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A b s t r a c t - - A  projectile which uses a bang-bang type guidance law is hunched, and its goal is to hit a 
fixed target whose centre is located on the ground. Using stochastic optimal control, the performance 
of the projectile is compared with cases where an optimal guidance law, or a saturated proportional 
navigation law, are being applied using the same airframe. 

1. INTRODUCTION 

Conventional missile systems make use of seekers which are mounted on some sort of gimbal 
system inside the missile, for detection and tracking of the target. The gimbals allow the seeker 
to be inertially stabilized, and it is then possible to implement a proportional navigation guidance 
law. The proportional navigation guidance law provides in general very good guidance accuracies. 
The alternative to mounting the seeker on gimbals is to fix the seeker to the missile airframe in the 
so-called strapdown configuration. To implement a proportional navigation guidance law using a 
strapdown seeker requires the use of an on-board computer and some additional sensors. All the 
above schemes are complex, costly and difficult to implement in a high-g launch environment. 
In this work a cheaper option for a guidance scheme, although a less accurate one, is discussed. 
This scheme uses the concept of a wind stabilized seeker. The concept of a wind stabilized seeker 
makes use of a seeker mounted on a "sting" which protrudes from the front of the missile. The 
seeker is mounted on a universal joint, and has a housing which is aerodynamically shaped so 
that it will align itself with the relative wind vector. The seeker sightline is therefore aligned 
with the missile flight path, irrespective of airframe attitude. The seeker can then measure the 
error angle between the seeker's flight path and the seeker-to-target line-of-sight. By using the 
seeker's outputs to control the flight surfaces on the missile airframe, the guidance loop tries to 
zero this error angle. Henceforward, it is assumed that the system is to be used against targets 
on the ground and that the projectile is unpowered after initial launch. 

This paper deals with the guidance of a projectile which uses a wind stabilized seeker. Using 
stochastic optimal control, three guidance laws are considered, that is, an optimal guidance law, a 
saturated proportional navigation law and a bang-bang guidance law. However, from these three 
laws only the bang-bang guidance law can be implemented on the above-mentioned projectile, 
and the study of the first two laws is done for the sake of the evaluation of the performance of 
the projectile acting under the third guidance law. 

This work is to a large extent a continuation of [1], and the methods applied here are the same 
as those applied in [1]. However, the physical problem dealt with here differs from the one dealt 
with in [1]. 
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2. T H E  

Consider the motion of a projectile 
of motion of P are given by 

E Q U A T I O N S  O F  M O T I O N  

P in the (z, z)-plane. It is assumed here that  the equations 

dz 
- -  = v cos 7, (1) 
dt 
dz 
- -  = v s i n  7 ,  ( 2 )  
dt 

d7 _ ( L  _ gcos7  ) (3) 
dt v ' 
dv D 

- g s i n  7 ,  ( 4 )  
dt m 

where (z, z) denotes the coordinates of the projectile P,  v its speed, 7 its flight path angle, L the 
lift force acting on P,  D the drag force acting on P and m its mass. It is assumed that  

L = 0.5p(z)v2SCL~ ~ (5) 

and 
m = 0.5p(z)v2S(CDo + i C ~ . v t 2 ) ,  (6) 

where p(z) denotes the air density, S an appropriate reference area and CDO, K and CL,, are 
given aerodynamical coefficients. It is assumed in this simplified model that  the angle of attack 
is the control function of the projectile's motion. 

In the real system, the purpose of the wind stabilized seeker platform is to keep the seeker 
sightline aligned with the airframe's flight path angle. The wind stabilized seeker platform is 
coupled to the airframe by a universal joint, which allows the platform to align itself with the 
relative wind vector, but  not to rotate relative to the airframe roll axis. 

