.	Which of the following properties are common to both strong acids and bases?
		I. Taste bitter.
		II. Conduct an electric current. III. Cause neutral litmus to change colour.
		A. I and II only
		B. I and III only
		C. II and III only D. I, II and III
J02	5.	A basic solution
		A. tastes sour. B. feels slippery.
		C. does not conduct electricity.D. reacts with metals to release oxygen gas.
		D. Teacts with fletals to release oxygen gas.
J02	6.	Which of the following is a general property common to both acidic and basic solutions?
		A. tastes sour
		B. feels slippery
		C. reacts with metals
		D. conducts electricity
J02	7.	3 - 3 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
		A. taste sour B. turn litmus red
		C. conduct electric current in solution
J04	8.	D. concentration of H₃O⁺ is greater than concentration of OH⁻
304	O.	An Arrhenius acid is a substance that
		A. accepts a proton.
		B. donates a proton.
		C. produces H ⁺ in solution.
		D. produces OH ⁻ in solution.
L		

J04	9.	An Arrhenius base is defined as a substance which
		A. donates protons.
		B. donates electrons.
		C. produces H ⁺ in solution.
		D. produces OH ⁻ in solution.
J05	10	Caustic soda, NaOH, is found in
		A. fertilizers.
		B. beverages.
		C. toothpaste.
		D. oven cleaners.
J05	11.	The acid used in the lead-acid storage battery is
		A. HCl
		B. HNO ₃
		C. H ₂ SO ₄
		D. CH ₃ COOH
J05	12	Drano®, a commercial product used to clean drains, contains small bits of aluminum metal and
		A. ammonia.
		B. acetic acid.
		C. hydrochloric acid.
		D. sodium hydroxide.
J07	40	
307	13	Identify the two substances that act as Bronsted-Lowry bases in the equation
		$HS^- + SO_4^{2-} \rightleftharpoons S^{2-} + HSO_4^-$
		A. HS^- and S^{2-}
		B. SO_4^{2-} and S^{2-}
		C. HS ⁻ and HSO ₄
		D. SO_4^{2-} and HSO_4^{-}
J07	14.	In the equilibrium system:
		$H_2BO_{3(aq)}^- + HCO_{3(aq)}^- \rightleftharpoons H_2CO_{3(aq)} + HBO_3^{2-}_{(aq)}$
		The two species acting as Brönsted-Lowry acids are
		A. HCO_3^- and H_2CO_3
		B. $H_2BO_3^-$ and H_2CO_3
		C. HCO_3^- and HBO_3^{-2-}
		D. H ₂ BO ₃ ⁻ and HBO ₃ ²⁻

J07	15.	Consider the following equilibria:
		$I HCO_3^- + H_2O \ \rightleftarrows \ H_2CO_3 + OH^-$
		II $NH_4^+ + H_2O \rightleftharpoons H_3O^+ + NH_3$
		III $HSO_3^- + H_3O^+ \rightleftharpoons H_2O + H_2SO_3$
		Water acts as a Brönsted-Lowry base in
		A. III only. B. I and II only. C. II and III.
J07	16	Consider the following acid-base reaction:
		$HSO_3^- + HF \rightleftharpoons H_2SO_3 + F^-$
		The order of Brönsted-Lowry acids and bases in this equation is
		A. acid + base
		B. acid + base ⇒ base + acid
		C. base + acid ⇒ base + acid
		D. base + acid ≠ acid + base
J07	17.	Consider the following equilibrium:
		$CH_3COOH_{(aq)} + NH_{3(aq)} \rightleftharpoons CH_3COO^{(aq)} + NH_4^+_{(aq)}$
		The sequence of Brönsted-Lowry acids and bases in the above equilibrium is
		A. acid, base, base, acid.
		B. acid, base, acid, base.
		C. base, acid, base, acid.D. base, acid, acid, base.
		D. base, acid, acid, base.
J07	18	Consider the following equilibrium:
		$H_2SO_3 + NO_2^- \rightleftharpoons HSO_3^- + HNO_2$
		The Brönsted-Lowry acids and bases are, respectively,
		A. acid, base, base, acid.
		B. acid, base, acid, base.
		C. base, acid, base, acid.
		D. base, acid, acid, base.

J07	19	Consider the following equilibrium:
		$H_2SO_{3(aq)} + NO_2^-(aq) \rightleftharpoons HSO_3^-(aq) + HNO_{2(aq)}$
		The NO ₂ ⁻ is acting as a
		 A. Brönsted-Lowry acid by donating a proton. B. Brönsted-Lowry base by donating a proton. C. Brönsted-Lowry acid by accepting a proton. D. Brönsted-Lowry base by accepting a proton.
J07	20	Consider the following equilibrium:
		$HS^- + H_3PO_4 \rightleftharpoons H_2S + H_2PO_4^-$
		The order of Brönsted-Lowry acids and bases is
		A. acid, base, acid, base.B. acid, base, base, acid.C. base, acid, base.
		D. base, acid, base, acid.
J09	21.	The hydronium ion, H ₃ O ⁺ is a water molecule that has
		A. lost a proton.
		B. gained a proton.
		C. gained a neutron.
		D. gained an electron.
J10	22	A base is converted to its conjugate acid by
		A. adding a proton.
		B. adding an electron.
		C. removing a proton.
		D. removing an electron.
J11	23	The conjugate acid of H ₂ C ₆ H ₅ O ₇ is
		A. $C_6H_5O_7^{3-}$
		B. $HC_6H_5O_7^{2-}$
		C. H ₂ C ₆ H ₅ O ₇
		D. H ₃ C ₆ H ₅ O ₇
		C. $H_2C_6H_5O_7$

J11	24	7
311	24	The conjugate acid of OH ⁻ is
		A. H ⁺
		B. O ²⁻
		C. H ₂ O
		D. H ₃ O ⁺
J11	25	,
311	20	The conjugate base of H ₂ BO ₃ ⁻ is
		A. BO ₃ ³⁻
		B. H_3BO_3
		С. HBO ₃ ²⁻
		D. H ₃ BO ₃
J11	26	Which of the following is a conjugate acid-base pair?
		A. H_3PO_4 and PO_4^{3-}
		B. $H_2PO_4^-$ and PO_4^{3-}
		C. H_3PO_4 and HPO_4^{2-}
		D. $H_2PO_4^-$ and HPO_4^{2-}
J11	27	The conjugate acid of H ₂ PO ₄ ⁻ is
		A. PO ₄ ³⁻
		B. H_3PO_4
		C. HPO ₄ ²⁻
		D. H ₃ PO ₄ ⁺
J11	28	The conjugate acid of $C_6H_5O^-$ is
		A. $C_6H_4O^-$
		B. C ₆ H ₅ OH
		C. $C_6H_4O^{2-}$
		D. $C_6H_5OH^+$

		STRONG/WEAK ACIDS AND BASES
K01	29.	Which of the following 0.10 M solutions will have the greatest electrical conductivity?
		A. HF
		B. NH ₃
		C. NaOH
		D. C ₆ H ₅ COOH
K01	30.	The 0.10 M solution with the greatest electrical conductivity is
		A. H ₂ S
		B. H_2SO_4
		C. H ₂ SO ₃
		D. H ₂ CO ₃
K01	31.	Which of the following solutions will have the greatest electrical conductivity?
		A. 1.0 M HCl
		B. 1.0 M HNO ₂
		C. 1.0 M H ₃ BO ₃ D. 1.0 M HCOOH
K01	32.	Which of the following 1.0 M solutions will have the greatest electrical conductivity?
		A. HI
		B. H_2S
		C. HCN
KOE	22	D. H ₃ PO ₄
K05	33.	The equation representing the reaction of ethanoic acid with water is
		A. $CH_3COO^- + H_2O \rightleftharpoons CH_3COOH + OH^-$
		B. $CH_3COO^- + H_2O \rightleftharpoons CH_2COO^{2-} + H_3O^+$
		C. $CH_3COOH + H_2O \rightleftharpoons CH_3COO^- + H_3O^+$
		D. $CH_3COOH + H_2O \rightleftharpoons CH_3COOH_2^+ + OH^-$
K06	34.	How many acids from the list below are known to be weak acids?
		$HCl, HF, H_2SO_3, H_2SO_4, HNO_3, HNO_2:$
		A. 2
		B. 3
		C. 4
		D. 5

K06	35.	Which of the fellowing is the strongest acid?
		Which of the following is the strongest acid?
		A. acetic acid
		B. oxalic acid
		C. benzoic acid
		D. carbonic acid
K06	36.	In the following Brönsted-Lowry acid-base equation:
		$NH_{4(aq)}^{+} + H_2O_{(l)} \rightleftharpoons NH_{3(aq)} + H_3O_{(aq)}^{+}$
		The stronger base is
		A. NH ₄ ⁺
		B. H ₂ O
		C. NH ₃
		D. H ₃ O ⁺
K06	37.	Consider the following equilibrium:
		$HS^- + H_2C_2O_4 \rightleftharpoons HC_2O_4^- + H_2S$
		The stronger acid is
		A. HS ⁻
		B. $H_2C_2O_4$
		C. $HC_2O_4^-$
		D. H ₂ S
K06	38.	Which of the following is the weakest acid?
		А. НСООН
		B. C ₆ H ₅ OH
		C. $H_3C_6H_5O_7$
		D. CH ₃ COOH
K06	39.	Which of the following is the weakest acid?
		A. HIO ₃
		B. HCN
		C. HNO ₂
		D. C ₆ H ₅ COOH
K06	40.	The 1.0 M acidic solution with the highest pH value is
		A. H ₂ S
		B. HNO ₂
		C. HNO ₃
		D. H ₃ BO ₃
L	!	

