The Periodic Table and Periodic Trends

The properties of the elements exhibit trends and these trends can be predicted with the help of the periodic table. They can also be explained and understood by analyzing the electron configurations of the elements. This is because, elements tend to gain or lose valence electrons to achieve the stable octet formation.

Across the Periodic Table

Periods: Are arranged horizontally across the periodic table (rows 1-7)

These elements have the same number of valence shells.

Down the Periodic Table Family or Group: arranged vertically down the periodic table (columns or groups 1-18)

The elements in each group have the same number of electrons in the outermost energy level, the valence shell.

The Periodic Law

How is the modern periodic table organized?

• In the modern periodic table, elements are arranged in order of increasing atomic number (since there were problems with Mendeleev's method).

1	1 H																															He
2	³ Li	4 Be																									5 B	° C	7 N	8 0	9 F	10 Ne
3	11 Na	12 Mg																									13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
4	19 K	²⁰ Ca															21 Sc	22 Ti	23 V	24 Cr	25 Mn	Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	³⁴ Se	35 Br	36 Kr
5	37 Rb	38 Sr															39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
6	55 Cs	Ba	57 La	58 Ce	59 Pr	60 Nd	⁶¹ Pm	62 Sm	Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 TI	Pb	83 Bi	84 Po	At	86 Rn
7	87 Fr	88 Ra	89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112 Uub		114 Uuq				

The Periodic Law

The periodic law: When elements are arranged in order of increasing atomic number, there is a periodic repetition of their physical and chemical properties.

- The properties of the elements within a period change as you move across a period from left to right.
- The pattern of properties within a period repeats as you move from one period to the next.

Metals, Nonmetals, and Metalloids

18

1

IA 1A	2											13	14	15	16	17	VIIB 8A
'n	IIA 2A		М	etals		Metal	loids		Nonm	netals		IIIB 3A	IVB 4A	VB SA	IVB 6A	VIB 7A	2 He
³ Li	4 Be	3	4	5	6	7	8	9	10	11	12	s B	Ć C	7 N	8 0	9 F	¹⁰ Ne
11 Na	¹² Mg	IIIA 3B	IVA 4B	VA 5B	VIA 6B	VIIA 7B		VIIIA 8B	10	1B 1B	118 28	13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
19 K	²⁰ Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	²⁶ Fe	27 Co	28 Ni	29 Cu	³⁰ Zn	31 Ga	32 Ge	33 As	³⁴ Se	35 Br	36 Kr
37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	⁵⁰ Sn	51 Sb	52 Te	53 	⁵⁴ Xe
S5 Cs	56 Ba	⁷¹ Lu	72 Hf	73 Ta	74 W	75 Re	76 Os	77 r	78 Pt	79 Au	80 Hg	81 TI	⁸² Pb	83 Bi	84 Po	85 At	86 Rn
87 Fr	⁸⁸ Ra	103 Lr	104 Rf	105 Db	106 Sg	¹⁰⁷ Bh	108 Hs	109 Mt	110 Ds	nin Rg	Uub		114 Uuq				
		5	57	58	59	60	61	62	63	64	65	66	67	68	69	70	
		1	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	
		1	89 Ac	⁹⁰ Th	Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	Fm	Md	NO	

Metals Metals, Nonmetals, and Metalloids

- good conductors of heat and electric current.
- •80% of elements are metals.
- •Metals have a high lustre, are ductile and malleable.
- •Most are grey/silver

	IA.	2									13	14	15	16	17	8A
Li	Be	84 2.4		Metal	s	Meta	lloids		Nonmet	tals		IVB 4A	VB SA	6A	VIB 7A	He
11 Na	12 Mg		3	4 3	6	7		9	10	11	12 S	13 Al	7 N	8 0	° F	Ne
19 K	²⁰ Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	²⁶ Fe	27 Co	28 Ni	29 Cu	³⁰ Zn	31 Ga	P	16 5	CI	Ar
37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 I n	⁵⁰ Sn	Se 52	Br	Kr S4
55 Cs	56 Ba	71 Lu	72 Hf	73 Ta	74 W	75 Re	76 Os	77 r	78 Pt	79 Au	⁸⁰ Hg	81 TI	⁸² Pb	⁸³ Bi	84 Po	Xe 85
87 Fr	⁸⁸ Ra	103 Lr	104 Rf	105 Db	106 Sg	¹⁰⁷ Bh	108 Hs	109 Mt	110 Ds	nii Rg	Uub	114 Uuc			At	KN
			57	58	59	60	61	62	63	64	65	66	67	68	69	70
			La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb
			89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No

Metals

silver, lustrous,
malleable, ductile,
and good conductors
of heat and
electricity.

