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Abstract

The optically-detected magnetic resonance spectroscopic technique (ODMR) is currently the main
tool for investigating nitrogen vacancy (NV) centers in diamond.

In this thesis we introduce a novel spectroscopic technique, analogous to Doppler-free spec-
troscopy used in atomic vapor cells. While there is no “velocity distribution” in the solid diamond
lattice, there is a distribution of transition frequencies due to the local environments to which each
individual NV center is exposed. The broadened transition line could come, for example, from local
strain or from local magnetic fields, and just as in the case of atomic vapor, it too causes inho-
mogeneous broadening to be observed in the spectroscopy of the sample. Understanding the exact
origin of the local environment is of great importance both for future fundamental studies with
this system and for technological applications. Here, we use the above novel technique to provide
additional insight concerning the actual origin of the inhomogeneous broadening.

Furthermore, we demonstrate, in good agreement with theory, narrower linewidths with this
technique as compared to standard ODMR linewidths. This may be useful in future technological
applications such as magnetometry.
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Abstract in Hebrew
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Introduction

The NV is an “atom-like” solid state system; although the system is highly localized inside a diamond
lattice, it exhibits atom-like properties such as narrow energy levels with a sharp spectroscopic line,
spin, the possibility of optical pumping, long coherence times, etc. The combination of these
properties yields a unique sensor, with both high spatial resolution and sensitivity [2].

The spectroscopic linewidth of the NV microwave (MW) transition in the ground state plays
an important role when probing magnetic fields, as the sensitivity of the NV is proportional to√

Γ
N , where Γ is the spectroscopic full-width at half-maximum (FWHM) line and N is the number

of NVs being probed. In ODMR spectroscopy of NVs there are many reasons for a broadened
line shape, starting from the natural linewidth, through MW power broadening and ending with
inhomogeneous broadening. Understanding the origins of the latter is interesting scientifically, and
may be useful for both fundamental and technological studies; and is the topic of this thesis.

In this thesis we show that inhomogeneous broadening originates from a variance of the local
magnetic environment felt by each NV in the probed ensemble. To this end, we have developed a
novel spectroscopic technique based on “Doppler-free” spectroscopy done in vapor: we scan around
a specific hyperfine (HF) transition between two Zeeman sub-levels with two MW fields, pump and
probe, that have a fixed frequency gap between them, ∆f = fms=+1;mI=0 − fms=−1;mI=0, where
ms is the spin projection of the Zeeman eigenstate, mI is the projection of the nitrogen nuclear
spin and defines the HF states, and f represents the transition frequency. The consequence of
the fixed frequency gap which we impose is that each of the two radiation fields interacts with a
different population (i.e., different local magnetic field) when we scan around the |ms = −1;mI = 0〉
transition giving rise to a regular ODMR line shape. However, as we approach resonance, both pump
and probe fields address the same population, yielding a narrow “Doppler-free” type hole inside the
broadened MW transition line and proving that the main contribution to the broadening originates
from the local magnetic environment in the diamond lattice.

In Chapter 1 we present the theoretical background required to understand the NV system,
including the geometrical structure of the NV inside the diamond, and describe its energy levels using
both a group-theory approach and the Hamiltonian. In Chapter 2 we introduce our experimental
setup. We use our setup in Chapter 3 to demonstrate and explain the ODMR technique, and its
relation to magnetic sensitivity. With this technique we calibrate the system for best parameters. In
Chapter 4 we show, using saturation spectroscopy, that the main cause of inhomogeneous broadening
is the local magnetic field. Unfortunately, the results obtained with the latter technique suffer from
instabilities and are therefore not fully persuasive, and consequently we have devised an alternative
path that utilizes a new spectroscopic technique in NV centers that clearly identifies the local
magnetic fields as the source for the observed inhomogeneous broadening. The results are presented
in Chapter 5 in good agreement to theory. We also show that the new method provides a narrower
linewidth. We summarize and conclude in Chapter 6. In the three appendices, we describe the
technical details of the AOM setup, explain the observation of side-dips, and present an outlook
with ideas for future experiments.
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Chapter 1

Theoretical Background

In order to understand the physics of the NV system, we start by describing the system’s geometrical
structure and symmetry and apply the group theory approach to associate the different energy levels
with different symmetries. The different symmetries will give us selection rules and in particular
they will show that the transition between state 3A2 (ground state) to 3E (excited state) is dipole
allowed and can be accessed via green light. We then describe the Hamiltonian of the 3A2 level,
and show that since the decay process from 3E has a preferable sublevel in 3A2, we can polarize
the system into a specific quantum state simply by applying green laser light.

1.1 NV Structure and its Symmetry

(a) The four possible orientations of the NV center.
Carbon atoms are labelled in black, nitrogen atoms in
blue, and vacancies in white. The NV axis is indicated
by red arrows. Taken from [3].

(b) NV system symmetry. Nitrogen in blue,
vacancy in red, and carbons are in grey. (a)
The general geometrical structure of the NV
system. (b) The system inside a diamond
unit cell. (c) The three rotational symme-
tries. (d) One of the three reflection sym-
metry operations. Another two planes of
reflection are not presented. Taken from [1].

Figure 1.1

An NV center is formed inside a diamond lattice when a substitutional nitrogen atom has
an adjacent vacancy as its nearest neighbor. This structure can appear in natural diamond, but
in very low concentrations [4], making the high-pressure high-temperature (HPHT) and chemical
vapor deposition (CVD) synthetic diamonds more popular candidates for NV experiments. Typical
NV density can be 1 ppm in HPHT synthetic diamond (1 ppm ' 1 × 1017 cm−3 in diamonds) and
roughly 0.04 ppm in CVD [5]. The NV density can be improved dramatically (e.g. 100 ppm in

10



HPHT diamond) by increasing the nitrogen and vacancy densities, and mobilizing the vacancies
until they are trapped near a nitrogen impurity. The amount of nitrogen in the sample can be
controlled during the synthetic process or during the creation of vacancies (natural diamonds too
have nitrogen impurities, which are the most common impurity found in diamonds). In order to
create vacancies we use special treatment such as irradiation damage, where high-energy particles
penetrate the diamond and increase the amount of vacancies. Finally we use annealing to transport
the vacancies until they are trapped near nitrogen impurities [6] consequently increasing the NV
density in the diamond. The annealing temperature is usually around 800◦. For the irradiation
process we use high energy particles such as electrons and ions, typically in the MeV regime,
although in near-surface experiments where NVs must be placed just a few nm away from surface,
we use particles with lower energies of several keV [7]. By controlling the energy of the particle
beam, one can create NVs at different depths [8] which may come handy in certain experiments, as
can be seen in [9].

The entire NV complex is constructed from the nitrogen-vacancy couple as well as the 3 nearest
neighbours of the vacant site. This structure has a specific symmetry: we can rotate the system
around the N-V axis at 120◦, 240◦, 360◦ and leave the system unchanged. There is also a reflection
symmetry operation around the three possible planes that contain the nitrogen atom, the vacancy
and one of the carbon atoms, thus yielding a point defect with a C3v symmetry (Fig. 1.1b). In
addition, we can exchange each of the 3 carbon atoms with the nitrogen atom and still retain the
same structure, except that now the principal symmetry axis (the NV axis) will have a different
orientation with a 109◦ angle. This gives a total of 4 possible orientations of the NV inside the
diamond lattice (Fig. 1.1a).