In the model used here, the effects of the motion of the seeker platform together with the 
forces and moments applied on it, are incorporated as additional Gaussian white noise processes. 
Hence, using the notation zl  := x, x2 := z, x3 := 7 and z4 := v, equations (1)-(6) yield 

dzl  dW1 (7) 
dt = z 4 c ° s z 3 + ° ' x  d t '  

dx2 dW2 (8) 
d t =  z4 sin za + a2 dt 

- dW3 (9) dxs = 0 .5V(x2)~SCL.  ~ g cos ~s + as dt ' 
dt x4 

d z 4  " 2 - (CD o  + KC~"a2)  - gsinz3 + a4 dt = _0.5p(za)Zab. dW4 (10) 
dt m ' 

t > 0, where W = {W(t)  = (Wl(t), W2(t),W3(t), W4(t)), t >_ 0} is an R4-valued standard 
Wiener process, and ai, i = 1,2,3,4 are given numbers satisfying 0 < ai << vl, i = 1,2,4, and 
0 < as << It. The parameter Vl is defined later. Note that  ai-~-tt ' , i = 1,2,3,4,  model the 
kinematical and dynamical effects on P emerging from the motion of the seeker's platorm. 

It is assumed here that  the projectile P can manoeuvre as long as Vl < v < v2, where Vl and 
v2 are given positive numbers, and that  it has a detection range of radius Ro. Also, it is assumed 
that  the motion of P is confined to the strip 0 < z < Ho, where Ho is a given positive number. In 
addition, it is assumed that  during its motion, the flight path angle 7 is subject to the constraint 
-~r /2  < 7 _< 7°, where 7° is a given positive number. Thus P has an "operation zone" Dop 
determined by: 0 < z < Ro, 0 < z < Ho, - I r / 2  < 7 -< 7° and Vl < v < vs. The projectile P 
is launched and its goal is to hit a fixed target set whose centre is located in (ZD,ZD), where 
zv  > 0 is a small enough number. Hence, once P is launched its goal is to reach, before leaving 
the domain Do v , a target set T, 

0 } ,  ( 1 1 )  T = { ( z , z ) :  (Z - -ZD )  2 + ( z - -  ZD) 2 < ro,Z > 

where ro is a given positive number. 
in this work, one may view the time t = 0 as the first time during P ' s  flight that  the seeker 

begins to operate. 
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3. F O R M U L A T I O N  OF T H E  P R O B L E M  

In the sequel, the following set of stochastic differential equations will serve as the model for 
the motion of P 

dx 1 =- I ( x ) z  4 co8 x 3 dt -Jr o1 dW1, (12) 

dx2 = I ( x ) x 4  sin x3 dt + ~r2 dW~, (13) 

dx3 =- I(x)x41[O.ap(x~)z~SCLo 4(x) /m - g cos xa] dt + a3 dW3, (14) 

dz4 = I(X)[--O.5p(x2)x~S(CDo + KC~o 4 2 ( x ) ) / m  - g sin x3] dt + ~4 dW4, (15) 

t > 0, where I(x)  = 1 i f x  E {x : vl < x4 < v2} and I(x) = 0 otherwise, x = (x t ,z2 ,xa ,x4) .  The 
function I(.) is introduced here to guarantee the existence of solutions to equations (12)-(15) 
over the whole of R 4. In fact, we are interested in these solutions only over a set Do, Do C R 4, 
which will be defined later. 

Denote by Uo the class of all feedback strategies ~(-) = {a(x), x E R 4} such that  a(.) : I] 4 -.-, R 
is measurable and [4(x)[ <_ ao for all x e R 4. 

Let 4(.) e Uo. Then, [2], equations (12)-(15) determine a stochastic process ~r a = {~,a(t) = 
((~l(t), (~2(t), (~3(t), (~4(t)), t >__ 0}, (~(0) = x, such that  (~ is a weak solution (in the sense of 
[2]) to equations (12)-(15) associated with a family {Pff, x e R 4} of probability measures, and 
such that  {((~, P~),  x E R 4} is a family of strong Markov processes. Furthermore, the weak 
infinitesimal operator of this family is given by 

z(4(.))V(x) =1(x)~, cos ~3 or(x) 
aXl 
Or(x) 

+ l(x)x4 sin x30x'---~- 

+ l(x)~;l[o.5e(x2)x~SOn~ 4(x)/m 
,Or(x)  

-- g cos xaJ _w--- 
OX3 

+ ICx)[-O.hp(~2)~S(CDo + gcL , ,2 (x ) ) /~  

- g sin ~3] OV(x) 
ax4 

1 4 0 2 V ( x )  
+ ~ ~ ~ , 

Ox~ 

(16) 

for any V E Co°°(R4). 
Define the following sets in R4: 