Metals

- Tend to lose electrons to form compounds.
- Compounds formed between metals and nonmetals tend to be ionic.
- Metal oxides (metals reacted with oxygen) tend to be basic.

Metals, Nonmetals, and Metalloids

-Nonmetals

- •In general, nonmetals are poor conductors of heat and electric current.
- •Most nonmetals are gases at room temperature.
- •Various colours and brittle
- •A few nonmetals are solids, such as sulfur and phosphorus.

•One nonmetal, bromine, is a dark-red liquid.

H	2 1A		2.4	at la		Maral	1.1.1					13 018	14 IVB	15 VB	16 IVB	17 VIB	He
3 Li	4 Be		IVI	etais		Metal		N	lonm	etal	5	Ē	°C	7 N	8 0	9 F	¹⁰ Ne
Na	12 Mg	3 38	eva 4B	5 VÅ 58	VIA 6B	VIIA 7B	-	vina 88	10.	11	12 18 28	13 Al	¹⁴ Si	15 P	16 S	17 Cl	18 Ar
19 K	Ca	21 Sc	Ti	23 V	24 Cr	25 Mn	Pe Fe	27 Co	28 Ni	Cu 29	³⁰ Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
37 Rb 55	38 Sr 56	39 Y 71	40 Zr 72	41 Nb 73	42 Mo 74	43 Tc 75	44 Ru 76	45 Rh 77	46 Pd 78	47 Ag 79	48 Cd 80	49 In 81	50 Sn 82	51 Sb 83	Te 84	53 	⁵⁴ Xe
Cs 87	88	Lu 103	Hf	Ta 105	W	Re	Os 108	1r 109	Pt 110	Au	Hg	TI	Pb	Bi	Po	At	86 Rn
Fr	Ra	Lr	57	58	59 59	60 60	61	62	63	Kg 64	65 65	66	67	68	69	70	
			La 89 Ac	Ce ⁹⁰ Th	Pr 91 Pa	Nd 92 U	Pm 93 Np	Sm 94 Pu	Eu 95 Am	Gd 96 Cm	97 Bk	Dy 98 Cf	Ho 99 Es	Er 100 Fm	Tm ¹⁰¹ Md	Yb 102 No	

Nonmetals

• Dull, brittle substances that are poor conductors of heat and electricity.

• Tend to gain electrons in reactions with metals to acquire noble gas configuration.

Nonmetals

- Substances containing only nonmetals are molecular compounds.
- Most nonmetal oxides (non-metal reacted with oxygen) are acidic.

-Metalloids

•A metalloid generally has properties that are in-between metals and nonmetals.

•Solids, shiny or dull, semi-conductors, brittle and not ductile

•The behavior of a metalloid can be controlled by changing conditions.

IA 1A													- 22	110		16.97	18 VIIB 8A
H	IA ZA		M	letals		Met	alloi	ds	Nonn	netals	5 B		IVB 4A	VB SA	IVB 6A	VIB	He
Li	⁴ Be	i	4	5	6	7	8	9	16	11	12	B	14	Ň	° O	9 F	10 Ne
Na	12 Mg	10A 38		VA SB	6B	78		VIIIA 88		1B	28	AI	Si	15 P	16 S	17 Cl	Ar
19 K	20 Ca	21 Sc	ZZ TI	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	³⁰ Zn	31 Ga	32 Ge	3 A	3 S	35 Br	36 Kr
Rb	38 Sr	39 Y	⁴⁰ Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	Cd	49 In	Sn	5	1	52	Xe
SS CS	56 Ba	71 Lu	72 Hf	73 Ta	74 W	75 Re	76 Os	77 r	78 Pt	79 Au	80 Hg	81 TI	⁸² Pb	SI	b	Те	86 Rn
87 Fr	Ra Ra	103 Lr	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	iii Rg	Uub		Uuq				85 At
			57 La	58 Ce	59 Pr	60 Nd	⁶¹ Pm	⁶² Sm	63 Eu	64 Gd	⁶⁵ Tb	66 Dy	67 Ho	68 Er	69 Tm	⁷⁰ Yb	
			89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	Md	102 No	

Metalloids

- Have some characteristics of metals, some of nonmetals.
- For instance, silicon looks shiny, but is brittle and fairly poor conductor.

