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Types of Transition Metal Carbene Complexes
•Historically, there have been two types of transition metal carbene
complexes: Fischer and Schrock.

•NHC—Metal complexes represent a new class of complexes.

•Due to the NHCs poor π-backbonding capabilities a metal—NHC
bond is usually represented as a single bond.
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Types of N—Heterocyclic Carbenes

•There are many types of NHC precursors, but thiazolium,
triazolium, and imidazolium salts are the most important to
catalysis.

•Imidazoles, saturated and unsaturated, are the most widely
used NHCs as ligands.

•Four, six, and seven—membered NHCs also exist, but are not
as widely used.
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Routes to N—Heterocyclic Carbenes
• Imidazolium and triazolium salts are the most prevalent ligands.

•Synthesis usually involves cyclizing a linear NHC precursor or
alkylating the intact NHC core.

•Unsymmetrical/chiral NHCs involve more complex synthesis
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Arduengoʼs Breakthrough
•Synthesized an adamantyl substituted imidazolium salt and rigorously
characterized it.

•They were able to deprotonate and grow a crystal of the free carbene.

•NMR, Mass Spec., X-ray, and IR data unequivoqually show the free
carbene has been formed.

Arduengo, A.J.; Harlow, R. L.; Kline, M. J. Am. Chem. Soc. 1991, 113, 361-363.
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Physical Characteristics of Carbenes

•NHCs are are singlet carbenes, with a filled σ orbital and an empty π
orbital.

•The pKa of the C2 carbon is 24 (DMSO), making NHCs strongly basic.

•NHCs are nucleophilic, but they can also undergo cycloadditions and
insertions like other carbenes.

Alder, R. W.; Allen, P. A.; Williams, S. J.; Chem. Comm. 1995, 1267-1268.
Enders, D.; Breuer, K.; Teles, J. H; Ebel, K. J. Prakt. Chem. 1997, 339, 397-399. 
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Bonding Characteristics to Metals
•NHCs are electron rich and strong σ donors.  Their π back-bonding
ability is the source of debate.

•Substitution on the NHC, the metal complex, and the specific metal all
affect the π back-bonding ability.

•All NHCs have relatively similar donating ability, where as phosphines
vary widely.

Yin, l.; Liebeskind, L. S. J. Am. Chem. Soc. 1999, 121, 5811-5812.
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Stability/Shape of NHC Ligands

• NHC ligands, in general, form more stable bonds with metals.
Saturated NHCs bind more weakly than their unsaturated
counterparts.

•The metal—NHC bond is not inert.  Migratory insertion and reductive
elimination are degradation pathways.

•NHC ligands have a different profile than phosphine ligands.
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Metals NHCs can Bind to
•NHCs can form complexes with 52 elements, including every transition
metal except Sc, Tc, and Cd.
•  Most prevalent complexes are Group 6—9 transition metals.
• Strategies for forming NHC—metal complexes include transmetallation,
oxidative addition, and deprotonation.

Herrmann, W. A. Köcher, C. Angew. Chem. Int. Ed. Engl. 1997, 36, 2162-2187



Insertion of Metal into NHC Dimer
•There is an equilibrium between the free carbene and its dimer, known as
the Wanzlick equilibrium.

• The free carbenes from the dimer can add to a metal or displace other
ligands with heating.

• Dimers are synthesized by deprotonating the corresponding azolium
salts.
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ʻProtectedʼ NHCs
•When forming air sensitive metal complexes, protecting the free
carbene with an alcohol or chloroform proves useful.

•Not all azolium salts can be protected in this
manner—unsaturated NHCs are deprotonated.

•Coordination to metal may involve carbene dimer and Wanzlick
equilibrium.
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Preformed Carbenes/in situ Deprotonation
•Exposing a metal complex to preformed carbenes or forming
the carbene in situ with an irreversible base is the most straight
forward process.

•The free carbene must be relatively stable.