In terms of chemical bonding, each carbon atom in a diamond lattice has 4 electrons in its outer
shell, leading to covalent bonding with each of its 4 carbon neighbors, giving a total of 8 electrons in
the valance shell and thus making it a full shell. When we replace 2 carbon atoms with a nitrogen
atom and adjacent vacant site, the vacant site has 4 “dangling bonds” with its neighbors which have
a total of 5 available electrons: 3 electrons come from the 3 carbon neighbors and the remaining 2
come from the nitrogen atom as it has one more electron than the carbon atom in its outer shell.
Since a 6-electron system is preferable, a 6th electron is trapped, presumably from another nitrogen
impurity donor [10], making an even-electron-number system [11] that is often treated as a two-hole
system.

NV centers that have 5 electrons are known as NV0 and will be ignored in this thesis. The
6-electron structure is a negatively charged nitrogen vacancy center denoted as NV−. Throughout
this thesis, since we study only the negatively charged structure, we will refer to it just as NV.

1.2 Group Theory Approach

The fact that the system has a certain symmetry gives us information about the symmetries of the
different wave functions and the selection rules that govern the transitions between them. In solid
state physics, we usually describe the electron wave function in the lattice using the Bloch wave
function: Ψ(r) = eik·ru(r), where r is position, k is the crystal vector, and u(r) is some periodic
function [12]. But in the presence of a defect, translation symmetry is broken and the symmetry is
reduced (to a point group symmetry in our system). In such symmetry, the Bloch wave function
solution is not valid anymore and we need to come up with a new wave function basis.

In order to find the behavior of the NV wave function, we shall use the powerful tool of group
theory. According to group theory, the wave functions of a system can be characterized by the
way that they transform under the symmetry operations of the system and this yields selection
rules. We assume that there is a set of symmetry operations which are also unitary transformations
{Ûk}, and that the Hamiltonian is invariant under all those transformations and all the symmetry
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operations of the Hamiltonian are included in that group. We then find that

ÛkĤÛ †k = Ĥ , (1.1)

for every Ûk. This group of operations consists of the elements presented in Fig. 1.1 (i.e.,
{E,R1,R2,R3,C3,C−1

3 } where E is the identity operation, C3 is rotation operation and Ri is the
reflection operation). We can rewrite the Schrödinger equation

Ĥ|Ψn〉 = En|Ψn〉 ,

as

ÛkĤÛ †k |Ψn〉 = En|Ψn〉 ,

and if we apply one of the symmetry operations, i.e., multiply by U †k from the left, we obtain:

HU †k |Ψn〉 = EnU
†
k |Ψn〉 . (1.2)

The existence of a symmetry group for the system raises the possibility of degeneracy. We can
see that the new eigenstates, U †k |Ψn〉, must have the same energy after applying the C3v symmetry

operations on |Ψn〉. Unless U †k |Ψn〉 = C|Ψn〉 for all U †k , the level is degenerate [13]. The new

eigenfunctions U †k |Ψn〉, or just |Ψk
n〉, could have duplicates. The distinct degenerate eigenstates are

related by |Ψk
n〉 =

∑
lMk,l|Ψl

n〉 where the M matrices are the irreducible representations (IR) of the
symmetry group. We can match to each eigenfunction of the Hamiltonian a set of IR M matrices,
thus classifying each eigenfunction by its IR.

In order to find the irreducible representation (IR), we begin by looking at our system and trying
to understand the reducible representation. When we have a vacancy in a lattice, the absence of
an atom breaks the bonds of the neighboring atoms to create so called “dangling bonds” to the
vacancy. The orbitals of each atom get hybridized to sp3 orbitals. We label the orbital that points
to the vacant site as σi, where i = 1, ..., 4, and we associate σ1 with the orbital of the nitrogen atom
and σi (i = 2, ..., 4) with the three carbon neighbours. (Notice that we take only one orbital from
each atom. The other sp3 orbitals of each atom interact with carbons outside the NV structure,

and we ignore them.) We can represent each orbital using a vector, where σ1=


1
0
0
0

, σ2 =


0
1
0
0

,

σ3 =


0
0
1
0

 and σ4 =


0
0
0
1

, but in this basis, the representation of the symmetry operations is

not block-diagonal, as can be seen in Table 1.1. In order to extract the IR from the reducible
representation, we can use the following transformation matrix:

R =


1 0 0 0

0 −
√

2
3

√
1
6

√
1
6

0 0 −
√

1
2

√
1
2

0 −
√

1
3 −

√
1
3 −

√
1
3

 .

We perform an homomorphism transformation on the symmetry operation representation in Ta-
ble 1.1 and simultaneously form block diagonal matrices (i.e. IR) from all the symmetry operation
representations [14]. The result of the transformation RΓR−1, where Γ is a reducible symmetry
operation as listed in Table 1.1, is presented in Table 1.2.

12



Γ(E) Γ(C+) Γ(C−) Γ(σv) Γ(σ′v) Γ(σ′′v )
1 0 0 0

0 1 0 0
0 0 1 0
0 0 0 1




1 0 0 0

0 0 0 1
0 1 0 0
0 0 1 0




1 0 0 0

0 0 1 0
0 0 0 1
0 1 0 0




1 0 0 0

0 1 0 0
0 0 0 1
0 0 1 0




1 0 0 0

0 0 0 1
0 0 1 0
0 1 0 0




1 0 0 0

0 0 1 0
0 1 0 0
0 0 0 1


Table 1.1: Representations of the C3v point group symmetry operations. Γ(C+)/Γ(C−) represents
rotation of 120◦/−120◦ around the nitrogen atom, σ sign represents reflection around a plane that
contains the nitrogen atom and one of the carbon atoms and Γ(E) represents the identity operation.
We mark the fact that the nitrogen is not affected by any operation, by using the 1×1 block diagonal
matrices. It is clear that the 3× 3 matrices that operate on the carbons are not the smallest block
diagonal matrices that we can generate for any operation except for the trivial identity operation
Γ(E).

Γ(E) Γ(C+) Γ(C−) Γ(σv) Γ(σ′v) Γ(σ′′v )


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




1 0 0 0

0 −1
2 −

√
3

2 0

0
√

3
2 −1

2 0
0 0 0 1




1 0 0 0

0 −1
2

√
3

2 0

0 −
√

3
2 −1

2 0
0 0 0 1




1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1




1 0 0 0

0 −1
2 −

√
3

2 0

0 −
√

3
2

1
2 0

0 0 0 1




1 0 0 0

0 −1
2

√
3

2 0

0
√

3
2

1
2 0

0 0 0 1


Table 1.2: IR of the C3v point group. The 1 × 1 blocks are said to have A1 symmetry if they are
completely symmetric and A2 if they are antisymmetric with respect to reflection. The 2× 2 blocks
are said to have E symmetry (not to be confused with the identity symmetry operator Γ(E)) and
represent two degenerate eigenfunctions.