Metals, Nonmetals, and Metalloids Examples and Uses

lron (Fe)

The Gateway Arch in St. Louis, Missouri, is covered in stainless steel containing iron and two other metals, chromium (Cr) and nickel (Ni). The steel is shiny, malleable, and strong. It also resists rusting.

Copper (Cu)

Copper is ductile and second to only silver as a conductor of electric current. The copper used in electrical cables must be 99.99% pure.

Aluminum (Al)

Aluminum is one of the metals that can be shaped into a thin sheet, or foil. To qualify as a foil, a metal must be no thicker than about 0.15 mm.

Metals, Nonmetals, and Metalloids Examples and Uses

• If a small amount of boron is mixed with silicon, the mixture is a good conductor of electric current. Silicon can be cut into wafers, and used to make computer chips.

Squares in the Periodic Table

• The periodic table displays the symbols and names of the elements, along with information about the structure of their atoms.

Groups or Families

• Elements in the same column (group) have similar properties

Alkali Metals (Group 1)

- Soft and reactive solids.
- Highly reactive with water and air(oxygen)
- Silver-coloured with metallic properties
- Name comes from Arabic word for ashes.
- Have one valence electron
- Form +1 ions

Alkali Metals

- Alkali metals (except Li) react with oxygen to form peroxides.
- K, Rb, and Cs also form superoxides:

$$K + O_2 \longrightarrow KO_2$$

• Produce bright colors when placed in flame.

Alkaline Earth Metals (Group 2)

Element	Electron Configuration	Melting Point (°C)	Density (g/cm ³)	Atomic Radius (Å)	I ₁ (kJ/mol)
Beryllium	[He]2 <i>s</i> ²	1287	1.85	0.90	899
Magnesium	[Ne]3 <i>s</i> ²	650	1.74	1.30	738
Calcium	$[Ar]4s^2$	842	1.55	1.74	590
Strontium	$[Kr]5s^2$	777	2.63	1.92	549
Barium	$[Xe]6s^2$	727	3.51	1.98	503

- Have higher densities and melting points than alkali metals.
- Light, solid and reactive metals.
- Have 2 valence electrons and form +2 ions
- Have low ionization energies, but not as low as alkali metals.

Alkaline Earth Metals

- Be does not react with water, Mg reacts only with steam, but others react readily with water.
- Reactivity tends to increase as go down group.

Group 17: Halogens

Element	Electron Configuration	Melting Point (°C)	Density	Atomic Radius (Å)	I ₁ (kJ/mol)
Fluorine	[He] $2s^2 2p^5$	-220	1.69 g/L	0.71	1681
Chlorine	[Ne] $3s^2 3p^5$	-102	3.21 g/L	0.99	1251
Bromine	[Ar] $3d^{10} 4s^2 4p^5$	-7.3	3.12 g/cm ³	1.14	1140
Iodine	[Kr] $4d^{10} 5s^2 5p^5$	114	4.94 g/cm ³	1.33	1008

- Solid, liquid or gas
- Non-metallic, not lustrous, nonconductors and very reactive
- Have 7 valence electrons and form -1 ions
- Name comes from the Greek *halos* and *gennao*: "salt formers"

Group 17: Halogens

- Large, negative electron affinities
 - Therefore, tend to oxidize other elements easily
- React directly with metals to form metal halides
- Chlorine added to water supplies to serve as disinfectant

Group 18: Noble Gases

Element	Electron Configuration	Boiling Point (K)	Density (g/L)	Atomic Radius* (Å)	I ₁ (kJ/mol)
Helium	$1s^{2}$	4.2	0.18	0.32	2372
Neon	$[He]2s^22p^6$	27.1	0.90	0.69	2081
Argon	$[Ne]3s^23p^6$	87.3	1.78	0.97	1521
Krypton	$[Ar]3d^{10}4s^24p^6$	120	3.75	1.10	1351
Xenon	$[Kr]4d^{10}5s^25p^6$	165	5.90	1.30	1170
Radon	$[Xe]4f^{14}5d^{10}6s^26p^6$	211	9.73	1.45	1037

*Only the heaviest of the noble-gas elements form chemical compounds. Thus, the atomic radii for the lighter noble-gas elements are estimated values.

