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1 Introduction

For one-factorial designs with samples that do not meet the assumptions for one-way-
ANOVA (i.e., i) errors are normally distributed, ii) equal variances among the groups,
and, iii) uncorrelated errors) and subsequent post-hoc tests, the Kruskal-Wallis test
(kruskal.test) can be employed that is also referred to as the Kruskal–Wallis one-way
analysis of variance by ranks. Provided that significant differences were detected by the
Kruskal-Wallis-Test, one may be interested in applying post-hoc tests for pairwise mul-
tiple comparisons of the ranked data (Nemenyi’s test, Dunn’s test, Conover’s test). Sim-
ilarly, one-way ANOVA with repeated measures that is also referred to as ANOVA with
unreplicated block design can also be conducted via the Friedman test (friedman.test).
The consequent post-hoc pairwise multiple comparison tests according to Nemenyi and
Conover are also provided in this package.

2 Comparison of multiple independent samples (One-factorial
design)

2.1 Kruskal and Wallis test

The linear model of a one-way layout can be written as:

yi = µ+ αi + εi, (1)

with y the response vector, µ the global mean of the data, αi the difference to the mean
of the i-th group and ε the residual error. The non-parametric alternative is the Kruskal
and Wallis test. It tests the null hypothesis, that each of the k samples belong to the
same population (H0 : R̄i. = (n+ 1)/2). First, the response vector y is transformed into
ranks with increasing order. In the presence of sequences with equal values (i.e. ties),
mean ranks are designated to the corresponding realizations. Then, the test statistic can
be calculated according to Eq. 2:

Ĥ =

[
12

n (n+ 1)

] [ k∑
i=1

R2
i

ni

]
− 3 (n+ 1) (2)

with n =
∑k
i ni the total sample size, ni the number of data of the i-th group and R2

i

the squared rank sum of the i-th group. In the presence of many ties, the test statistics
Ĥ can be corrected using Eqs. 3 and 4

C = 1−
∑i=r
i=1

(
t3i − ti

)
n3 − n

, (3)
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with ti the number of ties of the i-th group of ties.

Ĥ∗ = Ĥ/C (4)

The Kruskal and Wallis test can be employed as a global test. As the test statistic
H̄ is approximately χ2-distributed, the null hypothesis is withdrawn, if Ĥ > χ2

k−1;α.
It should be noted, that the tie correction has only a small impact on the calculated
statistic and its consequent estimation of levels of significance.

2.2 Kruskal-Wallis – post-hoc tests after Nemenyi

Provided, that the globally conducted Kruskal-Wallis test indicates significance (i.e.
H0 is rejected, and HA : ’at least on of the k samples does not belong to the same
population’ is accepted), one may be interested in identifying which group or groups
are significantly different. The number of pairwise contrasts or subsequent tests that
need to be conducted is m = k (k − 1) /2 to detect the differences between each group.
Nemenyi proposed a test that originally based on rank sums and the application of the
family-wise error method to control Type I error inflation, if multiple comparisons are
done. The Tukey and Kramer approach uses mean rank sums and can be employed for
equally as well as unequally sized samples without ties (Sachs, 1997, p. 397). The null
hypothesis H0 : R̄i = R̄j is rejected, if a critical absolute difference of mean rank sums
is exceeded.

∣∣R̄i − R̄j∣∣ > q∞;k;α√
2

√√√√[n (n+ 1)

12

] [
1

ni
+

1

nj

]
, (5)

where q∞;k;α denotes the upper quantile of the studentized range distribution. Al-
though these quantiles can not be computed analytically, as df = ∞, a good approxi-
mation is to set df very large: such as q1000000;k;α ∼ q∞;k;α. This inequality (5) leads
to the same critical differences of rank sums (|Ri −Rj |) when multiplied with n for
α = [0.1, 0.5, 0.01], as reported in the tables of Wilcoxon and Wilcox (1964, pp. 29–31).
In the presence of ties the approach presented by Sachs (1997, p. 395) can be employed
(6), provided that (ni, nj , . . . , nk ≥ 6) and k ≥ 4.:

∣∣R̄i − R̄j∣∣ >
√√√√Cχ2

k−1;α

[
n (n+ 1)

12

] [
1

ni
+

1

nj

]
, (6)

where C is given by Eq. 3. The function posthoc.kruskal.nemenyi.test does not
evaluate the critical differences as given by Eqs. 5 and 6, but calculates the corresponding
level of significance for the estimated statistics q and χ2, respectively.