Now that we have the IR, we can find the eigenfunction that transforms as one. This can be
done using the projection operator [15]:

φr =
lr
h

∑
e

χreReσi , (1.3)

where lr is the order of the IR r, h is the number of group elements, χre is the character of the
operation Re in the IR r and we sum over all the elements of a certain IR. The projection operator
gives 4 single electron orbitals which transform according to the symmetry operation (more precisely-
IR) of the C3v group [16]:

aN = σ1

ac = σ2+σ3+σ4
3

ex = 2σ2−σ3−σ4√
6

ey = σ3−σ4√
2

(1.4)

The first two orbitals are totally symmetric and we say that they transform as A1 IR. The ex,y
orbitals transform as the E IR to give a spatial doublet. Via Coulomb interaction, the totally
symmetric orbitals are mixed [17] and we obtain a final basis {a′1, a1, ex, ey} where{

a′1 =
√

1− α2σ1 − α√
3
(σ2 + σ3 + σ4)

a1 = ασ1 −
√

α
3 (σ2 + σ3 + σ4)

(1.5)

where α describes the amount of mixing with 0 ≤ α ≤ 1 and the ex and ey stay the same. The
orbitals can be ordered energetically from top to bottom: ex,y, a1, a

′
1. The lowest level, a′1, is

completely filled and positioned below the valence band (while the other levels are well inside
the energy gap) and will not be taken into consideration in our optical or MW excitation-decay
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cycles [17]. When the system is in its ground state, the orbital a1 is also completely filled and we
have two electrons occupying each of the ex,y states (according to the Aufbau principle) as depicted
in Fig. 1.2. Therefore, ignoring the a′1 level, the ground state has the configuration of a2

1e
2 (or just

e2) where the superscript stands for the number of electrons in that level. We have two electrons in
a1 and one electron in each e state, and if we excite one electron, we will go to the a1

1e
3 configuration

(or just ae).
For a full description of the system we need to take into account all the 6 electrons, but in

order to reduce complexity, it is very common to consider a 2-hole model [1] and calculate the
eigenfunctions once again using the projection operator

ψr =
lr
h

∑
e

χreReφ1Reφ2 , (1.6)

where φ1,2 are the single orbital functions. Each electron has spin one-half, and a 2-hole system
will yield singlet and triplet states. When we assign spin to the different spatial states that we
presented, we finally get a full description of all possible wave functions with respect to both the
spatial and spin parts, which can be found in Table 1.3.

In order to further classify the wave function of the system, we inspect the total wave function.
We note that it can be separated into a spatial part that will have a certain symmetry as discussed
above, as well as a spin part Ψr = ψrΦS where ψr is taken from Eq. (1.6) and ΦS is the spin part
that can be a spin singlet (S = 0) or triplet (S = 1). According to the first Hund rule, the two
spins of the ground state are co-aligned, therefore the ground state is a spin triplet. In addition the
Pauli principle requires that the total wave function, Ψr, must be anti-symmetric with respect to
exchange of particles, and since the spin part of the ground state is symmetric (triplet), the spatial
part must be anti-symmetric. This eliminates the possibility for A1 symmetry. The degenerate E
symmetry is unstable and cannot represent a ground state. Hence the ground state must have A2

symmetry. We mark the fact that it is also a spin triplet by adding an superscript 3A2. The excited
state is also a triplet and we denote it by 3E. For better understanding, we illustrate in Fig. 1.2 an
example of the configuration that gives the ms = −1 spin projection.

Electronic Configuration c3v Symmetry Wave Function ms

e2(T) 3A2

|exey − exey〉 ⊗ | ↑↓ + ↓↑〉 0
|exey − eyex〉 ⊗ | ↓↓ + ↓↓〉 -1
|exey − eyex〉 ⊗ | ↑↑ + ↑↑〉 +1

e2(S)
1E

|exex − eyey〉 ⊗ | ↑↓ − ↓↑〉 0
|exey + eyex〉 ⊗ | ↓↓ + ↓↓〉 0

1A1 |exex + eyey〉 ⊗ | ↑↑ + ↑↑〉 0

ae(T ) 3E

|a1ex − exa1〉 ⊗ | ↑↓ + ↓↑〉 0
|a1ex〉 ⊗ | ↓↓ + ↓↓〉 -1
|a1ex〉 ⊗ | ↑↑ + ↑↑〉 +1

|a1ey + eya1〉 ⊗ | ↑↓ − ↓↑〉 0
|a1ey〉 ⊗ | ↓↓ + ↓↓〉 -1
|a1ey〉 ⊗ | ↑↑ + ↑↑〉 +1

ae(S) 1E
|a1ex + exa1〉 ⊗ | ↑↓ − ↓↑〉 0
|a1ey + eya1〉 ⊗ | ↑↓ − ↓↑〉 0

Table 1.3: Wave-functions of the NV system. The letters T and S in the brackets stand for triplet
and singlet states respectively. The electronic configuration e2 is the optical ground state and ae is
the optical excited state. In the thesis we will focus mainly on the triplet states that serve as our
ground and excited states in the optical excitation-emission cycle and on the magnetic sub-levels of
the 3A2 state.
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(a) Example of the ground state level configuration. a′1 and a1
levels are completely filled and the wave function is |exey〉 = |3A2〉
with total spin number of ms = −1.

(b) Example of the ground state level configuration. a′1 is com-
pletely filled. The wave function is |a1ey〉 = |3Ey〉 with a total
spin number of ms = −1.

Figure 1.2

1.3 Electric Dipole Transitions

The optically excited state (ES) is a spin triplet and also a spatial doublet that transforms as the
E IR. The optical ground state (GS) is also a spin triplet but its spatial part transforms as the A2

IR. At room temperature the orbital doublet of E is said to “average out” [18] to form a spatial
singlet and spin triplet.

Starting in the GS, we can access the ES using a green laser via dipole interaction. In order to
have a non-zero possibility for a dipole transition, the system must obey the following equation:

〈Ψf |d ·E|Ψi〉 6= 0 , (1.7)

where Ψi (Ψf ) is the initial (final) state, d is the electric dipole operator and E is the electric field.
We can understand why Eq. (1.7) does not equal zero by applying symmetry considerations. We
can replace the dipole operator, d, with the position operator, r, as they are proportional, and work
with the position operator. Due to the C3v structure of our system, z which is the symmetry axis
of the structure transform as the A1 IR and x and y transform as the E IR. We also know that
the GS transforms as A2 and ES transforms as E. Putting all this together in Eq. (1.7), we find
allowed transitions only if d · E transform as the E IR. Thus we conclude that if the electric field
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is polarized along the z axis then the probability for dipole transition is zero as the dot product
yields a vector along the z axis, so d · E transforms as A1. But for x or y polarized light we get a
non-zero probability for dipole transition.

The electric dipole process only operates on the spatial part of the wave function and leaves
the spin part unchanged. Therefore, unless there is a perturbation that mixes the states such as
spin-orbit coupling, the process is spin conservative.