- Gases, low melting and boiling points, nonreactive
- Have 8 valence electrons and rarely form ions
- Astronomical ionization energies
- Positive electron affinities
 - Therefore, relatively unreactive
- Monatomic gases

Group 18: Noble Gases

- Xe forms three compounds:
 - XeF₂
 - XeF₄ (at right)
 - XeF₆
- Kr forms only one stable compound:
 - KrF₂
- The unstable HArF was synthesized in 2000.

			Repre	esentativ	e Elemen	ts T	ransition	Elements	s								
			A	Alkali Met	als		Transi	tion Meta	als								
			A	Alkaline E	arth Meta	ls	Inner	transition	metals								
1A			(Other Met	als												18 8A
Ĥ			N	Aetalloids	5		14	2 8 Elect	rons in each	1							2
Hydrogen 1.0079	2 2A		N	Jonmetal	s		Si	4 Jenerg	gy level ent symbol			13	14	15	16 6A	17	Hettan
3 1	4 1			loble Gar			Silico	n — Elem	ent name		1	5 3	6	7 1	8 4	9 ;	10
Li	Be			NODIE Gas	962		20.00	Aver	age lic mass			В	С	N	0	F	Ne
6.941	9.0122							atom	11033			10.81	12.011	14,007	15.990	10.994	28.179
Na	Mg					-						AI	Si '	P	S	či '	Ar
Sodium 22.990	Megorsium 24.305	3B	4B	58	6B	7B	8	- 8B -	10	18	2B	Aluminum 26.982	818con 28.086	Phosphorus 30.974	Bullur 32.06	Chloribe 35.453	Argon 29.949
19 K	20	21	22	23 i	24 -	25 i	26 Eo	27	28 Å	29	30 7 7	31 i	32 ²		34 i	35	36
Potassium 30.000	Calcium 40.08	Scandum 44.956	Titanium 47,90	Vanadium 50.941	Chromium 51.996	Manganese 54,939	Iron 95.947	Cobalt SE.933	NCRH 56,71	Copper 62,546	Zinc (5.36	Gallum 69.72	Germanham 72.59	Assents 74.922	Selentum 78.96	Bromine 79.904	Krypton 82.60
37	38	39	40	41	42	43	44 1	45	46	47	48	49	50	51 8	52	53 2	54
Rb :	Sr :	Y 2 Yttrium	Zr 10 Direction	Nichium	Molybdenams	TC "	Ru "	Rh "	Pd " Paladhara	Ag "	Cedentum	In "	Sn "	Sb "	Te "	I "7 Iodine	Xe
55 2	107.62 56 ²	88.900 71 ²	91.22 72	92,900 73	74	75 °	101.07 76	77	100.4 78 ±	107.87 79 ²	112.41 80 °	81 =	82 8	83	84 2	121.90 85 ²	131.30
Cs	Ba	Lu	Hf	Та	W	Re	Os	Ir	Pt #	Au	Hg	TI	Pb	Bi	Po	At	Rn
Cedure 132.01	Bartum 137,33	174.97	178.49	180.95	183.85	106.21	190.2	192.22	Platinum 195.09	Gold 196.97	Mercury 208.59	204.37	207.2	208.98	(209)	Astabae (210)	(222)
87 E	Ba Ba	103	104 B	105 i	106 SO S	107 : Bh =	108 HS	109 Mt #	110 in 10	Ra E	Uub		Uua				
Francium (223)	Radium 2 (220)	Lawrencium 2 (262	Rutherlordium : (201)	Dubsium 2 (282)	Seeborgium 2 (263)	Bobeiom 15 (264)	Hessium 14 (205)	Meitnerium # (208)	Dermetadikam ((209)	Roentgenham ((272)	(277)		Ununquadium				
			Desimite 194-194 Lanthanide S	are the transmiss Series	de electerals.						*Name not offici	latly assigned.					
		\backslash	57	58	59 Br 8	60 i	61 i	62 i	63 ÷	Gd i	65 : Th #	66 i	67	68 : Ex 10	69 : T mail	70 -	
			Lenthonum	Cerium 140.12	Pressodymium ² 140.91	Neodymium ² 144.24	Proceethiam 2 (145)	Bemerium 2 150.4	EU s Europlum	Gadolinkum ² 197.25	Terbium Terbium	Dysprostum ² 142.50	Hodratum 2 MA 92	Erbium 567.26	Thulburn 100.92	Ytterbium 173.04	
			Actinide Ser	ies				109823				100000	100000	S. altor		10000	
			89 AC	90 H	91 I Do 1	92	93 Mp	94 ÷	95 Am	96 i	97 -	98	99 -	100	101	102 H	
			Actinium 2 (227)	Thorium 2 232.04	Protectinium 2 231.94	Uranium 1 238.03	Neptuniam 2 (237)	Photosium 2 (244)	Americkam 25 (243)	Curtum 2 (247)	Berkelkam 2 (247)	Californium 2 (251)	Einsteindum 1 (252)	Fermium 2 (257)	Mandelevium *	Nobellum 2 (259)	