In the special case, that several treatments shall only be tested against one control
experiment, the number of tests reduces to m = k − 1. This case is given in section 2.8.
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2.3 Examples using posthoc.kruskal.nemenyi.test

The function kruskal.test is provided with the library stats (R Core Team, 2013).
The data-set InsectSprays was derived from a one factorial experimental design and
can be used for demonstration purposes. Prior to the test, a visualization of the data
(Fig 1) might be helpful:

●
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Figure 1: Boxplot of the InsectSprays data set.

Based on a visual inspection, one can assume that the insecticides A, B, F differ from
C, D, E. The global test can be conducted in this way:

> kruskal.test(count ~ spray, data=InsectSprays)

Kruskal-Wallis rank sum test

data: count by spray

Kruskal-Wallis chi-squared = 54.6913, df = 5, p-value = 1.511e-10
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As the Kruskal-Wallis Test statistics is highly significant (χ2(5) = 54.69, p < 0.01),
the null hypothesis is rejected. Thus, it is meaningful to apply post-hoc tests with the
function posthoc.kruskal.nemenyi.test.

> require(PMCMR)

> data(InsectSprays)

> attach(InsectSprays)

> posthoc.kruskal.nemenyi.test(x=count, g=spray, dist="Tukey")

Pairwise comparisons using Tukey and Kramer (Nemenyi) test

with Tukey-Dist approximation for independent samples

data: count and spray

A B C D E

B 0.99961 - - - -

C 2.8e-05 5.7e-06 - - -

D 0.02293 0.00813 0.56300 - -

E 0.00169 0.00047 0.94109 0.97809 -

F 0.99861 1.00000 3.5e-06 0.00585 0.00031

P value adjustment method: none

The test returns the lower triangle of the matrix that contains the p-values of the
pairwise comparisons. Thus |R̄A− R̄B| : n.s., but |R̄A− R̄C | : p < 0.01. Since PMCMR-
1.1 there is a formula method included. Thus the test can also be conducted in the
following way:

> posthoc.kruskal.nemenyi.test(count ~ spray, data=InsectSprays, dist="Tukey")

Pairwise comparisons using Tukey and Kramer (Nemenyi) test

with Tukey-Dist approximation for independent samples

data: count by spray

A B C D E

B 0.99961 - - - -

C 2.8e-05 5.7e-06 - - -

D 0.02293 0.00813 0.56300 - -

E 0.00169 0.00047 0.94109 0.97809 -

F 0.99861 1.00000 3.5e-06 0.00585 0.00031

P value adjustment method: none

As there are ties present in the data, one may also conduct the Chi-square approach:
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> (out <- posthoc.kruskal.nemenyi.test(x=count, g=spray, dist="Chisquare"))

Pairwise comparisons using Nemenyi-test with Chi-squared

approximation for independent samples

data: count and spray

A B C D E

B 0.99985 - - - -

C 0.00037 9.4e-05 - - -

D 0.08359 0.03812 0.73938 - -

E 0.01113 0.00391 0.97354 0.99070 -

F 0.99945 1.00000 6.2e-05 0.02955 0.00281

P value adjustment method: none

which leads to different levels of significance, but to the same test decision. The
arguments of the returned object of class pairwise.h.test can be further explored.
The statistics, in this case the χ2 estimations, can be taken in this way:

> print(out$statistic)

A B C D E

B 0.09741248 NA NA NA NA

C 22.70093702 25.772474315 NA NA NA

D 9.68046043 11.720034247 2.7330908 NA NA

E 14.76750381 17.263698630 0.8495291 0.5351027 NA

F 0.16383657 0.008585426 26.7218417 12.3630375 18.04226

The test results can be aligned into a summary table as it is common in scientific
articles. However, there is not yet a function included in the package PMCMR. Therefore,
Table 1 was manually created.