Do := {x : - 6  < Xl < Ro, O < x2 < Ho, - 6  - ~ < xs < 7o + 6, 

Vl < X4 < V2}, 0 < 6 << 1, 

and 
(17) 

K := {x • Do : ( - i  - "D) 2 + ( '2  -- ZD) 2 < ~ } ,  ( i 8 )  

and 

D := Do - K. (19) 

Note that  now Do and K are respectively P 's  "operation zone" and the target set. 
Denote by r(x;  a(.)) the first exit time o f ( g  from D and define the following class of admissible 

feedback strategies: 

v := {4(.) E Uo: sup Eg~(x; 4(.)) < oo}, (20) 
xED 
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where E~ denotes the expectation operator with respect to p=a. Also, define the following func- 
tional: 

V(x;a(.)) :---- P=a({¢~(r(x;a(.))) E g} )  

= Pff ({for some t, 0 < t < to(x; a(.)) : 
(21) 

the projectile P reaches the target set K}), 

a(.) e r/, x e R 4, 
where to(X; a(.)) is the first time t, t > 0, that (~ leaves the domain Do. 

In this work we consider three guidance laws for the projectile P.  These laws are: (i) an optimal 
guidance law, (ii) a saturated proportional navigation guidance law and (iii) a bang-bang guidance 
l aw.  

Although these guidance laws are feedback laws, only the third one can be implemented by the 
wind stabilized seeker whereas the first two serve as reference for the evaluation of the performance 
of. P acting under the third guidance law. 

4. COMPUTATION OF V(.;a(.)) 

Let :D denote the class of all functions V : R 4 ~ R such that V is continuous on the closure Do 
of Do, twice continuously differentiable on D, and such that £(a(.))V E L~(D) for any a(.) e U. 

By following the same procedure as in [3], it follows that an optimal guidance law a*(.) may 
be found by solving the following problem 

Z(a(.))V(x) = 0, x E D (22) 

V(x) = 1, x E K; 

V(x) - O, x ~ Do, (23) 

where a(.) is given by: 
If av(x) > 0 then ax4 

where 

ao 

a(x) ---- Bo(x) 

- -a  0 

if Bo(x) > ao 

if IBo(x)l _< ao 

if Bo(x) < -ao ,  

(24) 

where 
Bp(x) := 4m4 [--(XD -- xl)sin xs + (ZD - x2) cos zs] 

r 2 

0V(x) 0V(x)] -1 
S0(x) : Ore3 2 x 4 K C L , , ~  . (25) 

• ~ OV(x~ Otherwise, l I  ~ __~ 0, t h e n  

0V(x) (26) 
~(x) = a0sign 0ms 

Assume that equations (22)-(26) have a solution denoted here by (a* (.), V(.; a ° (-))) which satis- 
fies a*(.) e U and Y(.;a*(.)) E :D, then [3], 

° "  
= P~ ({¢~ (r(x;a*(.))) E K}) (27) 
> P : ( { ~ ( r ( x ;  a(.))) e g} )  

for any a(.) E U and all x E D. 
In this work the following saturated proprotional navigation guidance law has been used: 

a0 if Bp(x) > a0 

ap(x)  -- Bp(x) if IBp(x)l < ao (28) 

-a0  if Bp(x) < -a0,  
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and 
(29) 

1.2 --- (X D -- Xl) 2 + (ZD -- X2) 2. 

Assume that equations (22)-(23) where a(.) ~- ap(.) is given by equations (28)-(29) have a 
solution denoted here by V(.; ap(.)). If ap(.) E U and V(.; ap(.)) E O, then [3], 

V(x; a p ( ) )  = P:," ({C~(~(x;  ap(.))) e K}) ,  x ~ W. (30) 

The third guidance law, which is proposed here to be used by the wind stabilized seeker, is given 
by 

as(x) := -a°sign [za -arctan ( ( zo -x2)  ~ - zt) ] ] " (31) 

Assume that equations (22)-(23) where a(.) = as( . )  is given by Equation (31) have a solution 
denoted here by V(.;aB(.)). If as( . )  E U and V(.;as(.))  E 7), then [3], 

V(x; as( .))  = P~B ({~gn(v(x; aS('))) E K}), x E ,4.  (32) 

In the next section the computation of V(.; a*(.)), V(.; ap(-)) and V(.; as( . ))  is discussed and a 
numerical study is conducted. 

