
The Origins of Burroughs Extended Algol

2019 UNITE MCP 4059 1

The Origins of

Burroughs Extended Algol

The Origins ofThe Origins of

Burroughs Extended AlgolBurroughs Extended Algol

Paul Kimpel

2019 UNITE Conference

Session MCP 4059

Wednesday, 2 October, 9:45 a.m.

Copyright © 2019, All Rights Reserved

The Origins of
Burroughs Extended Algol

2019 UNITE Conference
Minneapolis, Minnesota

Session MCP 4059

Wednesday, 2 October 2019, 9:45 a.m.

Paul Kimpel
San Diego, California

http://www.digm.com

e-mail: paul.kimpel@digm.com

Copyright © 2019, Paul H. Kimpel

Reproduction permitted provided this copyright notice is preserved
and appropriate credit is given in derivative materials.

The Origins of Burroughs Extended Algol

2019 UNITE MCP 4059 2

It All Started in Pasadena…It All Started in Pasadena…

Extended Algol has always been the primary language for MCP systems, extending back to the Burroughs
B5000 of 1963. No doubt more lines of code have been written in COBOL for these systems, but most of the
really significant code has been written in Algol or specialized languages derived directly from Algol. You
can't be considered to be a master programmer for MCP systems unless you are also a master Algol
programmer. It's our assembler language, our systems language, and for some of us, our everyday, go-to,
application development language.

This presentation attempts to trace the development of Algol for Burroughs and Unisys MCP systems, and to
highlight how Algol influenced the development of these systems and their software. It starts at the beginning
of the commercial computing business for Burroughs and goes through the introduction of the systems in the
early 1970s that form the basis of our current MCP (E-mode) architecture – the B6500/B6700. It does not
attempt to cover the many significant enhancements to Extended Algol that have occurred since then. That is
a whole other talk in itself.

Our story begins in Pasadena, California, a city to the north-east of downtown Los Angeles. "Pasadena" is a
Chippewa word meaning "crown of the valley," as it is in the foothills of the San Gabriel Mountains,
overlooking the San Gabriel Valley. It has always been home to a thriving mixed population, engaged in art,
culture, business, and technology. In particular, you find there the Huntington Library and Gardens, the
Norton Simon Museum, the Pasadena Playhouse, the Rose Bowl, the Tournament of Roses Parade, and a
whole lot of high technology – including Caltech, and the Jet Propulsion Laboratory.

The Algol language itself did not begin in Pasadena, but we'll get to that.

The Origins of Burroughs Extended Algol

2019 UNITE MCP 4059 3

2019 MCP 4059 3

Who Is this Guy?Who Is this Guy?

 Herbert Hoover, Jr
 Engineer (Stanford, 1925)

– Lifelong interest in Radio
– Built radio guidance network for Western Air Express

 Entrepreneur
– Started U.S. Geophysical, 1935 – explore for oil using radio
– Spun off Consolidated Engineering Corp (CEC), 1937
– Renamed Consolidated Electrodynamics Corp, 1955

Herbert Hoover, Jr

1903-1969

Herbert Hoover

31st President of the
United States

1874-1964

The man in the picture on the right is someone about whom most people probably do not know. The man in
the picture on the left is another story – Herbert Hoover, 31st President of the United States. They have the
same name, and are father and son.

Hoover, Jr., like his dad, was an engineer, and like his dad, went to Stanford. He developed a lifelong interest
in radio, especially aviation radio. In 1928 he was hired by Western Air Express (later Western Airlines, now
part of Delta Airlines) in Los Angeles to implement a radio network for their flight operations. By 1930 he
was their chief engineer.

After leaving Western Air Express in the early 1930s, Hoover's interest in radio focused on exploration
geophysics – the use of radio to prospect for petroleum. Oil had first been discovered in Southern California
in 1876, and a large oil field was discovered in the Los Angeles basin in 1892. This stimulated the creation of
technology businesses in the Los Angeles area to support the exploration for and extraction of oil.

In 1935 Hoover started a company in Pasadena, United Geophysical, to develop techniques for exploration of
oil by seismology. A few years later, he founded Consolidated Engineering Corporation (CEC) to develop
and manufacture instrumentation, again focusing on oil exploration. The company later changed its name to
Consolidated Electrodynamics Corporation to highlight their main product line.

CEC went public in 1945, after which Hoover sold his interest in it. United Geophysical was eventually
purchased by Union Oil. In the 1950s, Hoover began assuming diplomatic roles. In the Eisenhower
administration, he served as a special envoy to Iran and Under Secretary of State for John Foster Dulles.

Hoover contracted tuberculosis as a young man and was never in robust health afterwards. He survived his
father by only a few years, passing away after a sudden stroke in 1969.

Most of the information on this slide is based on the Wikipedia article,
https://en.wikipedia.org/wiki/Herbert_Hoover_Jr.

The Origins of Burroughs Extended Algol

2019 UNITE MCP 4059 4

2019 MCP 4059 4

Consolidated Electrodynamics (CEC)Consolidated Electrodynamics (CEC)

 Instrumentation for seismic exploration
 Sensors, recorders

 Mass spectrometer, 1942

 Mass spectroscopy analyzes compounds
 Goal is to determine chemical composition

 Ionizes a sample – passed through magnetic field

 Yields a spectrum of mass/charge ratios (m/z)

 Spectrum analysis requires solving simultaneous
linear equations (n equations with n unknowns)

 It's a lot of calculations

CEC developed and manufactured a variety of instruments, including including various sensors and data
recorders. Most, if not all, of this equipment prior to and during World War II was analog in nature, rather
than digital.

The Big Kahuna of CEC's products, however, was a device known as a mass spectrometer. The purpose of a
mass spectrometer is analysis of a compound to determine its chemical composition.

It works by ionizing a portion of the sample compound and passing the resulting stream of charged particles
through a strong magnetic field. The field spreads the stream into a spectrum based on the ratio of each
particle's mass (m) to its ionized charge (z). The position in the spectrum of a particle's m/z ratio indicates
what type of element or molecule fragment it is, while the intensity of the stream of particles at that position
indicates the relative amount of that material.

Analyzing the spectra coming from a mass spectrometer requires solving a set of simultaneous linear
equations, i.e., solving n equations having n unknowns. Anyone who has solved such a problem manually for,
say, three equations with three unknowns, knows that it's a lot of calculations. Mass spectrometry analysis
usually involves significantly more equations and unknowns.

Prior to the advent of digital computers, calculations of this sort had to be done manually. If you were lucky,
you had a mechanical calculator, which could add, subtract, multiply (slowly), and divide (even more slowly).
Storage of intermediate results was done using pencil and paper. There was no automation. In fact, through
the 1940s, the term "computer" referred to a person doing such calculations, not any such device for doing
them.

For real-world mass spectrometry problems, the manual calculations required were extremely tedious and
slow. Since the work was being done by humans, with lots of recording and reusing of intermediate results,
errors in the calculations were common.

The Origins of Burroughs Extended Algol

2019 UNITE MCP 4059 5

2019 MCP 4059 5

Mass SpectroscopyMass Spectroscopy

CEC model 21-103
Mass Spectrometer

Typical mass spectrum

This slide shows a picture of the CEC model 21-103 mass spectrometer from the 1950s. The readings from
this machine would appear as a chart of mass-to-charge ratio (m/z) vs. the relative intensity of the ion stream
at each ratio value. This analog data would then need to be digitized manually to prepare it for further
analysis.

The Origins of Burroughs Extended Algol

2019 UNITE MCP 4059 6

2019 MCP 4059 6

Berry's Analog SolutionBerry's Analog Solution

Clifford Berry John Atanasoff

Berry at the Atanasoff-
Berry Computer (ABC),

Iowa State, ca. 1942

CEC Analog Computer for
12 x 12 Equations

CEC had a very smart guy working for them as Chief Physicist, Clifford Berry. Berry had a number of
patents in the field of spectrometry. In 1945, he addressed the data analysis problem by designing for CEC an
analog calculator that would solve systems of up to 12 equations in 12 unknowns.

A person solving a 12x12 system required about five hours of unrelenting toil using a mechanical calculator.
The CEC model 30-103 "Electrical Computer" could do the same in about 44 minutes. With its power supply,
it weighed 235 pounds.

Another reason for mentioning Berry and his analog calculator is to point out that he was the same Clifford
Berry who worked as a graduate student with Professor Jon Atanasoff at Iowa State University (then Iowa
State College) during 1939-1942 on what is arguably the first digital electronic computer in the United States,
the Atanasoff-Berry Computer, or ABC. It was not a programmable computer in the sense we think of today,
being designed like Berry's later analog device to solve systems of simultaneous equations. Nonetheless, it
made significant advances in the design of circuits for electronic calculation.

The ABC is famous for another reason. John Mauchly visited Atanasoff at Iowa State in 1941 and viewed the
ABC in its then-current state of development. In 1947, Mauchly and J. Presper Eckert filed a patent
application on behalf of Sperry Rand, based on their work on the ENIAC, with broad claims covering digital
electronic computing machines. The patent was awarded in 1964, but was then challenged by Honeywell. In
1973, a federal district court invalidated the Sperry Rand patent largely based upon the prior art of the ABC.

So you could say that Atanasoff and Berry were responsible for Sperry Rand being denied a patent covering
just about all of digital electronic computing. The world would probably be a much different place today if
that patent had been upheld.

http://www.tjsawyer.com/B205home.php

The Origins of Burroughs Extended Algol

2019 UNITE MCP 4059 7

2019 MCP 4059 7

From Analog to DigitalFrom Analog to Digital

 Analog computer worked, but was insufficient
 Limited number of equations/unknowns (12 max)

 Time-consuming, limited precision (~3 digits)

 CEC started researching digital computation
 Initially intended to design a specialized calculator

 Assumed 8 digits of precision adequate

 Discovered customers did not want just a calculator

 CEC altered course to develop a full computer
 Hired Harry Huskey to teach engineers digital logic

 Hired Norwegian mathematician Ernst Selmer to
design the arithmetic and control logic

 Resulted in CEC 30-201, 30-202 prototypes (1952-54)

Back to Berry's 1945 analog Electrical Computer –

The analog calculator certainly worked, but it was quickly found to be insufficient for the needs of CEC's
customers. A system of 12x12 equations was not all that large. Alas, the complexity of the circuitry grows for
larger systems, so building significantly larger analog calculators was not practical. Getting results in 44
minutes was a lot better than getting them in five hours, but that was still pretty slow. Finally, as with most
analog devices, you were lucky if you could get three digits of precision in the results.