K07	41.	Which of the following is the strongest base in water?
		A. OH
		B. H ₂ O
		C. NH ₃
		D. HO_2^-
K08	42.	
100	72.	Consider the following equilibrium system:
		$OCl_{(aq)}^{-} + HC_{7}H_{5}O_{2(aq)} \rightleftharpoons HOCl_{(aq)} + C_{7}H_{5}O_{2(aq)}^{-} \qquad K_{eq} = 2.1 \times 10^{3}$
		At equilibrium,
		A. products are favoured and HOCl is the stronger acid.
		B. reactants are favoured and HOCl is the stronger acid.
		C. products are favoured and HC ₇ H ₅ O ₂ is the stronger acid.
1/00	40	D. reactants are favoured and HC ₇ H ₅ O ₂ is the stronger acid.
K09	43.	The 1.0 M acid solution with the largest $[H_3O^+]$ is
		A. HNO ₂
		B. H_2SO_3
		C. H_2CO_3
		D. H ₃ BO ₃
		2. 2232 0 3
K10	44.	An amphiprotic substance can act as
		A. a base only.
		B. an acid only.C. both an acid and a base.
		D. neither an acid nor a base.
K11	45.	
		Which one(s) of the following substances is/are amphiprotic?
		(1) H_3PO_4 (2) $H_2PO_4^-$ (3) HPO_4^{2-}
		A. 2 only B. 3 only
		C. 1 and 2
		D. 2 and 3
K11	46.	Which of the following is amphiprotic in water?
		A. SO ₂
		B. SO ₃ ²⁻
		C. HSO ₃
		D. H_2SO_3

K11	47.	Consider the following:
		$I H_3PO_4$
		H_2PO_4
		III HPO ₄ ²⁻
		$IV \qquad PO_4^{3-}$
		Which of the above are amphiprotic in an aqueous solution?
		A. I and II onlyB. II and III onlyC. I, II and III onlyD. II, III and IV only
K12	48.	Water acts as a base when it reacts with
		A. CN ⁻
		B. NH ₃
		C. NO_2^-
		D. NH ₄ ⁺
K12	49.	Water will act as a Brönsted-Lowry acid with
		A. NH ₃
		B. H_2S
		C. HCN
		D. HNO ₃
K12	50.	Water will act as an acid with which of the following?
		I. H_2CO_3
		II. HCO ₃
		III. CO ₃ ²⁻
		A. I only.B. III only.C. I and II only.D. II and III only.

		K _W , pH, pOH
L01	51.	At 25°C, the equation representing the ionization of water is
		A. $H_2O + H_2O \rightleftharpoons 2H_2 + O_2$
		B. $H_2O + H_2O \rightleftharpoons H_2O_2 + H_2$
		C. $H_2O + H_2O \rightleftharpoons 4H^+ + 2O^{2-}$
		D. $H_2O + H_2O \rightleftharpoons H_3O^+ + OH^-$
L02	52.	Consider the following equilibrium system:
		$H_2O_{(l)} + H_2O_{(l)} \rightleftharpoons H_3O_{(aq)}^+ + OH_{(aq)}^-$
		The equilibrium constant for this system is referred to as
		A. K_{w}
		B. K_a
		C. K_b
		D. K_{sp}
L03	53.	If OH^- is added to a solution, the $\left[H_3O^+\right]$ will
		A. remain constant.
		B. adjust such that $\left[H_3O^+\right] = \frac{\left[OH^-\right]}{K_w}$
		C. increase such that $[H_3O^+][OH^-] = K_w$
		D. decrease such that $[H_3O^+][OH^-] = K_w$
L03	54.	Consider the following equilibrium:
		$H_2O + H_2O \rightleftharpoons H_3O^+ + OH^-$
		When a solution of $Sr(OH)_2$ is added, the equilibrium shifts
		A. left and $[H_3O^+]$ increases.
		B. left and $[H_3O^+]$ decreases.
		C. right and $[H_3O^+]$ increases.
		D. right and $[H_3O^+]$ decreases.
		D. Hight and [1130] decreases.

L03	55.	Consider the following:
		$H_2O_{(1)} \rightleftharpoons H^+_{(aq)} + OH^{(aq)}$
		When a small amount of 1.0 M KOH is added to the above system, the equilibrium
		A. shifts left and $[H^+]$ decreases.
		B. shifts left and [H ⁺] increases.
		C. shifts right and [H ⁺] decreases.
		D. shifts right and [H ⁺] increases.
1.00		
L03	56.	An acid is added to water and a new equilibrium is established. The new equilibrium can be described by
		A. pH < pOH and $K_w = 1 \times 10^{-14}$
		B. pH < pOH and $K_w < 1 \times 10^{-14}$ C. pH > pOH and $K_w = 1 \times 10^{-14}$
		D. pH > pOH and $K_w > 1 \times 10^{-14}$
L03	57.	Consider the following equilibrium:
		$2H_2O_{(\ell)}$ + energy \rightleftharpoons $H_3O^+_{(aq)}$ + $OH^{(aq)}$
		The $[H_3O^+]$ will decrease and the K_w will remain constant when
		A. a strong acid is added.
		B. a strong base is added.
		C. the temperature is increased.D. the temperature is decreased.
L04	58.	The $\left[OH^{-}\right]$ is greater than the $\left[H_{3}O^{+}\right]$ in
		A. $HCl_{(aq)}$
		B. $NH_{3(aq)}$
		C. $H_2O_{(aq)}$
		D. $CH_3COOH_{(aq)}$
L04	59.	An aqueous solution that contains more hydronium ions than hydroxide ions is a(n)
		A. basic solution.
		B. acidic solution.C. neutral solution.
		D. standardized solution.

	1							
L06	60.	Consider the following equilibrium:						
		$2 H_2 O_{(\ell)} \rightleftharpoons H_3 O^+_{(aq)} + OH^{(aq)} \qquad \Delta H = +114 \text{ kJ}$						
		At 10° C the value of K_w is						
		A. equal to 1.00×10^{-7}						
		B. equal to 1.00×10^{-14}						
		C. less than 1.00×10^{-14}						
		D. greater than 1.00×10^{-14}						
L06	61.	Consider the following equilibrium:						
		$2H_2O_{(\ell)} + 57 \text{ kJ} \ \rightleftarrows \ H_3O^+_{(aq)} + OH^{(aq)}$						
		When the temperature is decreased, the water						
		A. stays neutral and $[H_3O^+]$ increases.						
		B. stays neutral and $[H_3O^+]$ decreases.						
		C. becomes basic and $[H_3O^+]$ decreases.						
		D. becomes acidic and $[H_3O^+]$ increases.						
L06	62.	Consider the following:						
		$2 \mathrm{H}_2 \mathrm{O}_{(\ell)} + 57 \mathrm{\ kJ} \ \rightleftharpoons \ \mathrm{H}_3 \mathrm{O}^+_{(aq)} + \mathrm{OH}^{(aq)}$						
		When the temperature of the above system is increased, the equilibrium shifts						
		A. left and K_w increases.						
		B. left and K_w decreases.						
		C. right and K_w increases.						
		D. right and K_w decreases.						
L07	63.	An aqueous solution at room temperature is analyzed and the $[{\rm H_3O^+}]$ is found to be $2.0\times10^{-3}~{\rm M}$. The $[{\rm OH^-}]$ is						
		A. 5.0×10^{-12} M						
		B. 2.0×10^{-11} M						
		C. $4.0 \times 10^{-6} \text{ M}$						
		D. 2.0×10^{-3} M						

L07	64.	r 7
LOT	04.	The $\left[\text{OH}^{-} \right]$ in 0.050 M HNO ₃ at 25°C is
		A. $5.0 \times 10^{-16} \text{ M}$
		B. $1.0 \times 10^{-14} \text{ M}$
		C. $2.0 \times 10^{-13} \mathrm{M}$
		D. $5.0 \times 10^{-2} \text{ M}$
L07	65.	In a solution at 25°C, the $[H_3O^+]$ is $3.5 \times 10^{-6} M$. The $[OH^-]$ is
		A. $3.5 \times 10^{-20} \mathrm{M}$
		B. $2.9 \times 10^{-9} \text{ M}$ C. $1.0 \times 10^{-7} \text{ M}$
		C. $1.0 \times 10^{-6} \text{ M}$ D. $3.5 \times 10^{-6} \text{ M}$
		D. 5.5×10 W
L07	66.	In a 100.0 mL sample of 0.0800 M NaOH the $[H_3O^+]$ is
		A. $1.25 \times 10^{-13} \text{ M}$
		B. $1.25 \times 10^{-12} \text{ M}$
		C. $8.00 \times 10^{-3} \text{ M}$
		D. $8.00 \times 10^{-2} \text{ M}$
L07	67.	The [OHE] is an account of the decount of
		The [OH ⁻] in an aqueous solution always equals
		A. $K_w \times [H_3O^+]$
		A. $K_w \times [H_3O^+]$ B. $K_w - [H_3O^+]$ C. $\frac{K_w}{[H_3O^+]}$
		K_{ν}
		$C. \overline{\left[\mathrm{H_3O^+}\right]}$
		D. $\frac{\left[\mathrm{H_{3}O^{+}}\right]}{\mathrm{K}_{w}}$
L08	68.	Sodium potassium tartrate (NaKC ₄ H ₄ O ₆) is used to raise the pH of fruit during processing. In this
		process, sodium potassium tartrate is being used as a/an
		A. salt.
		B. acid.
		C. base. D. buffer.
		D. vaner.
	<u> </u>	