1.4 Energy Levels

1.4.1 The Ground State Hamiltonian

The optical ground state (GS) is a spin triplet and spatial singlet that transforms as A2. The full
Hamiltonian of the GS is:

HS = DgsS
2
z + gsµB(B · S) + E(S2

y − S2
x)

HI = PI2
z − gIµN (I ·B)

HSI = A(S · I)
(1.8)

The HS Hamiltonian stands for the spin Hamiltonian, HI for the nuclear Hamiltonian and HSI

describes the interaction of the nuclear spins with the electronic spins. The electronic spin in NVs
is S = 1 and also the nuclear spin is I = 1 as we take into account only the nucleus of the nitrogen
which is I = 1 (as the natural abundance of 14N , which has a spin 1, is 99.6 %, unless special
treatment is performed to the diamond). In this thesis we will assume that the carbon atoms are
12C and therefore will not consider any other nuclear spins except of the nitrogen atom in the
NV structure although 13C or 14N defects can be taken into consideration as noise or a dephasing
source, and there are several ways to eliminate or reduce their effect [19].

Looking at the spin Hamiltonian, the axial spin-spin interaction, described by the DgsS
2
z term,

destroys the triplet degeneracy, where Dgs ' 2.87 GHz, so both ms = ±1 states differ equally
from the ms = 0 state. This is also known as the zero-field splitting (ZFS). The degeneracy is
then completely removed by the transverse spin-spin interaction, which can be considered as strain
fields [20] that break the degeneracy of the ms = ±1 state and yield a 2E separation between the
new states. The amplitude of the strain ranges from several hundred kHz (in CVD diamonds) up
to few MHz (in HPHT diamonds) [5]. An additional external field along the z quantum axis will
further push the spin levels away by a factor of 2.8 MHz/G as the Landé factor is gs = 2.003 and
µB = 1.4 MHz/g is the Bohr magneton. Note, as described in Fig. 1.1a, that there are 4 possible
NV orientations, and therefore 4 different quantum axes as the z quantum axis is defined by the
nitrogen vacancy axis, and an external field that is aligned with one orientation is at 109◦ relative
to the other 3 z quantum axes. Thus, the magnetic field that the other three orientations feel along
their local z axis is B cos(109◦). The effect of four NV orientations on the atomic spectrum in the
presence of an external magnetic field will be discussed in Ch. 3

The spin-1 nuclear system generates a spin-spin interaction which can be described by PI2
z

where P = −4.95 MHz. The nuclear spin also interacts with the external magnetic field. However
this interaction is very weak, almost 2000 times weaker than the interaction of the electronic spin
with the magnetic field, as the nuclear magnetic moment is µN = 0.76 kHz/G and gI = −0.416. In
this thesis, where we use magnetic fields of no more than a few dozen Gauss and no less than 1 kHz
resolution, it can be neglected.

Finally, the HF Hamiltonian which describes the interaction of the nuclear spin with the elec-
tronic spin can be rearranged as

HSI = A‖SzIz +A⊥(SxIx + syIy) (1.9)
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Figure 1.3: Ground state energy levels and allowed transitions. The green line shows a MW tran-
sition from |ms = 0;mI = 0〉 to |ms = ±1;mI = 0〉. The blue and orange lines show a similar
transition but with mI = −1 and mI = 1 respectively.

where A⊥ ≈ 2.7 MHz and A‖ ≈ 2.16 MHz. The 14N nuclei with its I = 1 causes a 3-fold splitting in
each of the Zeeman levels giving rise to a 9-state system, and the allowed MW transition (∆ms =
±1), as depicted in Fig. 1.3, conserves the nuclear angular momentum projection (∆mI = 0).

1.4.2 Level Crossing and Polarization

During the time that the system is in the excited state (∼ 10 ns), there is a low mixing (at room tem-
perature) among the different ms levels [18] but the decay process, in contrast, does not necessarily
conserve the projection of the spin.

In order to understand why the decay is not spin conserving, we need to take a closer look at the
entire process. We start by introducing phonon coupling and vibronic levels to each optical state.
The energy difference between the ground and excited states’ lowest vibronic levels is 637 nm, also
known as zero phonon line (ZPL). The phonon coupling generates a continuous absorption and
emission spectrum and in addition also changes the most probable transition frequency from ZPL
to ∼ 580 nm due to the Frank-Condon effect. Therefore when we excite the system it goes to a
vibrational excited level from which it decays very fast (∼ ps) to the lowest vibrational level in the
excited states. This fast vibrational level decay conserves spin and even phase. The wide absorption
band near 580 nm makes the commonly used 532 nm green laser a good choice for excitation; not
only is this laser common, inexpensive and efficient, it can also help distinguish between excitation
light (green) and emission light (red).

After the system stays in the excited state roughly 10 ns it can decay back to the ground state
in two ways: a) it can decay directly to the ground state with ∆ms = 0 as expected, while emitting
a red photon in the process, or b) it can decay non-radiatively to an intermediate singlet level (1A1)
and decay radiatively (1042 nm) within 1 ns lifetime [21] to another singlet level (1E) [22] where it
stays roughly 200 ns before it decays phonon-like with (roughly) equal probabilities to the ms = 0
and ms = ±1 ground states [23].

17



Figure 1.4: Intersystem crossing. Optical (non-radiative) transitions indicated by solid (dashed)
lines. The green line represents optical excitation to an excited vibrational level of the 3E state.
After a fast phonon decay to the vibrational ground state in 3E, the system can go to the GS
through a radiative decay which is indicated by red arrows, or it can decay non-radiatively to the
1A1 singlet level. From the 1A1 level it decays to the other singlet level, 1E (indicated by the dark
red line of 1042 nm). From 1E the system decays again non-radiatively to the ms = 0 and ms = ±1
ground state levels with equal probabilities. The red line for the optical decay to ms = 0 is thicker
than that for the decay to ms = ±1 to emphasize that this path a has higher rate of fluorescence .

The path through the singlet levels is possible due to spin-orbit coupling in the excited state:
the sub-states of the 3E state that have a non-zero spin projection number can have a first- (and
also second-) order spin-orbit transition to a 1A1 vibrational level so the spin-orbit coupling induces
transition between the states while changing from triplet state to singlet [22]. Hence, the decay
path through the singlet level is more preferable for the excited ms = ±1 states than for the excited
ms = 0 state. Thus, while the ms = 0 state has a spin conserving excitation-decay cycle, the
ms = ±1 can end up in the ms = 0 ground state. The net effect of this process is polarization into
the ms = 0 ground state after a few cycles. In addition to this very efficient initialization into a
specific quantum state, the decay through the dark channel can also allow us to distinguish between
the different quantum levels easily, as the ms = ±1 has a reduced emission rate compared to the
ms = 0 state.

