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1 Introduction

The structure of this chapter is as follows. The next section is devoted to explaining, in
broad strokes, what artificial intelligence (AI) is, and that any plausible definition of the field must
revolve around a key philosophical distinction between “strong” and “weak” AIH Next (section ,
we take up the long-standing dream of mechanizing human reasoning, which in singular fashion
continues to inextricably link philosophy, logic, and AI. The following section summarizes the
conceptual origins of the field, after which, in section |5, we discuss the computational view of the
human mind that has underpinned most Al work to date, and the associated problem of mental
content. Section [6] discusses a number of philosophical issues associated with classical AI, while
section [§| discusses a relatively new approach to Al and cognitive science, and attempts to place
that approach in a broader philosophical context. Finally (section |§[)7 the future of Al, from a
somewhat philosophical standpoint, is briefly considered.

2 What is AI?

This is itself a deep philosophical question, and attempts to systematically answer it fall within
the foundations of Al as a rich topic for analysis and debate. Nonetheless, a provisional answer
can be given: Al is the field devoted to building artifacts capable of displaying, in controlled,
well-understood environments, and over sustained periods of time, behaviors that we consider
to be intelligent, or more generally, behaviors that we take to be at the heart of what it is to
have a mind. Of course this “answer” gives rise to further questions, most notably, what exactly
constitutes intelligent behavior, what it is to have a mind, and how humans actually manage
to behave intelligently. The last question is empirical; it is for psychology and cognitive science
to answer. It is particularly pertinent, however, because any insight into human thought might
help us to build machines that work similarly. Indeed, as will emerge in this article, Al and
cognitive science have developed along parallel and inextricably interwoven paths; their stories
cannot be told separately. The second question, the one that asks what is the mark of the mental,
is philosophical. Al has lent significant urgency to it, and conversely, we will see that careful
philosophical contemplation of this question has influenced the course of Al itself. Finally, the first
challenge, that of specifying precisely what is to count as intelligent behavior, has traditionally been
met by proposing particular behavioral tests whose successful passing would signify the presence
of intelligence.

The most famous of these is what has come to be known as the Turing Test (TT), introduced
by Turing (1950). In TT, a woman and a computer are sequestered in sealed rooms, and a human
judge, ignorant as to which of the two rooms contains which contestant, asks questions by email
(actually, by teletype, to use the original term) of the two. If, on the strength of returned answers,
the judge can do no better than 50/50 when delivering a verdict as to which room houses which
player, we say that the computer in question has passed TT. According to Turing, a computer able
to pass TT should be declared a thinking machine.

His claim has been controversial, although it seems undeniable that linguistic behavior of the
sort required by T'T is routinely taken to be at the heart of human cognition. Part of the controversy
stems from the unabashedly behaviorist presuppositions of the test. Block’s “Aunt Bertha” thought
experiment (1981) was intended to challenge these presuppositions, arguing that it is not only the
behavior of an organism that determines whether it is intelligent. We must also consider how
the organism achieves intelligence. That is, the internal functional organization of the system

!The distinction is due to Searle (1980).



must be taken into account. This was a key point of functionalism, another major philosophical
undercurrent of Al to which we will return later.

Another criticism of T'T is that it is unrealistic and may even have obstructed Al progress insofar
it is concerned with disembodied intelligence. As we will see in the sequel, many thinkers have
concluded that disembodied artifacts with human-level intelligence are a pipe dream—practically
impossible to build, if not downright conceptually absurd. Accordingly, Harnad (1991) insists that
sensorimotor capability is required of artifacts that would spell success for AI, and he proposes
the Total TT (TTT) as an improvement over TT. Whereas in TT a bodiless computer program
could, at least in principle, pass, TTT-passers must be robots able to operate in the physical
environment in a way that is indistinguishable from the behaviors manifested by embodied human
persons navigating the physical world.

When Al is defined as the field devoted to engineering artifacts able to pass TT, TTT, and
various other testsE| it can be safely said that we are dealing with weak AI. Put differently, weak
AT aims at building machines that act intelligently, without taking a position on whether or not
the machines actually are intelligent.

There is another answer to the What is AI? question: viz., Al is the field devoted to building
persons, period. As Charniak and McDermott (1985) put it in their classic introduction to Al:

The ultimate goal of Al, which we are very far from achieving, is to build a person, or, more
humbly, an animal. (Charniak & McDermott 1985, p. 7)

Notice that Charniak and McDermott don’t say that the ultimate goal is to build something that
appears to be a person. Their brand of Al is so-called strong AI, an ambitious form of the field
aptly summed up by Haugeland:

The fundamental goal [of Al research] is not merely to mimic intelligence or produce some clever
fake. Not at all. Al wants only the genuine article: machines with minds, in the full and literal
sense. This is not science fiction, but real science, based on a theoretical conception as deep as
it is daring: namely, we are, at root, computers ourselves. (Haugeland 1985b, p. 2)

This “theoretical conception” of the human mind as a computer has served as the bedrock of most
strong-Al research to date. It has come to be known as the computational theory of the mind;
we will discuss it in detail shortly. On the other hand, AI engineering that is itself informed by
philosophy, as in the case of the sustained attempt to mechanize reasoning, discussed in the next
section, can be pursued in the service of both weak and strong Al

3 Philosophical Al: The Example of Mechanizing Reasoning

It would not be unreasonable to describe Classical Cognitive
Science as an extended attempt to apply the methods of proof
theory to the modelling of thought.

Fodor and Pylyshyn (1988, pp. 29-30)

This section is devoted to a discussion of an area that serves as an exemplar of AI that is
bound up with philosophy (versus philosophy of AI). This is the area that any student of both
philosophy and Al ought to be familiar with, first and foremostﬁ Part of the reason for this is that

2More stringent tests than TT and TTT are discussed by Bringsjord (1995). There has long been a tradition
according to which AI should be considered the field devoted to building computational artifacts able to excel on
tests of intelligence; see (Evans 1968, Bringsjord and Schimanski 2003).

3There are other areas that might be discussed as well (e.g., learning), but no other area marks the genuine
marriage of Al and philosophy as deeply and firmly as that of mechanical reasoning.



other problems in AT of at least a partially philosophical naturdﬂ are intimately connected with the
attempt to mechanize human-level reasoning.

Aristotle considered rationality to be an essential characteristic of the human mind. Deductive
thought, expressed in terms of syllogisms, was the hallmark of such rationality, as well as the
fundamental intellectual instrument (“organon”) of all science. Perhaps the deepest contribution
of Aristotle to artificial intelligence was the idea of formalism. The notion that certain patterns of
logical thought are valid by virtue of their syntactic form, independently of their content, was an
exceedingly powerful innovation, and it is that notion that remains at the heart of the contemporary
computational theory of the mind (Pylyshyn 1989) and what we have called strong AI above, and
which will be elaborated in section [l

In view of the significance that was historically attached to deduction in philosophy (starting
with Aristotle and continuing with Euclid, and later Bacon, Hobbes, Leibniz, and others), the very
idea of an intelligent machine was often tantamount to a machine that can perform logical inference:
one that can validly extract conclusions from given premises. Automated theorem proving, as the
field is known today, has thus been an integral part of Al from the very beginning, although, as
we will see, its relevance has been hotly debated, especially over the last two decades. Broadly
speaking, the problem of mechanizing deduction can be couched in three different forms. Listed in
order of increasing difficulty, we have:

o Proof checking: Given a deduction D that purports to derive a conclusion P from a number of premises
Py, ..., P,, decide whether or not D is sound.

e Proof discovery: Given a number of premises P, ..., P, and a putative conclusion P, decide whether
P follows logically from the premises, and if it does, produce a formal proof of it.

e Conjecture generation: Given a number of premises P, ..., P,, infer an “interesting” conclusion P
that follows logically from the premises, and produce a proof of it.

Technically speaking, the first problem is the easiest. In the case of predicate logic with equality,
the problem of checking the soundness of a given proof is not only algorithmically solvable, but
quite efficiently solvable. Nevertheless, the problem is pregnant with interesting philosophical and
technical issues, and its relevance to Al was realized early on by McCarthy (1962), who wrote that
“checking mathematical proofs is potentially one of the most interesting and useful applications
of automatic computers.” For instance, insofar proofs are supposed to express reasoning, we can
ask whether the formalism in which the input proof D is expressed provides a good formal model
of deductive reasoning. Hilbert-style formal proofs (long lists of formulas, each of which is either
an axiom or follows from previous formulas by one of a small number of inference rules) were
important as tools for metamathematical investigations, but did not capture deductive reasoning
as practiced by humans. That provided the incentive for important research into logical formalisms
that mirrored human reasoning, particularly as carried out by mathematicians. S. Jéskowski (1934)
devised a system of natural deduction that was quite successful in that respect. (Gentzen (1969)
independently discovered similar systems, but with crucial differences from Jaskowski’s WOYkED

“Many examples can be given. One is the frame problem, which we discuss in section @ Another is defeasible
reasoning, which is the problem of how to formalize inference in the face of the fact that much everyday reasoning
only temporarily commits us to conclusions, in light of the fact that newly arrived knowledge often defeats prior
arguments. E.g., you no doubt currently believe that your domicile is perfectly intact (and could if pressed give an
argument in defense of your belief), but if you suddenly learned that a vicious tornado had recently passed through
your town (city, county, etc.), you might retract that belief, or at least change the strength of it. Defeasible reasoning
has been studied and (to a degree) mechanized by the philosopher John Pollock (1992), whose fundamental approach
in this area aligns with that of Chisholm (1966) to defeasible inference.