L08	69.	A student records the pH of 0.1 M solutions of two acids:						
		Acid pH						
		X 4.0						
		Y 2.0						
		Which of the full price of the country and he country the state of the						
		Which of the following statements can be concluded from the above data?						
		A. Acid X is stronger than acid Y. B. Acid X and acid Y are both weak.						
		C. Acid X is diprotic while acid Y is monoprotic.						
L08	70.	 D. Acid X is 100 times more concentrated than acid Y. A students adds 10.0 mL of 1.0 M HClO₄ into 990.0 mL of water. The pH of the solution has 						
		changed by						
		A. 0.01 B. 1						
		C. 2						
		D. 100						
L09	71.	The pH scale is						
		A. direct.						
		B. inverse.						
		C. logarithmic. D. exponential.						
		D. exponential.						
L09	72.	Which of the following equations correctly relates pH and $[H_3O^+]$?						
		A. $pH = log \left[H_3 O^+ \right]$						
		B. $pH = 14 - [H_3O^+]$						
		C. $pH = -\log[H_3O^+]$						
		C. $pH = -\log [H_3O^+]$ D. $pH = pK_w - [H_3O^+]$						
L09	73.							
		The pOH of an aqueous solution is equal to						
		A. 14+pH						
		B. $pK_w - pH$						
		C. $-\log pK_w$ D. $-\log[H_3O^+]$						
		D. 10g[1130]						

1.00							
L09	74.	Which of the following graphs describes the relationship between $[H_3O^+]$ and pH ?					
		A. B.					
		$\left[\mathrm{H_{3}O^{+}}\right] \hspace{1cm} \left[\mathrm{H_{3}O^{+}}\right]$					
		pH pH					
		C. D.					
		$\left[H_{3}O^{+}\right] \left[H$					
1.00	75	рН рН					
L09	75.	When the $[H_3O^+]$ in a solution is increased to twice the original concentration,					
		the change in pH could be from					
		A. 1.7 to 1.4					
		B. 2.0 to 4.0					
		C. 5.0 to 2.5					
		D. 8.5 to 6.5					
L10	76.	Which of the following statements concerning pK_w are true?					
		I. $pK_w = -\log K_w$					
		II. $pK_w = pH + pOH$ $HI_v pK_w = [H_v O^+][OH^-]$					
		III. $pK_w = [H_3O^+][OH^-]$					
		A. I and II only B. I and III only					
		B. I and III only C. II and III only					
		D. I, II and III					
L11	77.	The pH of an aqueous solution is 4.32 . The $\left[\text{OH}^{-} \right]$ is					
		$A = CA \times 10^{-1} M$					
		A. $6.4 \times 10^{-1} \text{ M}$					
		B. $4.8 \times 10^{-5} \mathrm{M}$					
		C. $2.1 \times 10^{-10} \mathrm{M}$					
		D. $1.6 \times 10^{-14} \mathrm{M}$					
	1						

L11	78.	The pOH of a 0.025 M HClO ₄ solution is					
		A. 0.94					
		B. 1.60					
		C. 12.40					
		D. 13.06					
L11	79.	A solution is prepared by adding 100 mL of 10 M of HCl to a 1 litre volumetric flask and filling it to the mark with water. The pH of this solution is					
		A1					
		B. 0 C. 1					
		D. 7					
L11	80.	The pH of 0.15 M HCl is					
		A. 0.15					
		B. 0.71					
		C. 0.82 D. 13.18					
L11	81.						
	01.	The pH of 0.20 M HNO ₃ is					
		A. 0.20					
		B. 0.63 C. 0.70					
		D. 1.58					
L11	82.	Consider the following data:					
		SOLUTION INITIAL pH FINAL pH					
		1 1.0 4.0					
		2 2.0 6.0					
		3 6.0 3.0 4 9.0 3.0					
		In which solution has the $[H_3O^+]$ increased 1000 times?					
		A. 1 B. 2					
		C. 3 D. 4					
L11	83.	Calculate the pOH of 3.50 M NaOH.					
		A14.54					
		B0.54 C. 0.54					
		D. 13.46					

L11	84.	Calculate the pH of 4.0×10^{-4} M KOH.						
		A. 3.40 B. 4.60						
		C. 9.40						
		D. 10.60						
L11	85.	A beaker contains 200.0 mL of 0.40 M HNO ₃ . The calculation for pH is						
		A. $pH = -\log(0.40 \text{ M})$						
		B. $pH = -\log(10^{-14} \div 0.40 \text{ M})$						
		C. $pH = -\log(0.40 \text{ M} \times 0.200 \text{ L})$						
		D. $pH = -\log(0.40 \text{ M} \div 0.200 \text{ L})$						
L11	86.	The pH of 100.0 mL of 0.0050 M NaOH solution is						
		A. 2.30						
		B. 3.30 C. 10.70						
		D. 11.70						
L11	87.							
	0	A solution of 1.0 M HF has						
		A. a lower pH than a solution of 1.0 M HCl						
		B. a higher pOH than a solution of 1.0 M HCl						
		C. a higher $\left[\text{OH}^{-} \right]$ than a solution of 1.0 M HCl D. a higher $\left[\text{H}_{3}\text{O}^{+} \right]$ than a solution of 1.0 M HCl						
		D. a mghai [1130] than a solution of 1.0 M flor						
L11	88.	The pOH of 0.050 M HCl is						
		A. 0.30						
		B. 1.30 C. 12.70						
		D. 13.70						
L12	89.							
		The $\left[\mathrm{H_{3}O}^{+}\right]$ in a solution of pH 0.60 is						
		A. $4.0 \times 10^{-14} \text{ M}$						
		B. $2.2 \times 10^{-1} \mathrm{M}$						
		C. $2.5 \times 10^{-1} \mathrm{M}$						
		D. $6.0 \times 10^{-1} \text{ M}$						

L12	90.	In a solution with a pOH of 4.22, the $\left[\text{OH}^{-} \right]$ is
		A. $1.7 \times 10^{-10} \mathrm{M}$
		B. $6.0 \times 10^{-5} \mathrm{M}$
		C. $6.3 \times 10^{-1} M$
		D. $1.7 \times 10^4 \mathrm{M}$
L12	91.	The $[H_3O^+]$ in a solution with pOH of 0.253 is
		A. $5.58 \times 10^{-15} \mathrm{M}$
		B. $1.79 \times 10^{-14} \text{ M}$
		C. $5.58 \times 10^{-1} \mathrm{M}$
		D. $5.97 \times 10^{-1} \mathrm{M}$

		K _a and K _b PROBLEM SOLVING
M01	92.	The equilibrium constant expression for sulphurous acid is
		A. $K_{\alpha} = \left[H^{+}\right]\left[HSO_{3}^{-}\right]$
		B. $K_a = \frac{\left[H^+\right]\left[HSO_3^-\right]}{\left[H_2SO_3\right]}$
		C. $K_a = \frac{\left[2H^+\right]\left[SO_3^{2-}\right]}{\left[H_2SO_3\right]}$
		D. $K_a = \frac{\left[H^+\right]\left[SO_3^{2-}\right]}{\left[H_2SO_3\right]}$
M01	93.	Which of the following is represented by a K_b expression?
		A. $Al(OH)_{3(s)} \rightleftharpoons Al_{(aq)}^{3+} + 3OH_{(aq)}^{-}$
		B. $HF_{(aq)} + H_2O_{(l)} \rightleftharpoons H_3O_{(aq)}^+ + F_{(aq)}^-$
		C. $\operatorname{Cr}_2 \operatorname{O}_{7(aq)}^{2-} + 2\operatorname{OH}_{(aq)}^{-} \rightleftarrows 2\operatorname{CrO}_{4(aq)}^{2-} + \operatorname{H}_2 \operatorname{O}_{(l)}$
		D. $CH_3NH_{2(aq)} + H_2O_{(I)} \rightleftharpoons CH_3NH_{3(aq)}^+ + OH_{(aq)}^-$
		2(aq) $2(1)$ $3(aq)$ $3(aq)$
M01	94.	The K_b expression for HPO_4^{2-} is
		A. $K_b = \frac{[PO_4^{3-}][H_3O^+]}{[HPO_4^{2-}]}$ B. $K_b = \frac{[HPO_4^{2-}][OH^-]}{[H_2PO_4^{-}]}$
		C. $K_b = \frac{[H_2PO_4^-][OH^-]}{[HPO_4^{2-}]}$ D. $K_b = \frac{[HPO_4^{2-}][H_3O^+]}{[PO_4^{3-}]}$

M01	95.	Consider the following equilibrium constant expression:							
		$K = \frac{\left[H_2 S \right] \left[OH^- \right]}{\left[HS^- \right]}$							
		This expression represe	This expression represents the						
		A. K_b for H_2S							
		B. K_a for H_2S							
		C. K_b for HS^-							
1404	00	D. K _a for HS ⁻							
M01	96.	The relationship $\frac{[H]}{[H]}$	$\frac{H_2 P_2 O_7^{2-} [H_3 O^+]}{[H_3 P_2 O_7^-]}$	is the					
		A. K_a for H_3P_2O	7						
		B. K_b for H_3P_2O	7						
		C. K_a for H_2P_2O	2-						
		D. K_b for H_2P_2O	2-						
M02	97.	In water, the hydro	ogen sulphide id	on HS ⁻ wi	11 act	as			
				, 11.5 ,	11 400				
			A. an acid because the $K_a \le K_b$						
			B. an acid because the $K_a > K_b$						
			C. a base because the $K_a < K_b$						
		D. a base because	e the $K_a > K_b$						
M02	98.	The concentration, K_a an	d pH values of four a	cids are given in	n the fol	lowing table:			
		Acid	Concentration	\mathbf{K}_a	pН				
		НА	3.0 M	2.0×10 ⁻⁵	2.1				
		НВ	0.7 M	4.0×10^{-5}	2.3				
		HC	4.0 M	1.0×10^{-5}	2.2				
		HD	1.5 M	1.3×10^{-5}	2.4				
		Based on this data, the strongest acid is							
		A. HA							
		B. HB C. HC							
		D. HD							