Finally, let us note that because of the high occupancy of vibrational states at room temperature,
only a few percent of the emitted photons are at 637 nm. Most of the emission spectrum is spread
along the near infra-red over hundreds of nano-meters (Fig. 1.5).
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Figure 1.5: (a) Illustration of the Franck Condon rule via a schematic of the NV system excitation
and emission cycle. The most probable transition is indicated by a green arrow. The non-radiative
decay is denoted by dashed arrow, while the radiative decay is indicated by a red arrow. (b-c)
Photoluminescence spectra of the NV centers at room temperature (b) and at 4 K (c). Figure taken
from [1].
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Chapter 2

Experimental Setup

In general, at the heart of an NV experimental setup there is a green laser to excite and polarize
the NVs (i.e., prepare the system in a quantum state), an MW antenna to manipulate the system
between the different quantum states, and a detector to collect the emitted photons which could
tell us what the state is. On top of that we can add different optics tools or MW equipment,
depending on the needs of the experiment. In this chapter we explain the experimental setup that
was constructed. A schematic diagram of the experimental setup appears in Fig. 2.1.

In order to excite and polarize the diamond (as explained in Sec. 1.4.2) we work with a CW
532 nm solid state laser with ∼ 100 mW output power. The laser is aligned using mirrors, and by
adding a half-wave plate (HWP) and a polarizing beam splitter (PBS), we fully polarize the beam
parallel to the table plane and perpendicular to the beam propagation direction so the beam does
not reflect when it enters the PBS.

Once we set the beam polarization according to the PBS, the beam enters a double pass acousto-
optics modulator (AOM) setup that serve as an optical switch. The AOM (Crystal Technology, 3080-
125) has an AOM driver (Crystal Technology, 1080AF) that generates acoustic waves at 80 MHz
inside the AOM crystal, which interact with the laser to create a diffraction pattern. We insert an
iris in order to choose only the +1 diffraction order, and block all other orders. After the iris we
position a quarter-wave plate (QWP) and a mirror that reflects the +1 order back through the iris
into the AOM and to the PBS, except that now the laser has a 90◦ rotation in the polarization
as the beam passes twice through the QWP. Therefore, the outgoing beam will now reflect from
the PBS and up to the rest of the optical setup, and will not pass through the PBS as the ingoing
beam. The AOM driver can be modulated on-off with a nano-second resolution using modulated
low-voltage high-voltage signals (also known as a TTL signal where low voltage is typically 0−0.8 V
and high voltage is 2 − 5 V) generated by Pulse Blaster ESR-PRO 500 MHz. When we give the
driver low voltage, the driver is off and there is no diffraction pattern, thus the laser (i.e., zero
order) hits the iris and is absorbed. When the AOM driver is on, there is a diffraction pattern and
the +1 order goes through the iris and back to the AOM and PBS and continues to the rest of
the optical path. Thus we can effectively modulate the laser on-off with a resolution of 1µs and
better. We installed this option for a future application that will be discussed in App. C. However
for the experiments presented in this thesis, we did not use this option and the TTL operated at a
constant high-voltage. The entire double-pass AOM setup reduced the laser intensity to 30mW, as
measured after reflection from the PBS. Further elaboration regarding the principles of AOM and
a double-pass optical switch setup can be found in App. A.

Following the optical switch AOM setup, the laser is realigned using mirrors, and hits a long-
pass dichroic mirror that reflects the laser into a microscopic objective (Olympus, Pro-Plan 40×
magnification; N.A.=0.6) which focuses the green light to a spot size on the surface of a [1 1 1]
HPHT diamond. The green light excites the NV and after 10 ns a red photon is emitted in the
decay process, as explained in Sec. 1.4.2. The same objective then collects the emitted light, which
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now can pass through the dichroic mirror as it now has a longer wavelength. The fluorescence
hits a fast avalanche photo-diode (ThorLabs, APD110A). In order to measure the voltage that the
fluorescence light generates in the photo-diode, we connected the photo-diode to a lock-in amplifier.

The lock-in amplifier has the following general working principle: assume that the signal has
the form of Vs sin(ωs + θs) and a reference signal that goes as Vr sin(ωr + θr). Using a mixer, we
multiply the signal with the reference. If we assume that ωs = ωr then with a little trigonometry
we obtain for the mixer output

Vmix =
1

2
VrVs(cos ∆θ + sin(2ωr + Θ)) , (2.1)

where ∆θ = θr − θs and Θ = θr + θs. A low-pass filter is used to eliminate the sine term and we
are left with Vmix+filt = 1

2VrVs cos ∆θ. By using a splitter and a phase shifter, we can get another
signal: V ′mix+filt = 1

2VrVs sin ∆θ. Different types of manipulation can be done on Vmix+filt and
V ′mix+filt to give different insights regarding the measured data, such as the “in-phase” component,
“quadrature” component, etc. We choose to work with the amplitude component:

R =
√

2Vs , (2.2)

where the cosine and sine terms vanish using trigonometry and the fact that they have the same
argument. The voltage that the photo-diode generates in response to the fluorescence light could
have also been measured using a simple oscilloscope, but since for this thesis the fluorescence was
modulated at a certain frequency, as a consequence the voltage of the photo-diode had the same
modulation rate. Thus, working with a look-in was a much more natural choice than an oscilloscope.
The reference signal was generated using the pulse-blaster and was connected, together with the
photo-diode signal, to either a EG&G 7260 slow lock-in amplifier (slow setup) or to an SR844 fast
lock-in amplifier (fast setup).

In the slow setup we used 2 different permanent magnets. One of these magnets was later used
in the fast setup, so we had a total of 3 different setups. When switching between all 3 setups (i.e
slow using two different magnets and fast) we realigned the laser, which caused a 2−3 mW deviation
in laser power between setups. When we switched from the slow lock-in to the fast lock-in, we did
not touch the permanent magnet, but we did do a realignment of the laser which could result in
a 2 − 3 MHz deviation in resonance frequency due to the magnetic field gradient. There was also
a change in the NV resonance frequency between the two slow setups since the two magnets had
different amplitudes and were placed at different locations. In addition, the location of the green
laser on the diamond moved by a few microns between each setup. The magnet that was later used
for the fast setup was placed in such a way that the effective magnetic field was along the [1 1 1]
direction, while the other magnet was placed in an arbitrary direction.

Excitation of the ground state MW transition levels was done using a home-made micro-strip
antenna that was fed by two MW signals: a pump MW signal, generated by R&D SMR20 and a
probe signal generated using SRS SG384. Both pump and probe were operating in CW mode, except
that the pump signal was modulated using a MW shutter (Mini-Circuits, ZASWA-2-50DR+), and
both fields (modulated pump and CW probe) were then combined using a Mini-Circuits’ ZB4PD-42
beam combiner. Following combination, the sum was fed into an amplifier (Mini-circuits ZHL16W-
43+) and the amplifier output was connected to the antenna. The modulation of the pump, 36.6 kHz
in fast setup and 426 Hz in the slow setup, was controlled using the fast pulse generator. The pulse
generator also gave the modulation signal to the lock-in and we chose the reference to be identical
to the MW modulation signal of the pump, as the fluorescence is expected to oscillate at the same
frequency as the reference signal.