2.4 Kruskal-Wallis – post-hoc test after Dunn

Dunn (1964) has proposed a test for multiple comparisons of rank sums based on the z-
statistics of the standard normal distribution. The null hypothesis (H0), the probability
of observing a randomly selected value from the first group that is larger than a randomly
selected value from the second group equals one half, is rejected, if a critical absolute
difference of mean rank sums is exceeded:

∣∣R̄i − R̄j∣∣ > z1−α/2∗

√√√√[n (n+ 1)

12
−B

] [
1

ni
+

1

nj

]
, (7)
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with z1−α/2∗ the value of the standard normal distribution for a given adjusted α/2∗
level depending on the number of tests conducted and B the correction term for ties,
which was taken from Glantz (2012) and is given by Eq. 8:

B =

∑i=r
i=1

(
t3i − ti

)
12 (n− 1)

(8)

The function posthoc.kruskal.dunn.test does not evaluate the critical differences
as given by Eqs. 7, but calculates the corresponding level of significance for the estimated
statistics z, as adjusted by any method implemented in p.adjust to account for Type
I error inflation. It should be noted that Dunn (1964) originally used a Bonferroni
adjustment of p-values. For this specific case, the test ist sometimes referred as to the
Bonferroni-Dunn test.

2.5 Example using posthoc.kruskal.dunn.test

We can go back to the example with InsectSprays.

> require(PMCMR)

> data(InsectSprays)

> attach(InsectSprays)

> posthoc.kruskal.dunn.test(x=count, g=spray, p.adjust.method="none")

Pairwise comparisons using Dunn's-test for multiple

comparisons of independent samples

data: count and spray

A B C D E

B 0.75448 - - - -

C 1.8e-06 3.6e-07 - - -

D 0.00182 0.00060 0.09762 - -

Table 1: Mean rank sums of insect counts (R̄i) after the application of insecticides
(Group). Different letters indicate significant differences (p < 0.05) accord-
ing to the Tukey-Kramer-Nemenyi post-hoc test. The global test according to
Kruskal and Wallis indicated significance (χ2(5) = 54.69, p < 0.01).

Group R̄i
C 11.46 a
E 19.33 a
D 25.58 a
A 52.17 b
B 54.83 b
F 55.62 b
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E 0.00012 3.1e-05 0.35572 0.46358 -

F 0.68505 0.92603 2.2e-07 0.00043 2.1e-05

P value adjustment method: none

The test returns the lower triangle of the matrix that contains the p-values of the
pairwise comparisons. As p.adjust.method="none", the p-values are not adjusted.
Hence, there is a Type I error inflation that leads to a false postive discovery rate. This
can be solved by applying e.g. a Bonferroni-type adjustment of p-values.

> require(PMCMR)

> data(InsectSprays)

> attach(InsectSprays)

> posthoc.kruskal.dunn.test(x=count, g=spray, p.adjust.method="bonferroni")

Pairwise comparisons using Dunn's-test for multiple

comparisons of independent samples

data: count and spray

A B C D E

B 1.00000 - - - -

C 2.7e-05 5.5e-06 - - -

D 0.02735 0.00904 1.00000 - -

E 0.00177 0.00047 1.00000 1.00000 -

F 1.00000 1.00000 3.3e-06 0.00640 0.00031

P value adjustment method: bonferroni

2.6 Kruskal-Wallis – post-hoc test after Conover

Conover and Iman (1979) proposed a test that aims at having a higher test power than
the tests given by inequalities 5 and 6:

∣∣R̄i − R̄j∣∣ > t1−α/2;n−k

√√√√s2 [n− 1− Ĥ∗
n− k

] [
1

ni
+

1

nj

]
, (9)

with Ĥ∗ the tie corrected Kruskal-Wallis statistic according to Eq. 4 and t1−α/2;n−k
the t-value of the student-t-distribution. The variance s2 is given in case of ties by:

s2 =
1

n− 1

[∑
R2
i − n

(n+ 1)2

4

]
(10)

The variance s2 simplifies to n (n+ 1) /12, if there are no ties present. Although
Conover and Iman (1979) did not propose an adjustment of p-values, the function
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posthoc.kruskal.conover.test has implemented methods for p-adjustment from the
function p.adjust.