Representative Elements – Examples and Uses

Magnesium This magnified view of a leaf shows the green structures where light energy is changed into chemical energy. The compound chlorophyll, which contains magnesium, absorbs the light.

Sodium When salt lakes evaporate, they form salt pans like this one in Death Valley, California. The main salt in a salt pan is sodium chloride.

Representative Elements

Arsenic This bright red ore is a major source of arsenic in Earth's crust. It contains a compound of arsenic and sulfur.

Sulfur These scientists are sampling gases being released from a volcano through a vent called a fumarole. The yellow substance is sulfur.

Periodic Trends

•You will learn how properties (such as atomic size) are related to the location of elements in the periodic table.

* * Actinide series

89

Ac

90

Th

91

Pa

U

Np

94

Pu

Am

98

Cf

Bk

Cm

99

Es

Fm

Md

No

Orbitals in Multielectron Atoms

- Electrons are attracted to the nucleus but also repelled by each other.
- Repulsion from other electrons reduces the attraction to the nucleus and this is called the shielding or screening effect. It increases as you go down a group.
- The attraction the electrons have for the nucleus is the **nuclear charge**. It increases as you go from left to right across a row.
- Effective nuclear charge: the net nuclear charge felt by an electron after shielding from other electrons in the atom is taken into account.

ALL Periodic Table Trends

- Influenced by three factors:
 - 1. <u>Energy</u> Level higher energy levels are further away from the nucleus. Less pull on outer electrons.
 - 2. <u>Charge on nucleus</u> (# protons)
 - More charge pulls electrons in closer.(+ and attract each other)
 - 3. <u>Shielding effect</u> more levels of electrons repel and reduce pull on outer electrons.

What do they influence? ►<u>Energy levels</u> and <u>Shielding</u> have an effect on the GROUP (

 \blacktriangleright <u>Nuclear charge</u> has an effect on a

1. ATOMIC RADIUS/SIZE

• the radius of an atom (size)

Trends in Atomic Size

- The atomic radius is one half of the distance between the nuclei of two atoms of the same element when the atoms are joined.
- In general, atomic size increases from top to bottom within a group and decreases from left to right across a period.

Trends in Atomic Size

•Largest atomic species are those found in the bottom left corner

Sizes of atoms tend to decrease across a period

Copyright © 2000 Benjamin/Cummings, an imprint of Addison Wesley Longman, Inc.

Atomic Radius

- Atomic radii actually decrease across a row in the periodic table, due to an increase in the nuclear charge.
- Within each group (vertical column), the atomic radius tends to increase with the period number. Not only is there an additional energy level but the shielding effect increases.

Atomic Radii for Main Group

Atomic Size - Group trends

- As we increase the atomic number while going down a group...
- each atom has another energy level PLUS more shielding
- so the atoms get *bigger*.

Atomic Size - Period Trends

- Going from left to right across a period, the size gets smaller.
- Electrons are in the <u>same energy level</u>.
- But, there is more <u>nuclear charge (more protons)</u>.
- Outermost electrons are pulled closer.

Trends in Atomic Size

Trends in Atomic Size

2. Trends in Ionization Energy

The energy required to remove an electron from the ground state of a gaseous atom or ion is called **ionization energy**.

- The energy required to remove the first electron from an atom is called the first ionization energy.
- The energy required to remove an electron from an ion with a 1+ charge is called the second ionization energy.
- -i.e. Second ionization energy is that energy required to remove the second electron, etc.