We connected all the instruments to the same computer and using a LabView program we could
control all the instruments and retrieve the signal from the lock-in as a function of MW amplitude,
modulation rate, etc.
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Figure 2.1: Schematic diagram of the experimental setup. Right: the laser passes through the
double pass AOM setup (AOM) and hits a dichroic mirror. The reflected beam is focused by an
objective lens (OBJ) into the diamond and the fluorescence passes through the OBJ and dichroic
mirror and is collected by the photo-diode (PD) with its output connected to a lock-in amplifier.
Left: the MW pump generator is connected to a MW shutter which modulates the signal, and then
the pump signal is combined with the MW probe signal. The combined signal is amplified and the
total amplified signal (modulated pump and CW probe) is injected into a MW antenna near the
diamond. The modulation rate of the MW shutter is controlled by a pulse generator that also gives
the reference for the lock-in amplifier. All instruments are connected to the same computer and can
be controlled remotely.

Figure 2.2: Optical table setup. Green arrows- path of green laser. Yellow arrow above green arrow-
the path of fluorescence light after the objective. The double-head green arrows before and after the
AOM represent laser light that enters and gets out of the AOM setup (for explanation see App. A).
The laser that comes out of the AOM, enters again the PBS, reflects and proceed to the rest of the
optical setup.
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Chapter 3

Standard ODMR and Magnetic
Sensitivity

In this Chapter, we explain and present the ODMR technique and show how to derive from it
the relation between the NV magnetic sensitivity and the transition linewidth. We also show how
the sensitivity of the ODMR changes with the MW power, and use this result to choose the most
suitable MW power for our experiment.

3.1 Introduction

In an ODMR experiment, we detect a magnetic resonance transition using optical changes (absorp-
tion, fluorescence, etc.). As explained in Sec. 1.4.2, we expect a change in the fluorescence rate
coming out of the diamond with a transition from ms = 0 to ms = ±1 (ground states), as once
excited by a green laser the ms = 0 should shine brighter than ms = ±1 state, since the excited
ms = 0 does not partially decay through a non-radiative “dark” channel and thus has a higher rate
of fluorescence photons.

During an ODMR experiment, we shine a CW green light on the diamond and this polarizes
the system into the ms = 0 state. In addition, we scan with a MW field and monitor the relative
fluorescence as a function of the MW field frequency. If there is no external magnetic field, we expect
to see a reduction in the fluorescence rate at 2.87 GHz when the MW induces a transition to the
ms = ±1 states. An external magnetic field will split the Zeeman levels and the resonance levels will
have different frequencies. We can evaluate the amplitude of the magnetic field by scanning with
a MW field until we see a reduction in fluorescence at a certain MW frequency and consequently
retrieve the magnetic field amplitude.

This picture gets a little more complicated when we introduce all 4 different NV orientations
in the diamond crystal. The dot product between B and S in the Hamiltonian forces us to take
into consideration both axial and transverse magnetic fields. For example, applying an external
magnetic field along one NV axis (which is also the z quantum axis of that orientation) will yield
four spectroscopic transitions. Two of them are the ms = ±1 transition frequencies of the NV
orientation that is aligned with the magnetic field, and the other two are associated with the
ms = ±1 levels of the other 3 orientations as they all sense the same magnetic field at the same
angle relative to their local z axis (109◦). In this simple case we can retrieve the magnetic field
amplitude by dividing the frequency difference of the magnetic levels of the aligned orientation
from 2.87 GHz by 2.8 MHz/G. The typical situation is, however, that all 4 orientations have slightly
different magnetic field projections and we thus have as many as 8 different transitions. For this
general case, we need to insert the non-axial terms in HS , BxSx and BySy with respect to each
orientation’s local quantum axis. This complexity has also an up side as it enables us to sense not
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only the field’s magnitude but also its orientation [24] thus having a full description of the magnetic
field.

3.2 Magnetic Sensitivity

Let us assume that we apply only the laser radiation. The green laser polarizes the system into
state ms = 0 which is the brightest ms state and has a certain red photon emission rate, R. When
we start an ODMR scan we apply a MW field with frequency (at first) far from resonance, ν0, so it
does not change the photon rate. As we bring the MW frequency, ν, closer to resonance, there will
be some population transfer into one of the other ms states that has a reduced photon rate. This
will cause a reduction in the fluorescence intensity. Therefore we can say that the signal will take
the form S(ν − ν0). Assuming a Lorentzian shape for the ODMR (i.e. the reduction in signal as a
function of ν − ν0), we obtain a general description of the ODMR signal [25]:

S(ν − ν0) = R
(

1− C(∆ν/2)2

(ν − ν0)2 + (∆ν)2

)
, (3.1)

where ∆ν and C are the transition FWHM and amplitude respectively.
The largest change in the signal with respect to a change in ν will be where the slope of the

Lorentzian is highest:

max

∣∣∣∣∂S∂ν
∣∣∣∣ =

RC

∆να
, (3.2)

where α = 0.77 is a numerical value which is related to our choice of a Lorentzian line shape [26]
(if we had chosen a Gaussian shape, then the value of α would be 0.7). If we assume that C is very
small, then the number of collected photons β, during a measurement time of δtm, will be β ' Rtm,
and the corresponding photon shot noise will be δβ =

√
Rδtm. We can estimate the minimum

detectable magnetic field as [27]:

γδBmin = ∆νmin =
δβ

max
∣∣∣∂β∂ν ∣∣∣ '

√
Rtm

tmmax
∣∣∂S
∂ν

∣∣ , (3.3)

where γ = gsµB/h transforms magnetic field to frequency as shown in Ch. 1. The value of max
∣∣∣∂β∂ν ∣∣∣

is about equal to tm × max
∣∣∂S
∂ν

∣∣ because under the assumption of low C, S ' R. Substituting
Eq. (3.2) into Eq. (3.3) yields:

δBmin = α
h

gsµB

∆ν

C
√
Rtm

. (3.4)

It is customary to describe the sensitivity not as δBmin but as [28]:

η = δBmin
√
tm . (3.5)

The parameters of the sensitivity are not completely independent. For example, increasing MW
power will increase C but will also increase ∆ν. These parameters can be optimized [26] to give
maximum sensitivity. This can be done using a Ramsey sequence. In the Ramsey sequence we
prepare the system in state |0〉 using green light. Then we turn off the green light and apply
the following MW pulses: π

2 − τ − π
2 . The first π

2 takes state |0〉 into a coherent superposition
1√
2
(|0〉 + |1〉). Then we wait for time τ without any laser or MW fields. During the waiting time

the magnetic level interacts with the external magnetic field and accumulates a relative phase,
φ = τgsµBB/~, compared to state |0〉. A final MW pulse π

2 projects the spin state 1√
2
(|0〉+ eiφ|1〉)
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Figure 3.1: Magnetic sensitivity. At the highest slope of a Lorentzian, a small change in the fre-
quency, δν, causes a large corresponding change in the signal, δS. If that small change in frequency
originates from an additional magnetic field, we can evaluate that additional field according to the
relative change in the signal.