®The system of Jaskowski dealt with hypotheses by introducing a crucial notion of scope. Gentzen worked with
sequents instead. See Pelletier (1999) for a detailed discussion.



The ideas of natural deduction introduced by Jaskowski and Gentzen later played a key role, not
only in theorem proving and AI, but in computational cognitive science as well. Mental logic
(Osherson 1975, Braine and O’Brien 1998, Rips 1994), in particular, a family of computational
cognitive theories of human deductive reasoning, was heavily influenced by natural deduction.

The second problem is considerably harder. Early results in recursive function theory (Turing
1936, Church 1936) established that there is no Turing machine which can decide whether an
arbitrary formula of first-order logic is valid (that was Hilbert’s Entscheidungsproblem). Therefore,
by Church’s thesis, it follows that the problem is algorithmically unsolvable—there is no general
mechanical method that will always make the right decision in a finite amount of time. However,
humans have no guarantee of always solving the problem either (and indeed often fail to do so).
Accordingly, Al can look for conservative approximations that are as good as they can possibly get:
programs that give the right answer as often as possible, and otherwise do not give an answer at all
(either failing explicitly, or else going on indefinitely until we stop them). The problem was tackled
early on for weaker formalisms with seemingly promising results: The Logic Theorist (LT) of Newell,
Simon, and Shaw, presented at the inaugural 1956 Al conference at Dartmouth mentioned earlier,
managed to prove 38 out of the 52 propositional-logic theorems of Principia Mathematica. Other
notable early efforts included an implementation of Presburger arithmetic by Martin Davis in 1954
at Princeton’s Institute for Advanced Studies (Davis 2001), the Davis-Putnam procedure (M. Davis
and H. Putnam 1960), variations of which are used today in many satisfiability-based provers, and
an impressive system for first-order logic built by Wang (1960). It should be noted that whereas LT
was intentionally designed to simulate human reasoning and problem-solving processes, the authors
of these other systems believed that mimicking human processes was unnecessarily constraining,
and that better results could be achieved by doing away with cognitive plausibility. This was an
early manifestation of a tension that is still felt in the field and which parallels the distinction
between strong and weak forms of Al: Al as science, particularly as the study of human cognition,
vs. Al as engineering—the construction of intelligent systems whose operation need not resemble
human thought.

Robinson’s discovery of unification and the resolution method (Robinson 1965) provided a
major boost to the field. Most automated theorem provers today are based on resolutionﬁ Other
prominent formalisms include semantic tableaux and equational logic (Robinson and Voronkov
2001). While there has been an impressive amount of progress over the last 10 years, largely spurred
by the annual CADE ATP system Competitionﬂ the most sophisticated ATPs today continue to
be brittle, and often fail on problems that would be trivial for college undergraduates.

The third problem, that of conjecture generation, is the most difficult, but it is also the most
interesting. Conjectures do not fall from the sky, after all. Presented with a body of information,
humans—particularly mathematicians—regularly come up with interesting conjectures and then
often set out to prove those conjectures, usually with success. This discovery process (along with
new concept formation) is one of the most creative activities of the human intellect. The sheer
difficultly of simulating this creativity computationally is surely a chief reason why Al has achieved
rather minimal progress here. But another reason is that throughout most of the previous century
(and really beginning with Frege in the nineteenth century), logicians and philosophers were con-
cerned almost exclusively with justification rather than with discovery. This applied not only to
deductive reasoning but to inductive reasoning as well, and indeed to scientific theorizing in general
(Reichenbach 1938). It was widely felt that the discovery process should be studied by psychologists,

SFor instance, systems such as Spass (Weidenbach 2001), Vampire (Voronkov 1995), and Otter (Wos, Overbeek,
Lusk and Boyle 1992).

"CADE is an acronym for Conference on Automated Deduction; for more information on the annual CADE ATP
competition, see Pelletier, Sutcliffe and Suttner (2002).



not by philosophers and logicians. Interestingly, this was not the case prior to Frege. Philosophers
such as Descartes (1988), Bacon (2002), Mill (1874), and Peirce (1960) had all attempted to study
the discovery process rationally and to formulate rules for guiding it. Beginning with Hanson (1958)
in science and with Lakatos (1976) in mathematics, philosophers started re-emphasizing discoveryﬁ
AT researchers also attempted to model discovery computationally, both in science (Langley, Simon,
Bradshaw and Zytkow 1987) and in mathematics (Lenat 1976, Lenat 1983), and this line of work has
led to machine-learning innovations in Al such as genetic programming (Koza 1992) and inductive
logic programming (Muggleton 1992). However, the successes have been limited, and fundamental
objections to algorithmic treatments of discovery and creativity in general—e.g., such as put forth
by Hempel (1985)—remain trenchant. A major issue is the apparently holistic character of higher
cognitive processes such as creative reasoning, and the difficulty of formulating a rigorous character-
ization of relevance. Without a precise notion of relevance, one that is amenable to computational
implementation, there seems to be little hope for progress on the conclusion generation problem,
or on any of the other similar problems, including concept generation and abductive hypothesis
formation.

Faced with relatively meager progress on the hard reasoning problems, and perhaps influenced
by various other critiques of symbolic Al (see Section @, some Al researchers have launched serious
attacks on formal logic, which they have criticized as an overly rigid system that does not provide a
good model of human reasoning mechanisms, which are eminently flexible. They have accordingly
tried to shift the field’s attention and efforts away from rigorous deductive and inductive reasoning,
turning them toward “commonsense reasoning” instead. For instance, Minsky (1986, p. 167) writes:

For generations, scientists and philosophers have tried to explain ordinary reasoning
in terms of logical principles with virtually no success. I suspect this enterprise failed
because it was looking in the wrong direction: common sense works so well not because
it is an approximation of logic; logic is only a small part of our great accumulation of
different, useful ways to chain things together.

A good deal of work has been made toward developing formal, rigorous logical systems for modeling
commonsense reasoning (Davis and Morgenstern 2004). However, critics charge that such efforts
miss the greater point. For instance, Winograd (1990) writes that “Minsky places the blame for
lack of success in explaining ordinary reasoning on the rigidity of logic, and does not raise the more
fundamental questions about the nature of all symbolic representations and of formal (though
possibly non-logical) systems of rules for manipulating them. There are basic limits to what can
be done with symbol manipulation, regardless of how many ‘different, useful ways to chain things
together’ one invents. The reduction of mind to decontextualized fragments is ultimately impossible
and misleading.” As we will see in the sequel, similar points have been made in the criticisms of
Dreyfus (1992) and others, who have argued that symbol manipulation cannot account for such
essential human traits as intuition, judgment, and imagination, all of which can play a key role in
inference and problem-solving in general; and that human reasoning will never be matched by any
decontextualized and unembodied (or “unsituated”) system that works by formally representing
and manipulating symbolic information.

4 Historical and Conceptual Roots of Al

AT officially started in 1956, launched by a small but now-famous summer conference at Dartmouth
College, in Hanover, New Hampshire. (The 50-year celebration of this conference, AIQ50, was held

8In mathematics, Pélya (1945) was instrumental in that respect (and had a significant influence on Lakatos).


http://www.dartmouth.edu/~ai50/homepage.html

in July 2006 at Dartmouth, with five of the original participants making it back. Some of what
happened at this historic conference figures in the final section of this chapter.) Ten thinkers
attended, including John McCarthy (who was working at Dartmouth in 1956), Claude Shannon,
Marvin Minsky, Arthur Samuel, Trenchard Moore (apparently the youngest attendee, and the
lone note-taker at the original conference), Ray Solomonoff, Oliver Selfridge, Allen Newell, and
Herbert Simon. From where we stand now, at the start of the new millennium, the Dartmouth
conference is memorable for many reasons, including this pair: one, the term ‘artificial intelligence’
was coined there (and has long been firmly entrenched, despite being disliked to this day by some
of the attendees, e.g., Moore); two, Newell and Simon revealed a program — Logic Theorist (LT)
— agreed by those at the conference (and, indeed, by nearly all those who learned of and about
it soon after the Dartmouth event) to be a remarkable achievement. LT was capable of proving
elementary theorems in the propositional calculus, and was regarded to be a remarkable step toward
the rendering of human-level reasoning in concrete computation. For example, LT was able to find
a proof of the fact that if p implies (truth-functionally) ¢, then the denial of ¢ (i.e., —q) (truth-
functionally) implies the denial of p (i.e., =p).