Thus, around 1951, CEC started exploring the feasibility of building a digital electronic calculator to solve
larger systems of equations. Their initial designs were oriented to a device that would support eight digits of
precision.

Ensuing discussions with customers and potential customers uncovered two problems with this approach: (a)
eight digits was not enough – most people wanted at least 10 digits, and (b) no one was much interested in
spending a lot of money on just a calculator.

So, CEC went to Plan B and started thinking about designing a full-up, programmable, digital computer. They
hired Harry Huskey, who had spent time in the UK working on some of the early British computers, and was
currently working at the University of California at Los Angeles on a computer for the National Bureau of
Standard, the SWAC. Huskey did not work on the CEC design, but presented lectures to the CEC engineering
staff on digital design techniques.

They also hired the Norwegian Ernst Selmer, a number theorist, who was then a visiting lecturer at Caltech,
as a consultant. He eventually ended up designing much of the arithmetic and control logic for the the
computer.

During 1950-1954, this work produced a mock up, or "breadboard" system known as the 36-101, and two
prototype models, known as the CEC 30-201 and 30-202. Based on these, a third version, the CEC 30-203,
was developed as a product for sale to customers.

http://www.tjsawyer.com/B205home.php

The Origins of Burroughs Extended Algol

2019 UNITE MCP 4059 8

2019 MCP 4059 8

CEC 36CEC 36--101 "Breadboard" System101 "Breadboard" System

John Alrich at the Controls

This slide shows the initial "breadboard" system, used to test circuit designs and debug the control logic.

John Alrich was a young engineer who played a significant role in the development of the new CEC computer
system. He also had a significant role in the implementation of the IBM 610 Auto Point, sometimes referred
to as the world's first personal computer. IBM contracted with ElectroData to do portions its design and
construction of the first prototypes. See http://www.columbia.edu/cu/computinghistory/610.html.

The Origins of Burroughs Extended Algol

2019 UNITE MCP 4059 9

2019 MCP 4059 9

CEC CEC ElectroData ElectroData BurroughsBurroughs

 CEC decided computers weren't their thing
 Very capital-intensive, outside their main business

 Spun off ElectroData as public corporation (1954)

 Moved to 460 Sierra Madre Villa in Pasadena, CA

 ElectroData's success
 Production model "Datatron 203" announced 2/1954

 Models 204 (mag tape) and 205 ("Cardatron") by 1955

 For a while, 3rd largest computer manufacturer in U.S.

 Financial pressures became overwhelming
 Burroughs having trouble entering computer business

 Offered to buy ElectroData in 1956

 ElectroData became the "ElectroData Division"

Recall that CEC got into the computer business because their customers had lots of data coming from their
mass spectrometer products that needed to be analyzed. They quickly realized that building, marketing, and
supporting electronic computer systems was an entirely different business from instrumentation. In particular,
it was extremely capital-intensive.

To extract themselves from this situation, they spun off their Computer Division in early 1954 as a separate,
public corporation, retaining 36% ownership, and offering the rest on the American Stock Exchange, initially
at $3.50 per share. The new company was named ElectroData. They moved to a new building at 460 Sierra
Madre Villa in Pasadena, which became the home for Burroughs West Coast engineering and manufacturing
for the next more than 40 years.

The CEC 30-103, so named by CEC's project numbering convention, was renamed the ElectroData "Datatron
203." Deliveries to customers started in early 1954. The initial 203 supported only paper tape input/output,
plus a 10 character/second Flexowriter electric typewriter.

Extensions to the original design to support a few additional instructions plus magnetic tape (3/4-inch, 100
BPI, fixed-block, dual-lane recording) resulted in the Datatron 204 in 1955. Further extensions to implement
the "Cardatron" interface for IBM punched-card tabulating equipment (the 089 collator, 523 summary punch,
and 407 tabulator) resulted in the Datatron 205 in 1956. The entire series is often known as simply the 205 –
and incorrectly as the B205. The B200-series systems were entirely different and did not appear until around
1960.

The Datatron 20x machines proved to be quite popular and sold well, competing with machines such as the
IBM 650. For a while in the mid-1950s, ElectroData was the third largest manufacturer of computers in the
United States. With this success, however, the same financial pressures that had driven CEC to spin off
ElectroData intensified. By early 1956, management could not find a way to attract the necessary capital to
continue operations, so began preparations to shut down the company and liquidate its assets.

It was at this point that Burroughs entered the picture. They had been struggling to transition from mechanical
to electronic products and enter the commercial computer business. Just as ElectroData was preparing to
throw in the towel, Burroughs made them an offer to purchase the company. The deal was finalized in June
1956, with the ElectroData Corporation becoming the ElectroData Division of the Burroughs Corporation.

http://www.tjsawyer.com/B205home.php

The Origins of Burroughs Extended Algol

2019 UNITE MCP 4059 10

2019 MCP 4059 10

ElectroData Datatron 205 (1955)ElectroData Datatron 205 (1955)

This slide shows a picture of a Datatron 205. The processor "main frame" with its maintenance panel is in the
rear left. A man sits in front of the so-called Programmer's Console in the center with the paper tape
equipment and Flexowriter in the foreground. In the rear right are tape drives and their controller cabinet.

As we shall shortly see, that Programmer's Console would later become famous by itself in an entirely
different role.

The Origins of Burroughs Extended Algol

2019 UNITE MCP 4059 11

2019 MCP 4059 11

Datatron 20x DetailsDatatron 20x Details

 Vacuum-tube, decimal, drum memory
 4000 11-digit words, 8.4ms access time

 80 words, 0.84ms access ("high-speed loops")

 142.8 KHz clock rate

 Digit-sequential operation internally

 First index register in U.S. ("B register")

 Optional hardware floating-point

 Peripherals
 203 – paper tape, Flexowriter typewriter

 204 – adds fixed-block, dual-lane magnetic tape

 205 – adds Cardatron buffered card interface to
IBM tabulating equipment (089, 523, 407)

The Datatron 20x systems were fairly typical of vacuum-tube, decimal, drum-memory systems in the 1950s.
Memory consisted of 11-digit words, each having ten decimal digits plus a sign digit.

The memory was partitioned into a 4000-word main portion, consisting of 20 bands of 200 words each, which
had an average access time of 8.4 milliseconds – that's a memory access time, not an I/O time. The second
portion of memory, known as the "high-speed loops" occupied four bands of 20 words each on the same
drum. Using separate read and write heads and a special feedback loop between the heads, theses additional
80 words were available in an average of 0.84ms each. There were special instructions to move data between
the main memory and the loops and to execute code from the loops.

The clock rate was 142.8KHz, and was determined from timing signals recorded on the drum. Data
transferred to and from the drum in digit-sequential fashion, so internally all data was processed one digit at a
time. The adder and all of the data paths were only one digit wide.

One architecturally significant feature was the four-digit "B" register. This was the first index register to
appear in a U.S. computer system. When an instruction with a negative sign digit was executed, the contents
of the B register were added to the instruction's four-digit operand address without affecting the instruction
word in memory. The idea probably came from Harry Huskey, as some of the British machines on which he
had worked earlier had so-called "B lines" that did a similar form of address modification.

A floating-point arithmetic module was developed later and offered as an optional component. It was housed
in a separate cabinet next to the mainframe and could be added to a system in the field. With the B register
and floating-point, the 20x systems became a popular choice for highway departments and engineering
organizations needing a relatively inexpensive computer for design calculations.

As mentioned earlier, the 20x systems eventually supported input/output using paper tape, magnetic tape (3/4-
inch, dual-lane, fixed-block, overwrite-in-place), and the Cardatron adapter for IBM card machines.

The Origins of Burroughs Extended Algol

2019 UNITE MCP 4059 12

2019 MCP 4059 12

It Wasn't Just GuysIt Wasn't Just Guys

Sibyl Rock
Mathematician, Analyst, Customer
Liaison, Algorithm Designer
UCLA (1931)

Gloria Bullock
Mathematician,

Customer Education
First Datatron Programmer

Hunter College (1950)

One interesting note about the Pasadena operation, given the era, was that it wasn't just guys. Sibyl Rock
initially worked at CEC as a mathematician, problem analyst, and algorithm designer. She became something
of a customer liaison, and was instrumental in helping refine the requirements for CEC's initial computer
design. I suspect she was the one who ferreted out from customers that eight-digit precision was inadequate,
and that nobody was very interested in just a calculator.

Another significant participant in the early CEC/ElectroData years was Gloria Bulock, an African-American
originally from New York City. She was also a mathematician, and has the honor of not only being the first
person to write a program for the 30-201 computer, but the first one to write one that worked. It was a
program for computing prime numbers. She became involved in developing training materials and teaching
customers how to program the Datatron machines, then ran the ElectroData Training Department for several
years.

The Origins of Burroughs Extended Algol

2019 UNITE MCP 4059 13

2019 MCP 4059 13

A Second Life for the 205A Second Life for the 205

Lost in Space, 1965

Angry Red Planet, 1959

See: http://starringthecomputer.com/
computer.php?c=45

The Datatron machines had a long and useful life, but by the early 1960s they were obsolete and being
replaced. The used machines found a second life, although not as computers, but rather as props in 1960s
science fiction/spy movies and TV programs. Any fan of Lost in Space will recognize the Datatron
Programmer's Console. It was also used as the Bat Computer in the 1960s Batman TV series. Other 205
components also made appearances, especially the tape drives, power supplies (with all those meter dials),
and mainframe cabinets with the covers off and vacuum tubes exposed.

There is a whole web site devoted to the use of computer equipment as props. It has a section on the 205:

http://www.starringthecomputer.com/computer.html?c=45

There is also something of a cult that has sprung up around the 205 Programmer's Console, especially among
Lost in Space fans. For about $2000 USD you can even buy a replica console. See

http://www.angelfire.com/scifi/B205/

The Origins of Burroughs Extended Algol

2019 UNITE MCP 4059 14

2019 MCP 4059 14

Burroughs 220 (1957)Burroughs 220 (1957)

With the relative success of the Datatron 20x machines and the new financial backing provided by the
Burroughs acquisition, the ElectroData Division designed a new machine, which became known as the
Burroughs 220. As we will see shortly, this system is to play a significant role in the origin of Extended
Algol.