MOO	00								
M02	99.	Consider the following data table:							
		HCO ₃ HSO ₃							
		$K_a = 5.6 \times 10^{-11} = 1.0 \times 10^{-7}$							
		K_b 2.3×10 ⁻⁸ 6.7×10 ⁻¹³							
		Which of the following statements is correct?							
		A. HCO ₃ ⁻ is a stronger acid than HSO ₃ ⁻							
		B. HCO ₃ ⁻ is a stronger base than HSO ₃ ⁻							
		C. HCO ₃ ⁻ is stronger as an acid than as a base							
		D. HSO ₃ is stronger as a base than as an acid							
M02	100	Which of the following favours products?							
		A. $C_6H_5OH + CH_3COO^- \rightleftharpoons C_6H_5O^- + CH_3COOH$							
		B. $H_2C_2O_4 + H_2C_6H_5O_7^- \rightleftharpoons HC_2O_4^- + H_3C_6H_5O_7$							
		C. $C_6H_5COOH + HCOO^- \rightleftharpoons C_6H_5COO^- + HCOOH$							
		D. $CH_3COOH + C_6H_5COO^- \rightleftharpoons CH_3COO^- + C_6H_5COOH$							
M02	101	Consider the following equilibrium:							
		$HF_{(aq)} + NH_{3(aq)} \rightleftharpoons NH_4^+_{(aq)} + F^{(aq)}$							
		Which of the following statements is true?							
		A. The products are favoured because HF is a stronger acid than $\mathrm{NH_4}^+$							
		B. The products are favoured because NH ₄ ⁺ is a stronger acid than HF							
		C. The reactants are favoured because HF is a stronger acid than NH ₄ ⁺							
		D. The reactants are favoured because NH ₄ ⁺ is a stronger acid than HF							
M02	102	The hydrogen oxalate ion, HC ₂ O ₄ ⁻ , is amphiprotic.							
		$K_a = 6.4 \times 10^{-5}$							
		$K_b = 1.7 \times 10^{-13}$							
		The predominant reaction is							
		A. $HC_2O_4^- + H_2O \rightleftharpoons OH^- + H_2C_2O_4$ because $K_a < K_b$							
		B. $HC_2O_4^- + H_2O \rightleftharpoons H_3O^+ + C_2O_4^{2-}$ because $K_a < K_b$							
		C. $HC_2O_4^- + H_2O \rightleftharpoons OH^- + H_2C_2O_4$ because $K_a > K_b$							
		D. $HC_2O_4^- + H_2O \rightleftharpoons H_3O^+ + C_2O_4^{2-}$ because $K_a > K_b$							

M02	103	Which	of the following solutions has t	the highest pH?				
		A. 1.	A. 1.0 M NaIO ₃					
			B. 1.0 M Na ₂ CO ₃					
			1.0 M Na ₃ PO ₄ 1.0 M Na ₂ SO ₄					
			0 W Na ₂ 3O ₄					
M02	104	The e	quation for the predomina	nt reaction between HSO	₃ ⁻ and H ₂ O is			
			$HSO_3^- + H_2O \rightleftharpoons H_2SO_3$					
		B. 1	$HSO_3^- + H_2O \rightleftharpoons SO_3^{2-}$	$+ H_3O^+$				
		C. 1	$HSO_3^- + H_2O \rightleftharpoons H_2SO$	$_3 + OH^-$				
		D.]	$HSO_3^- + H_2O \rightleftharpoons H_2SO_3$	$_{4}+\frac{1}{2}H_{2}$				
M02	105	Whic	ch of the following describ	es the relationship between	en acid strength and K _a value for			
			acids?					
			Acid Strength	\mathbf{K}_{a}				
		A.	increases	increases				
		B.	increases	decreases				
		C.	decreases	increases				
		D.	decreases	remains constant				
M02	106	If reac	tants are favoured in the follow	ving equilibrium, the stronger	base must be			
			HC	$N + HS^- \rightleftharpoons H_2S + CN^-$				
		A. H	A. H ₂ S					
		В. Н	B. HS ⁻					
		C. C	C. CN					
		D. H	CN					
M02	107	When ac	dded to water, the hydrogen carbonate	e ion, HCO ₃ -, produces a solution w	rhich is			
			ic because K_b is greater than K_a					
			ic because K_a is greater than K_b dic because K_a is greater than K_b					
		D. aci	dic because K_b is greater than K_a					

M03	108	
		The pH of a 0.3 M solution of NH ₃ is approximately
		A. 14.0
		B. 11.0
		C. 6.0 D. 3.0
		D. 5.0
M03	109	The approximate pH of a 0.06 M solution of CH ₃ COOH is
		A. 1
		B. 3
		C. 11 D. 13
		D. 13
M03	110	
		Which of the following solutions will have the largest $[H_3O^+]$?
		A. 1.0 M HNO ₂
		B. $1.0 \text{ M H}_3 \text{BO}_3$
		C. $1.0 \text{ M H}_2\text{C}_2\text{O}_4$
		D. 1.0 M HCOOH
M04	111	The K _b for the dihydrogen phosphate ion is
		A. 1.4×10^{-12}
		B. 6.3×10^{-8}
		C. 1.6×10^{-7}
		D. 7.1×10^{-3}
		D. 7.1×10
M04	112	Consider the following equilibrium:
		$HPO_4^{2-} + H_2O \rightleftharpoons H_2PO_4^{-} + OH^{-}$
		The value of the base ionization constant is
		A. 2.2×10^{-13}
		B. 6.2×10^{-8}
		C. 1.6×10^{-7}
		D. 4.5×10^{-2}
	<u> </u>	

M04	113	The value of K_b for HPO_4^{2-} is
		A. 2.2×10^{-13} B. 6.2×10^{-8}
		B. 6.2×10^{-6}
		C. 1.6×10^{-7}
		D. 4.5×10^{-2}

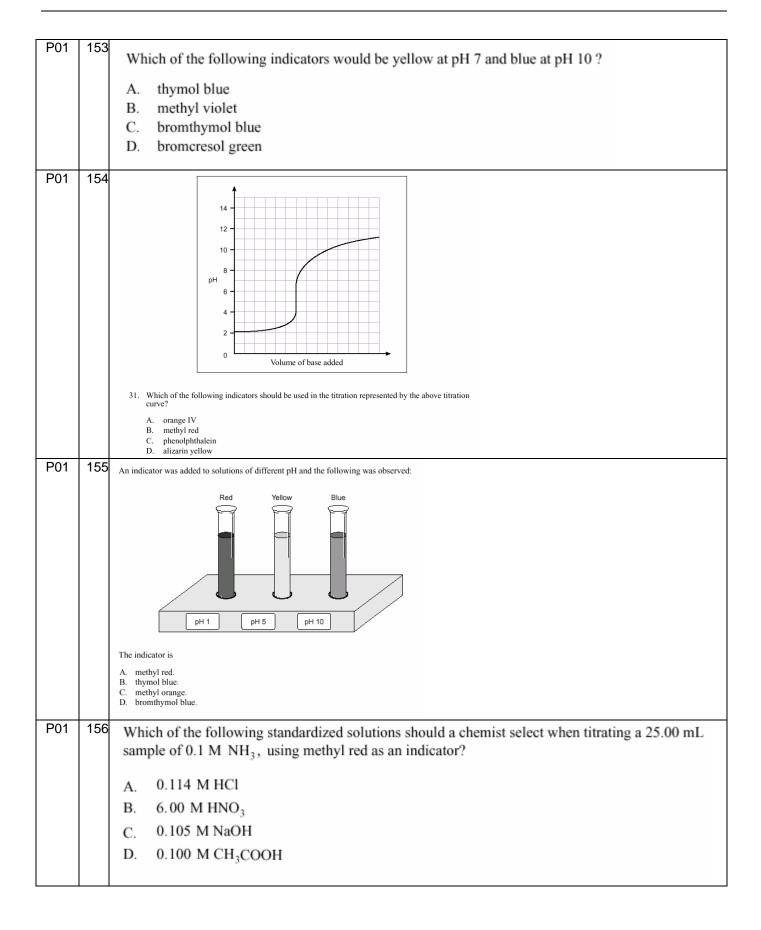
N02	114	HYDROLYSIS OF SALTS The net ionic equation for the hydrolysis of the salt, Na ₂ S, is
		The fiet forme equation for the flydrorysis of the sait, wa ₂ 5, is
		A. $Na_2S \rightleftharpoons 2Na^+ + S^{2-}$
		B. $S^{2-} + H_2O \rightleftharpoons OH^- + HS^-$
		C. $Na_2S + 2H_2O \rightleftharpoons 2NaOH + H_2S$
		D. $2Na^{+} + S^{2-} + 2H_{2}O \rightleftharpoons 2Na^{+} + 2OH^{-} + H_{2}S$
N02	115	The net ionic equation for the hydrolysis reaction occurring in a solution of NaF is
		A. $F_{(aq)}^- + H_2O_{(\ell)} \rightleftharpoons HF_{(aq)} + OH_{(aq)}^-$
		B. $NaF_{(s)} + H_2O_{(\ell)} \rightleftharpoons NaOH_{(aq)} + HF_{(aq)}$
		C. $NaF_{(s)} + 2H_2O_{(\ell)} \rightleftharpoons H_3O^+_{(aq)} + OH^{(aq)} + Na^+_{(aq)} + F^{(aq)}$
		D. $Na(H_2O)_{6(aq)}^+ + H_2O_{(\ell)} \rightleftharpoons H_3O_{(aq)}^+ + Na(H_2O)_5(OH)_{(aq)}^+$
N02	116	The net ionic equation for the predominant hydrolysis reaction of KHSO ₄ is
		A. $HSO_4^- + H_2O \rightleftharpoons SO_4^{2-} + H_3O^+$
		B. $HSO_4^- + H_2O \rightleftharpoons H_2SO_4 + OH^-$
		C. $KHSO_4 + H_2O \rightleftharpoons K^+ + SO_4^{2-} + H_3O^+$
		D. $KHSO_4 + H_2O \rightleftharpoons K^+ + H_2SO_4 + OH^-$
N02	117	The equilibrium constant expression for the predominant hydrolysis reaction in $1.0 \text{ M} \text{ K}_2\text{HPO}_4$ is
		A. $K_{eq} = \frac{[H_2PO_4^-][OH^-]}{[HPO_4^{2-}]}$ B. $K_{eq} = \frac{[H_3PO_4][OH^-]}{[H_2PO_4^-]}$
		C. $K_{eq} = \frac{\left[K^{+}\right]\left[KHPO_{4}^{-}\right]}{\left[K_{2}HPO_{4}\right]}$ D. $K_{eq} = \frac{\left[K^{+}\right]^{2}\left[HPO_{4}^{2-}\right]}{\left[K_{2}HPO_{4}\right]}$