From the standpoint of philosophy, neither the 1956 conference nor the aforementioned Turing
Mind paper of 1950 come close to marking the start of AI. Hobbes had already anticipated strong Al
back in the seventeenth century, when he famously proclaimed that “ratiocination is computation.”
Roughly in that same era, Leibniz dreamed of a “universal calculus” in which all disputes could
be settled by rote calculation. And Descartes had already considered something like the Turing

test long before Turing, albeit adopting a rather pessimistic view of the matter in a somewhat glib
manner:

If there were machines which bore a resemblance to our body and imitated our actions as far
as it was morally possible to do so, we should always have two very certain tests by which to
recognise that, for all that, they were not real men. The first is, that they could never use
speech or other signs as we do when placing our thoughts on record for the benefit of others.
For we can easily understand a machine’s being constituted so that it can utter words, and
even emit some responses to action on it of a corporeal kind, which brings about a change in
its organs; for instance, if it is touched in a particular part it may ask what we wish to say
to it; if in another part it may exclaim that it is being hurt, and so on. But it never happens
that it arranges its speech in various ways, in order to reply appropriately to everything that
may be said in its presence, as even the lowest type of man can do. And the second difference
is, that although machines can perform certain things as well as or perhaps better than any
of us can do, they infallibly fall short in others, by which means we may discover that they
did not act from knowledge, but only for the disposition of their organs. For while reason is
a universal instrument which can serve for all contingencies, these organs have need of some
special adaptation for every particular action. From this it follows that it is morally impossible
that there should be sufficient diversity in any machine to allow it to act in all the events of life
in the same way as our reason causes us to act. (Descartes 1911, p. 116)

But while the ceremonial inauguration of AI might have been the 1956 Dartmouth conference,
and while philosophers might have ruminated on machines and intelligence for centuries, the key
conceptual origins of Al can be found at the intersection of two of the most important intellectual
developments of the twentieth century:

e the “cognitive revolution”f] that started in the mid-1950s and which overthrew behaviorism
and rehabilitated mentalistic psychology;

9Speaking of the cognitive revolution has become somewhat of a banality, particularly after the 1980s saw the
publication of two books on the subject (Baars 1986, Gardner 1985). The term is certainly romantic and radical,
but some psychologists (Leahey 1992) have questioned whether there was a revolution at all (at least in the sense of
Kuhn).



e the theory of computability that had been developed over the preceding couple of decades by
pioneers such as Turing, Church, Kleene, and Goédel.

The significance of each for Al will be briefly discussed below.

The cognitive revolution is typically associated with the work of George Miller and Noam
Chomsky in the 1950s, particularly with the latter’s notorious review of Skinner’s theory of lan-
guage (Chomsky 1996 [1959]). It had been anticipated in the 1940s by McCulloch and Pitts (1943)
and other cybernetics pioneers who had already been pointing out the similarities between human
thought and information processing, as well as by experimental results obtained by psychologists
such as Tolman (1948), who, studying maze navigation by rats, presented evidence for the exis-
tence of “cognitive maps.” Particularly influential was Chomsky’s famous “poverty of stimulus”
argument to the effect that the efficiency and rapidity of language acquisition during childhood
cannot be explained solely by appeal to the meager data to which children are exposed in their
early years; rather, they compel the postulation of innate mental rules and representations that
encode linguistic competence. Strong cases for the existence of mental representations were also
made by experimental findings pertaining to memory, such as the results of Sperling (1960), which
indicated that humans typical store more information than they can report. Memory, after all,
provides perhaps the clearest case of mental representation; it seems absurd to deny that people
store information, i.e., that we have some sort of internal representation of information such as
the year we were born or the names of our parents. That much is commonsensical to the point
of triviality, as is the claim that people routinely talk as if they really have beliefs, hopes, desires,
etc.; and indeed most behaviorists would not have denied these claims. What they denied was the
theoretical legitimacy of explaining human behavior by positing unobservable mental entities (such
as memories), or that intentional terminology had any place in a science of the mind. Essentially
a positivist doctrine, behaviorism had a distrust of anything that could not be directly observed
and a general aversion for theory. It had been the dominant paradigm in psychology for most of
the twentieth century, up until the mid-1950s, until it was finally dethroned by the new “cognitive”
approach.

5 Computational Theories of Mind and the Problem of Mental
Content

Once the first steps were taken and mental representations were openly allowed in scientific the-
orizing about the mind, the “computer metaphor”—with which researchers such as Newell and
Simon had already been flirting—became ripe for explosion. After all, computers were known to
store structured data in their memories and to solve interesting problems by manipulating that
data in systematic ways, by executing appropriate instructions. Perhaps a similar model could
explain—and eventually help to duplicate—human thought. Indeed, the postulation of mental rep-
resentations would not by itself go far if their causal efficacy could not be explained in a mechanistic
and systematic manner. Granted that structured mental representations are necessary for higher-
order cognition; but how do such representations actually cause rational thought and action? The
theory of computation was enlisted precisely in order to meet this important theoretical need. The
result became known as the computational theory of mind (CTM for short), a doctrine that has
been inextricably linked with strong Al. In the next paragraph we briefly discuss the main tenets
of CTM.

The first core idea of CTM is to explain intentional mental states by giving a computational spin
to Russell’s analysis (1940) of intentional sentences such as “Tom believes that 7 is a prime number”
as propositional attitudes that involve a psychological attitude A (in this case believing) towards a



proposition P (in this case, that 7 is prime). More precisely, to be in a mental state involving an
attitude A and proposition P is to be in a certain relationship R4 with a mental representation
Mp whose meaning is P. To put it simply, to have a belief that 7 is a prime number is to have a
mental representation in your “belief box” which means that 7 is prime. The representation itself
is symbolic. That is, your “belief box” contains a token of a symbolic structure whose meaning
(or “content”) is that 7 is prime. Thus mental representations have both syntax and semantics,
much like the sentences of natural languages. They constitute a “language of thought,” so to
speak, or mentalese. But it is only their syntax—syntax being ultimately reducible to physical
shape—that makes them causally efficacious. This is a plausible story because as work in logic and
computability had shown, there exist purely syntactic transformations of symbolic structures that
are nevertheless sensitive to semantics. Deductive proofs provide perhaps the best example: by
manipulating formulas exclusively on the basis of their syntactic properties, it is possible to extract
from them other formulas which follow logically from them. Syntax can thus mirror semantics, or,
as Haugeland (1985a, p. 106) put it, “if you take care of the syntax, the semantics will take care
of itself.” On this model, a mental process is a sequence of tokenings of mental representations
which express the propositional content of the corresponding thoughts. The causes and effects
of each mental representation, what it can actually do, is determined by its syntax “in much the
way that the geometry of a key determines which locks it will open” (Fodor 1987, p. 19). And
the entire process is orchestrated by an algorithm, a set of instructions that determines how the
representations succeed one another in the overall train of thought. That is the second core idea
of CTM. The mind is thus viewed as a “syntactic engine” driving a semantic engine, and, at least
in principle, its operation can be duplicated on a computer.

A natural extension of CTM is Turing-machine functionalism, which was first adumbrated by
Putnam (1960) in an influential paper that helped to drive the cognitive revolution forward (at
least in philosophical circles), to undermine behaviorism, and to shape the outlook of strong AIF_O-]
Functionalism in general is, roughly, the idea that the essence of a mental state is not to be found
in the biology of the brain (or in the physics that underwrites the hardware of its CPU, in the case
of a machine) but rather in the role that the state plays in one’s mental life (or computations),
and particularly in the causal relations that it bears to stimuli (inputs), behavior (outputs), and
other mental (computational) states. Turing-machine functionalism, in particular, is the idea that
the mind is essentially a giant Turing machine whose operation is specified by a set of instructions
dictating that if the mind is in a certain state s and receives a certain input x, a transition is made
to a state s’ and an output y is emitted. The most popular—and least implausible—versions of
Turing-machine functionalism allow for probabilistic transitions.

Also closely related to CTM (in fact stronger than it) is the physical symbol system hypoth-
esis (PSSH) put forth by Newell and Simon (1976). According to it, a physical symbol system
“has the necessary and sufficient means for general intelligent action” (1976, p. 116), where a
physical symbol system is “a machine that produces through time an evolving collection of sym-
bol structures,” a symbol structure being a collection of symbol tokens “related in some physical
way (such as one token being next to another)” and subject to a variety of syntactic operations,
most notably “creation, modification, reproduction, and destruction.” Newell and Simon regarded
machines executing list-processing programs of the Lisp variety as the prototypical examples of
physical symbol systems. While there have been various internal disagreements (e.g., pertaining
to questions of innateness), in some form or other CTM, PSSH, and Turing-machine functionalism
together loosely characterize “classical” or “symbolic” Al, or what Haugeland (1985a, p. 112) has
dubbed GOFAI (“good old-fashioned AI”). All three were posited as substantive empirical theses,

"Note that subsequently Putnam (1988) had a volte-face and renounced functionalism.



CTM and Turing-machine functionalism about the human mind and PSSH about intelligence in
general; (GOFALI too, was explicitly characterized by Haugeland as an empirical doctrine of cogni-
tive science). They set the parameters and goals for most Al research for at least the first three
decades of the field. They continue to be a dominant influence, although, as we will see, they are no
longer the only game in town, having suffered considerable setbacks as a result of forceful attacks
that have elaborated serious conceptual and empirical problems with the GOFAI approach.