back into the quantization axis and the additional phase may be detected as population difference
[29] and the magnetic field can be retrieved. Once the MW sequence is done, we apply a green light
for population read out. This process is limited by the inhomogeneity of the ensemble introducing
a dephasing time characterized by T ∗2 . The process can be optimized by setting τ = T ∗2 [29] and
the optimized sensitivity will be:

η = α
2~
gsµB

1

C
√
βT ∗2

, (3.6)

where β describes the amount of photons emitted when the system is in ms = 0. Therefore, when
we have an ensemble of NVs, β will grow linearly with the numbers of emitters, N . If we will use
the FWHM sign, Γ, instead of T ∗2 (i.e., Γ = 2π/T ∗2 ) we can see that the sensitivity of the system is:

η ∝
√

Γ

N
. (3.7)

It is clear that if we are interested in magnetic sensing, there is great significance in the width of
the transition line. When we are using an ensemble of NVs, the transition width has several line
broadening mechanisms. Some occur in single NV measurement as well. These include: natural
linewidth, power broadening due to the MW field, etc. Others are solely related to ensemble effects
such as inhomogeneity that can arise from local fields as well as the gradient of an external field.
A complete description of the line broadening in an ODMR experiment can be shown to be [25]:

∆νtot = ∆inh + ∆ν , (3.8)

where ∆inh = 1
πT ∗

2
is the inhomogeneous broadening arising from an ensemble measurement and

∆ν =

√√√√(
1

πT eff2

)2 + (
4T eff1

T eff2

) , (3.9)
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is true for single NV measurement as well, where T eff1 and T eff2 are the longitudinal and transverse
relaxation times respectively. We donated the eff superscript to symbolize the fact that we take
into account the influence of the continuous pumping into ms = 0 state due to the CW green laser,
as we do in an ODMR measurement.

To conclude, the sensitivity of measuring a magnetic field using the ODMR technique (as well
as other techniques) has a basic limit as the sensitivity is proportional to

√
Γ/N , where Γ is the

spectroscopic linewidth and N is the number of centers being probed. The relation between Γ and
N is somewhat entangled, since an increase in the number of NVs being probed will cause line
broadening in the form of inhomogeneous broadening due to the different local fields at each single
NV environment (e.g. MW fields, magnetic fields, strain fields, etc.). In this thesis we introduce
a new spectroscopic method that has a narrower linewidth compared to the ODMR technique (to
the kHz regime) that might prove useful in sensitive measurements as well as enabling more insight
into the origins of the inhomogeneous broadening.

3.3 MW Calibration

We began the calibration of the MW by placing a permanent magnet near the diamond in such a
way that the effective field of the magnet is along the [1 1 1] axis which is one of the NV axes. If we
indeed placed it properly, we expect to see only 4 MW transitions in our ODMR spectrum. Two of
the transitions are associated with ms = ±1 Zeeman levels of the [1 1 1] orientation, and the other
two are associated with the Zeeman levels of the other three orientations which are degenerate as
they all have the same magnetic projection. An ODMR scan (Fig. 3.2a) shows a typical spectrum
of a [111] diamond and magnetic field perpendicular to the diamond surface, confirming that the
magnet was placed properly.

(a) ODMR using the fast setup with 0dbm MW power
preamplifiaction and 2 MHz step size. The orange line
represents the transition to the [1 1 1] orientation and
the green line represents transitions to all other 3 orien-
tations. This characteristic spectroscopy indicates that
indeed our magnetic field is along the [1 1 1] orientation
as all the other three orientations are degenerate. In
this work, we focus only on the transition in the [1 1 1]
orientation.

(b) Zoom-in on the extreme left transition of
Fig. 3.2a most left transtion with the same setup
parameters except that step size was changed to
200 kHz. The reduced step size resolved the 3 HF
transitions but due to the stregnth of the MW
field, the HF transition are very wide, almost
3 MHz each, but with a very high amplitude-
∼ 0.8.

Figure 3.2

Now that we have placed our magnet, we want to optimize our MW power; increasing the MW
power will increase the amplitude of the signal but at the cost of power broadening and therefore-
reduced sensitivity. To this end, we made a series of ODMR measurements on the samems transition
at different MW powers. For each MW power we fitted the following function:

fit =
N=3∑
i=1

ai
γi
2

1

(x− xi)2 + (γi2 )
+ d . (3.10)
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This is a fit of three Lorentzians centered at xi with an amplitude of ai and FWHM of γi that stands
for each HF transition. For each MW power we calculated the mean value of the three FWHM and
its estimated error:

∆γ =

√
∆γi2 +

σ2

N
(3.11)

where ∆γi = max[γ1; γ2; γ3] and σ = std[γ1; γ2; γ3]. The same calculation was done also on the

Figure 3.3: Calibration of MW power. In green we see that the inverse amplitude gets higher as
we reduce the power, while on the contrary, we see how the FWHM (blue) narrows down as we do
so. Starting from -12dbm, the width approaches its asymptotic value, while the inverse amplitude
is roughly linear all the way. This implies that -12dbm is a good choice for the MW power.

Figure 3.4: Slope vs. MW power. The higher the slope, the better the sensitivity. We can see,
despite the large error, that around -12dbm we get the best slope.

amplitude a. To properly evaluate the optimum power, we generated two plots. In the first plot
we plotted 1/a and γ vs. MW power in order to observe simultaneously the behavior of the two
parameters at different powers, and next we also plotted the slope of the mI = 0 transition to
evaluate the sensitivity of the signal. The results, Fig. 3.3 and Fig. 3.4, show that -12dbm power
is a good choice to meet our requirements for low width and high signal amplitude. Note that we
could have improved the sensitivity by using lower MW power up until the power broadening is
at a minimum (i.e. the linewidth will be mainly due to the homogeneous broadening), but this
would initiate a time consuming process since the signal-to-noise ratio would be low, and each

27



Figure 3.5: High resulotion ODMR scan of the [1 1 1] orientation with -12dbm MW power. Data in
turquoise, fit of 6 Lorentzians in red. The two batches of three peaks represent the transitions from
the ms = 0 to the ms = ±1 states and each color of arrow represents a transition for a different mI

state. The color code is the same as in Fig. 1.3: the blue arrows represent transitions with mI = −1
nuclear spin. Green and orange lines are the transitions with mI = 0 and mI = 1 respectively.

measurement would need many more averages. Thus, in choosing to work with -12dbm, we also
took into consideration the practical aspects of the experiment.
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Chapter 4

Hole Burning Saturation Spectroscopy

In this chapter we introduce NV center saturation spectroscopy and use it to study the role of
local magnetic fields in the inhomogeneous line broadening process. We will also show that the
observed linewidth becomes narrower, a feature of importance for high sensitivity magnetic field
measurements.