N03	118	Which one of the following salts will produce an acidic solution?
		A. KBr
		B. LiCN
		C. NH ₄ Cl
		D. NaCH ₃ COO
N03	119	
NUS	119	Which of the following salt solutions would be acidic?
		A. sodium acetate
		B. iron(III) chloride
		C. sodium carbonate
		D. potassium chloride
N03	120	Consider the following salts:
		I. NaF II. NaClO ₄ III. NaHSO ₄
		Which of these salts, when dissolved in water, would form a basic solution?
		A. I only
		B. I and II only C. II and III only
		D. I, II and III
N03	121	Which of the following when dissolved in water produces a basic solution?
		Which of the following, when dissolved in water, produces a basic solution?
		A. KCI
		B. NaClO ₄
		C. Na ₂ CO ₃ D. NH ₄ NO ₃
		D. NH ₄ NO ₃
N03	122	Which of the following 0.10 M solutions is the most acidic?
		which of the following 0.10 M solutions is the most detaile.
		A. AlCl ₃
		B. FeCl ₃
		C. CrCl ₃
		D. NH ₄ Cl
N03	123	Which of the following has a pH greater than 7.0 ?
		A. $0.10 \text{ M H}_2\text{S}$
		B. 0.10 M NH ₄ Cl
		C. $0.10 \text{ M Cr}(\text{NO}_3)_3$
		D. 0.10 M KCH ₃ COO
	j .	

N03	124	Arrange the following 0.10 M solutions in order of increasing $[H_3O^+]$.
		NaBr NH ₄ Cl LiCN
		A. LiCN, NaBr, NH ₄ Cl
		B. NH ₄ Cl, NaBr, LiCN
		C. NH ₄ Cl, LiCN, NaBr
		D. NaBr, LiCN, NH ₄ Cl
N03	125	List the following 1.0 M solutions in order of decreasing pH.
		CaBr ₂ FeCl ₃ NaF
		A. $NaF > CaBr_2 > FeCl_3$
		B. $FeCl_3 > CaBr_2 > NaF$
		C. $CaBr_2 > NaF > FeCl_3$
		D. $FeCl_3 > NaF > CaBr_2$
N03	126	An aqueous solution of NH ₄ CN is
		A. basic because $K_a < K_b$
		B. basic because $K_a > K_b$
		C. acidic because $K_a < K_b$
		D. acidic because $K_a > K_b$
N03	127	Consider the following:
		I ammonium nitrate
		II calcium nitrate
		III iron(III) nitrate
		When dissolved in water, which of these salts would form a neutral solution?
		A. II only B. III only
		C. I and III only D. I, II and III
N03	128	A 1.0 M solution of sodium dihydrogen phosphate is
		A. acidic and the pH < 7.00 B. acidic and the pH > 7.00
		C. basic and the $pH < 7.00$
		D. basic and the $pH > 7.00$
	<u> </u>	

N03	129	
1400	120	The solution with the highest pH is
		A. 1.0 M NaCl
		B. 1.0 M NaCN
		C. 1.0 M NaIO ₃
		D. $1.0 \text{ M Na}_2\text{SO}_3$
N03	130	Which of the following 1.0 M solutions would have a pH greater than 7.00?
		A. HCN
		B. KNO ₃
		C. NH ₄ Cl
		D. NaCH ₃ COO
N04	131	Consider the following:
		$I \qquad H_2CO_3 + F^- \rightleftharpoons HCO_3^- + HF$
		II $HCO_3^- + HC_2O_4^- \rightleftharpoons H_2CO_3 + C_2O_4^{2-}$
		$\begin{array}{ c c c c c c }\hline III & HCO_3^- + H_2C_6H_5O_7^- & \rightleftarrows & H_2CO_3 + HC_6H_5O_7^{2-} \\\hline \end{array}$
		The HCO ₃ ⁻ is a base in
		A. I only B. I and II only C. II and III only D. I, II and III
N04	132	The amphiprotic ion $HSeO_3^-$ can undergo hydrolysis according to the following equations:
		$HSeO_3^- + H_2O \rightleftharpoons H_2SeO_3 + OH^- $ K_1
		$HSeO_3^- + H_2O \rightleftharpoons SeO_3^{2-} + H_3O^+$ K_2
		An aqueous solution of $HSeO_3^-$ is found to be acidic. This observation indicates that when it is added to water, $HSeO_3^-$ behaves mainly as a
		 A. proton donor, and K₁ is less than K₂ B. proton donor, and K₁ is greater than K₂ C. proton acceptor, and K₁ is less than K₂ D. proton acceptor, and K₁ is greater than K₂

	INDICATORS				
O01	133	The indicator methyl red is red in a solution of NaH_2PO_4 . Which of the following equations is consistent with this observation?			
		A. $H_2PO_4^- + H_2O \rightleftharpoons HPO_4^{2-} + H_3O^+$			
		B. $H_2PO_4^- + H_2O \rightleftharpoons H_3PO_4 + OH^-$			
		C. $HPO_4^{2-} + H_2O \rightleftharpoons PO_4^{3-} + H_3O^+$			
		D. $HPO_4^{2-} + H_2O \rightleftharpoons H_2PO_4^{-} + OH^{-}$			


134	An indicator, HInd, produces a yellow colour in 0.1 M HCl solution and a red colour in 0.1 M HCN solution. Therefore, in the following equilibrium
	$HCN + Ind^- \rightleftharpoons HInd + CN^-$
	 A. products are favoured and the stronger acid is HInd. B. products are favoured and the stronger acid is HCN. C. reactants are favoured and the stronger acid is HInd. D. reactants are favoured and the stronger acid is HCN.
135	Consider the following acid-base indicator:
	$HInd \rightleftharpoons H^+ + Ind^-$
	When this indicator is added to different solutions, the following data are obtained:
	Solution 1.0 M HCl 1.0 M HA ₁ 1.0 M HA ₂
	Colour yellow blue yellow
	The acids HA_1 , HA_2 and HInd listed in the order of decreasing acid strength is
	A. HA ₂ , HInd, HA ₁ B. HInd, HA ₁ , HA ₂
	C. HA ₂ , HA ₁ , HInd
400	D. HA ₁ , HInd, HA ₂
136	Consider the following acid-base indicator equilibrium:
	$\operatorname{HInd}_{(\alpha q)} + \operatorname{H}_2\operatorname{O}_{(l)} \ \ \rightleftarrows \ \ \operatorname{H}_3\operatorname{O}^+_{(\alpha q)} + \operatorname{Ind}^{(\alpha q)}$
	Which of the following statements describes the conditions that exist in an indicator equilibrium system at its transition point?
	A. $[HInd] = [Ind^-]$
	B. $\left[\operatorname{Ind}^{-}\right] = \left[\operatorname{H}_{3}\operatorname{O}^{+}\right]$
	C. $[HInd] = [H_3O^+]$
	D. $\left[\mathrm{H}_{3}\mathrm{O}^{+}\right] = \left[\mathrm{H}_{2}\mathrm{O}\right]$
137	
	Which of the following acid-base indicators has a transition point between pH 7 and pH 9?
	A. ethyl red, $K_a = 8.0 \times 10^{-2}$
	B. congo red, $K_a = 9.0 \times 10^{-3}$ C. cresol red, $K_a = 1.0 \times 10^{-8}$
	D. alizarin blue, $K_a = 7.0 \times 10^{-11}$
400	
138	Identify the indicator that is blue in a solution when $[H_3O^+] = 2.5 \times 10^{-6}$.
	A. thymol blue
	B. thymolphthalein
	C. bromthymol blue
	D. bromcresol green
	135