According to CTM, complex thoughts are represented by complex symbolic structures in much
the same way that, in natural languages and formal logics alike, complex sentences are recursively
built up from simpler components. Thus the mental representation of a complex thought such as
“All men are mortal” contains component mental representations for concepts such as “mortal”
" as well as “all” and “are.” These components are somehow assembled together (and
eventually science should be able to spell out the details of how such symbolic operations are carried
out in the brain) to form the complex thought whose content is that all men are mortal. That
is how complex thoughts attain their meaning, by combining the meanings of their components.
Now, a compositional story of this sort—akin to the compositional semantics championed by Frege
and Tarski—is only viable if there is an inventory of primitives that can be used as the ultimate
building blocks of more complex representations. The central question for CTM, which has a
direct analogue in Al, is the question of how these primitives acquire meaning. More precisely,
the question is how mentalese primitives inside our brains (or inside a robot’s CPU) manage to be
about objects and state of affairs outside our brains—objects that may not even exist and state of
affairs that may not even obtain. This is also referred to as the symbol grounding problem (Harnad
1990). It is not merely a philosophical puzzle about the human mind, or even a protoscientific
question of psychology. It has direct engineering implications for Al since a plausible answer to
it might translate into a methodology for building a robot that potentially averts some of the
most devastating objections to CTM (these will be discussed in the next section); i.e., a robot
that “thinks” by performing computations over formal symbolic structures (as we presumably do,
according to CTM), but is nevertheless sufficiently grounded in the real world that it can be said to
attain extra-symbolic understanding (as we do). Clearly it is not tenable to suggest that evolution
has endowed us with all the right primitive symbols having all the right meanings built in, since
evolution could not have foreseen thermostats, satellites, or Bill Clinton.

A number of theories have been expounded in response, all falling under the banner of “natu-
ralizing content,” or “naturalizing semantics,” or “naturalizing intentionality.” The objective is to
provide a physicalistic account of how mentalese symbol tokens in our heads manage to be about
things that are external to us (or, framing the issue independently of CTM, how mental states can
achieve meaning). The type of account that is sought, in other words, is reductive and material-
istic; it should be expressed in the non-intentional vocabulary of pure physical scienceE-] In what
follows we will briefly review three of the most prominent attempts to provide naturalized accounts
of meaning: informational theories, evolutionary theories, and conceptual-role semantics.

The gist of informational theories is the notion of covariance. The idea is that if a quantity x
covaries systematically with a quantity y, then x carries information about y. A car’s speedometer
covaries systematically with the car’s speed and thus carries information about it. Accordingly, we
can view the speedometer as an intentional system, in that its readings are about the velocity of
the car. Likewise, we say that smoke “means” fire in that smoke carries information about fire.
This is a sense of the word “means” that Grice called natural meaning, a notion that presaged
theories of informational semantics. Again, because smoke and fire are nomologically covariant, we
can say that one is about the other. Here, then, we have the beginnings of a naturalized treatment

and “men,

"Whether or not this is even possible is not discussed as much as it should.
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of meaning that treats intentionality as a common natural phenomenon rather than a peculiarly
mental one. Concerning mentalese semantics, the core insight of such theories—put somewhat
simplistically—is that the meaning of a symbol is determined by whatever the tokenings of that
symbol systematically (nomologically) covary with. If a token of a certain mentalese symbol H
pops up in our brains whenever a horse appears in front of us, then H carries information about
horses and thus means horse. The idea has a straightforward appeal but is vulnerable to several
objections; we will only mention three. The first is non-existent objects such as unicorns, and
abstract objects such as the square root of two. How can these actually cause anything, and
how can they nomologically covary with brain states? The second is the so-called disjunction
problem. It cannot possibly be the case that the meaning of a symbol is whatever causes its
tokenings (whatever such tokenings systematically covary with), because the aforementioned symbol
‘H, for instance, might be systematically caused not just by actual horses but also by cows that
appear in front of us at night or under other suitably misleading environmental conditions. So if
the preceding thesis were true we would have to say that H does not have a univocal meaning;
it does not only mean horse. Rather, it means horse or cow or zebra or TV image of a horse
or stuffed animal that looks like a horse or ---, a potentially gigantic and seemingly open-ended
disjunction. But that seems clearly wrong. In addition, it would have the absurd consequence of
making misrepresentation impossible. A principal characteristic of intentionality, at least of the
usual mental variety, is that any system which represents must also be able to misrepresent, to
entertain mistaken thoughts about reality. Disjunctive causal definitions of the above sort would
preclude that. Another issue with misrepresentation is that sometimes an actual horse fails to
cause H (and if the conditions are right this will be systematic, not an one-off failure); so it cannot
be the case that H is tokened iff a horse appears before us. For attempts to meet these and other
objections see Fodor (1987), Fodor (1990), and Dretske (1988).

Evolutionary theories maintain, roughly, that intentional states are adaptations, in the same way
that livers and thumbs are adaptations, and that the content (meaning) of an intentional state is
the function for which it was selected, i.e., the purpose that it serves. Like all adaptationist theories,
this too is susceptible to charges of Panglossianism (Gould and Lewontin 1979). Nevertheless, the
basic story is not implausible for beliefs to the effect that there is a predator nearby or for desires
to get and eat some bananas that appear in one’s visual field. The content of such a belief would
be something like “there is a tiger under that tree over there,” which would presumably be the
function for which such beliefs were selected (to correlate with tigers under trees), and the content
of such a desire would be “I really want to eat those bananas over there,” which would again
coincide with the purpose served by such desires (obtaining food and surviving). However, the
going gets a lot tougher for teleological accounts when it comes to believing in the independence
of the continuum hypothesis, the desire to drink a martini and listen to Miles Davis while flying
over the Atlantic, or the desire to commit harakiri. In addition, such accounts make intentionality
exceedingly contingent on having the proper evolutionary history. Suppose, for instance, that a
molecule-per-molecule replica of Dennett is created in some futuristic synthetic-biology lab; or
perhaps that some such replica already exists in an alternative universe where it was created (say,
by a god) rather than evolved. Surely the latter would be a horrifying possibility for both Dennetts
to contemplate, and pun aside, that is precisely the point. It seems counterintuitive to deny that
such replicas would have beliefs and other mental states with the exact same contents as Dennett’s,
even though they are not the products of evolution. It should also be noted that such biological
accounts of meaning do not bode well for getting the semantics right when building Al agents. See
Millikan (1993) for a subtle evolutionary account of meaning that discusses these and other issues.

Conceptual role semantics (CRS) takes its cue from Wittgenstein’s famous “use” theory of
meaning, according to which the meaning of a linguistic item (expression, sentence, etc.) is the
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way in which that item is used by speakers of the language. The main thesis of CRS is that the
meaning of a mentalese symbol S is fixed by the role that S plays in one’s cognitive life, and
particularly by the relations that it bears to other symbols, to perception, and to action. It is
thus very similar to functionalism about mental states. Logical connectives such as and provide
the standard illustrations for the use theory of linguistic meaning, and, likewise, the meaning of
a mentalese symbol equivalent to and would be the role it plays in our heads, e.g., the set of
mentalese inferences in which it participates. The theory has notable similarities to the operational
semantics of programming languages in theoretical computer science. In cognitive science, CRS
has been known as procedural semantics. It was primarily advocated by Johnson-Laird (1977), and
roundly criticized by Fodor, as we will see below. CRS is an essentially holistic theory, as no symbol
is said to have a meaning in and of itself; meaning is acquired only by relation to the totality of
the meanings of all other symbols. A rather obvious problem is that no two people ever have the
exact same mental states. In fact any two random people are likely to have quite different sets
of beliefs, and therefore the role that a certain symbol plays in one’s network cannot possibly be
the same role that it plays in the other’s network. It would seem to follow that meaning will vary
from person to person, a result that would make it harder to explain the fact that people are quite
capable of understanding one another. We do not view this as a decisive objection. A symbol
might well have different shades of meaning for each of us at the peripheries of our respective
networks, but the core uses that we make of it can be sufficiently invariant to enable successful
communication. Nevertheless, the objection does point to a more general issue with CRS, that
of correctness. If different people can make diverging uses of one and the same symbol and think
different thoughts with it, as indeed they often do, then some of them will surely be erroneous. But
what constitutes error in CRS? The question is not easy to answer if meaning is identified with use.
Presumably meaning has a normative aspect: some uses of a symbol are correct and others are not.
In computer science this is not an issue because the formal semantics of an artificial language are
laid down with explicit normative force, and at any rate in the case of both artificial and natural
languages we are dealing with derived rather than intrinsic intentionality. But CRS does not seem
to have the wherewithal to distinguish right from wrong. Invoking counterfactual uses in addition
to one’s actual uses does not help, for such uses would only tell us how the symbol would be used in
different circumstances, not how it should be used in present or different circumstances[”| Related
to this is the whole issue of externalism. CRS makes the meaning of a symbol a thoroughly internal
matter, contingent only on the relations it bears to other symbols and states (including perceptual
and behavioral states). But clearly there is more to meaning than that. At least on the face of
it, meaning seems to hook symbols to the world, not just to other symbols. The meaning of the
term dog must have something to do with its reference, i.e., with actual dogs, and the meaning
of Aristotle must have something to do with the actual Aristotle. More sophisticated externalist
challenges were presented by Putnam and Burge, arguing respectively that meaning is a function
of the overall physical and social environment in which one is embedded. So-called two-factor CRS
were developed in response, in an attempt to distinguish between narrow and wide mental content.
Narrow meaning is “in the head” and does not depend on the surrounding circumstances, while
wide meaning hinges on reference and has truth conditions. An entire industry has grown around

this distinction, and we do not have the space to delve into it here.