•The base can be added to the reaction mixture or be part of the
metal complex.
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Transmetallation from NHC-Ag
Complexes/Oxidative Addition

•The lability of the Ag-NHC bond allows Ag-NHC complexes to be carbene
transfer agents.

•NHCs can undergo oxidative addition at the C2 carbon when exposed to
metal complexes.

•Oxidative addition works with Y = H, X, but low valent metals can only
undergo it with hydrogen.
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Cross-Coupling Reactions : Suzuki Coupling

•Employing NHCs as ligands for palladium in the Suzuki-Miyaura coupling
reactions has several benefits.

•The electron donating properties of NHCs aids oxidative addition.

•NHC-palladium complexes can catalyzed the coupling of unactivated aryl
chlorides and or sterically encumbered coupling partners.

•Catalyst systems can be used with common solvents and mild reaction
conditions.
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Cross-Coupling Reactions : Suzuki Coupling
•Glorius has used electron rich NHCs as ligands to perform these
difficult couplings.

•Nolan uses a NHC-palladium complex to perform couplings at room
temp. using isopropanol in minutes.
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Cross-Coupling Reactions : Suzuki Coupling
•The palladacycle Nolan uses is only the precatalyst.

•Palladium (0) must be generated for the coupling.

•Drawbacks are harsh conditions for forming palladacycle and
manditory slow additionn of aryl chloride.
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Cross Coupling: Kumada Coupling
• Using NHCs as ligands once again allows for the use of
unactivated aryl or alkyl chlorides.

•The mild reaction conditions and fast reaction times allow for
greater functional group tolerance.

•Ortho substituents are also tolerated.

Frisch, A. C.; Rataboul, F.; Zapf, A.; Beller, M. J. Organomet. Chem. 2003, 687, 403-409

Cl

+

MgBr

Pd2(dba)3, 1 mol %Me Me

Me

Me

IPrHCl, 4 mol %
THF/Dioxane, 80 °C

95%, 3 hrs

OMe Me

OMeMe

IPrHCl

N N

Cl

MgBr

+
NHC-Pd, 2 mol %

NMP, 23 °C

70%, 1 hr

NHC-Pd

Cl

1.5 eq

O

O

O

O

Pd IMesPdMesI

Huang, J.; Nolan, S. P. J. Am. Chem. Soc. 1999, 121, 9889-9890



Cross Coupling: Sonogashira
• NHC-Pd complexes cannot catalyze this reaction for aryl chlorides.

•NHC-Pd complexes catalyze the coupling of β hydrogen-containing
alkyl electrophiles while phosphine-Pd complexes are ineffective.

•Coupling with aryl iodides can be accomplished at room temp.
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Cross Coupling: Heck
•First report of transtion metal catalysis using NHC ligand
(Herrmann, 1995).
•The coupling of aryl chlorides can be carried out in ionic liquids.
•Mild reaction conditions can only be accessed when using
diazonium salts

Andrus, M. B.; Song, C.; Zhang, J. Org. Lett.  2002, 4, 2079-2082.

Selvakumar, K.; Zapf, A.; Beller, M. Org. Lett.  2002, 4, 3031-3033.
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Cross Coupling: Heck
•A NHC-Pd complex was employed in a recent cost effective
synthesis of resveratrol.

•Other Heck couplings and an optimized HWE gave either longer
routes or poor yields.

•There is speculation whether resveratrol is in part responsible
for the ʻFrench Paradoxʼ.
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Cross Coupling: Buchwald-Hartwig Amination
•As with the Suzuki-Miyaura reaction, NHCs help catalyze the amination of
unactivated aryl chlorides.

•Steric bulk on the NHC or around the palladium helps to generate the active
catalyst more efficiently.

•NHC-Pd complexes can catalyze this reaction with very low catalyst loadings
or mild reaction conditions.