The Origins of Burroughs Extended Algol

2019 UNITE MCP 4059 15

2019 MCP 4059 15

Burroughs 220Burroughs 220

 Follow-on to the Datatron 205
 Larger core memory replaces drum memory

 Still vacuum-tube, decimal, internally digit-sequential

 200KHz clock (up from 143KHz)

 Burroughs trying to make strong showing in both
commercial and scientific applications
 Same 11-digit words, hardware floating-point

 Sophisticated magnetic tape subsystem

 Cardatron buffered punched-card interface

 Automatic Programming group in Pasadena
 Developing assemblers and programming aids

 Working on IBM-compatible FORTRAN compiler

The 220 started as an attempt to replace the 205's memory drum with core memory. That idea did not work
out, so a team at the ElectroData Division, headed by Edward (Ted) Glaser designed an entirely new machine.
Glaser was the chief logician for the design, and interestingly, was totally blind.

The new machine had a larger and much faster core memory than the 205's drum, up to 10,000 words in size,
with an access time of 5 microseconds. The words were the same 11-digit size and format as for the 205. The
220 used a 200KHz clock rate (up from the 205's 142.7KHz), but internally the adder and all data paths were
still only one digit wide. Nonetheless, it was a lot faster system than the 205.

The 205 had enjoyed a reasonable success in both scientific and commercial applications. With the 220,
Burroughs was trying very hard to penetrate further into both markets. Floating point was now standard and
integrated into the CPU. The 220 had a tremendously sophisticated magnetic tape subsystem, still using 3/4-
inch tape with dual lanes and the ability to overwrite data blocks in place. The Cardatron interface for IBM
tab equipment was slightly improved and offered with the 220 as well.

The ElectroData Division was beginning to recognize the role and value of software for their computer
systems. They established a group within Marketing known as Automatic Programming. Programming at this
time was considered to be the process of translating a program's design (using flowcharts, decision tables, and
other higher-level expressions) into the instructions the machine would execute. Automatic Programming was
simply an attempt to automate that step in the software development process. Today we would call it
"compiling." They initially focused on symbolic assemblers and other low-level programming aids.

The 220 hit the market at about the same time that IBM released the initial implementation of FORTRAN.
FORTRAN proved almost immediately to be highly popular, so Automatic Programming was given the task
of developing a FORTRAN compiler for the 220. This project had an impressive set of requirements,
principally that it be able to compile programs that would execute without error for any of the FORTRAN
compilers for any of the IBM machines – apparently including those containing embedded machine code.
This project was to trigger a change in direction in Pasadena that is central to our story.

Alas, the 220 was an interesting and productive machine in many ways, but the timing was bad. The 220
turned out to be the last of the major vacuum-tube computer systems, released at a time when other
manufacturers were introducing transistorized designs. It did not sell all that well.

The Origins of Burroughs Extended Algol

2019 UNITE MCP 4059 16

Enter AlgolEnter Algol

Thus far, we've talked about some company history for CEC, ElectroData, and Burroughs, and looked at
some Really Old Iron, but we've hardly mentioned Algol at all. Now we will.

The Origins of Burroughs Extended Algol

2019 UNITE MCP 4059 17

2019 MCP 4059 17

Programming Was Hard in the '50sProgramming Was Hard in the '50s

 Difficult machines, primitive tools
 Lots of programming in absolute machine code

 Simple assemblers began to appear

 Most computation was numerical
 Scientific, engineering, mathematical problems

 Growing interest in automatically translating standard
math notation to computer instructions
– Short Code, Schmitt & Mauchly (BINAC/Univac I, 1950)
– AUTOCODE, Glennie (Manchester Mark I, 1952)
– A-0, Hopper (UNIVAC I, 1952)
– I.T., Perlis (Purdue University, 1955, Datatron 205)
– FORTRAN, Backus (IBM, 1957, IBM 704)

 Growing interest in exchanging programs among
different computer systems

It is easy for us today to forget how difficult computer programming was in the 1950s. Common instruction
set and input/output features we take for granted were still being worked out. Memory was slow, expensive,
and not that reliable. Instruction sets were oriented more towards circuit efficiency than programmability and
software support. Worse, the programming tools were extremely primitive – a lot of programming was
originally done in absolute machine code. Simple symbolic assemblers began to appear by the mid-1950s, but
compilers were virtually unheard of.

Most computation was numerical – it's why we call them computers, after all – and even non-numerical
operations were implemented as manipulations of numerical values, just interpreted differently for purposes
of input/output. Regardless, there were a large number of problems in science, engineering, and mathematics
that generated a strong demand for automatic computation.

Because of this strong and growing demand for numerical computation, there was also growing interest in
translating standard mathematical notation (or something close to it) automatically into machine instructions.
The slide shows a list of some of the better known efforts in this area during the early/mid-1950s. These
indicate the direction in which the Automatic Programming group at ElectroData was intending to go.

This growing interest in automatic translation and code generation culminated in the release of the
FORTRAN language for the IBM 704 in 1957, after four years of development and about 25 labor-years of
effort. It was an immediate success, as it brought the ability to program directly to ordinary scientists and
engineers, bypassing the need in many cases for the analyst/designer/coder teams that had been required
previously. The success of FORTRAN stimulated efforts to create compilers for the language all across the
computer industry, including the ambitious IBM-compatible compiler project for the 220 at the ElectroData
Division of Burroughs.

Another problem that users faced in the early/mid-1950s was that, if you had written a program for one
computer system but then wanted to run it on another, even of the same manufacturer, you pretty much had to
start over from scratch. It was difficult enough to write anything at all and get it to work to worry about
standardization and compatibility. FORTRAN started to show some promise in this area, but FORTRAN was
IBM's baby, built at great expense to sell their computer systems. The last thing IBM wanted was a
standardized language that allowed you to run your programs on anyone else's products. Thus, standardization
was something that was not going to come out of the computer industry by itself.

The Origins of Burroughs Extended Algol

2019 UNITE MCP 4059 18

2019 MCP 4059 18

The International Algebraic LanguageThe International Algebraic Language

 1955-1957
 German GAMM society working on general computing

and formula translation

 Conference in Los Angeles on exchanging computer
data and programs
– ACM, SHARE, USE, DUO
– Concludes a universal programming language very desirable

 1958
 GAMM and ACM meet to exchange proposals

 Joint session in Zurich to resolve differences

 Result is "Preliminary Report – International Algebraic
Language" (IAL)

 Becomes known as "Algol-58"

The desire of having a standard programming language that would work across different computer systems
was particularly strong in academic and research institutions. The German mathematical society GAMM
started working on one for general computing and algebraic formula translation as early as 1955.

Then in 1958, the Association for Computing Machinery (ACM) organized a conference in Los Angeles on
ideas and techniques for exchanging computer data and programs between systems. Represented at the
conference were SHARE (the IBM user group), USE (the Sperry Univac user group), and DUO, the Datatron
User Organization (the Burroughs/ElectroData user group). One of the prime conclusions of the participants
in this conference was that a standard, universal programming language was very desirable.

Following the ACM conference, GAMM contacted the ACM concerning unification of their two efforts, and
the two agreed to meet in Zurich in 1958 to resolve differences in their proposals. The result of that meeting
was a document, the "Preliminary Report—International Algebraic Language," published in the
Communications of the ACM (vol. 1 #12, Dec. 1958, pages 8-22).

This preliminary description of a programming language – it was not yet a specification for one – launched a
number of implementation efforts on several different machines, including the well-known JOVIAL and
NELIAC variants in the United States, and one other we'll talk about in a few minutes.

As an aside, DUO merged a few years later with another Burroughs user group, CUE (Cooperating Users'
Exchange) to form CUBE (Cooperating Users of Burroughs Equipment). Subsequent to the 1986 merger of
Burroughs and Sperry, CUBE and USE merged in the mid-1990s to form the present UNITE organization. So
the precursors of UNITE were very much at the table during the dawn of the development and standardization
of algorithmic languages.

The Origins of Burroughs Extended Algol

2019 UNITE MCP 4059 19

2019 MCP 4059 19

AlgolAlgol--58 Example58 Example
procedure Simps (F(), a, b, delta, V);

begin
Simps:

Ibar := V×(b-a);
n := 1; h := (b-a)/2;
J := h×(F(a) + F(b));

J1:
S := 0;
for k := 1 (1) n;

S := S+F(a + (2×k-1)×h);
I := J + 4×h×S;
if (delta < abs(I-Ibar));

begin
Ibar := I;
J := (I+J)/4; n := 2×n; h := h/2;
go to J1
end;

Simps := I/3;
return;
integer (k, n)
end Simps

area := Simps(poly(), x, x+20, 210-5, 51025);

This slide shows an example of an Algol-58 program, taken from the Preliminary Report, that implements
numerical integration using Simpson's method. It exhibits many of the signature features we recognize in
modern Extended Algol, and a few that look a little strange.

The Preliminary Report proposed specifying the language at three levels:

• A Reference Language that defines the language.

• A Publication Language used to state and communicate algorithms (e.g., by publishing them in a
journal).

• One or more Hardware Representations that are subsets of the Reference Language, allowing them
to be handled by the character sets and input/output equipment of physical computer systems.

This example is expressed in the Publication Language.

The Origins of Burroughs Extended Algol

2019 UNITE MCP 4059 20

2019 MCP 4059 20

Meanwhile, Back in Houston…Meanwhile, Back in Houston…

 Robert S. ("Bob") Barton
 1954 – Takes job with Shell

Development Research
 1957 – Working with young team

on "Shell Assembler" for the 205
 1959 – Leaves Shell for Burroughs in Pasadena

 Part of team ("the arthropods") follows Barton
 Joel Erdwinn
 Clark Oliphint
 Dave Dahm (still a summer-student employee)

 Barton heads Automatic Programming group
 Now responsible for the ambitious IBM-compatible

FORTRAN compiler project for the 220

Let us set the work towards specifying a universal algorithmic programming language aside for a bit and turn
to the person who, almost certainly more than any other, was responsible for Algol on Burroughs systems –
Robert S. ("Bob") Barton.

Barton had a degree in mathematics from the University of Iowa and worked at the IBM Applied Science
Department in the early 1950s. In 1954 he took a job with a subsidiary of Shell Oil Company, Shell
Development Research, which had a Datatron 205 computer system. While there, he managed a group of
talented, young programmers developing what became known as the Shell Assembler for the 205, which was
quite an advanced macro assembler for its time – especially given the limited physical resources of the 205. In
1959, he left Shell to take a job managing the Automatic Programming group at the Burroughs ElectroData
Division in Pasadena.