Incidentally, it was precisely the lack of a connection between mentalese and the world (or
between a computer’s symbols and the world) that was the chief objection of Fodor (1978) when he
argued against the Al-style “procedural semantics” advocated by Johnson-Laird. The latter had

12Normativity in general is problematic across the board for so-called “naturalized” philosophical theories, i.e., the-
ories which demand that the analysans be couched exclusively in the vocabulary of physical science. In epistemology,
for example, naturalized theories of knowledge have had a very difficult time coping with justification.
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written that the “artificial languages which are used to communicate the programs of instructions to
computers, have both a syntax and semantics. Their syntax consists of rules for writing well-formed
programs that a computer can interpret and execute. The semantics consists of the procedures that
the computer is instructed to execute” (Johnson-Laird 1977, p. 189, our italics). This computer
model was applied to human sentence processing, where

the first step that a person must perform is to compile the sentence—to translate it into a
program in his or her internal mental language. This is generally an automatic and involuntary
process for anyone who knows the language well. If someone says, Pass the salt or When did
you last see your father? or I'm leaving for Chicago tonight, the listener usually compiles a
corresponding program. --- Once a program is compiled, the question arises as to whether the
listener should run it. Should he pass the salt? Should he tell the speaker when he last saw his
father? (Johnson-Laird 1977, pp. 191-192)

In an important critique of Johnson-Laird’s article that in some ways presaged Searle’s Chinese
room argument, Fodor protested that:

the computer models provide no semantic theory at all, if what you mean by semantic theory is
an account of the relation between the language and the world. In particular, procedural seman-
tics doesn’t supplant classical semantics, it merely begs the questions that classical semanticists
set out to answer. --- a machine can compile ‘Did Lucy bring dessert?’ and have not the foggi-
est idea that the sentence asks about whether Lucy brought dessert. For the machine-language
“translation” of that sentence—the formula which the machine does, as it were, understand—
isn’t about whether Lucy brought dessert. It’s about whether a certain formula appears at a
certain address (Fodor 1978, p. 204, his italics).

6 Philosophical Issues

The three principal philosophical criticisms of strong Al that helped to change the tide in the Al
community and point to new research directions are the following:

1. The critique of Hubert Dreyfus;
2. Block’s critique of machine functionalism via the China brain thought experiments; and
3. Searle’s Chinese room thought experiment.

All three surfaced within 10 years of one another. There had been several other philosophical
criticisms of strong Al before these (e.g., the ones by Lucas and Penrose; see the article by Robinson
in the present VolumeE| computationalism, and there have been others sinceE But these three
generated the most debate and have had the greatest impact.

Dreyfus’s critique was the first. It was a mixture of empirical and philosophical arguments.
Empirically, his main charge was that Al researchers had simply failed to deliver the goods; de-
spite exceedingly optimistic—and often grandiose—early forecasts, they had not managed to build
general-purpose intelligent systems. This line of criticism was generally dismissed as invalid and
unfair. Invalid because at best it showed that AI had not succeeded yet, not that it could not
ever succeed; and unfair because Al was a very young field, and revolutionary technological break-
throughs could not be expected from a field in its infancy, despite the overly enthusiastic procla-
mations of some of its pioneers. Philosophically, Dreyfus argued that Al is an ill-conceived attempt
to implement a rationalist programme that goes back at least to Leibniz and Hobbes, a project

13See Bringsjord (1992) for a sustained, detailed updating of all these criticisms.
For instance, see Bringsjord and Zenzen (1997).
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that rests on the misguided “Cartesian” tenet which holds that human understanding consists in
forming and manipulating symbolic representations. In contradistinction, he maintained that our
ability to understand the world and other people is a non-declarative type of know-how skill that
is not amenable to propositional codification. It is inarticulate, preconceptual, and has an indis-
pensable phenomenological dimension which cannot be captured by any rule-based system. People
do not achieve intelligent behavior in their daily lives by memorizing large bodies of facts and by
following explicitly represented rules. Being born, equipped with a body and with the ability to
feel, and growing up as part of a society are essential elements of intelligence and understanding.
Dreyfus also stressed the importance of capacities such as imagination, ambiguity tolerance, and
the use of metaphor, as well as phenomena such as fringe consciousness and gestalt perception,
all of which were—and continue to be—resistant to computational treatment. Most importantly,
in our view, Dreyfus stressed the importance of relevance, emphasizing the ability of humans to
distinguish the essential from the inessential, and to effortlessly draw on relevant aspects of their
experience and knowledge in accordance with the demands of their current situation, as required
by their ongoing involvement with the WOI‘ldE He correctly felt that imparting the same ability to
a digital computer would be a major stumbling block for Al—what he called the “holistic context”
problem. The problem of relevance remains, in our view, the key technical challenge to Al, both
strong and weak, and to computational cognitive science as well.

The claim that people do not go about their daily activities by following rules points to a
concern that has been a recurrent issue for strong AT and CTM, and even for general mentalistic
theories such as Chomsky’s generative linguistics, and merits a brief discussion here before we move
on to Block’s thought experiment. The objection has been made under somewhat different guises
by many philosophers, from Wittgenstein and Quine to Dreyfus, Searle, and others. It has to do
with the so-called psychological reality of rule-based explanations of cognition, and particularly with
computerized simulations of mental processes. The issue hinges on the distinction between descrip-
tion and causation, and also between prediction and explanation. A set of rules (or a fortiori a
computer program) might adequately describe a cognitive phenomenon, in that the rules might con-
stitute a veridical model of the gross observational regularities associated with that phenomenon.
They might fit all the available experimental data and make all the right predictions. But this
does not mean that there is actually an encoded representation of the rules (or the program) inside
our heads that is causally implicated in the production of the phenomenon. A set of grammatic
rules R might correctly describe certain constraints on English syntax, for instance, but that does
not mean that English speakers have an encoding of R inside their brains which causes them to
produce speech in accordance with R. So even though R might correctly predict behaviorE it does
not necessarily explain itm The distinction is also known in the terminology of Pylyshyn (1991, p.

15Tt may be of historical interest to note that much of what Dreyfus had to say was couched in the language of
continental phenomenology and existentialism, heavily influenced by thinkers such as Heidegger and Merleau-Ponty.
That was not exactly conducive to facilitating communication with Al researchers, or with analytic philosophers for
that matter. For instance, using an example—and the terminology—of Heidegger, Dreyfus wrote that when one is
using a hammer one is not experiencing the hammer as an object with properties but rather as “in-order-to-drive-
in-the-nail.” The hammer has a “way of being” that is called “readiness-to-hand,” signifying availability, a way of
being different from “unreadiness-to-hand,” which signifies unavailability; both of these should be distinguished from
the “occurrent,” also known as the “present-at-hand” mode of being, which is the mode of being of “stable objects.”
It is hardly surprising that such verbal acrobatics failed to resonate with people who were brought up on Principia
Mathematica. This was unfortunate, as Dreyfus had several prescient observations to contribute.

18T fact rules do not even do that, at least in Chomskyan linguistics, as they are supposed to model idealized
human competence rather than actual performance.

1"Note that prediction via computerized simulation is normally very different from nomological prediction as the
latter is often understood in the philosophy of science. It is particularly different from the notion of scientific
prediction found in the seminal deductive- and inductive-nomological models of Hempel (1965). Most notably,
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233) as the difference between ezplicit and implicit rules. Implicit rules merely describe behavioral
regularities, whereas explicit rules have encoded representations, presumably in our brains, which
play a causal role in the production of the regularities. The issue of psychological reality gives rise
to serious epistemological problems. What evidence would count as substantiating the claim that
certain rules are explicitly encoded in our brains? How do we distinguish between different sets of
rules or different computer programs that are nevertheless descriptively equivalent? What parts of
a computerized model should be ascribed psychological significance and what parts should be ig-
nored? Those who are sympathetic to Quine’s arguments about the radical indeterminacy afflicting
the study of language are likely to entertain similar misgivings about computational approaches
to cognitive science and to conclude that the above difficulties are insurmountable. (Although it
is not necessary to accept Quine’s indeterminacy arguments or his behaviorism in order to reach
these conclusions). Chomsky views such fears as manifestations of empirical prejudices about the
human mind and of a deep-seated but unwarranted methodological dualism which presupposes a
sharp distinction between the physical and mental realms. To him, the foregoing epistemological
problems amount to nothing more than the usual inductive underdetermination issue that regu-
larly confronts all sciences. Computational cognitive scientists such as Newell, Pylyshyn and others
have responded more concretely by developing the notion of different levels of system description;
championing the use of production systems in order to avoid commitment to control flow and other
implementation details that would inevitably be specified in conventional programming languages;
and trying to facilitate theory choice by encouraging rigorous testing with very different sets of
experimental results, such as chronometric data, eye-movement data, verbal protocols, etc. Nev-
ertheless, serious issues with computational cognitive modeling remain, and many continue to feel
that the epistemological difficulties faced by such modeling do not stem from the usual underde-
termination problem that is commonly found in the physical sciences, but from a fundamentally
different sort of problem that is much more challenging.