Marion, N.; Navarro, O.; Mei, J.; Stevens, E. D.; Scott, N. M. Nolan, S. P. J. Am. Chem. Soc. 2006, 128, 4101-4111.
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Cross Coupling: Buchwald-Hartwig Amination
•As with the Suzuki-Miyaura reaction, NHCs help catalyze the amination of
unactivated aryl chlorides.

•Steric bulk on the NHC or around the palladium helps to generate the active
catalyst more efficiently.

•NHC-Pd complexes can catalyze this reaction with very low catalyst loadings
or mild reaction conditions.

Marion, N.; Navarro, O.; Mei, J.; Stevens, E. D.; Scott, N. M. Nolan, S. P. J. Am. Chem. Soc. 2006, 128, 4101-4111.
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Cross Coupling: Buchwald-Hartwig Amination
•NHC-Pd complexes can even catalyze the reaction in technical grade
solvents under aerobic conditions.

•NHC-Pd complexes can also catalyze the related indole synthesis.
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Olefin Metathesis
•Olefin metathesis is a very powerful tool, both in natural product
related synthesis and in polymer chemistry.
•The incorporation of a NHC ligand onto Grubbsʼ Ru based  catalyst
allowed for more widespread applications.
•Hoveydaʼs internal chelate modification allows for greater stability and
recycling via chromatography.
•Ru based metathesis catalysts are generally more ʻuser-friendlyʼ than
Schockʼs Mo-alkylidine catalysts.
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Olefin Metathesis: Mechanistic Insights
•Grubbs I has more functional group tolerance and is less air sensitive
than Schrockʼs catalyst.
•Low thermal stability, C—P bond degredation, and reduced activity all
problems.
•Mechanism states phosphine dissociation and low reassociation
essential for high turnover.
•Steric bulk and electron donating ability important factors for ligand.
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Olefin Metathesis: Incorporation of NHCs
•NHCs are perfect candidates as ligands for Ru based metathesis.
•Strong σ donation and weak π acceptor character leads to strong NHC-
Ru bonds (5 kcal/mol greater!)
•These factors, along with greater steric bulk, result in increased activity,
more robust reaction conditions, and decreased reaction times.
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Olefin Metathesis: Phosphine-Free and
Chiral Catalysts

•Phosphine-free catalysts prepared by Hoveyda and Blechert groups
independently.
•These catalysts improve cross metathesis and work with electron
deficient olefins.
•Chiral metathesis catalysts carry out AROM/CM catalysis
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Olefin Metathesis: Applications to Synthesis
• Aside from many applications in the polymer science field, RCM,
cross-methasis, and enyne metathesis have found many applications
in the total synthesis of natrual products.
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Olefin Metathesis: Applications to Synthesis
• Aside from many applications in the polymer science field, RCM,
cross-methasis, and enyne metathesis have found many applications
in the total synthesis of natrual products.

Geng, X.; Danishefsky, S. J. Org. Lett. 2004, 6, 413-416.
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Asymmetric Additions with NHC-Metal Complexes 
•Chiral phosphine ligands are successful ligands for many
asymmetric transition metal—mediated reactions.

•Could NHCs be successful ligands with their unique features?

•The profile of chiral NHC ligands differs significantly from chiral
phosphine complexes.  NHCs do not have an ʻedge-to-faceʼ
orientation of their aryl groups like phosphines.
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Asymmetric Additions with NHC-Metal Complexes:
Conjugate Arylation 

•First investigated by Miyaura and Hayashi in 1998 using a
Rh/BINAP complex.

•A system developed by Ardus using a NHC-paracyclophane
ligand gives comparable yields and selectivity with more mild
conditions.

•Bulky NHC ligands are essential, which was first shown by
Fürstner.
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Asymmetric Additions with NHC-Metal Complexes:
Asymmetric α-arylation

•Reaction reported in 1997 by Buchwald and Hartwig.  Muratake
and Natsume reported intramolecular version at the same time.

•Best ligand for the asymmetric intramolecular version is a NHC.

•This ligand better than workhorse phosphine ligands.
Unfortunately, only modest selectivity is achievable at present
time.
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