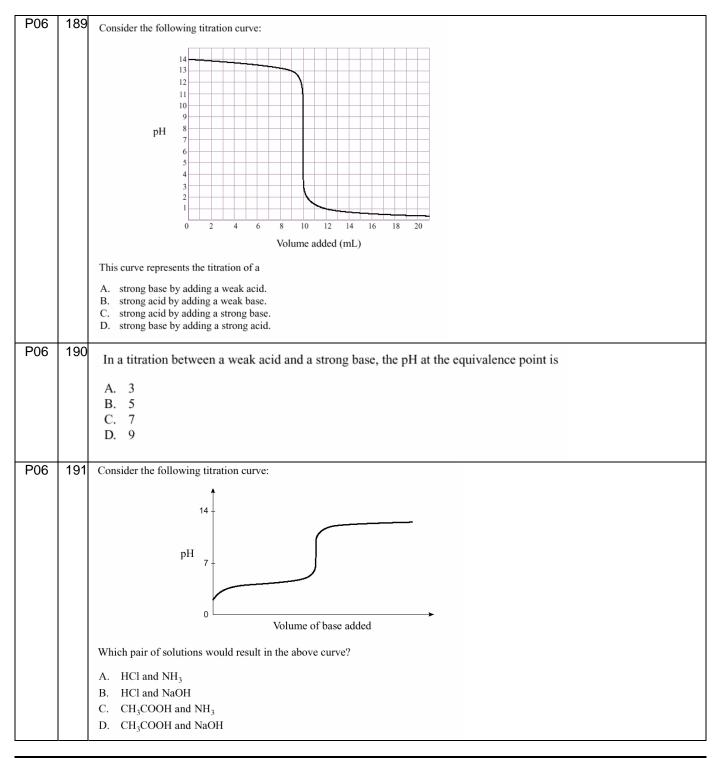
O02	139	Consider the following equilibrium:
		$HInd \rightleftharpoons H^+ + Ind^-$
		Which of the following relationships is true for an indicator at the transition point?
		A. $[H^+] = K_w$
		B. $\left[H^{+}\right] = pH$
		C. $[H^+] = K_a$
		D. $[H^+] = [OH^-]$
O02	140	Consider the following equilibrium for an indicator:
		$HInd + H_2O \rightleftharpoons Ind^- + H_3O^+$
		At the transition point,
		A. $[HInd] > [Ind^-]$
		B. $[HInd] = [Ind^-]$
		C. [HInd] < [Ind ⁻]
		D. $[HInd] = [H_3O^+]$
O03	141	A new indicator, "B.C. Blue (HInd)," is red in bases and blue in acids. Describe the shift in equilibrium and the resulting colour change if 1.0 M HIO ₃ is added to a neutral, purple solution of this indicator.
		$HInd + H_2O \rightleftharpoons H_3O^+ + Ind^-$
		A. Equilibrium shifts left, colour becomes red.
		B. Equilibrium shifts left, colour becomes blue.C. Equilibrium shifts right, colour becomes red.
		D. Equilibrium shifts right, colour becomes blue.
O03	142	Consider the following equilibrium for an acid-base indicator:
		HInd \rightleftharpoons H ⁺ + Ind ⁻ $K_{\alpha} = 1.0 \times 10^{-10}$
		Which of the following statements is correct at pH 7.0 ?
		A. $\left[\operatorname{Ind}^{-}\right] < \left[\operatorname{HInd}\right]$
		B. $\left[\operatorname{Ind}^{-}\right] = \left[\operatorname{HInd}\right]$
		C. $\left[\operatorname{Ind}^{-}\right] > \left[\operatorname{HInd}\right]$
		D. $\left[\operatorname{Ind}^{-}\right] = \left[\operatorname{H}^{+}\right] = \left[\operatorname{HInd}\right]$

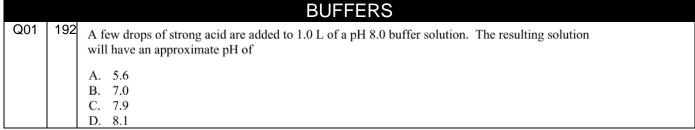
O03	143	Consider the following equilibrium for phenolphthalein:
		$HInd \rightleftharpoons H^+ + Ind^-$
		When phenolphthalein is added to 1.0 M NaOH, the colour of the resulting solution is
		A. pink as [HInd] is less than [Ind ⁻]
		B. pink as [HInd] is greater than [Ind ⁻]
		C. colourless as [HInd] is less than [Ind ⁻]
		D. colourless as [HInd] is greater than [Ind ⁻]
O03	144	Consider the following equilibrium for the indicator bromthymol blue:
		$HInd \rightleftharpoons H^+ + Ind^-$
		A solution of bromthymol blue is yellow. What should a student do to change the colour of the solution to blue?
		A. Add a base to shift the equilibrium left.
		B. Add an acid to shift the equilibrium left.C. Add a base to shift the equilibrium right.
		D. Add an acid to shift the equilibrium right.
O03	145	Which of the Callerine O 10 M and since will be written in the annual of the indicator
		Which of the following 0.10 M solutions will be yellow in the presence of the indicator chlorophenol red?
		A. AlCl ₃
		B. CaCl ₂
		C. K_2CO_3
		D. Na ₃ PO ₄
O03	146	Consider the following equilibrium:
		$HInd \rightleftharpoons H^+ + Ind^-$
		In a basic solution, the indicator bromcresol green will be
		A. blue and [HInd] is less than Ind
		B. yellow and [HInd] is less than [Ind ⁻]
		C. blue and [HInd] is greater than [Ind ⁻]
		D. yellow and [HInd] is greater than [Ind ⁻]
		b. yellow and [Tind] is greater than [ind]
O03	147	Consider the following equilibrium for an indicator:
		$HInd + H_2O \rightleftharpoons Ind^- + H_3O^+$
		When a few drops of the indicator chlorophenol red are added to a colourless solution of pH 4.0, the resulting solution is
		A. red as [HInd] < [Ind ⁻]
		B. red as $\left[\text{HInd} \right] > \left[\text{Ind}^{-} \right]$
		C. yellow as [HInd] < [Ind ⁻]
		D. yellow as [HInd]>[Ind-]

O03	148	Consider the following equilibrium for an indicator:
		$HInd + H_2O \rightleftharpoons Ind^- + H_3O^+$
		When a few drops of the indicator methyl red are added to 1.0 M HCl, the colour of the resulting solution is
		 A. red and the products are favoured. B. red and the reactants are favoured. C. yellow and the products are favoured. D. yellow and the reactants are favoured.
O04	149	What is the pH at the transition point of an indicator if its K_a is 7.9×10^{-3} ?
		A. 0.98
		B. 2.10
		C. 7.00
		D. 11.90
O04	150	What is the pH at the transition point for an indicator with a K_a of 2.5×10^{-4} ?
		A. 2.5×10^{-4}
		B. 3.60
		C. 7.00
		D. 10.40
O05	151	The approximate K_a for the indicator phenolphthalein is
		A. 6×10^{-19}
		B. 8×10^{-10}
		C. 6×10^{-8}
		D. 2×10^{-2}

	NEUTRALIZATIONS OF ACIDS AND BASES				
P01	152	Which of the following indicators would be used when titrating a weak acid with a strong base? A. methyl red B. methyl violet			
		C. indigo carmine D. phenolphthalein			

P01	157	Which of the following indicators should be used when 1.0 M HNO ₂ is titrated with NaOH _(aq) ?
		A. methyl red B. thymol blue C. methyl orange D. indigo carmine
P02	158	A 0.10 M solution was tested with four indicators and the following was observed.
		The [OH ⁻] in this solution is A. 1×10 ⁻¹⁰ M B. 1×10 ⁻⁸ M C. 1×10 ⁻⁶ M D. 1×10 ⁻⁴ M
P02	159	In a titration, 10.0 mL of $H_2SO_{4(aq)}$ is required to neutralize 0.0400 mol of NaOH.
		From this data, the [H ₂ SO ₄] is A. 0.0200 M B. 2.00 M C. 4.00 M D. 8.00 M
P02	160	The stoichiometric point of a titration is reached when 35.50 mL 0.40 M HBr is added to a 25.00 mL sample of LiOH. The original [LiOH] is A. 0.014 M
		B. 0.024 M C. 0.28 M
		D. 0.57 M
P02	161	The equivalence point in a titration is reached when $20.0~\rm mL$ of $\rm H_2SO_4$ is added to $20.0~\rm mL$ of $0.420~\rm M$ KOH. The $\rm \left[H_2SO_4\right]$ in the original solution is A. $0.00840~\rm M$ B. $0.210~\rm M$ C. $0.420~\rm M$ D. $0.840~\rm M$
P03	162	How many moles of Mg(OH) ₂ are required to neutralize 30.00 mL of 0.150 M HCl?
		A. 2.25×10^{-3} mol
		B. 4.50×10^{-3} mol
		C. 5.00×10^{-3} mol D. 9.00×10^{-3} mol
		D. JOUNTO INC.