Ionization Energy

- It requires more energy to remove each successive electron.
- When all <u>valence electrons</u> have been removed, the ionization energy takes a quantum leap.

Element	I_1	I_2	I_3	I_4	I_5	I_6	I_7	
Na	495	4562			(inner-sh	ell electrons)		
Mg	738	1451	7733					
Al	578	1817	2745	11,577				
Si	786	1577	3232	4356	16,091			
Р	1012	1907	2914	4964	6274	21,267		
S	1000	2252	3357	4556	7004	8496	27,107	
Cl	1251	2298	3822	5159	6542	9362	11,018	
Ar	1521	2666	3931	5771	7238	8781	11,995	

Symbol	First	Second	Third
Н	1312	M	/hy did these values
He	2731	5247 in	crease so much ?
Li	520 ¹	(7297)	11810
Be	900	1757	<u>[(14840)</u>
В	800	2430	3569
С	1086	2352	4619
Ν	1402	2857	4577
Ο	1314	3391	5301
F	1681	3375	6045
Ne	2080	3963	6276

Trends in Ionization Energy

Group and Periodic Trends in Ionization Energy

• First ionization energy tends to decrease from top to bottom within a group and increase from left to right across a period.

Trends in First Ionization Energies

- As one goes down a
 column, less energy is
 required to remove the first electron.
 - For atoms in the same group, the effective nuclear charge is essentially the same, but the valence electrons are farther from the nucleus; therefore more shielding.

Trends in First Ionization Energies

- Generally, as one goes across a row, it gets harder to remove an electron.
 - As you go from left to right, the nuclear charge increases, thus holding the electrons more tightly

Trend in Ionization Energy

Ionization energy:

Largest toward top right corner of Periodic Table since these atoms hold onto their valence e- the tightest.

First Ionization Energy Versus Atomic Number

Trends in Ionization Energy

Trends in First Ionization Energy

Energy generally increases

3. Trends in Ionic Size

- During reactions between metals and nonmetals, metal atoms tend to lose electrons, and nonmetal atoms tend to gain electrons. The transfer has a predictable effect on the size of the ions that form.
- Cations are always <u>smaller</u> than the atoms from which they form. Anions are always <u>larger</u> than the atoms from which they form.

Positive and negative ions form when electrons are transferred between atoms.

Forming a cation

Forming an Anion

Trends in Ionic Size

• Relative Sizes of Some Atoms and Ions

Ion Group trends

- Each step down a group is adding an energy level
- Ions therefore get
 <u>bigger</u> as you go
 down, because of the
 additional energy
 level.

Ion Period Trends

- Across the period from left to right, the nuclear charge increases so they get smaller.
- Notice the *energy level changes* between anions and cations.

- Ionic size depends upon:
 - Nuclear charge.
 - Number of electrons.
 - Orbitals in which electrons reside.

- Cations are smaller than their parent atoms.
 - The outermost electron is removed and repulsions are reduced.

- Anions are larger than their parent atoms.
 - Electrons are added and repulsions are increased.

• Ions increase in size as you go down a column.

- Isoelectronic means that ions have the same number of electrons. See the following examples.
- Ionic size decreases with an increasing nuclear charge.

Size of Isoelectronic ions?

 Positive ions that have more protons would be <u>smaller</u> (more protons would pull the same # of electrons in closer)

Trends in Ionic Size

4. Trends in Electronegativity

Electronegativity is the ability of an atom of an element to attract electrons when the atom is in a compound (i.e bonded).

- They share the electron, but how equally do they share it?
- An element with a big electronegativity means it pulls the electron towards itself strongly!
- In general, electronegativity values decrease from top to bottom within a group. The values tend to increase from left to right across a period.

Electronegativity Group Trend

- The further down a group, the farther the electron is away from the nucleus, plus the more electrons an atom has.
- Thus, more willing to share.
- Low electronegativity.

Electronegativity Period Trend

- Metals are at the left of the table.
- They let their electrons go easily
- Thus, low electronegativity
- At the right side are the nonmetals.
- They want <u>more</u> electrons.
- Try to take them away from others
- High electronegativity.