A second influential criticism was directed specifically against machine functionalism. It was
delivered by Block (1978) in the form of a thought experiment which asks us to imagine the
entire population of China simulating a human mind for one hour. The citizens of China are all
supplied with two-way radios that connect them to one another in the right way. We can think
of the individual Chinese citizens as neurons, or whatever brain structures we care to regard as
atomic. The people are also connected, via radio, to an artificial body, from which they can receive
sensory stimuli and to which they can deliver output signals for generating physical behavior such
as raising an arm. According to machine functionalism, one would have to conclude that if the
Chinese simulated the right transition table faithfully, then by virtue of being properly related to one
another and to inputs and outputs, they would in fact amount to a conscious mind. But this strikes
us as counterintuitive, if not patently absurd. The resulting system might well be isomorphic to the
brain, on some level of description, but it would not seem to harbor any sensations, pains, itches, or
beliefs and desires for that matter. For similar reasons it would follow that no purely computational
AT system could ever be said to have a genuine mind. Some functionalists have chosen to bite the
bullet and concede that the “China brain” (or a properly programmed robot) would in fact possess
genuine mental contents, chalking up our contrary intuitions to brain chauvinism, our propensity
to regard only neurological wetware as capable of sustaining a mental life. But this is hard to
swallow, and the thought experiment convinced many that unabashed functionalism is too liberal

and must be either abandoned or significantly circumscribed.
The third seminal philosophical attack on strong AI was launched by Searle (1980) with his now-
famous Chinese room argument (CRA). CRA has generated a tremendous amount of discussion

computerized simulations violate the thesis of structural identity of prediction and explanation, precisely because
successful predictions on the basis of a computer program (or a set of rules) do not necessarily constitute explanations.
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and controversy, and we will only provide a very cursory review of it here; for a detailed discussion
the reader is referred to Cole (2004). CRA is based on a thought experiment in which Searle
himself stars. He is inside a room; outside the room are native Chinese speakers who don’t know
that Searle is inside it. Searle-in-the-room, like Searle-in-real-life, doesn’t know any Chinese, but
is fluent in English. The Chinese speakers send cards into the room through a slot; on these cards
are written questions in Chinese. The box, courtesy of Searle’s secret work therein, returns cards
to the native Chinese speakers as output. Searle’s output is produced by consulting a rulebook:
this book is a lookup table that tells him what Chinese to produce based on what is sent in. To
Searle, the Chinese is all just a bunch of—to use Searle’s language—squiggle-squoggles. The gist
of the argument is rather simple: Searle inside the room is supposed to be everything a computer
can be, and because he doesn’t understand Chinese, no computer could have such understanding.
Searle is mindlessly moving squiggle-squoggles around, and, according to the argument, that’s all
computers do, fundamentally. Searle has given various more general forms of the argument. For
example, he summarizes the argument on page 39 of (Searle 1984) as one in which from

1. Syntax is not sufficient for semantics.
2. Computer programs are entirely defined by their formal, or syntactical, structure.

3. Minds have mental contents; specifically, they have semantic contents.

it’s supposed to follow that

No computer program by itself is sufficient to give a system a mind. Programs, in short, are
not minds, and they are not by themselves sufficient for having minds.

Many replies have been given to CRA, both in its original incarnation and in the general form
expressed above; perhaps the two most popular ones are the systems reply and the robot reply.
The former is based on the claim that though Searle inside the room doesn’t understand Chinese,
the overall system that includes him as a proper part does. This means that the premise to the
effect that Searle-in-the-room is everything a computer can be is called into question. The latter
objection is based on the claim that though, again, Searle-in-the-room doesn’t understand Chinese,
this deficiency stems from the fact that Searle is not causally connected to the outside environment
in the right manner. The claim is that in a real robot, meaning would be built up on the basis
of the robot’s causal transactions with the real world. So, though Searle may in some sense be
functioning in the room as a computer, he’s not functioning as a full-fledged robot, and strong Al
is in the business of aiming at building persons as full-fledged robots. Searle has put forth replies
to the replies, and the controversy continues. Regardless of one’s opinions on CRA, the argument
has undeniably had a tremendous impact on the field.

At the same time that philosophical criticisms like the above were being made, serious technical
problems with classical Al began to emerge. One of them was the frame problem. By now the term
has become quite vague. Sometimes it is understood as the relevance problem that was mentioned
earlier (how to tell whether a piece of information might be relevant in a given situation); sometimes
it is understood to signify the apparent computational intractability of holistic thought processes;
and occasionally it is even misunderstood as a generic label for the infeasibility of symbolic Al
Perhaps the widest and least inaccurate reading of it is this: it is the problem of spelling out the
conditions under which a belief should be updated after an action has been undertaken. In its
original incarnation the problem was more technical and narrow, and arose in the context of a very
specific task in a very specific framework: reasoning about action in the situation calculus. The
latter is a formal system, based on first-order logic, for representing and reasoning about action,
time, and change. Its basic notion is that of a fluent, which is a property whose value can change
over time, such as the temperature of a room or the position of a moving object. Fluents are reified,
and can thus be quantified over. Importantly, boolean properties of the world are themselves treated
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as fluents. Such a propositional fluent might represent whether or not an object is to the left of
another object, or whether the light in a room is on. The world at any given point in time can be
exhaustively described by a set of formulas stating the values of all fluents at that point; such a
description is said to represent the state of the world at that point in time. Actions are also reified.
Each action has a set of preconditions and effects, both of which are described in terms of fluents.
If the preconditions of an action are satisfied in a given state, then the action can be carried out
and will result in a new state. Starting from an initial state, which presumably represents the
world when a robot first enters it, many different sequences of states are possible depending on the
different courses of action that may be undertaken.

Many Al problems, such as planning, have a natural formulation in this setting. For instance,
devising a plan to achieve a certain goal amounts to discovering a sequence of actions that will
transform the current state to a state that satisfies the goal at hand. As it turns out, however, it
is not sufficient to describe the effects of each action; one must also specify what fluents are not
affected by an action. Suppose, e.g., that an action liftBox is available, by which a robot can lift a
box off the floor. Its precondition is that the box must be on the floor and its effect is that the box
is off the floor. And suppose that there is another action, turnLightOn, by which the robot can turn
the light on in the room, its precondition being that the light is off and the effect being that the
light is on. If the light is off initially and the box is on the floor, it would seem that performing the
turnLightOn action followed by liftBox should result in a state where the box is off the floor and
the light is on. But in fact neither conclusion follows, because it could be, for all we have said, that
turning the light on lifts the box off the floor and that lifting the box off the floor turns the light
off. In the former case the plan would not even work because the precondition of the second action
(liftBox) would not be satisfied after the first action, while in the latter case the light would be off
after the second action. To rule out such outlandish models, we need to explicitly specify the non-
effects of each action via so-called “frame axioms.” While succinct ways of stating frame axioms
have been devised, the computational complexity of reasoning with them remains a challenge.
Several other proposed solutions have been put forth, ranging from circumscription to altogether
different formalisms for representing and reasoning about action and change. It is noteworthy that
none of the proposed solutions so far comes anywhere near approaching the efficiency with which
young children reason about action. It has been suggested that humans do not run into the problem
of reasoning about the non-effects of actions because they take it for granted that an action does
not affect anything unless they have evidence to the contrary@ However, the real problem, to
which philosophers such as Fodor have latched, is this: How can we tell whether or not a piece of
information constitutes “evidence to the contrary”? There are at least two separate issues here.
First we need to be able to determine whether or not a piece of information is potentially relevant
to some of our beliefs. That is again the relevance problem. And second, we need to be able to
determine whether or not the information falsifies the belief. These are both engineering problems
for GOFAI and general philosophical problems. On the engineering front, it is not too difficult to
build a symbolic system that reaches a reasonable verdict once the right background beliefs have
been identified. The major practical difficulty is quickly zeroing in on relevant information. Many
have come to believe it highly unlikely that any symbol-manipulating system can overcome this
difficulty.

180f course a simpler explanation for why humans do not face this problem is that they do not go about their daily
lives by representing the world in logical formulas and performing deduction over them. As we will explain shortly,
that is the key conclusion reached by proponents of so-called “situated intelligence.”

17



7 Connectionism and dynamical systems

Conceptual and engineering problems such as the above, combined with the disillusionment that
followed a brief period of excitement over expert systems and the grand “fifth-generation” project
launched in Japan during the 1980s, helped to pave the way for a backlash against GOFAI ap-
proaches, both in Al and in cognitive science. To a large extent that backlash was manifested in
the very rapid ascension of connectionism during the 1980s. Connectionism had been around at
least since the 1940s (the foundations had been laid by McCulloch and Pitts (1943)), but it did
not begin to emerge as a serious alternative to GOFAI until the 1980s, largely due to the efforts of
Rumelhart and McClelland (1986).