Part of the team of young turks who worked with Barton in Houston followed him out to California, most
notably Joel Erdwinn, Clark Oliphint, and Dave Dahm (who initially was still an undergraduate student and
only came out during the summer). Within the ElectroData Division, these young men were known as the
"arthropods," because, well, they came from Shell.

After his arrival in Pasadena, Barton was fairly quickly put in charge of the highly ambitious IBM-compatible
FORTRAN compiler project for the new 220 computer system. There is an amusing anecdote concerning
this, told by Dave Dahm during the 1985 B5000 Oral History conference (p.27):

I remember when I was a summer employee in the summer of 1959, I was working on the [BALGOL]
compiler with another fellow named [Joel Erdwinn], who was the project leader. And we were busily
trying to do our version of IAL, and one day Bob Barton came along and he had a FORTRAN manual in
his hand. It was a really nice, well-done FORTRAN manual done by IBM. He said, "Why don't you guys
do this language because then you wouldn't have to write a manual?" We rejected that as being not a very
good reason for picking a language. [Laughter]

So, basically, I would say that the decision, that the compiler we would do would be ALGOL as opposed
to FORTRAN was made by a summer employee and a project leader. I don't know that anyone else was
really involved in making that decision.

The Origins of Burroughs Extended Algol

2019 UNITE MCP 4059 21

2019 MCP 4059 21

220 BALGOL Compiler220 BALGOL Compiler

 Barton realizes FORTRAN project is impossible

 Arthropods abandon FORTRAN, start on Algol-58
 Erdwinn, Dahm

 Later – Oliphint, Merner, Crowder, Speroni, Knuth

 Initial compiler released March 1960

 The Burroughs Algebraic Compiler
 Officially, "BAC-220"

 Better known as Burroughs Algol, or BALGOL

 Follows Algol-58 more closely than other dialects:
– JOVIAL (SDC)
– NELIAC (Naval Electronics Lab, San Diego)
– MAD (University of Michigan)
– ALGO (Bendix)

Barton had quickly realized that the ambitious IBM-compatible FORTRAN project was impossible. Here is
his anecdote in response to Dahm's (p.50 in the 1985 B5000 Oral History transcript):

I want to correct Dave Dahm's statement about my trying to get them to do FORTRAN. [Laughter]
It's correct to a certain extent in that the job that I had taken, under generally misleading conditions,
called for doing an impossible FORTRAN which would also include conversion of assembly
language from the 7090, or whatever the machine was at the time, automatically. I knew it couldn't be
done, but that was my responsibility. [Erdwinn] would never have done a FORTRAN. I mean, he'd
been going through this kind of educational experience at Shell, and he was not the sort of guy that
would waste his time doing FORTRAN. He knew too much about language.

So it appears that it really was Joel Erdwinn, perhaps abetted by Dave Dahm and Bob Barton, who decided in
1959 that Burroughs should pursue Algol rather than FORTRAN. Regardless of who made the decision or
how it came about, though, Barton and the Arthropods definitely dropped the idea of implementing
FORTRAN and focused instead on a compiler for the Algol-58 language described in the IAL Preliminary
Report published just the year before.

If there is one point in time where it can be said that Burroughs got hooked up with Algol, this is probably
that point. It was such an important decision, apparently made in such an off-hand manner.

Their compiler was initially released in March 1960. It was officially known as the Burroughs Algebraic
Compiler and styled as "BAC-220," but it soon became more popularly known as Burroughs Algol, or
BALGOL. It was not completely conformant with the Preliminary Report, but it did follow the syntax of that
report more closely than the other significant Algol-58 implementations, at least those developed in the U.S.,
including SDC's JOVIAL, the Navy's NELIAC, Michigan's MAD, and Bendix ALGO.

Joel Erdwinn was a highly gifted programmer. Barton says later in the 1985 Oral History conference that
BALGOL was Erdwinn's masterpiece. Despite Barton's statement that Erdwinn would never waste his time
doing a FORTRAN compiler, Erdwinn left Burroughs shortly after BALGOL was completed to take an
important position at the then-new Computer Sciences Corporation (CSC), where he spent the next 20 years
or so building compilers on a variety of machines for… FORTRAN! He was also instrumental in
development of other system software that Sperry contracted CSC to build for their 1100-series systems.

The Origins of Burroughs Extended Algol

2019 UNITE MCP 4059 22

2019 MCP 4059 22

BALGOL ExampleBALGOL Example
2 COMMENT SIMPSON-S RULE$
2 PROCEDURE SIMPS(A, B, DELTA, V$$ F())$
2 BEGIN
2 INTEGER K, N$
2 IBAR = V(B-A)$
2 N = 1$
2 H = (B-A)/2$
2 J = H(F(A) + F(B))$
2 J1..
2 S = 0$
2 FOR K = (1, 1, N)$
2 S = S + F(A + (2K-1)H)$
2 I = J + 4H.S$
2 IF DELTA LSS ABS(I-IBAR)$
2 BEGIN
2 IBAR = I$
2 J = (I+J)/4$
2 N = 2N$
2 H = H/2$
2 GO TO J1
2 END$
2 SIMPS() = I/3$
2 RETURN$
2 END SIMPS()$

2 FUNCTION TORADS(X) = 3.1415926X/180$
2 FUNCTION DARCTAN(X) = 1/(X*2 + 1)$
2 PROCEDURE LOGISTICSIGMOID(X)$
2 BEGIN
2 LOGISTICSIGMOID() = 1/(1 + EXP(-X))$
2 RETURN$
2 END LOGISTICSIGMOID()$
2
2 SUM = SIMPS(TORADS(30.0), TORADS(90.0),

0.00001, 2.0$$ SIN())$
2 WRITE($$ RESULT, F1)$
2 SUM = SIMPS(0.0, 1.0, 1**-5, 2.0$$

DARCTAN())$
2 WRITE($$ RESULT, F2)$
2 SUM = SIMPS(0.5, 3.0, 1**-5, 2.0$$

LOGISTICSIGMOID())$
2 WRITE($$ RESULT, F3)$
2
2 OUTPUT RESULT(SUM)$
2 FORMAT
2 F1(*SINE INTEGRAL = *,X10.6,W0),
2 F2(*DARCTAN INTEGRAL = *,X10.6,W0),
2 F3(*LOGISTIC INTEGRAL =*,X10.6,W0)$
2 FINISH$

This slide shows an example of a BALGOL program, the same Simpson's integration algorithm shown earlier
in the Publication Language. This version includes some functions (TORADS, DARCTAN,
LOGISTICSIGMOID) that are passed as parameters to the SIMPS procedure for integration over a range of
values.

The character set is limited by what was available on the IBM 407 card tabulator. That machine did not
support the semicolon, so the dollar-sign was used as a statement delimiter instead. Similarly, the 407 did not
support quotes, so the asterisk was used as a string quote in FORMAT statements. As in FORTRAN,
parentheses were used both for grouping expressions and as array index brackets.

The "2"s running down the left edge of each card image were a requirement for the 220's Cardatron interface
to the IBM punched-card equipment. They selected a "band" (formatting pattern) within the Cardatron to
translate zone and numeric punches on the card to digit pairs representing character codes in the 220 core
memory.

The Origins of Burroughs Extended Algol

2019 UNITE MCP 4059 23

2019 MCP 4059 23

BALGOL Features Over AlgolBALGOL Features Over Algol--5858

 Input-Output
 Free-field input of numerics, strings
 INPUT/OUTPUT list declarations for READ/WRITE
 FORTRAN-like FORMAT declarations for output

 Language features
 Implied multiplication: (X+Y)/2SQRT(Z)
 UNTIL iterative statement
 OTHERWISE clause for EITHER IF statement
 Generic type declarations
 Initialization of arrays
 Code segmentation with program-controlled overlay
 MONITOR, TRACE, DUMP diagnostics

 Linkage to machine-language routines

Since what the Algol-58 Preliminary Report described was an initial version of the Publication Language, it
was missing a few things, e.g., I/O. Like everyone else, Burroughs had to add some extensions to make it a
practical language for use on actual computers.

One of the significant extensions was in fact for input/output. Out of the box, BALGOL would read source
code and data from punched cards, output compiled code to magnetic tape, and print results to a 407
tabulator. Both the compiler and run-time library could be customized for other peripheral devices, however.

A program read data as sequences of free-form numeric and string values. The variables and expressions to be
input or output were defined in INPUT or OUTPUT list declarations, which in turn were referenced from
READ and WRITE statements. For output, FORTRAN-like FORMAT declarations defined the format and
arrangement of values on a line. More exotic forms of input/output could be implemented using machine
language routines added to the run-time library or included on cards placed after the BALGOL source deck.

BALGOL added a number of other features to those in the Preliminary Report:

• Implied multiplication: where it did not result in ambiguity, two expressions could be multiplied by
simply writing them adjacent to each other, without a "*" operator, as is commonly done in standard
math notation.

• The UNTIL statement, similar to the modern DO … UNTIL.

• The OTHERWISE clause for the EITHER IF statement. The Preliminary Report did not include any
form of "else" for conditional statements – that had to wait for Algol 60.

• Generic type declarations: like FORTRAN, variables were not explicitly declared in Algol-58. The type
could be specified according to the leading characters of the variable identifier.

• Code segmentation: the code for large programs could be divided into overlays, but they had to be
explicitly loaded by the program a run time.

• Diagnostic facilities: MONITOR, TRACE, and DUMP declarations, somewhat like those in modern
Extended Algol.

• The ability to link machine language routines to the compiled BALGOL code.

The Origins of Burroughs Extended Algol

2019 UNITE MCP 4059 24

2019 MCP 4059 24

BALGOL Operational AdvantagesBALGOL Operational Advantages

 Fast, single-pass compiler (mag tape-based)

 Optimized for compile-and-go environment

 Configurable compiler environment
 Generator program compiler tape

 Customize device types and I/O routines

 Use larger memories (min 5000 words)

 Augment/replace standard library

 Save and rerun object programs
 Mag tape

 Punched cards

 Paper tape

Perhaps more important than its language features were some operational features that proved to be very
popular with 220 sites, especially at universities and research organizations who wanted to provide
convenient computing resources for their students and research staffs.