5. A NUMERICAL STUDY AND CONCLUSIONS 

Denote by R~ the following finite-difference grid on R 4 

R~ := {(ilht, i2h~, i3h3, i4h4) : it, is, is, i4 = 0, fl=l, +2 , . . .  }, (33) 

Define Dh := D n R~. Equations (22)-(26), or Equations (22)-(23) and (28)-(29), or Equations 
(22)-(23) and (31) have here been solved using a finite-difference scheme on R~, similar to that 
described in [4]. 

Denote by Vh(.; a*(.)), vh(.; ap(.)) and Vh(.; aB(.)) the solutions to the finite-difference equa- 
tions corresponding to Equations (22)-(26), or Equations (22)-(23) and (28)-(29), or Equations 
(22)-(23) and (31), respectively. Define 

Vh(x; a*(.)) 
Po° "-- (34) 

x ~ .  N(DD ' 

Vh(x; ap(.)) 
p~,  := ~ (35) 

xeDh g(Dh) ' 
v ~ (x; aB (.)) K" 

Ps .  (36) :-- 
Z ~  N(  Oh ) ' xEDh 

Po(xl) := max Vh(x;a*(.)), (37) 
(~2,xs,x~) 

xEDh 

(Z0m(Xl), ZOra(Xl), X 0 m ( X l ) ) : :  a rgmax Vh(x;a*(.)), (38) 

xEDh 

ep(x l ) : -  max Vh(x;ap(.)), (39) 

xEDh 

(Xfm(Xl) , X3Pm(Xl), Xfm(Xl) ) :-- a rgmax Vh(x; ap ( . ) ) ,  (40) 
(-2,~3,~,) 

xEDh 

Ps(xl)  := m a x  Vh(x;as(')), (41) 

xEDa 

(z~m(xt) , x~m(xO, x~m(zl)) := argmax Vh(x; as( .)) ,  (42) 
(~2,~,~,) 
xEDh 

where N(Dh) denotes the number of points in Dh. 
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Table 1. The  values of 1'o (XD -- x l  ), xo 2m, XOm and xO,n as functions of XD -- xl  for 
t h e  case:  Ro : 1000, Ho = 1200, x D -~ 980, ZD ---- 15, hi ---- 20, h2 : 15, hs  = lr/40, 
h4 = 16, ro  ---- 15. In this case N ( D h )  --- 1725276 a n d / ~ a  ---- 0.064165. 

x 0  .0 m P0(*D 

980 15 0.0 282 0.7258 

900 15 0.0 266 0.7484 

800 15 0.0 250 0.7778 

700 15 0.0 250 0.8095 

600 15 0.0 234 0.8430 

500 15 0.0 218 0.8770 

400 15 0.0 218 0.9105 

300 15 0.0 202 0.9444 

200 15 0.0 186 0,9723 

Table 2. The  values of Pp (x D - xl  ), xP2m' xPm and xPm as funct ions of XD -- x l  for 
the case: Ro ---- 1000, Ho = 1200, XD = 980, ZD ---- 15, hi ---- 20, h2 -- 15, h3 = Ir/40, 
h4 ---- 16, ro --- 15. In  this case N ( D h )  -- 1725276 and PPa -- 0.060612. 

980 15 0,0 314 0.4585 

900 15 0.0 314 0.4983 

800 15 0.0 314 0.5509 

700 15 0.0 314 0.6066 

600 15 0.0 314 0.6653 

500 15 0.0 314 0.7268 

400 15 0.0 314 0.7904 

300 15 0.0 314 0.8549 

200 15 0.0 314 0.9174 

Table 3. The  values of PB(xD -- Xl), XB2m' x3Bm and X4Bm as functions o f x D  -- Xl for 
t h e  case: Ro = 1000, Ho = 1200, xD = 980, ZD = 15, hi = 20, h2 --- 15, h3 = ~r/40, 
h4 = 16, ro = 15. In this case N ( D h )  = 1725276 and PBa = 0.055880. 