Trends in Electronegativity

Electronegativity Values for Selected Elements									
Н 2.1									
Li	Be	B	C	N	O	F			
1.0	1.5	2.0	2.5	3.0	3.5	4.0			
Na	Mg	AI	Si	P	S	CI			
0.9	1.2	1.5	1.8	2.1	2.5	3.0			
К	Ca	Ga	Ge	As	Se	Br			
0.8	1.0	1.6	1.8	2.0	2.4	2.8			
Rb	Sr	ln	Sn	Sb	Te	l			
0.8	1.0	1.7	1.8	1.9	2.1	2.5			
Cs 0.7	Ba 0.9	TI 1.8	Pb 1.9	Bi 1.9					

5. Trend in Electron Affinity

Electron Affinity:

The energy released when an electron is added to a gaseous atom. Most favorable toward top right corner of Periodic Table since these atoms have a great affinity for e-.

Н -73								He >0
Li	Be		В	C	N	0	F	Ne
-60	>0		27	-122	>0	-141	-328	>0
Na	Mg		Al	Si	Р	S	Cl	Ar
53	>0		-43	-134	-72	-200	-349	>0
К	Ca		Ga	Ge	As	Se	Br	Kr
-48	-4		30	-119	78	195	325	>0
Rb	Sr		In	Sn	Sb	Te	I	Xe
-47	-11		-30	-107	-103	-190	-295	>0
1A	2A	·	ЗA	4A	5A	6A	7A	8A

 $Cl + e^{-} \longrightarrow Cl^{-}$

Trends in Electron Affinity

Н -73							He > 0
Li -60	Be > 0	B -27	С -122	N > 0	O -141	F -328	Ne > 0
Na -53	Mg > 0	Al -43	Si -134	Р -72	S -200	Cl -349	Ar > 0
K -48	Ca -2	Ga -30	Ge -119	As -78	Se -195	Br -325	Kr > 0
Rb -47	Sr −5	In -30	Sn -107	Sb -103	Те -190	I -295	Xe > 0
1A	2A	3A	4A	5A	6A	7A	8A

In general, electron affinity increases and becomes more exothermic as you go from left to right across a row. It also increases and becomes more exothermic as you go up the groups (from bottom to top).

6. Metallic Character

- This is simply a relative measure of how easily atoms lose or give up electrons.
- The most metallic elements (the ones that give up electrons the easiest) are found in the bottom left corner of the periodic table.

Properties of Metal, Nonmetals, and Metalloids

		Increasing metallic character																
	1A 1	1				-			<u> </u>									8A 18
CIET	1 H	2A 2											3A 13	4A 14	5A 15	6A 16	7A 17	2 He
ומומ	3 Li	4 Be							0.0				5 B	6 C	7 N	8 O	9 F	10 Ne
	11 Na	12 Mg	3B 3	4B 4	5B 5	6B 6	7B 7	8	9 8B	10	1B 11	2B 12	13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
חוובומ	19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
ging	37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
ורובמ	55 Cs	56 Ba	71 Lu	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 Tl	82 Pb	83 Bi	84 Po	85 At	86 Rn
╡↓	87 Fr	88 Ra	103 Lr	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110	111	112	113	114	115	116		
		Metal	ls	57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	
		Metal	lloids	89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	
		Nonmetals																

Review of Metals versus Nonmetals

Metals	Nonmetals
Have a shiny luster; various colors, although most are silvery Solids are malleable and ductile	Do not have a luster; various colors Solids are usually brittle; some are hard, some are soft
Good conductors of heat and electricity	Poor conductors of heat and electricity
Most metal oxides are ionic solids that are basic	Most nonmetal oxides are molecular substances that form acidic solutions
Tend to form cations in aqueous solution	Tend to form anions or oxyanions in aqueous solution

Differences between metals and nonmetals tend to revolve around these properties.
Metals versus Nonmetals

- Metals tend to form cations.
- Nonmetals tend to form anions.

Summary of Trends

- What is the underlying cause of periodic trends?
 - The trends that exist among these properties can be explained by variations in atomic structure, nuclear charge and shielding effect...

In your notebook, you should have a periodic table with all of the trends described: atomic size, ionization energy, ionic size, eletronegativity, electron affinity, metallic properties. See the following three examples:

Summary of Periodic Trends

Increasing electron affinity Increasing ionization energy Decreasing atomic radius Increasing nonmetallic character and electronegativity Decreasing metallic character

Decreasing electronegativity Increasing metallic character Decreasing electron affinity

Summary of Periodic Trends, v.2

Simplified Version

Metallic character