2.7 Example using posthoc.kruskal.conover.test

> require(PMCMR)

> data(InsectSprays)

> attach(InsectSprays)

> posthoc.kruskal.conover.test(x=count, g=spray, p.adjust.method="none")

Pairwise comparisons using Conover's-test for multiple

comparisons of independent samples

data: count and spray

A B C D E

B 0.5314 - - - -

C 3.7e-14 3.0e-15 - - -

D 3.1e-08 2.4e-09 0.0014 - -

E 7.5e-11 5.6e-12 0.0676 0.1451 -

F 0.4175 0.8524 1.4e-15 1.1e-09 2.6e-12

P value adjustment method: none

> require(PMCMR)

> data(InsectSprays)

> attach(InsectSprays)

> posthoc.kruskal.conover.test(x=count, g=spray, p.adjust.method="bonferroni")

Pairwise comparisons using Conover's-test for multiple

comparisons of independent samples

data: count and spray

A B C D E

B 1.000 - - - -

C 5.6e-13 4.5e-14 - - -

D 4.7e-07 3.6e-08 0.021 - -

E 1.1e-09 8.5e-11 1.000 1.000 -

F 1.000 1.000 2.1e-14 1.7e-08 3.9e-11

P value adjustment method: bonferroni
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2.8 Dunn’s multiple comparison test with one control

Dunn’s test (see section 2.4), can also be applied for multiple comparisons with one
control (Siegel and Castellan Jr., 1988):

∣∣R̄0 − R̄j
∣∣ > z1−α/2∗

√√√√[n (n+ 1)

12
−B

] [
1

n0
+

1

nj

]
, (11)

where R̄0 denotes the mean rank sum of the control experiment. In this case the
number of tests is reduced to m = k − 1, which changes the p-adjustment according
to Bonferroni (or others). The function dunn.test.control employs this test, but the
user need to be sure that the control is given as the first level in the group
vector.

2.9 Example using dunn.test.control

We can use the PlantGrowth dataset, that comprises data with dry matter weight of
yields with one control experiment (i.e. no treatment) and to different treatments. In
this case we are only interested, whether the treatments differ significantly from the
control experiment.

> require(stats)

> data(PlantGrowth)

> attach(PlantGrowth)

> kruskal.test(weight, group)

Kruskal-Wallis rank sum test

data: weight and group

Kruskal-Wallis chi-squared = 7.9882, df = 2, p-value = 0.01842

> dunn.test.control(x=weight,g=group, p.adjust="bonferroni")

Pairwise comparisons using Dunn's-test for multiple

comparisons with one control

data: weight and group

ctrl

trt1 0.53

trt2 0.18

P value adjustment method: bonferroni
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According to the global Kruskal-Wallis test, there are significant differences between
the groups, χ2(2) = 7.99, p < 0.05. However, the Dunn-test with Bonferroni adjustment
of p-values shows, that there are no significant effects.

If one may cross-check the findings with ANOVA and multiple comparison with one
control using the LSD-test, he/she can do the following:

> summary.lm(aov(weight ~ group))

Call:

aov(formula = weight ~ group)

Residuals:

Min 1Q Median 3Q Max

-1.0710 -0.4180 -0.0060 0.2627 1.3690

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 5.0320 0.1971 25.527 <2e-16 ***

grouptrt1 -0.3710 0.2788 -1.331 0.1944

grouptrt2 0.4940 0.2788 1.772 0.0877 .

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.6234 on 27 degrees of freedom

Multiple R-squared: 0.2641, Adjusted R-squared: 0.2096

F-statistic: 4.846 on 2 and 27 DF, p-value: 0.01591

The last line provides the statistics for the global test, i.e. there is a significant
treatment effect according to one-way ANOVA, F (2, 27) = 4.85, p < 0.05, η2 = 0.264.
The row that starts with Intercept gives the group mean of the control, its standard
error, the t-value for testing H0 : µ = 0 and the corresponding level of significance. The
following lines provide the difference between the averages of the treatment groups with
the control, where H0 : µ0 − µj = 0. Thus the trt1 does not differ significantly from
the ctr, t = −1.331, p = 0.194. There is a significant difference between trt2 and ctr

as indicated by t = 1.772, p < 0.1.

2.10 van der Waerden test

The van der Waerden test can be used as an alternative to the Kruskal-Wallis test, if
the data to not meet the requirements for ANOVA (Conover and Iman, 1979). Let the
Kruskal-Wallis ranked data denote Ri,j , then the normal scores Ai,j are derived from the
standard normal distribution according to Eq. 12.

Ai,j = φ−1
(
Ri,j
n+ 1

)
(12)
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Let the sum of the i-th score denote Aj . The variance S2 is calculated as given in Eq.
13.

S2 =
1

n− 1

∑
A2
i,j (13)

Finally the test statistic is given by Eq. 14.