• It was a fast, single-pass compiler that was often limited by the speed of the punched-card peripherals.
The compiler and library resided on one magnetic tape, and the compiled code plus run-time library
routines linked into the compile code were written to a second magnetic tape.

• It's operation was optimized for a compile-and-go environment. After a successful compilation, the
computer operator simply had to press START on the system console to run the program.

• The compiler could be configured to the memory size and peripheral devices available on a given
system. Although not available with the initial release, by 1961 it included a Generator program that
could customize the compiler to a particular environment. It could also amend the run-time library with
new or modified machine-language routines.

• Although the compiler wrote the executable program to magnetic tape, the release included utilities to
dump and load programs to and from punched cards and magnetic tape. Since the compiler was so fast
(for its day), many users with small to medium-size programs did not bother saving the object code –
they simply recompiled their program from source each time.

The Origins of Burroughs Extended Algol

2019 UNITE MCP 4059 25

2019 MCP 4059 25

Impact of BALGOLImpact of BALGOL

 Proved value of compiler operational efficiency
 Fast, one-pass compilation

 Compile-and-Go environment

 Monitoring and debugging aids

 Made the case for regular use of higher-level
languages over assembly language

 Customers loved it

 Convinced Burroughs that Algol was viable
 Planners believed it would displace FORTRAN

 Showed that a different architecture was needed

 Provided much basis for design of B5000

While the Burroughs 220 was not a very successful product from a sales and revenue standpoint, BALGOL
had a very significant impact on such success as the 220 had. It also helped put Burroughs on an architectural
path that it almost certainly would otherwise not have taken.

As mentioned on the prior side, the operational benefits of fast compilation, a compile-and-go orientation, and
the availability of monitoring and debugging aids in the language made it a productive and easy-to-use tool.
While the IBM FORTRAN compilers generally concentrated on producing the best possible object code and
the fastest possible run times, they did so at the cost of very long compile times and somewhat laborious
operating procedures. You could perhaps classify the IBM compilers as built for object run-time performance,
and BALGOL as built to Get Stuff Done.

Even after the advent of IBM FORTRAN, compilers were still held somewhat in suspicion, and Real
Programmers still wrote using assembly language, or if you were a hard-core Real Programmer, in raw,
seething machine code. While BALGOL did not generate highly optimized code, what it generated wasn't
bad, and the convenience and speed with which you could usually get useful results helped make the case for
using higher-level languages over assembly language and machine coding.

Importantly, customers loved it. BALGOL gave Burroughs a reputation for software prowess that it had not
had previously.

Even more importantly, BALGOL convinced the product planners, engineers, and software developers within
the ElectroData Division that Algol was a viable language and had great potential. Many of them believed the
superior features of Algol would cause it to replace FORTRAN. It also showed them that while BALGOL
worked pretty well on the 220, Algol in general needed architectural support in the hardware and would
benefit from a different architectural model. As such, it provided a lot of the basis for the design of the next
large Burroughs system, the legendary B5000.

In the end, the belief that Algol would replace FORTRAN proved to be naive. That was probably inevitable,
given the size of IBM and the muscle it was willing to bring to the market place. But looking back from
today, when we can see the influence that Algol has had on almost all procedural languages developed since
that time, many of the ideas introduced in Algol did replace those introduced in FORTRAN.

The Origins of Burroughs Extended Algol

2019 UNITE MCP 4059 26

2019 MCP 4059 26

Then There Was the Then There Was the OtherOther BALGOL…BALGOL…

 Burroughs wanted a compiler
like BALGOL for the 205

 They contracted with a
Caltech grad student to write
a compiler for $5500

 Donald Knuth wrote it
over the summer in 1960

Donald Knuth

 Knuth continued to consult with Burroughs while
at Caltech, until moving to Stanford in 1968
 Worked on BALGOL (and wrote the comments)

 Wrote first memory allocation scheme for the B5000

BALGOL has always been closely associated with the Burroughs 220, but it's not well known that a second
BALGOL compiler was written.

About the time the initial version of 220 BALGOL was released in 1960, the ElectroData Division decided
they should have a similar compiler for the 205. The 205 by this time was getting old, but there were still a
number of them in service, and were still well-regarded by their users.

After rejecting a pricy proposal from TRW, Burroughs entered into a contract with a student preparing to
enter graduate school at Caltech. The price was $5,500 USD. The name of the student was Donald Knuth. He
wrote the compiler over his summer break in 1960. Knuth continued to debug the compiler until December of
that year, but it worked, and and was distributed to customers. Given the size and relatively difficulty of
coding a large program like this for the 205, it remains a significant programming feat.

After getting his PhD at Caltech, Knuth continued to consult for Burroughs until he left for a position at
Stanford University in 1968. He made contributions 220 BALGOL (including writing all of the comments).
He also worked on the B5000, writing its first dynamic memory allocation scheme.

The Origins of Burroughs Extended Algol

2019 UNITE MCP 4059 27

2019 MCP 4059 27

Burroughs B5000 (1962)Burroughs B5000 (1962)

This brings us up to the early 1960s. Burroughs had had a disappointing success with its presumed flagship
system, the 220. A couple of follow-in designs were proposed, but never reached the hardware stage.

Despite disappointing sales of the 220, the success, popularity, and remarkable ease-of-use of 220 BALGOL
had a marked impact, not only on customers, but on many in the product planning and engineering groups of
the ElectroData Division. The 220 had been a poor architecture on which to implement Algol-58, and was
even less well-suited for the next version of the language, Algol-60. Largely driven by the forceful influence
of Bob Barton, these groups began to think about what they could do about that.

By August 1960 they had a functional design for a pair of systems called the 4000/4400. That design included
many of the features we would recognize today – Polish evaluation of expressions, automatic segmentation of
code and data, and operation centered around a stack. Actually, this design had two stacks, one for expression
evaluation and local operand storage, and one for procedure call history.

The 4000/4400 never advanced out of the preliminary design phase, but its ideas morphed into the system that
most people think of as the origin of Algol for Burroughs systems – the B5000.

The Origins of Burroughs Extended Algol

2019 UNITE MCP 4059 28

2019 MCP 4059 28

Burroughs B5000 / B5500Burroughs B5000 / B5500

 Radical departure in hardware architecture
 Specifically designed for Algol-60

 Stack-oriented operation, code & data descriptors

 Hardware support for Call-by-Name ("thunks")

 Automatic segmentation & overlay ("virtual memory")

 Multiprogramming & multiprocessing (2 CPUs)

 Comprehensive operating system (MCP)

 Programmed exclusively in high-level languages

 Reintroduced as B5500 in 1965
 Large, fast Head-per-Track disk subsystem

 Several new instructions, mostly for MCP use

 Ancestor of B6x00/7x00, A Series, ClearPath MCP

At the time it was introduced, and for many years afterward, the B5000 represented an astonishing departure
from traditional computer system architecture and design.

• It had been designed specifically to support Algol. The Algol-60 dialect was not finalized and published
until several weeks before the first customer delivery in April 1963, and in some areas the hardware did
not support all the requirements of the Algol 60 Revised Report, so in some sense it was an Algol-58-
and-4/5s machine. I think of the B5000 as the first computer system actually designed to run software.

• It supported stack-oriented operation, with the dual stacks of the 4000/4400 merged into one.

• One of the most challenging features of Algol-60 was its call-by-name semantics, which required
dynamic evaluation of expressions passed as procedure parameters each time they were referenced. The
B5000 included hardware features to make this efficient and easy to implement in compilers.

• Automatic code and data segmentation were fully implemented, with hardware support (code and data
descriptor words, presence-bit interrupts) to automatically detect non-resident segments and signal the
operating system to dynamically allocate memory and load them into memory. We now use IBM's
clever term "virtual memory" for this, but there has never been anything virtual about it.

• The entire system was to be controlled by a comprehensive operating system, which became known as
the Master Control Program, or MCP. It took a while, and a few architectural enhancements to get all of
the features implemented and working well, but this goal was achieved.

• Perhaps most astonishing for its time, all programming for the system was to be done in higher-level
languages, even the operating system and other system software. There was no assembly language, and
most users needed to know nothing about the internal characteristics of the system. With the late
addition of an awkward and ill-fitting character manipulation mode, the B5000 supported COBOL as
well as Algol, and eventually FORTRAN and BASIC compilers were written.

With the benefit of some experience in the field, Burroughs introduced an enhanced version of the system,
named the B5500, in 1965. The processor had several new instructions, most of them used only by the MCP.
Perhaps the most significant enhancement was a large, fast Head-per-Track disk subsystem to replace the dual
32K-word drums on the otherwise tape-based B5000. This disk subsystem finally gave the system the storage
capacity it needed to fully support its automated segmentation/overlay and
multiprogramming/multiprocessing capabilities.

The Origins of Burroughs Extended Algol

2019 UNITE MCP 4059 29

2019 MCP 4059 29

Writing Algol in AlgolWriting Algol in Algol

 If the compiler is written in itself…
 How do you compile the compiler?

 B5000 method – bootstrapping
 Defined a temporary implementation language: OSIL

 OSIL used for B5000 MCP and Algol compiler

 Assembler-like processor

 Generated B5000 code, but ran on the Burroughs 220

 Wrote two compilers, side-by-side
 Official one in Algol, then hand-compiled into OSIL

 Debugged and updated both versions in parallel

 Once the OSIL version could compile Algol – then the
Algol version could compile itself

I mentioned that the B5000 was designed specifically to support Algol, and that all programming was to be
done in higher-level languages. This requirement extended to the Algol compiler itself. So just how do you do
that? If the compiler it to be written in its own language and there is no existing compiler for that language,
how do you compile the compiler?

The answer for the B5000 was a technique known as bootstrapping. The engineering team created a
temporary implementation language known as the Operating System Implementation Language, or OSIL. It
was to be used only within the engineering groups for the B5000 MCP, Algol compiler, and probably some
diagnostic tools. It's coding format was similar to assembly language. OSIL generated B5000 machine code,
but it did not run on the B5000. It ran instead on the Burroughs 220.

What the Algol team did was a very careful design of the compiler with complete flowcharts. They then wrote
two versions of the compiler, one in Algol (which they no way to compile initially) and one which they hand-
translated from the Algol version to OSIL. When emulators and actual hardware for the B5000 started to
become available, they began debugging the OSIL version. As corrections were applied to the OSIL version,
equivalent corrections were applied to the Algol version. Eventually they started trying to compile the Algol
version of the source with the OSIL version of the compiler. Once the OSIL-generated compiler could
successfully compile and run the Algol version of the compiler source, then the Algol version could compile
itself and OSIL was set aside.