P03	163	What volume of 0.100 M N	aOH is required to n	eutralize a 10.0 mL sample	of 0.200 M H ₂ SO ₄ ?
		A. 5.0 mL B. 10.0 mL C. 20.0 mL D. 40.0 mL			
P03	164	Consider the following data	table:		
		BEAKER	VOLUME	CONTENTS	
		1	15 mL	0.1 M Sr(OH) ₂	
		2	20 mL	0.2 M NH ₄ OH	
		3	25 mL	0.1 M KOH	
		4	50 mL	0.2 M NaOH	
		Identify the beaker that requ	ires the smallest vol	ume of 0.1 M HCl for con	uplete neutralization.
		A. beaker 1 B. beaker 2 C. beaker 3 D. beaker 4			
P03	165	What volume of 0.250 M H ₂ A. 125 mL B. 150 mL C. 250 mL D. 500 mL	SO_4 is required to near	utralize 25.00 mL of 2.50 M	KOH?
P03	166	The volume of 0.200 M A. 10.0 mL B. 25.0 mL C. 50.0 mL D. 100.0 mL			
P03	167	The volume of 0.450 M HO A. 18.0 mL B. 20.0 mL C. 40.0 mL D. 80.0 mL	I needed to neutral	ize 40.0 mL of 0.450 M S	c(OH) ₂ is
P03	168	What volume of 0.15.00 mL of 0.100 A. 5.00 mL		s required to comple	etely neutralize
		B. 15.0 mL			
		C. 30.0 mL			
		D. 45.0 mL			


P04	169	The net ionic equation for the neutralization of HBr by Ca(OH) ₂ is
		A. $H_{(aq)}^+ + OH_{(aq)}^- \rightleftharpoons H_2O_{(l)}$
		B. $\operatorname{Ca}_{(aq)}^{2+} + 2\operatorname{Br}_{(aq)}^{-} \rightleftarrows \operatorname{CaBr}_{2(s)}$
		C. $2HBr_{(aq)} + Ca(OH)_{2(aq)} \rightleftharpoons 2H_2O_{(l)} + CaBr_{2(s)}$
		D. $2H_{(aq)}^{+} + 2Br_{(aq)}^{-} + Ca_{(aq)}^{2+} + 2OH_{(aq)}^{-} \rightleftharpoons 2H_{2}O_{(l)} + Ca_{(aq)}^{2+} + 2Br_{(aq)}^{-}$
P04	170	The complete ionic equation for the neutralization of acetic acid by sodium hydroxide is
		A. $H^+ + OH^- \rightleftharpoons H_2O$
		B. $CH_3COOH + OH^- \rightleftharpoons CH_3COO^- + H_2O$
		C. CH ₃ COOH + NaOH → NaCH ₃ COO + H ₂ O
		D. $CH_3COOH + Na^+ + OH^- \rightleftharpoons Na^+ + CH_3COO^- + H_2O$
P04	171	A net ionic equation for the reaction between CH ₃ COOH and KOH is
		J = (uq) - (uq) + J = (uq)
		B. $CH_3COOH_{(aq)} + OH_{(aq)}^- \rightleftharpoons H_2O_{(l)} + CH_3COO_{(aq)}^-$
		C. $CH_3COOH_{(aq)} + KOH_{(aq)} \rightleftharpoons H_2O_{(l)} + CH_3COOK_{(aq)}$
		D. $CH_3COOH_{(aq)} + K_{(aq)}^+ + OH_{(aq)}^- \rightleftharpoons H_2O_{(l)} + KCH_3COO_{(aq)}$
P04	172	Which equation represents a neutralization reaction?
		A. $Pb_{(aq)}^{2+} + 2Cl_{(aq)}^{-} \rightarrow PbCl_{2(s)}$
		B. $HCl_{(aq)} + NH_{3(aq)} \rightarrow NH_4Cl_{(aq)}$
		C. $BaI_{2(aq)} + MgSO_{4(aq)} \rightarrow BaSO_{4(s)} + MgI_{2(aq)}$
		D. $\operatorname{MnO}_{4(aq)}^{-} + 5\operatorname{Fe}_{(aq)}^{2+} + 8\operatorname{H}_{(aq)}^{+} \to \operatorname{Mn}_{(aq)}^{2+} + 5\operatorname{Fe}_{(aq)}^{3+} + 4\operatorname{H}_2\operatorname{O}_{(l)}$
P04	173	The reaction of a strong acid with a strong base produces
		A. a salt and water.B. a base and an acid.
		C. a metallic oxide and water.
		D. a non-metallic oxide and water.

P04	174	The net ionic equation for the titration of $\mathrm{HClO}_{4(aq)}$ with $\mathrm{LiOH}_{(aq)}$ is
		A. $H^+_{(aq)} + OH^{(aq)} \rightarrow H_2O_{(\ell)}$
		B. $HClO_{4(aq)} + OH_{(aq)}^{-} \rightarrow ClO_{4(aq)}^{-} + H_2O_{(\ell)}$
		C. $HClO_{4(aq)} + LiOH_{(aq)} \rightarrow LiClO_{4(aq)} + H_2O_{(\ell)}$
		D. $H^{+}_{(aq)} + ClO_{4}^{-}_{(aq)} + Li^{+}_{(aq)} + OH^{-}_{(aq)} \rightarrow LiClO_{4(aq)} + H_{2}O_{(\ell)}$
P04	175	The balanced formula equation for the neutralization of H ₂ SO ₄ by KOH is
		A. $H_2SO_4 + KOH \rightarrow KSO_4 + H_2O$
		B. $H_2SO_4 + KOH \rightarrow K_2SO_4 + H_2O$
		C. $H_2SO_4 + 2KOH \rightarrow K_2SO_4 + H_2O$ D. $H_2SO_4 + 2KOH \rightarrow K_2SO_4 + 2H_2O$
		$1. H_2 S O_4 + 2 R O H \rightarrow R_2 S O_4 + 2 H_2 O$
P05	176	A student combines 0.25 mol of NaOH and 0.20 mol of HCl in water to make 2.0 litres of solution. The pH of this solution is
		A. 1.3
		B. 1.6
		C. 12.4
		D. 12.7
P05	177	What is the pH of a solution prepared by adding 0.50 mol KOH to 1.0 L of 0.30 M HNO ₃ ?
		A. 0.20
		B. 0.70
		C. 13.30
		D. 13.80
P05	178	Calculate the pH of a solution formed when 50.0 mL of 4.0 M HCl is added to 50.0 mL of 2.0 M NaOH.
		A. 0.00
		B. 1.00 C. 2.00
		D. 7.00
P05	179	The pH at the equivalence point of a strong acid-strong base titration is
		A. equal to 0.00
		B. less than 7.00
		C. equal to 7.00 D. greater than 7.00

P05	180	
		What is the pH of the solution formed when 0.060 moles NaOH is
		added to 1.00 L of 0.050 M HCl?
		A. 2.00
		B. 7.00
		C. 12.00
		D. 12.78
P06	181	Which of the following curves best represents the titration of sodium hydroxide with hydrochloric acid?
		A. B.
		pH pH
		Volume of HCl (mL) added Volume of HCl (mL) added
		C. D.
		о. _{В.}
		pH pH
		Volume of HCl (mL) added Volume of HCl (mL) added
P06	182	At the equivalence point in a titration involving 0.1 M solutions, which of the following
		combinations would have the lowest conductivity?
		A. nitric acid and barium hydroxide
		B. acetic acid and sodium hydroxide
		C. sulphuric acid and barium hydroxide D. hydrochloric acid and sodium hydroxide
		D. Hydroemone acid and sodium nydroxide
P06	183	Which of the following fitrations would have an equivalence point less than all 7.9
		Which of the following titrations would have an equivalence point less than pH 7?
		A. NH ₃ and HCl
		B. NaOH and HNO ₃
		C. $Ba(OH)_2$ and H_2SO_4
		D. KOH and CH ₃ COOH
P06	184	Consider the following 0.100 M solutions:
		I. H ₂ SO ₄ II. HCl III. HF
		The equivalence point is reached when 10.00 mL of 0.100 M NaOH has been added to 10.00 mL of solution(s)
		A. II only.
		B. I and II only.
		C. II and III only. D. I, II, and III.

P06	185	Which of the following acid-base pairs would result in an equivalence point with pH greater than 7.0 ?
		A. HCl and LiOH
		B. HNO ₃ and NH ₃
		C. HClO ₄ and NaOH
		D. CH ₃ COOH and KOH
P06	186	
		pH 8 6 - 4 - 2 - Volume of acid added
		Which pair of 0.10 M solutions would result in the above titration curve?
		A. HF and KOH
		B. HCl and NH ₃
		C. H ₂ S and NaOH
D 00	40-	D. HNO ₃ and KOH
P06	187	A suitable indicator for the above titration is
		A. methyl violet.
		B. alizarin yellow.
		C. thymolphthalein.
		D. bromcresol green.
P06	188	Which of the following solutions should be used when titrating a 25.00 mL sample of CH ₃ COOH
1 00	100	that is approximately 0.1 M?
		A. 0.150 M NaOH
		B. 0.001 M NaOH
		C. 3.00 M NaOH
		D. 6.00 M NaOH

Q01	193	Which of the following graphs describes the relationship between the pH of a buffer and the volume of NaOH added to the buffer?
		A. B.
		pH pH
		Volume of NaOH added NaOH added
		C.
		рН
		Volume of NaOH added NaOH added
Q02	194	Which one of the following combinations would act as an acidic buffer?
		A. HCl and NaOH
		B. KOH and KBr
		C. NH ₃ and NH ₄ Cl
		D. CH ₃ COOH and NaCH ₃ COO
Q02	195	Which of the following compounds, when added to a solution of ammonium nitrate, will result in the formation of a buffer solution?
		A. ammonia
		B. nitric acid
		C. sodium nitrate D. ammonium chloride
Q02	196	Consider the following acid solutions:
002		
		I. H ₂ CO ₃ II. HClO ₄ III. HF
		Which of the above acids would form a buffer solution when its conjugate base is added?
		A. I only B. II only
		C. I and III only
000	107	D. I, II and III
Q02	197	Consider the following equilibrium:
		$HF_{(aq)} + H_2O_{(l)} \rightleftharpoons H_3O_{(aq)}^+ + F_{(aq)}^-$
		The above system will behave as a buffer when the $\begin{bmatrix} F^- \end{bmatrix}$ is approximately equal to
		A. K_a
		B. [HF]
		C. $[H_2O]$ D. $[H_3O^+]$
		D. [n ₃ O]