T =
1

S2

k∑
j=1

A2
j

nj
(14)

The test statistic T is approximately χ2-distributed and tested for significance on a
level of 1− α with dg = k − 1.

2.11 Example using vanWaerden.test

> require(PMCMR)

> data(InsectSprays)

> attach(InsectSprays)

> vanWaerden.test(x=count, g=spray)

Van der Waerden normal scores test

data: count and spray

Van der Waerden chi-squared = 50.302, df = 5, p-value = 1.202e-09

2.12 post-hoc test after van der Waerden for multiple pairwise comparisons

Provided that the global test according to van der Waerden indicates significance, mul-
tiple comparisons can be done according to the inequality 15.

‖Ai
ni
− Aj
nj
‖ > t1−α/2;n−k

√√√√S2
n− 1− T
n− k

(
1

ni
+

1

nj

)
(15)

The test given in Conover and Iman (1979) does not adjust p-values. However, the
function has included the methods for p-value adjustment as given by p.adjust.

2.13 Example using posthoc.vanWaerden.test

> require(PMCMR)

> data(InsectSprays)

> attach(InsectSprays)

> posthoc.vanWaerden.test(x=count, g=spray, p.adjust.method="none")

Pairwise comparisons using van der Waerden normal scores test for

multiple comparisons of independent samples
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data: count and spray

A B C D E

B 0.6366 - - - -

C 6.9e-12 9.8e-13 - - -

D 9.0e-06 1.5e-06 0.0008 - -

E 5.5e-08 8.1e-09 0.0316 0.1919 -

F 0.2323 0.4675 5.0e-14 8.6e-08 4.1e-10

P value adjustment method: none

3 Comparison of multiple joint samples (Two-factorial
unreplicated complete block design)

3.1 Friedman test

The linear model of a two factorial unreplicated complete block design can be written
as:

yi,j = µ+ αi + πj + εi,j (16)

with πj the j-th level of the block (e.g. the specific response of the j-th test person).
The Friedman test is the non-parametric alternative for this type of k dependent treat-
ment groups with equal sample sizes. The null hypothesis, H0 : F (1) = F (2) = . . . =
F (k) is tested against the alternative hypothesis: at least one group does not belong
to the same population. The response vector y has to be ranked in ascending order
separately for each block πj : j = 1, . . .m. After that, the statistics of the Friedman test
is calculated according to Eq. 17:

χ̂2
R =

[
12

nk (k + 1)

k∑
i=1

Ri

]
− 3n (k + 1) (17)

The Friedman statistic is approximately χ2-distributed and the null hypothesis is
rejected, if χ̂R > χ2

k−1;α.

3.2 Friedman – post-hoc test after Nemenyi

Provided that the Friedman test indicates significance, the post-hoc test according to
Nemenyi (1963) can be employed (Sachs, 1997, p. 668). This test requires a balanced de-
sign (n1 = n2 = . . . = nk = n) for each group k and a Friedman-type ranking of the data.
The inequality 18 was taken from Demsar (2006, p. 11), where the critical difference
refer to mean rank sums (

∣∣R̄i − R̄j∣∣):
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∣∣R̄i − R̄j∣∣ > q∞;k;α√
2

√
k (k + 1)

6n
(18)

This inequality leads to the same critical differences of rank sums (|Ri −Rj |) when
multiplied with n for α = [0.1, 0.5, 0.01], as reported in the tables of Wilcoxon and
Wilcox (1964, pp. 36–38). Likewise to the posthoc.kruskal.nemenyi.test the func-
tion posthoc.friedman.nemenyi.test calculates the corresponding levels of signifi-
cance and the generic function print depicts the lower triangle of the matrix that
contains these p-values. The test according to Nemenyi (1963) was developed to ac-
count for a family-wise error and is already a conservative test. This is the reason, why
there is no p-adjustment included in the function.

3.3 Example using posthoc.friedman.nemenyi.test

This example is taken from Sachs (1997, p. 675) and is also included in the help page of
the function posthoc.friedman.nemenyi.test. In this experiment, six persons (block)
subsequently received six different diuretics (groups) that are denoted A to F. The re-
sponses are the concentration of Na in urine measured two hours after each treatment.