Note: In the presentation at the UNITE conference, I said that OSIL was like a three-address macro
processor and that one did not write B5000 instructions directly with it. That was my memory from a
brief encounter with an OSIL manual in 1970.

Some research I did at the Charles Babbage Institute (located in the Andersen Library at the University
of Minnesota) shortly after the conference uncovered a document describing OSIL and what appears to
be a listing of a short OSIL program. From these it appears that OSIL was much closer to a typical
assembler, and that one really did code B5000 instructions using it. That makes it a much lower-level
tool than I had originally thought.

Given that OSIL ran on the 220 rather than the B5000, that it was intended only as a tool to write the
initial B5000 Algol compiler and MCP, and that it was discarded as soon as the Algol and ESPOL
compilers had been developed, I stand by my statement that the B5000 and later systems never had an
official assembler.

The Origins of Burroughs Extended Algol

2019 UNITE MCP 4059 30

2019 MCP 4059 30

System Programming in a HLLSystem Programming in a HLL

 The surprise when Algol could compile Algol…
 Original compiler was about 8000 lines of Algol

 OSIL "compile" on the 220 took 9 HOURS

 Algol compile on the B5000 took 4 minutes

 Algol-generated codefile was smaller, too

 Writing Algol in Algol worked so well…
 Needed to rewrite MCP for the new HPT disk

 MCP team took the Algol compiler, and…
– Ripped out all the stuff for storage allocation, I/O, etc.
– Added a few low-level features for hardware control

 Called the result ESPOL

 MCP systems have never had an assembler

Getting a compiler written in Algol to compile itself was obviously quite an accomplishment, but the really
interesting part of the story is that compiling the OSIL version of the compiler on the 220 took nine hours.
The first time the Algol version (consisting of about 8000 lines of code) could compile itself on the B5000, it
took four minutes. The code it generated was smaller than the hand-optimized OSIL-generated code as well.

OSIL was also used to write the initial MCP for the B5000. Apparently it was not a pleasant task. When the
Head-per-Track disk became available around 1964, the decision was made to completely rewrite the MCP to
take advantage of the new disk's capabilities. In addition, the leading programmers from the Algol group
transferred into the MCP group, and given how well writing Algol in Algol eventually worked out, there was
no way they wanted to use anything remotely as primitive as OSIL for the new MCP.

Unfortunately, the Algol compiler had been designed to run under the MCP, and required the MCP both for
its own operation and that of the programs it compiled. So the language experts now in the MCP group took
the Algol source and in about three weeks ripped out all of the stuff that required MCP support – automatic
storage allocation, I/O, support calls, etc. Then they added to this stripped-down compiler the few things they
thought they needed for coding an operating system to get close enough to the hardware. They called the
resulting language and its compiler the Executive System Problem Oriented Language, or ESPOL.

Thus, MCP systems have never had an official assembler. OSIL was completely abandoned as soon as
ESPOL was available. All system software, even low-level card-bootstrap routines, were written in ESPOL.
All software that ran under control of the MCP, including compilers and utilities, were written in Algol or one
of the other languages. This idea has been carried forward since – ESPOL migrated to the follow-on
B6500/6700 system and was eventually replaced by a new language, NEWP. The idea even migrated to the
B3500/Medium Systems line, which had started doing system-level programming in assembler, but later
developed their own high-level systems language, BPL.

The Origins of Burroughs Extended Algol

2019 UNITE MCP 4059 31

2019 MCP 4059 31

Issues with B5000 / B5500 AlgolIssues with B5000 / B5500 Algol

 Array rows limited to 1023 words

 Lexical scope addressing
 Cannot address intermediate nested environments

 Can address outer-block and local-procedure only

 Character manipulation
 B5x00 used high-order bit in word as a "flag" (tag)

 Flag bit indicated control words (descriptors, etc.)

 Implemented Word-Mode and Character-Mode states
– Character-Mode originally intended to support COBOL
– Implemented in Extended Algol as Stream Procedures
– Ignores flag bits and all memory address protection!
– Extremely useful – extremely dangerous
– Prompted development of POINTERs, SCAN, REPLACE, etc.

As astonishingly new and capable as the architecture of the B5000/5500 was, it had some limitations and sub-
optimal characteristics.

First, the automated data segmentation features caused arrays in Algol to be allocated in memory row-wise. A
single-dimension array was allocated as one contiguous area in the MCP's memory heap. All rows for a two-
dimensional array were allocated individually in the heap, with a "dope vector" of descriptor words pointing
to the location of each row. Higher levels of dimensionality created tree structures of dope vectors with the
data rows at the leaves of the tree. This approach had a lot of advantages, because each row could be allocated
individually, and in fact they were not allocated physically until first referenced. The rows could also be
overlaid to disk and rolled back in individually as well.

The problem was that the rows were limited by the size of fields in the descriptor control words to a length of
1023 words each. There were ways to get around this in Algol using DEFINEs (which we'll discuss shortly),
albeit at the cost of adding extra dimensions to the array and having to partition index values for access to
each element. The COBOL and FORTRAN compilers implemented support for this behind the scenes. This
approach worked, but it was not very efficient.

Second, the architecture of the B5000/5500 had some very innovative support for the semantics of addressing
variables in Algol, but the designers missed one important one – the hardware could address variables local to
a procedure and in the outer block (global environment) of a program, but they could not address any
intermediate lexical scopes between the two. This could be a real problem if you chose to nest procedures
within each other. The next slide illustrates this issue.

Third, Algol was conceived as a language for numerical computation. It had essentially no facilities for
manipulating characters or strings of characters. In addition, the B5000/5500 used the high-order bit in its 48-
bit word as a "flag" bit to signal the word was a control word. This made it difficult (and usually fatal) to pack
a full eight 6-bit characters into a word. This made the system a poor fit for the commercial market Burroughs
was desperately trying to reach.

The solution, made late in the design, was to tack a fairly crude "character mode" onto the side of what
otherwise as quite an elegant architecture. It was intended primarily to support COBOL, but was exposed in
Algol through a construct known as a Stream Procedure. This capability proved to be extremely useful in
Algol, but also extremely dangerous, as it required disabling all checks for flag bits and most memory address
protection.

The Origins of Burroughs Extended Algol

2019 UNITE MCP 4059 32

2019 MCP 4059 32

Lexical Scoping ExampleLexical Scoping Example
begin comment Knuth's Man-or-Boy Test;

real procedure A (k, x1, x2, x3, x4, x5);
value k; integer k, x1, x2, x3, x4, x5;
begin

real procedure B;
begin k:= k - 1;

B:= A := A (k, B, x1, x2, x3, x4);
end B;
if k <= 0 then

A:= x4 + x5
else

B;
end A;

file dc (kind=remote, units=characters, maxrecsize=72);
write (dc, <"Result = ",j11>, A (10, 1, -1, -1, 1, 0));

end.

Note: Result = -67; run with STACK=9000

Not allowed on B5000/5500

The problem the B5000/5500 had with lexical scoping is best illustrated by an example. This is Donald
Knuth's well-known "Man or Boy Test" for Algol compilers, which here is written for the B6700/modern
MCP dialect of Extended Algol, since you couldn't do this example in B5x00 Algol.

The colored boxes show the lexical nesting of address environments in the program. The outermost light-blue
box represents the outer block or global environment of the program. The light-yellow box within that
represents the body of the global procedure A. The light-green box within A represents the body of the nested
procedure B.

Note that B calls A, passing parameters k, B (itself), x1, x2, x3, and x4.

The reference from the body of B to A is valid, because A is in the outer block of the program, and is therefore
addressable by the hardware.

The reference from the body of B to k, however, is not valid for the B5000/5500, because k is in neither the
outer block nor B's procedure body. The B5000/5500 Algol compiler would allow blocks and procedures to
be nested this way, but would issue syntax errors for attempts to address intermediate lexical environments.

This limitation was fixed on the B6500 and later systems by introduction of the so-called "D" (Display)
registers to enable addressing directly to the intermediate lexical environments.

The Origins of Burroughs Extended Algol

2019 UNITE MCP 4059 33

2019 MCP 4059 33

Stream Procedure ExampleStream Procedure Example
INTEGER STREAM PROCEDURE GETCHAR(A, OFFSET);

VALUE OFFSET;
BEGIN COMMENT

RETURNS THE CHARACTER CODE AT THE LOCATION OF "A" OFFSET BY
"OFFSET" CHARACTERS;

LOCAL REP; % HOLDS DIV-64 REPEAT COUNT
SI:= LOC OFFSET; % SOURCE IS ADDRESS OF OFFSET WORD
SI:= SI+6; % ADVANCE SOURCE BY 6 CHARACTERS
DI:= LOC REP; % DEST IS ADDRESS OF REP WORD
DI:= DI+7; % ADVANCE DEST BY 7 CHARACTERS
DS:= CHR; % MOVE OFFSET 7TH CHAR TO REP 8TH
SI:= A; % SOURCE IS ADDRESS IN A
REP(SI:= SI+32; SI:= SI+32); % SI:= *+ (OFFSET DIV 64)×64
SI:= SI+OFFSET; % ADVANCE SOURCE BY (OFFSET MOD 64)
DI:= LOC GETCHAR; % DEST IS ADDRESS OF GETCHAR RESULT
DS:= 7 LIT "0000000"; % CLEAR HIGH-ORDER 7 CHARS OF RESULT
DS:= CHR; % MOVE SOURCE CHAR TO 8TH OF RESULT
END GETCHAR;

Equivalent in B6700 Algol to: REAL(A[OFFSET],1)

Probably every B5000/5500 Algol programmer had a love/hate relationship with stream procedures. On the
one hand, you could do extremely interesting and useful things with them – efficiently move large numbers of
characters or words from one location to another, parse and concatenate character strings using rules of
arbitrary complexity, convert between binary and decimal representations, and manipulate bit strings within
or across word boundaries. You could also do I/O, but it wasn't easy.

On the other hand, it was a low-level notation, just one step above a free-form assembly language. To do all
but the most trivial things, you had to know quite a bit about the operation of "character mode" within the
processor. There were lots of restrictions, like modulo-64 counts and offsets, that did not make any sense
unless you knew how the registers worked in this mode. Worst of all, you were working with absolute
memory addresses, whether you realized it or not, and all of the bounds protection available in the "normal
mode" that the rest of Algol used was disabled in character mode. People could (and did) create havoc with
these routines.