The basic conceptual and engineering tool of connectionists is the neural network. A neural
network consists of a number of nodes (or “units”) that resemble brain neuronsr;gl Each node
receives a number of input signals and delivers an output signal. The nodes are connected to one
another so that the output of one node becomes an input to another node. Input and output values
are typically represented by real numbers. The connections have weights attached to them, which
are also represented by real numbers. Intuitively, the weight of a connection represents the influence
that one node has on the output of another. The output of each node is a simple linear function of
the inputs. A typical function computed by neural-network nodes is the linear-threshold function:
the weighted sum of the input values is calculated, and an output of 1 or 0 is produced depending
on whether or not the sum exceeds a certain threshold, respectively. If the output is 1 the node is
said to be activated, or to fire; otherwise it is inhibited. Certain units are designated as the input
and output nodes of the entire network; typically there is only one output node. Neural networks
are capable of a certain type of learning; they can be trained to compute—or approximate—a target
function. General-purpose learning algorithms exist, such as back-propagation, which, starting with
random weights, repeatedly expose the network to different inputs in a training set and adjust the
weights so as to bring the output closer to the correct value. Neural networks have been constructed
that perform well on various non-trivial cognitive tasks, such as learning the past tense of English
verbs or synthesizing speech from written text.

Neural networks have a number of remarkable features that set them apart from GOFAI systems.
One of them is the absence of a central processing unit, or of any explicitly coded instructions that
determine the behavior of the system. There are only individual nodes, and an individual node has
only a small amount of entirely local information: the input values it receives from its neighbors.
Owing to this massive locality and interconnectedness, neural networks are capable of graceful
degradation, meaning that if some parts of the network are damaged, the network as a whole
continues to function, with a performance drop that is more or less proportional to the amount of
damage. In contrast, symbol-manipulating systems are usually brittle; a small deviation from the
programmed course of events can lead to catastrophic failure. Such brittleness is atypical of human
intelligence. Like the performance of neural networks, human cognition will suffer a continuous
and graceful degradation under adverse conditions, instead of an abrupt general failure. Second,
representation is distributed, in that pieces of information are not encoded by concrete symbolic
structures; rather, a piece of information is essentially represented as a pattern of activity over
the entire network—the firings of the various nodes. And the overall “knowledge” encoded by a
neural network essentially resides in the weights of the various connections; it is sub-symbolic and

19From a biological perspective, the similarities are actually rather superficial. For instance, actual neurons are
continuously operating at different intensity levels rather than being discretely on or off. And the learning algorithms
that are typically used in AT and cognitive applications of neural networks are exceedingly implausible from a cognitive
standpoint, typically requiring many thousands of training rounds. It is more accurate to think of neural nets as
based on a neurologically inspired metaphor rather than a credible scientific model of neurons.
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highly distributed. An important corollary of distributed representation is that neural networks
end up sidestepping the vexing question of content that arises for classical CTM. The question of
how atomic symbols manage to acquire their meaning does not arise—because there are no atomic
symbols.

These interesting features of neural networks, in combination with the fact that they appear
to be more biologically plausible than digital computers, continue to appeal to many cognitive
scientists and AI workers, and intensive research in the field is continuing unabated, although
so far there have been relatively few outstanding achievements. The problem of common sense,
however, resurfaces in the setting of neural networks in a different guise. The intelligence exhibited
by a (supervised) neural network is pre-built into the system by the human modeler who trains the
network. But this is not enough to sufficiently circumscribe the space of possible hypotheses so as
to rule out generalizations which are legitimate from the perspective of the training data but inept
and inappropriate from the human perspective. There are legions of stories about neural networks
which, after intensive training, came up with generalizations which had learned to distinguish
features which were entirely irrelevant to the human modeler (indeed, features which had not even
been noticed by the modeler). Moreover, in terms of computational power, anything that can be
done by neural networks can be done by Turing machines, and therefore, by Church’s thesis, there
is nothing that neural networks can do which cannot also be done, say, by LISP programs@ This
entails that even if brains turned out to be giant neural networks of sorts, it would be possible
in principle to simulate them with perfect precision using classical GOFAI techniques. It would
follow, for instance, that there do exist rule-based systems capable of passing the Turing test, even
if those systems are so incredibly vast and unwieldy that it is practically impossible to build them.
(Although, should brains turn out to be nothing but neural networks, that would certainly prove
that it is not necessary for a system to form a symbolically encoded rule-based theory of a domain
in order to achieve competence in that domain.) There are other issues related to the question of
whether neural networks could ever manage to achieve general intelligence, including the famous
systematicity debate, which was started by Fodor and Pylyshyn (1988) and is still ongoing, but we
will not take these up here.

Closely related to connectionism is the dynamical-systems approach to intelligence (Port and
Gelder 1995). That approach draws on the general theory of non-linear dynamical systems, con-
ceiving of the mind as a continuous dynamical system, essentially a set of variables whose values
evolve concurrently over time. The evolution of the system is typically described by a set of laws,
usually expressed by differential or difference equations. The state of the system at a given moment
in time is described by the values of the variables at that moment. The values of the variables
at subsequent times (i.e., the dynamic trajectory of the system through the space of all possible
states) is determined by the present state and the dynamical laws. Dynamical systems theory,
however, is used to do pure cognitive science, not Al. That is, it provides a set of conceptual re-
sources for understanding cognition and for modeling aspects of it as dynamical systems, but not
for building intelligent systems. Accordingly, we will not have much to say on it here. Nevertheless,
the advocates of the dynamical-systems approach to cognition typically emphasize the importance
of time, context, interaction, embodiment, and the environment, and have thus been natural allies
of situated and embedded AI, to which we turn next.

29Mathematically speaking, it is possible to define neural networks, such as those of Siegelmann and Sontag
(1994), which can compute functions that are not Turing-computable. But this is accomplished simply by providing
uncomputable inputs to the networks (more precisely, infinite-precision real numbers which encode uncomputable
functions), and should not be taken to imply that neural networks are more powerful than Turing machines. Turing
machines (or Lisp programs, or Java programs, etc.) can also compute uncomputable functions if they are provided
with uncomputable inputs.
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8 Al From Below: Situated Intelligence

As disillusionment with GOFAI began to take hold in the 1980s, AI researchers such as Rod
Brooks of MIT were coming to the conclusion that systems which relied on detailed symbolic
representations of the world, baked in ahead of time by the engineers, and on action generation
via logical planning, conceived as search of the entire space of possible action sequences and taking
into account all the preconditions and effects of each action, were infeasible, brittle, and cognitively
implausible. They encouraged a shift of focus from higher-order symbolic tasks such as deductive
reasoning to lower-level, ostensibly “simple” perceptual and motor tasks, such as sensing, moving,
turning, grasping, avoiding obstacles, etc. They maintained that only fully embodied agents capable
of carrying out these tasks adeptly can be truly validated as artificial agents dealing with their
surrounding environments, and that only full embodiment has any hopes of properly “grounding”
an artificial agent in the real world. GOFAI had typically either completely ignored or minimized
the importance of such activities. Perceptual and motor faculties were seen as mere “transducers,”
peripherally useful and relevant only inasmuch they delivered symbolic representations of the world
to the central thought processes or deployed effectors to translate the outcomes of such processes
into bodily movements. Brute sensation and action were also seen as uninteresting in that, as
Aristotle had pointed out, lower animals were also capable of them; surely what differentiates
humans from insects, in the minds of GOFAI advocates, is our capacity for rational thought.

Brooks and his coworkers argued that bodily capacities were far from trivial—indeed, GOFAI
had proved inept at building systems that had them. Moreover, they held that the study of
such capacities could lend us valuable insights on how higher-order cognition can possibly emerge
from them. Language and the capacity for symbolic thought have emerged very recently in human
history, a consideration which suggests that evolution has put most of its effort into building up our
sensory and motor systems. Once we understand the seemingly simple and mundane workings of
such systems, the puzzle of intelligence will begin to dissolve. Language and reasoning will become
simple once we know how to build a robot that can successfully navigate the physical world, for,
according to Brooks, the “prime component of a robot’s intellect” is not to be found in reasoning
but rather in “the dynamics of the interaction of the robot and its environment.” Essentially,
the AI research program pursued by Brooks and his followers, which became known as situated
AIE amounted to “looking at simpler animals as a bottom-up model for building intelligence”
(Brooks 1991, p. 16). To borrow a phrase from historiography, this was, in a sense, Al “from
below.” P2

A key point made by Brooks and his team was that intricate symbolic representations of the
world are simply not necessary for solving a wide variety of problems. Many problems can be
more efficiently tackled by doing away with representations and exploiting the structure of the
surrounding environment, an idea captured in the slogan “the world is its own best representation.”
Continuously sensing and interacting with the world in a closed feedback loop was thought to be a
much more promising approach than building a static symbolic “model” of it (described, say, as a
state in the situation calculus) and reasoning over that. Brooks and his team demonstrated their
approach by building a robot named Herbert, whose task was to roam the halls of the MIT Al lab
with the goal of identifying and disposing of empty soda cans. Herbert was built on a so-called
subsumption architecture, consisting of a number of independent modules, each of them specialized

2! Also known as embedded or embodied Al.

22History from below is a method of historiography, primarily associated with British historians such as Thompson
(1963), that shifts attention from the classical a-few-great-men model to the unmentioned masses, to the “commoners”
whose lives had typically been regarded as too uninteresting or unimportant for history—much as “low-level” activities
such as perception and movement had been regarded as too uninteresting for intelligence.
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for performing a specific task, such as moving forward. At any given time, a module might become
activated or suppressed depending on the stimuli dynamically received by Herbert. The overall
system relied on little or no internal representations and symbolic manipulation, but managed to
exhibit surprisingly robust behavior.