980 60 0.0 314 0.3391 

900 60 0.0 314 0.3648 

800 60 0.0 314 0.3901 

700 45 0.0 314 0.4272 

600 30 0.0 314 0.4645 

500 30 0.0 314 0.5559 

400 30 0.0 314 0.6528 

300 30 0.0 314 0.7530 

200 30 0.0 314 0,8587 

Computa t ions  were carried out using the following set of parameters:  7o - ~r/40, vl -- 10, 
v2 = 330, m = 15, K = 1.06, CLo = 145, S = 0.0111, CDo = 0.34955, a0 = 0.0058, ~r 2 = ~2 = 1, 
cr~ -- (~r/200) 2 and ~r~ = 0.01. Some of the results are presented in Tables 1-6. 

In order to get further insight into the problem, a simulation study of Equations (7)-(10) for the 
case ei - 0, i = 1, 2, 3, 4 has been carried on. In this s tudy the following set of initial conditions 
and values for ZD has been used: Xl(0) = 0; z2(0) = 20 + i • 200, i = 0, 1, 2 , . . . ,  14; z3(0) = 0; 
z4(0) = j .  15, j = 1 , . . . , 2 1 ,  and zD = k .500, k = 1 , . . . , 5 .  This set includes 1890 elements 
(Xl (0 ) ,  X2(0) ,  X3(0) ,  X4(0) ,  X D ) .  Two guidance rules were used during the simulation study, tha t  
is, ap ( . )  (Equations (28)-(29)) and aB( ' )  (Equation (31)), and the target  set K (Equation (18)) 
has been used with ro = 4. Denote by N the number of simulation runs, by NK the number  of 
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Table  4. The  values of PO(ZD -- z l  ), zorn, zorn and  z ° m  as func t ions  of ZD -- z ,  for 
the case: Ro = 1600, Ho = 3600, zD = 1560, ZD = 20, hl = 40, ha = 20, hz = Ir/40, 

h4 = 16, ro = 20. In this case N(Dh) = 3128046 and P0a = 0.10894. 

Z D -- 371 ZO2m ~Orn zOrn PO(ZD -- Zl) 

1560 20 0.0 314 0.6336 

1400 20 0.0 314 0.6842 

1200 20 0.0 314 0.7389 

I000  20 0.0 298 0.7840 

800 20 0.0 266 0.8311 

600 20 0.0 250 0.8822 

400 20 0.0 218 0.9349 

200 20 0.0 202 0.9797 

117 

Table  5. The  values of P p ( z D  -- Xl ), zP2m, x3Pm and zPrn as func t ions  of xD - Zl  for 
the  case: Ro = 1600, Ho = 3600, ZD = 1560, ZD = 20, h i  = 40, h2 = 20, h3 = 1r/40, 

h4 = 16, ro = 20. In  th is  case N ( D h )  = 3128046 and  PPa = 0.10751. 

1560 20 0.0 314 0.2873 

1400 20 0.0 314 0.3430 

1200 20 0.0 314 0.4217 

1000 20 0.0 314 0.5101 

800 20 0.0 314 0.6078 

600 20 0.0 314 0.7137 

400 20 0.0 314 0.8249 

200 20 0.0 314 0.9322 

Table  6. The  values  of PB(XD -- Zl ), zB2m' ZZBm and zB4rn as funct ions  of XD -- x l  for 

the  case: Ro = 1600, Ho = 3600, x o  = 1560, ZD = 20, h i  = 40, h2 = 20, h3 = Ir /40,  

h4 = 16, ro = 20. In  th is  case N ( D h )  = 3128046 and  PBa = 0.07768. 

1560 200 0.0 314 0.2421 

1400 I00  Ir /40 314 0.2790 

1200 80 ~r/40 314 0.3308 

1000 60 ~r/40 314 0.3850 

800 60 0.0 314 0,4526 

600 40 0.0 314 0.5571 

400 40 0.0 314 0.7078 

200 40 0.0 314 0.8872 

hits, and by TK the average flight time in case of a hit, that is, 

TK = (the sum of all flight times in cases where there was a hit} 

NK 

Thus, the following results have been obtained: 

N NK TK 

~ p  (.) 1890 500 20.2689 

~ B ( ' )  1890 463 22.3017 

(43) 

These results together with those presented in Tables 1-6 might help the designer in the 
evaluation of the performance of P when the guidance law aB(.) is being applied. 
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