Despite their difficulties and dangers, Stream Procedures gave Extended Algol programs powerful and
efficient text processing capabilities that were simply not available in other dialects of Algol, were difficult or
impossible to do in COBOL, and that were agonizing and inefficient to do in FORTRAN. Overall, Stream
Procedures enhanced the capabilities of the system and of Extended Algol as a language that could be applied
to a wide variety of problem domains.

The other thing that Stream Procedures did was to show that a better way was needed. This led to the safer
and more powerful concept of character string pointers, the SCAN and REPLACE constructs we have in
modern Extended Algol, and the architectural support for them in the hardware.

The example on the slide is roughly equivalent to the REAL(<pointer expression>, <arithmetic
expression>) construct that was introduced in B6500/6700 Algol. It extracts a single character from an array
row, offset some number of characters from its beginning, returning the numeric value of the character as an
arithmetic expression.

The Origins of Burroughs Extended Algol

2019 UNITE MCP 4059 34

2019 MCP 4059 34

Burroughs B6500/6700/7700 (1969)Burroughs B6500/6700/7700 (1969)

The final system to consider in our story is the B6500, which was first shipped to customers in 1969. The
B6500 had a very difficult beginning, in terms of both hardware and software reliability. All systems in the
field were upgraded in 1971 with a re-engineered processor module, and the system was relabeled the B6700.
A larger and more powerful system, the B7700 was released in 1973. Further revisions through the 1970s
resulted in the B6800/7800 and B6900/7900 systems.

The Origins of Burroughs Extended Algol

2019 UNITE MCP 4059 35

2019 MCP 4059 35

Burroughs B6500/6700/7700Burroughs B6500/6700/7700

 Solved all major problems with B5500 Algol
 Lexical scoping (32 "D" address registers, now 16)

 Moved flag bit to separate 3-bit "tag" field
 String instructions (POINTERs, SCAN, REPLACE)

 Longer array rows (orig. 220, now 232 words)

 Segmented arrays, resizing of arrays

 Other Algol extensions
 Powerful and convenient sub-tasking capabilities

 DOUBLE, COMPLEX data types

 Eventually – object-oriented structures

 Enhanced over time to become A Series and
current ClearPath MCP systems

The B6500/6700/7700 were the direct successors to the B5500. Burroughs took all of the lessons they had
learned from the B5000/5500 and produced an entirely new architecture. It was closely related to the B5500
architecture, and carried forward all of its significant concepts, but generalized and expanded on them.

This new architecture also solved all of the major problems the B5500 had suffered.

• The problem of addressing intermediate lexical scopes was solved by the introduction of the "D"
(Display) address registers to point to all of the currently-active scopes of a program. Initially there
were 32 of these, allowing 32 levels of nesting, but for once that was too many, and later systems
reduced the number to 16.

• Stream Procedures and all of their dangers were replaced by new instructions and Algol constructs
(POINTER, SCAN, REPLACE, etc.) to provide powerful and efficient character string manipulation.

• Array rows could be much longer – up to 220 words on the B6700 (and 232 words on modern systems).

• Long array rows could be segmented, effectively moving the double-indexing tricks used on the B5500
into the hardware. Array rows could also be dynamically resized, either up or down.

There were many other extensions to Algol, too numerous to detail here, but a few significant ones were:

• The B5500 had a mechanism for a task to fire off other tasks (ZIP, still in modern Algol, and similar to
a WFL START statement), but there wasn't a good way for the initiator to monitor and control those
other tasks. The B6500 generalized the concept of a task and extended the Algol lexical scoping
mechanism to include dependent sub-tasks. It also implemented locking and synchronization primitives
to allow inter-program communication and control.

• The B6500 had better support for double-precision arithmetic than the B5500. Based on that, Algol
received DOUBLE and COMPLEX data types.

• Eventually some object-oriented features were added to the language – dynamic linked libraries,
STRUCTURE BLOCKs and CONNECTION BLOCKs.

The B6500, et al, have continued to be enhanced over time, producing the A Series and the current ClearPath
MCP systems. There have been lots of extensions and improvements, especially in memory addressing and
capacity, but it is still basically the same architecture that was released in 1969.

The Origins of Burroughs Extended Algol

2019 UNITE MCP 4059 36

Extended Algol AnecdotesExtended Algol Anecdotes

Thus the path that Extended Algol has taken within the Burroughs environment from its beginnings within the
GAMM and ACM committees, through early implementations of Algol-58, to its current state as a highly
enhanced variant of Algol-60.

At this point, I would like to take a half-dozen of the extensions that have made Extended Algol such a useful
and long-lived tool, and discuss how they came about.

The Origins of Burroughs Extended Algol

2019 UNITE MCP 4059 37

2019 MCP 4059 37

The DEFINEThe DEFINE

 Richard Waychoff, 1961
 One of original B5000 Algol compiler authors

 Was discussing symbol table design with Don Knuth

 Knuth thought for a minute and said,
“With that organization of a symbol table, you can allow one
symbol to stand for a string of symbols.”

 Originally, DEFINE was non-parametric
 Dave Dahm implemented parametric DEFINEs in the

late 1960s

If there is one feature of Extended Algol that has made it a language for much more than implementing
numerical algorithms, it is the DEFINE construct. It really has nothing to do with Algol – it's more of a
compiler feature that allows the programmer to give a name to a string of syntactic tokens. By writing the
name in source code, the compiler replaces it at compile time with the string of tokens it represents. This
means that DEFINEs are a form of macro instruction.

The DEFINE was introduced very early in the development of the original B5000 compiler. Richard
Waychoff, one of the authors of the B5000 compiler, has written a very lively memoir of the B5000 project
(see References). In it, he describes how the DEFINE declaration came about, during a discussion in mid-
1961 with Donald Knuth, who was still a graduate student at Caltech and consulting with Burroughs part
time:

I was happy to see don again and launched into a description of the Algol Syntax Chart, Recursive
Descent and the separation of the three functions; scanning, parsing, and emitting. don was favorably
impressed. I was especially proud of my knowledge of the B5000 Character Mode. It had led me to an
organization of the symbol table that seemed much better than the other organizations with which I was
familiar. So I described that with more enthusiasm than the other subjects. don put the index finger of his
right hand to his lips, closed his eyes, and went into hyperspace for about 30 seconds. When he came
back, he said, “With that organization of a symbol table, you can allow one symbol to stand for a string of
symbols.” I thought that that was the best idea that I had heard in a long time. I carefully put together my
arguments and all of the necessary details and presented it to Lloyd. He thought that it was a good idea.
So it was immediately a part of B5000 Algol.

So, for better or worse, Knuth gets the credit for the DEFINE. Originally, it was non-parametric – just an
identifier standing for a string of symbols.

Waychoff goes on to describe a nasty debate that arose a couple of years later, apparently over the fact that
unlike procedure declarations, the scope of a DEFINE's symbols is the context of its use, not its declaration.
Dave Dahm in particular objected to this and campaigned to have the feature removed from the language. The
battle raged for days and was only resolved when Lloyd Turner (the project leader) did so by fiat. The
DEFINE stayed.

Dahm must have gotten over his objections to the DEFINE at some point, because some years later he
implemented the parametric version.

The Origins of Burroughs Extended Algol

2019 UNITE MCP 4059 38

2019 MCP 4059 38

Dollar Cards and Sequence NumbersDollar Cards and Sequence Numbers

 It all started with a bad B5000 card reader…
 As Algol grew above 2000 cards
 Compilation from cards became a nightmare
 So, Waychoff and Bobby Creech went to a bar…

– Worked out a scheme to keep source on tape
– Set aside columns 73-80 for sequence numbers
– Merged tape with correction cards by sequence number

 Created $-card to signal source mode, e.g.,
 $ CARD
 $ TAPE

 Later, more options added
 Listing control
 Void cards from tape
 Resequence, create NEWTAPE, etc.

Another feature in Extended Algol that is a compiler thing rather than a language thing is the "dollar card,"
now officially termed a CCR (Compiler Control Record) and on other systems a "pragma." These records in
the source file begin with a "$" and supply information to the compiler about the program being compiled or
how the program should be compiled.

As Richard Waychoff tells it in his memoir, dollar cards came about because, of all things, a bad card reader.
The Algol source for the original B5000 compiler was initially maintained on punched cards. The B5000 used
by the Algol team had an early card reader apparently based on the design of the excellent Burroughs check
readers. Alas, the device had a bad habit of frequently either refusing to feed cards properly or mangling them
beyond usability.

As the size of the compiler grew above 2000 cards, compiling the compiler became nearly impossible due to
the interruptions and damage to cards caused by the bad reader. The first solution was to copy the card deck
to magnetic tape and compile from tape. Of course, whenever a change needed to be made to the compiler
source, they had to correct it in the card deck and go through the agonizing process of copying the deck to
tape using the troublesome reader.

So in the great tradition of software innovation, Waychoff and another programmer, Bobby Creech, walked
into a bar. Over steins of beer, they discussed the problem and came up with the idea of reading cards that
consisted only of changes, and having the compiler merge those cards with the source tape during
compilation. This wasn't actually that much of an innovation, as tape-based master file update programs had
been doing the same thing since the Univac I, but it was apparently the first time someone had thought of the
source code as a master file and corrections to the program as transactions against the master. To control the
merging, they assigned columns 73-80 on the card to hold a sequence number – which was used as a record
key.

Since the "$" was not otherwise used in B5000 Algol, Waychoff and Creech decided to recognize cards
beginning with that character as a signal to the compiler. Initially, this was used to control whether the
compiler should read the entire program from cards or to merge cards by sequence number with a base source
on tape.

As the usefulness of this capability became recognized, additional "$" options were implemented to control
the compilation listing, void (delete) sequences of cards coming from tape, create a new, updated source tape
from the merge of an older tape and its correction cards, resequence the source records, etc.

The Origins of Burroughs Extended Algol

2019 UNITE MCP 4059 39

2019 MCP 4059 39

PercentPercent--Sign CommentsSign Comments

 Standard Algol comments
 COMMENT BLAH, BLAH, BLAH ;

 B5000/5500 Algol
 Used a Stream Procedure for scanning source

 Needed an efficient way to detect end-of-card

 Compiler overwrote column 73 of card image with "%"

 Called the "stoplight" character

 When "%" detected, compiler advanced to next card

 Didn't take long to figure out a free "%" anywhere
on a card would stop the scan

 Effectively made rest of the card comments

The Algol-60 Revised Report provided only two ways for a programmer to insert comments into the source
code of a program, (a) by preceding the comment with the symbol COMMENT and terminating it with a
semicolon, and (b) by placing the comment after an END, terminated by the next END, ELSE, UNTIL, or
semicolon. The first was fine for long, multi-line comments, but assembly language programmers were used
to being able to write short comments off the the right side of assembly instructions. The second could be
used only after an END.