> require(PMCMR)

> y <- matrix(c(

+ 3.88, 5.64, 5.76, 4.25, 5.91, 4.33, 30.58, 30.14, 16.92,

+ 23.19, 26.74, 10.91, 25.24, 33.52, 25.45, 18.85, 20.45,

+ 26.67, 4.44, 7.94, 4.04, 4.4, 4.23, 4.36, 29.41, 30.72,

+ 32.92, 28.23, 23.35, 12, 38.87, 33.12, 39.15, 28.06, 38.23,

+ 26.65),nrow=6, ncol=6,

+ dimnames=list(1:6,c("A","B","C","D","E","F")))

> print(y)

A B C D E F

1 3.88 30.58 25.24 4.44 29.41 38.87

2 5.64 30.14 33.52 7.94 30.72 33.12

3 5.76 16.92 25.45 4.04 32.92 39.15

4 4.25 23.19 18.85 4.40 28.23 28.06

5 5.91 26.74 20.45 4.23 23.35 38.23

6 4.33 10.91 26.67 4.36 12.00 26.65

Based on a visual inspection (Fig. 2), one may assume different responses of Na-
concentration in urine as related to the applied diuretics.

The global test is the Friedman test, that is already implemented in the package stats
(R Core Team, 2013):

> friedman.test(y)
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Figure 2: Na-concentration (mval) in urine of six test persons after treatment with six
different diuretics.

Friedman rank sum test

data: y

Friedman chi-squared = 23.3333, df = 5, p-value = 0.0002915

As the Friedman test indicates significance (χ2(5) = 23.3, p < 0.01), it is meaningful
to conduct multiple comparisons in order to identify differences between the diuretics.

> posthoc.friedman.nemenyi.test(y)

Pairwise comparisons using Nemenyi multiple comparison test

with q approximation for unreplicated blocked data

data: y
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A B C D E

B 0.1880 - - - -

C 0.0917 0.9996 - - -

D 0.9996 0.3388 0.1880 - -

E 0.0395 0.9898 0.9996 0.0917 -

F 0.0016 0.6363 0.8200 0.0052 0.9400

P value adjustment method: none

According to the Nemenyi post-hoc test for multiple joint samples, the treatment F
based on the Na diuresis differs highly significant (p < 0.01) to A and D, and E differs
significantly (p < 0.05) to A. Other contrasts are not significant (p > 0.05). This is the
same test decision as given by (Sachs, 1997, p. 675).

3.4 Friedman – post-hoc test after Conover

Conover (1999) proposed a post-hoc test for pairwise comparisons, if Friedman-Test indi-
cated significance. The absolute difference between two group rank sums are signifcantly
different, if the following inequality is satisfied:

|Ri −Rj | > t1−α/2;(n−1)(k−1)

√√√√√2k

(
1− χ̂2

R
n(k−1)

)(∑n
i=1

∑k
j=1R

2
i,j −

nk(k+1)2

4

)
(k − 1) (n− 1)

(19)

Although Conover (1999) originally did not include a p-adjustment, the function has
included the methods as given by p.adjust, because it is a very liberal test. So it is up
to the user, to apply a p-adjustment or not, when using this function.

3.5 Example using posthoc.friedman.conover.test

> require(PMCMR)

> y <- matrix(c(

+ 3.88, 5.64, 5.76, 4.25, 5.91, 4.33, 30.58, 30.14, 16.92,

+ 23.19, 26.74, 10.91, 25.24, 33.52, 25.45, 18.85, 20.45,

+ 26.67, 4.44, 7.94, 4.04, 4.4, 4.23, 4.36, 29.41, 30.72,

+ 32.92, 28.23, 23.35, 12, 38.87, 33.12, 39.15, 28.06, 38.23,

+ 26.65),nrow=6, ncol=6,

+ dimnames=list(1:6,c("A","B","C","D","E","F")))

> friedman.test(y)

Friedman rank sum test

data: y

Friedman chi-squared = 23.3333, df = 5, p-value = 0.0002915
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> posthoc.friedman.conover.test(y=y, p.adjust="none")

Pairwise comparisons using Conover's multiple comparison test

for unreplicated blocked data

data: y

A B C D E

B 0.00014 - - - -

C 3.0e-05 0.55547 - - -

D 0.55547 0.00067 0.00014 - -

E 6.5e-06 0.24321 0.55547 3.0e-05 -

F 8.0e-08 0.00621 0.02468 3.3e-07 0.08511

P value adjustment method: none
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