Q02	198	Which of the following represents a buffer equilibrium?	
		A. $HI + H_2O \rightleftharpoons H_3O^+ + I^-$	
		B. $HCl + H_2O \rightleftharpoons H_3O^+ + Cl^-$	
		C. $HCN + H_2O \rightleftharpoons H_3O^+ + CN^-$	
		D. $HClO_4 + H_2O \rightleftharpoons H_3O^+ + ClO_4^-$	
Q03	199	A basic buffer solution can be prepared by mixing equal numbers of moles of	
		A. NH ₄ Cl and HCl	
		A. NH ₄ Cl and HCl B. NaCl and NaOH	
		C. Na ₂ CO ₃ and NaHCO ₃	
		- "	
		D. NaCH ₃ COO and CH ₃ COOH	
Q03	200	Which of the following would produce a buffer solution when added to 1.0 M NH ₃ ?	
		A IDIO	
		A. HNO ₃	
		B. KNH ₂ C. NaOH	
		D. NH ₄ Cl	
		D. 1414C1	
Q03	201	A buffer solution is prepared by adding 1.0 mol of NaCH ₃ COO to 1.0 L of 1.0 M CH ₃ COOH.	
		The molar concentration of CH ₃ COO ⁻ is approximately	
		A. 0.0 B. 0.5	
		C. 1.0 D. 2.0	
Q03	202	A buffer solution can be prepared from	
		A. nitric acid and sodium nitrate.	
		B. sulphuric acid and sodium hydroxide.	
		C. hydrocyanic acid and sodium cyanide.	
		D. sodium hydroxide and sodium chloride.	
Q05	203	A student prepares a buffer by placing ammonium chloride in a solution of ammonia. Equilibrium is established according to the equation:	
		$NH_3 + H_2O \rightleftharpoons NH_4^+ + OH^-$	
		When a small amount of base is added to the buffer, the base reacts with the	
		A. NH ₃ and the pH decreases.	
		B. NH ⁺ ₄ and the pH decreases.	
		C. NH ₃ to keep the pH relatively constant.	
		D. NH ₄ ⁺ to keep the pH relatively constant.	

Q05	204	Consider the following equilibrium for a buffer solution:
		$NH_{4(aq)}^{+} + H_{2}O_{(1)} \rightleftharpoons H_{3}O_{(aq)}^{+} + NH_{3(aq)}$
		When a few drops of HCl are added,
		A. both the $[NH_3]$ and the $[NH_4^+]$ increase.
		B. both the $[NH_3]$ and the $[NH_4^+]$ decrease.
		C. the $[NH_3]$ decreases and the $[NH_4^+]$ increases.
		D. the $[NH_3]$ increases and the $[NH_4^+]$ decreases.
Q05	205	Consider the following:
		$CH_3COOH + H_2O \rightleftharpoons CH_3COO^- + H_3O^+$
		A buffer solution is prepared by adding $NaCH_3COO_{(s)}$ to $CH_3COOH_{(aq)}$. When a few drops
		of NaOH solution are added to the buffer, the equilibrium
		A. shifts left and [CH ₃ COO ⁻] increases.
		B. shifts left and [CH ₃ COO ⁻] decreases.
		C. shifts right and $\left[\text{CH}_3 \text{COO}^- \right]$ increases.
		D. shifts right and [CH ₃ COO ⁻] decreases.
Q06	206	Which of the following pairs of substances form a buffer system for human blood?
		A. HCl and Cl ⁻
		 B. NH₃ and NH₂⁻ C. H₂CO₃ and HCO₃⁻
		D. $H_3C_6H_5O_7$ and $HC_6H_5O_7^{2-}$

		ACID RAIN
R01	207	Which of the following oxides will form the most acidic solution?
		A. SO ₂ B. MgO
		C. Na ₂ O
		D. Al ₂ O ₃
R01	208	The balanced equation for the reaction between sodium oxide and water is
		A. $Na_2O + H_2O \rightarrow 2NaOH$
		B. $Na_2O + H_2O \rightarrow 2NaH + O_2$
		C. $Na_2O + H_2O \rightarrow 2Na + H_2O_2$
		D. $Na_2O + H_2O \rightarrow 2Na + H_2 + O_2$

R01	209	
	200	Which of the following oxides would hydrolyze to produce hydroxide ions?
		A. NO
		B. SO ₂
		C. Cl ₂ O
		D. Na ₂ O
R01	210	Which of the following oxides would hydrolyze to produce hydronium ions?
		A. CaO
		B. SO ₂
		C. MgO
		D. Na ₂ O
R01	211	Which of the following oxides forms a basic solution?
		A. K_2O
		B. CO_2
		$C. SO_3$
		D. NO ₂
R01	212	Which of the following is the weakest acid?
		A. HCIO
		B. HClO ₂
		C. HClO ₃
		D. HClO ₄
R01	213	
		Sulphur dioxide gas forms an acidic solution. The equation representing this reaction is
		A. $SO_{2(g)} + H_2O_{(\ell)} \rightarrow H_2SO_{3(aq)}$
		B. $SO_{2(g)} + 2H_2O_{(\ell)} \to H_2SO_{4(aq)} + H_{2(g)}$
		C. $SO_{2(g)} + H_2O_{(\ell)} \rightarrow SO_3^{2-}_{(aq)} + 2H^+_{(aq)}$
		D. $SO_{2(g)} + H_2O_{(\ell)} \rightarrow HSO_2^+_{(aq)} + OH^{(aq)}$
R01	214	The equation for the reaction of Cl ₂ O with water is
		A. $Cl_2O + H_2O \rightleftharpoons 2HClO$
		B. $Cl_2O + H_2O \rightleftharpoons 2ClO + H_2$
		C. $Cl_2O + H_2O \rightleftharpoons Cl_2 + H_2O_2$
		D. $Cl_2O + H_2O \rightleftharpoons Cl_2 + O_2 + H_2$

R01	215	A basic solution can be prepared from
		A. NO
		B. SrO
		$C. CO_2$
		D. SO_3
R02	216	The pH range of 'acid rain' is often
		A. 3 to 6
		B. 6 to 8
		C. 7 to 9
		D. 10 to 12
R03	217	'Normal' rain water is slightly acidic due to the presence of dissolved
		A. methane.
		B. carbon dioxide.
		C. sulphur dioxide. D. nitrogen dioxide.
D 00	0.10	<u> </u>
R03	218	The approximate pH of "normal" rain water is
		A. 0
		B. 6
		C. 7
		D. 8
R03	219	
		Normal rainwater has a pH of approximately 6 as a result of dissolved
		A. oxygen.
		B. carbon dioxide.C. sulphur dioxide.
		D. nitrogen dioxide.
R04	220	Which of the following pairs of gases are primarily responsible for producing "acid rain"?
		A. O_2 and O_3
		B. N_2 and O_2
		C. CO and CO ₂
		D. NO ₂ and SO ₂

R04	221	Which of the following gases results in the formation of acid rain?
		A. H_2
		B. O ₃
		C. SO ₂
		D. NH ₃
R05	222	Which of the following is primarily responsible for acid rain?
		A. HCl
		B. H_2SO_4
		C. HClO ₄
		D. CH ₃ COOH
R05	223	A gas which is produced by internal combustion engines and contributes to the formation of acid rain is
		A. H ₂
		B. O ₃
		C. CH ₄
		D. NO ₂

ANSWERS TO STUDY GUIDE QUESTIONS:

PROPERTIES AND DEFINITIONS

TOPERTIES AND		
1. D	11. C	21. B
2. B	12. D	22. A
3. C	13. B	23. D
4. C	14. B	24. C
5. B	15. C	25. C
6. D	16. D	26. D
7. B	17. A	27. B
8. C	18. A	28. B
9. D	19. D	
10. D	20. C	

STRONG/WEAK ACIDS AND BASES

29. C	37. B	45. D
30. B	38. B	46. C
31. A	39. B	47. B
32. A	40. D	48. D
33. C	41. A	49. A
34. B	42. C	50. D
35. B	43. B	
36. C	44. C	

K_w, pH, pOH

51. D	65. B	79. B
52. A	66. A	80. C
53. D	67. C	81. C
54. B	68. C	82. C
55. A	69. B	83. B
56. A	70. C	84. D
57. A	71. C	85. A
58. B	72. C	86. D
59. B	73. B	87. C
60. C	74. D	88. C
61. B	75. A	89. C
62. C	76. A	90. B
63. A	77. C	91. B
64. C	78. C	

Ka and Kb PROBLEM SOLVING

92. B	100. B	108. B
93. D	101. A	109. B
94. C	102. D	110. C
95. C	103. C	111. A
96. A	104. B	112. C
97. C	105. A	113. C
98. B	106. C	
99. B	107. A	

HYDROLYSIS OF SALTS

114. B 115. A 116. B

117. A 118. C 119. B 120. A 121. C 122. B	123. D 124. A 125. A 126. A 127. A 128. A	129. B 130. D 131. D 132. A
INDICATORS		
133. A 134. C 135. A 136. A 137. C 138. D 139. C	140. B 141. B 142. A 143. A 144. C 145. A 146. A	147. D 148. B 149. B 150. B 151. B
NEUTRALIZATIONS	OF ACIDS AND BASES	
152. D 153. A 154. B 155. B 156. A 157. B 158. D 159. B 160. D 161. B 162. A 163. D 164. C 165. A	166. B 167. D 168. D 169. A 170. D 171. B 172. B 173. A 174. A 175. D 176. C 177. C 178. A 179. C	180. C 181. A 182. C 183. A 184. C 185. D 186. B 187. D 188. A 189. D 190. D 191. D
192. C 193. D 194. D 195. A 196. C	197. B 198. C 199. C 200. D 201. C	202. C 203. D 204. C 205. C 206. C
ACID RAIN		
207. A 208. A 209. D 210. B 211. A 212. A	213. A 214. A 215. B 216. A 217. B 218. B	219. B 220. D 221. C 222. B 223. D