In the implementation of the B5000/5500 Algol compiler, card boundaries were not recognized as a delimiter.
An identifier or reserved word could start at the end of one line and continue in column one of the next line.
The parsing of tokens was handled largely by a Stream Procedure, but unlike the modern SCAN construct,
having the Stream Procedure stop the scan after some maximum number of characters had been processed
was awkward. Therefore, the Stream Procedure needed an efficient way to detect end-of-card.

The solution was to place a delimiter character after the last position of source text on a card (i.e., column 73
once sequence numbers were used) that the Stream Procedure could detect. The character chosen was "%" as
it wasn't being otherwise used. This was called the "stoplight" character, probably because it stopped the scan,
and a percent sign looks a little like a two-lamp traffic light.

It could not have taken that long for someone to realize that if you coded a "%" somewhere within the text of a
source line (outside of a quoted string, of course), the compiler would assume it had detected the stoplight
character at the end of the line and proceed to the beginning of the next line. Anything after that "%" would be
ignored by the compiler, and therefore was effectively a comment.

So percent-sign comments are not so much a feature of Extended Algol as an accident of its original
implementation.

The Origins of Burroughs Extended Algol

2019 UNITE MCP 4059 40

2019 MCP 4059 40

PartialPartial--Word SyntaxWord Syntax

 Bit-field manipulation in Algol
 X:= A.[30:22];

 Y:= A & B[7:8] & C[39:7:8];

 Burroughs 220 had a similar feature for digits
 Some instructions could operate on part of a word

– Designated as the "sL" field (start-Length)
– Start with digit "s" and use "L" digits to the left

 Digit numbering: ± 1234 56 7890

 Example: STA WD,63

A Register: +7631450822

Memory at address WD: +1719825634Memory at address WD: +1719825634

sL = 63

Perhaps second only to the DEFINE declaration, the utility of manipulating partial words (bits and strings of
contiguous bits within 48-bit hardware words) in Extended Algol has helped to extend its range well beyond
that of a language for specifying numerical algorithms. There are two basic forms:

• Field isolation, which extracts a string of bits from a word value and returns the bits right-justified over
zeroes. For example, A.[30:22], where A is any expression, takes the word value of the expression
and extracts a field of 22 bits starting with bit #30 and extending towards the low-order end of the
word.

• Field concatenation, which inserts a string of bits from one word value into another. For example, A &
B[7:8] & C[39:7:8], where A, B, and C are any expressions, takes the word value of B and
inserts its low-order eight bits into the low-order eight bits of the word value of A. Then it takes the low
order eight bits of the word value of C and inserts that into the first result starting at bit #39. The overall
result is the original value of A with the specified fields of B and C overwriting the specified fields of A
and leaving the rest of the bits in A unaffected.

Bit numbers in these examples range from 47 at the high-order end of a word to 0 at the low-order end, as is
the case with the B6500 and later systems. Bit numbering in B5000/5500 Extended Algol was the reverse of
this.

These operations are implemented in the hardware and are extremely efficient. They replace the shift-and-
mask operations found on other systems, and are used extensively for packing and unpacking word-oriented
data structures (i.e., arrays), which traditionally is the only type of data structure Algol has supported.

It turns out that the Burroughs 220 had a similar, but more limited, feature that would manipulate fields of
decimal digits within its words. A digit field was designated by a two-digit code termed "sL" (start-Length),
so that "63" designated a three-digit field as shown on the slide. Several instructions supported manipulation
of partial words, such as STA (Store A Register). In the example shown on the slide, this form of store would
place the digits in the 63 field of the A register into the same field of the operand word, leaving all other digits
in the memory word unaffected.

The feature was used extensively by the BALGOL compiler to tightly pack tables in order to maximize the
size of program the compiler could handle. The B5000/5500 designers no doubt recognized the utility of this
220 feature and carried it forward in a more general form to the new architecture.

The Origins of Burroughs Extended Algol

2019 UNITE MCP 4059 41

2019 MCP 4059 41

Array Row I/OArray Row I/O

 B5000 Algol/MCP did not have array-row I/O
 FORTRAN-like formatted I/O with lists

 RELEASE statement for files
– Buffer-level I/O (somewhat like modern Direct I/O)
– Buffer only accessible as a Stream Procedure parameter
– No blocking/unblocking support
– Inefficient, a pain to use

 B5500 Disk File MCP introduced new I/O scheme
 Read into and write from Algol array rows:

READ (F, 30, A[*]) [EOF];

 Supports blocking and unblocking of records

 Supports intelligent buffer handling (e.g., read-ahead)

 Significantly more efficient

The next anecdote concerns array-row I/O. For the majority of Extended Algol programmers, this is perhaps
the most common way they move data into and out of a program.

It turns out that this is not an original feature. It did not exist in the B5000 Algol compiler and MCP. Prior to
the B5500, one way you could do I/O was with FORMAT and LIST declarations as just discussed.

The second way you could do I/O was with RELEASE statements. This was somewhat like array-row I/O, but
it was buffer-level I/O, similar to modern Direct I/O. What's worse, the buffers were accessible only by
Stream Procedures. Even worse than that, as with Direct I/O, there was no support for blocking and
unblocking logical records within the buffers. You had to do that yourself, probably in a Stream Procedure.
Thus, these statements were inefficient and somewhat difficult to use.

The B5500 Disk File MCP and Algol compiler introduced a new scheme, which we know today as array-row
I/O. With this scheme, a READ or WRITE statement specifies a file identifier, an arithmetic expression
specifying the number of units to transfer between the file's buffer and a one-dimensional array row within the
program, and a reference to that array row. Any blocking or unblocking is handled automatically by the MCP.
This approach also allowed the MCP to do more intelligent buffer handling, e.g., read-aheads when doing
sequential I/O. It was significantly more efficient than formatted I/O and lots easier, safer, and more
convenient than RELEASE statements.

On the B5500, all Algol I/O was done in units of words, and the transfer between buffer and array row had to
start at the first word of the array row. Starting with the B6500, this was generalized to allow character-
oriented I/O and for the program also to use an indexed array reference or pointer expression as the transfer
starting point.

The Origins of Burroughs Extended Algol

2019 UNITE MCP 4059 42

2019 MCP 4059 42

InputInput--Output List DeclarationsOutput List Declarations

 Algol formatted I/O has a LIST declaration
 LIST L1 (A, B, C+2, FOR I:=1 STEP 1
UNTIL N DO [M[0,I], M[I,0], M[I,I]]);
WRITE (LINE, FMT, L1);

 Used with formatted READ & WRITE statements

 On B5000, literal list could not be in the READ/WRITE

 Another carry-over from 220 BALGOL
 INPUT and OUTPUT declarations

 Created a co-routine called by the I/O formatters
 OUTPUT L1 (A, B, C+2, FOR I=(1,1,N) (

M(0,I), M(I,0), M(I,I)))$
WRITE ($$ L1, FMT)$

I have included this final Extended Algol feature as a curiosity, as it is something I have never had occasion
to use, and I have always wondered why it existed.

That feature is the LIST declaration. It is used with Algol formatted I/O, which is somewhat similar to
FORTRAN formatted I/O. In formatted I/O, a READ or WRITE statement specifies a file identifier (or in
FORTRAN, a unit number), the identifier for a formatting string declared elsewhere in the program, and a list
of variables and expressions into which the data is to be read or out of which the data is to be written. Thus, in
FORTRAN you might write:

900 FORMAT (F6.3, 2X, E13.6, 2X, F6.0)
WRITE 6, 900, A, B, C

where "6" is a unit number and "900" is the label of the format string. In Extended Algol, you would
equivalently write:

FILE LINE (KIND=PRINTER, MAXRECSIZE=80, FRAMESIZE=8);
FORMAT F1 (F6.3, X2, E13.6, X2, F6.0);
WRITE (LINE, F1, A, B, C);

The "A,B,C" in both WRITE statements is the list of variables that supply the data to be written. Another
way to do this in Extended Algol is to move the list to a separate declaration and reference that declaration in
the WRITE statement, thus:

LIST L1 (A, B, C);
…
WRITE (LINE, F1, L1);

But why would you bother to do this? It turns out in B5000 Extended Algol, you had to. I/O lists could not be
written in-line within the I/O statement. With the release of the B5500 and Disk File MCP in 1965, the
compiler supported I/O lists written in-line.

This is another feature carried over from 220 BALGOL to the B5000. In BALGOL, I/O lists were specified
in INPUT and OUTPUT declarations and then referenced along with a format identifier in READ and WRITE
statements. Extended Algol LIST declarations have simply been carried forward into the modern language all
the way from the B5000, but the only place I have ever seen them used is in some Algol programs from the
early 1960s that are in the CUBE library, which was recovered in 2018.

The Origins of Burroughs Extended Algol

2019 UNITE MCP 4059 43

2019 MCP 4059 43

ReferencesReferencesReferences

 ElectroData and 205 History – Tom Sawyer
 http://www.tjsawyer.com/B205home.php

 B5000 Oral History Transcript (1985) – CBI
 http://hdl.handle.net/11299/107105

 Stories of the B5000… – Richard Waychoff
 http://www.ianjoyner.name/Files/Waychoff.pdf
 https://archive.computerhistory.org/resources/access/

text/2016/06/102724640-05-01-acc.pdf [scanned original]

 Algol Source Code and Emulators
 http://www.phkimpel.us/ElectroData-205/
 http://www.phkimpel.us/Burroughs-220/
 http://www.phkimpel.us/B5500/

 This presentation
 http://www.digm.com/UNITE/2019/

For anyone who is interested in the very early history of programming languages, Donald Knuth prepared a
lecture several years ago titled "A Dozen Precursors of FORTRAN." A video of his presentation can be
downloaded at https://www.computerhistory.org/collections/catalog/102622137.

The Origins of Burroughs Extended Algol

2019 UNITE MCP 4059 44

ENDEND

The Origins of

Burroughs Extended Algol