By turning the spotlight away from internal representations and processes towards external
behavior and continuous interaction with the environment, the work of Brooks and other situated-Al
researchers marked a reverse shift away from the cognitive revolution and back towards behaviorism.
Indeed, some have spoken about a “counter-revolution” in AT and cognitive science. We believe that
such claims are exaggerated; the majority of researchers in these fields are not willing to renounce
the scientific legitimacy of representations in explaining the mind or their usefulness as engineering
tools. Nor should they, in our view. The points made by the situation theorists have been well-
taken, and Al as a whole now pays considerably more attention to environmental context and
embodiment. That is a positive development, and the trend is likely to persist. But the existence
of mental representations seems as undeniable now as ever. People can simply close their eyes,
shut their ears, and do some very non-trivial thinking about the possible effects of their actions,
the tenth prime number, logical consequences of their beliefs, the structure of our solar system
or water molecules, various properties of unicorns, and so on. The premise that such “classical”
thinking will become straightforward once we understand how we tie shoelaces is dubious, and has
been indeed been called into question by many (Kirsh 1991). In summary, the following provides
a rough graphical depiction of the main differences between GOFAT and situated Al:

Classical Embodied
representational non-representational
individualistic social
abstract concrete

context-independent | context-dependent

static dynamic
atomistic holistic
computer-inspired biology-inspired
thought-oriented action-oriented

It is noteworthy that the advent of situational theories in Al and cognitive science had already
been mirrored—or has since been mirrored—by similar movements in several areas of analytic
philosophy. In philosophy of language, for instance, the ordinary-language turn that started to
occur in Oxford in the 1950s, primarily as a reaction against logical positivism, can be seen as a
precursor to the behavioral backlash against cognitivism. Speech-act theory, in particular, initiated
by Austin and then taken up by Strawson, Searle, and others, was the first to emphasize that
they key unit of linguistic meaning was not an abstract sentence but rather an utterance, thereby
shifting attention from an isolated theoretical entity (the sentence) to a concrete act carried out
by real people in real time. The trend has continued and strengthened, particularly as seen in
the subsequent development of pragmatics and the growing recognition of the extensive and very
intricate dependence of meaning on deictic and other contextual factors. The following passage is
telling, coming as it does from a champion of the classical truth-conditional approach to the study
of language:

- We have yet to address ourselves to the second- and third-person pronouns, tense, spatial
indexicals, discourse indexicals, and so forth. --- How many further parameters must be added
to our truth predicate? Montague, Scott, and others have solved this proliferation of parameters
by relativizing truth simply to an “index,” viz., to an n-tuple whose members are all the objects
determined by a context that can affect the truth values of sentences relative to that context.
An “index” was originally taken to be an octuple whose members are a world, a time, a place, a
speaker, an audience, a sequence of indicated or demonstrated objects, a discourse-segment, and
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a sequence of assignments to free variables; other contextual factors may be added as needed.
(Lycan 1984, p. 50)

Shortly afterwards Lycan confesses that “it is a bit disturbing that an n-tuple of this type has no
definite number of members”, and notes that Lewis has pointed out that the eight aforementioned
members will not suffice—a “sequence of prominent objects” is also needed, along with “a causal-
history-of-acquisition-of-names coordinate, and a delineation coordinate for resolving vagueness.”
The situational semantics of Barwise and Perry is one approach that was developed with the purpose
of sensitizing the semantics of natural language to context; but it is still a classical approach,
developed within a realist, objectivist framework. A more radical development that took place in
the 1970s in the west coast was cognitive linguistics, an approach that was largely based on Eleanor
Rosch’s work on categorization (itself presaged by Wittgenstein’s famous remarks on games and
family resemblances), and carried out primarily by University of California linguists such as Charles
Filmore, Ronald Langacker, and George Lakoff. It started out as a reaction against the traditional
cognitivist theories of Chomsky, i.e., classical generative linguistics, but it went much further in that
it rejected the realist metaphysical framework in which traditional linguistic theories were couched.
It specifically renounced Aristotelian categorization (essentially, set theory), metaphysical realism
(the existence of an objective mind-independent external reality, which we internally represent in
our minds), and correspondence theories of truth. According to most cognitive linguists, reality is
a construction of the mind.

Similar developments took place in the philosophy of science and mathematics, again to a
large extent as a reaction against positivism. In science, philosophers such as Kuhn and Agassi
emphasized that abstract systems of justification (essentially inductive and deductive logics) are
poor models of scientific practice, which is, above all, a human activity that is highly contingent on
social interaction and cultural and political factors. In mathematics, philosophers such as Lakatos
and social constructivists such as Bloom launched vigorous attacks against “Euclideanism,” the
formal style of doing mathematics whereby a seemingly indubitable set of axioms is laid down at the
foundation and deductive consequences are thereby derived cumulatively and monotonically. That
style, it was claimed, is too neat to reflect “real” mathematics. In fact it completely disregarded
the process of doing mathematics (actually coming up with results), the dynamic and live aspects
of the field.

We do not claim that all these threads necessarily influenced one another, or that there was
anything inexorable about any of them. Nevertheless, the existence of certain salient common
points of reference and underlying similarities is undeniable. There has been an overall trend away
from statics and towards dynamics, from the abstract and decontextualized to the concrete and
context-bound, from justification to discovery, from isolated contemplation to social interaction,
and from thinking to doing. A dominant and recurrent theme has been the conviction that genuine
understanding will never be attained by taking something that is dynamic and evolving, reactive,
plastic, flexible, informal, highly nuanced, textured, colorful, and open-ended; and modeling it by
something static, rigorous, unbending, and inflexible—i.e., essentially by replacing something alive
by something that is dead. Everything depends on context, and it will never do to try to pre-
package context into some “n-tuple of factors” that could be manipulated by machine. The trends
in question are not unrelated to the increasing prominence of social sciences, cultural anthropology,
feminist studies, etc., and to a large extent the conflict between GOFAI and situated Al can be
seen as a reflection of the infamous science wars, the clash between traditional “objectivist” meta-
physics and social constructivism, and more recently, in the case of cognitive science, the rationality
wars, where situational theorists have been questioning the “ecological validity” of classical cog-
nitive science and psychology laboratory experiments, and calling for a greater focus on ethology
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and on “real” behavior exhibited in the “real” world (as opposed to the supposedly artificial and
highly constrained conditions of the laboratory). Our remarks here have not been intended as a
commentary on the science wars or as an attempt to take sides, but merely as an effort to provide
a greater context for understanding the backlash against GOFAI and the emergence of situational
approaches to Al and the study of the mind.

9 The Future of AI

If past predictions are any indication, the only thing we know today about tomorrow’s science and
technology is that it will be radically different than whatever we predict it will be like. Arguably,
in the case of Al, we may also specifically know today that progress will be much slower than what
most expect. After all, at the 1956 kickoff conference at Dartmouth College, Herb Simon predicted
that thinking machines able to match the human mind were “just around the corner” (the relevant
quotes and informative discussion, see the first chapter of Russell and Norvig 2002). As it turned
out, the new century would arrive without a single machine able to converse at even the toddler
level. (Recall that when it comes to the building of machines capable of displaying human-level
intelligence, Descartes, not Turing, seems today to be the better prophet.) Nonetheless, astonishing
though it may be, people do continue today to issue incredibly optimistic predictions regarding the
progress of Al. For example, Moravec (1999), in his Robot: Mere Machine to Transcendent Mind,
informs us that because the speed of computer hardware doubles every 18 months (in accordance
with Moore’s Law, which has apparently held in the past and shows no sign of failing), “fourth
generation” robots will soon enough exceed humans in all respects, from running companies to
writing novels. These robots, so the story goes, will evolve to such lofty cognitive heights that we
will stand to them as single-cell organisms stand to us today.

Moravec is by no means singularly Pollyannaish: Many others in Al predict the same sensational
future unfolding on about the same rapid schedule. In fact, at the 50" anniversary celebration at
Dartmouth of the original 1956 AI conference at this university, host and philosopher Jim Moor
posed the question “Will human-level Al be achieved within the next 50 years?” to five thinkers
who attended the original 1956 conference: John McCarthy, Marvin Minsky, Oliver Selfridge, Ray
Solomonoff, and Trenchard Moore. McCarthy and Minsky gave firm, unhesitating affirmatives, and
Solomonoff seemed to suggest that Al provided the one ray of hope in the face of the fact that
our species seems bent on destroying itself. (Selfridge’s reply was a bit cryptic. Moore returned
a firm, unambiguous negative, and declared that once his computer is smart enough to interact
with him conversationally about mathematical problems, he might take this whole enterprise more
seriously.)

Moor’s question is not just for scientists and engineers; it is also a question for philosophers.
This is so for two reasons. One, research and development designed to validate an affirmative
answer must include philosophy — for reasons expressed above. (E.g., as section |3| makes plain,
philosophy and logic must be turned to if one is to have a hope of capturing human reasoning in
computation.) Two, philosophers might be able to provide arguments that answer Moor’s question
now, definitively. If any of the strong critiques of Al that we have discussed is fundamentally correct,
then of course Al will not manage to produce machines having the mental powers of persons. At
any rate, time marches on, and will tell.
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