4.1 Theory

In order to achieve better understanding of NV line broadening we follow [30] and add to the
Hamiltonian in Eq. (1.8) a local magnetic field δB, a local strain field δε and neglect the nuclear
spin and the strain term. The effective Hamiltonian for axial fields now reads

H = (Dgs + d‖δε)S2
z + gsµB(Bz + δBz)Sz , (4.1)

and the transition frequencies are

f± = (Dgs + d‖δε)± gsµB(Bz + δBz) , (4.2)

where f± are the transition frequencies from state ms = 0 to state ms = ±1. If we assume that the
main contribution to the inhomogeneous line broadening originates from local strain fields, d‖δε,
and neglect the local magnetic field δBz ' 0, we find the following relation

f+ = f− + 2gsµBBz . (4.3)

On the other hand, if indeed (as we suspect) the main contribution to the line broadening is δB,
either from local fields or an external field gradient, we can set δε ' 0 and obtain

f+ = 2Dgs − f− . (4.4)

In both cases f+ selects NVs of a specific population (i.e., particular d‖δε or particular δBz) inside
ms = 0. If we set a MW field at frequency f+ we can think of f+ as a pump that causes a spectral
hole at f− which can be detected by a probe with frequency f−. Notice that while in Eq. (4.3) there
is a +1 ratio between f+ and f−, there is a -1 ratio in Eq. (4.4). We will use this difference to our
advantage by observing changes in f− (probe) compared to changes in f+ (pump) and deduce the
main contribution to the line broadening.

NV’s in an ensemble differ not only by their local strain or magnetic environment as described
above, but also in the projection of the nuclear spin, mI , of the nucleus of the N14, for which
I=1. In a hole burning saturation experiment we label the central transition frequencies (of a
certain mI population) by f0

+ and f0
−. Now, if we set the MW field to the resonance of, say, the

|ms = 0;mI = +1〉 to |ms = +1;mI = +1〉 transition, , it will transfer mI = +1 population to the
ms = +1 level with ∆mI = 0 and burn a hole in the |ms = 0;mI = +1〉 level for NVs that are

29



experiencing the same δB (or D‖δε) field. We can describe f+ as a pump field and f− as a probe,
and expect that if we apply a pump at f+, we will cause a spectroscopic hole at f−.

It was suggested in [30] that the spectroscopic hole should have a reduced linewidth compared
to an ODMR experiment, as it does not suffer from inhomogeneous broadening since f+ and f−
are addressing NVs of the same type of population (same δB or d‖δε). Specifically, a smaller line
width (up to bounds set by other origins such as the natural line width or power broadening), is
expected every time measurement time (i.e. lock-in cycle time) is faster than the correlation time of
paramagnetic impurities such as P1 (nitrogen) centers, NV 0, NV −1, and so on. Standard samples
contain about 1.1% of the C13 impurity which has the long correlation time of 10 ms. Hence,
typical lock-in frequencies in the range of kHz, should remove the linewidth contributions from such
a source. Regarding strain fields, we do not have very good knowledge of their correlation times,
and it is probably dependent on the type of phonons which are excited in the sample. Let us note,
that in our experiments we went all the way to MHz lock-in frequencies, and could not observe with
this method any further reduction of the linewidth relative to what was observed in [30] where a
kHz frequency was used.

Focusing on Eq. (4.4) we can see that f− dictates the location of f+ (and the other way around);
if the central transition frequency to state |ms = +1;mI = +1〉 is f0

+, and f0
− for state |ms =

−1;mI = +1〉, and we only slightly change f+ (i.e. interact with a different population) so that we
stay well inside the |ms = +1;mI = +1〉 HF transition line, i.e., f+ = f0

+ + δf with δf < 1 MHz,
there should be also a corresponding change in the conjugate frequency, f− = f0

−− δf and it will in
fact shift the location of the hole. It is important to shift the pump by no more than a few hundred
kHz since a large shift in the pump frequency (say, 2 MHz) can cause a masking effect where the
hole seems to move by 2 MHz, but we are actually addressing now different mI populations, as the
splitting between different mI transitions is only 2.16 MHz and a typical linewidth is larger than 1
MHz..

We neglect the interaction of the nuclear spin with the magnetic field, since it is almost 2000
times weaker than the interaction with the electronic spin, and the broadening that small local
magnetic fields generate, through the nuclear spin, can be ignored. Under this assumption, the HF
states are not directly sensitive to magnetic fields, so the broadening that the transitions experience
is due to δB (again, focusing on Eq. (4.4)) that affects the resonance frequency between the ms

Zeeman sub-levels; namely, for each local NV center there is a different transition frequency due to
different local δB that shifts a little bit the ms transition frequency compared to another NV that
is experiencing different δB. As a consequence, when we measure an ensemble, we average over all
the transition frequencies of the different NVs and observe a broadened line shape. Shifts in the ms

central frequency will also shift the HF resonance frequencies by the same amount, and therefore will
introduce a broadening in each HF transitions as well. Thus, it is sufficient to investigate the origins
of the inhomogeneous broadening of the HF transitions by just looking at the spin Hamiltonian and
neglecting the nuclear spin interaction, as was done in Eq. (4.1).

4.2 Detecting the Hole

In order to now establish which model is correct, Eq. (4.3) or Eq. (4.4), we want to monitor changes
in the hole frequency with reduced FWHM compared to ODMR, and more importantly to monitor
changes in hole location as a result of different pump MW frequencies, according to Eq. (4.3) or
Eq. (4.4). To this end, we use an amplitude modulated MW pump field with a fixed frequency
that corresponds to a specific HF transition (f0

+), and scan around f0
− with a CW probe field. We

set the scan wide enough to go over all three HF transitions. During the scan we measure the
modulated fluorescence coming out of the diamond as a function of the probe frequency using a
lock-in amplifier (Fig. 2.1). When the pump beam is exactly on resonance (f0

+) but the probe beam
is far from resonance, the probe will not affect the lock-in signal and we will get a high contrast in
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the lock-in due to the modulated pump beam. As we bring the probe beam closer to resonance, the
probe beam and the pump beam are now addressing NVs of the same population (same mI and δB
or δε) and since the probe is CW there is less modulated fluorescence light and we get a reduction
in the lock-in signal. Notice that we borrow the terms ’probe’ and ’pump’ from vapor experiments
where one measures changes in probe intensity, but here we neither measure probe nor pump but
actually measure the modulated fluorescence that is associated with the pump field, not probe. The
total result of this fixed-pump scanned-probe process is the creation of a spectroscopic hole at f0

−.
In the derivation of Eq. (4.4) we assumed that the local magnetic field is constant. This might

be true for local fields that originate in the gradient of the external field, but as noted above, in the
case of a local field generated by nitrogen impurities (often referred as P1) or due to the 13C spin
bath, this assumption is limited by the correlation time of the field which is ∼ 10 ms for the 13C [31]
and ∼ 10µs for P1 [32]. We repeated the saturation spectroscopy experiment three times. In each
experiment, the pump was set to the transition frequency (f0

+) of a different HF state and the
results, as presented in Fig. 4.1, show a clear reduction in the spectroscopic linewidth that could be

Figure 4.1: Spectroscopic holes using the fast setup (lock-in frequency of 36.6 kHz). Data in dots,
fit in solid line. The color code is the same as in Figs. 1.3 and 3.5; in red line the pump is set to
the mI = +1 central transition frequency. In green and blue lines the pump is set to the mI = 0
and mI = −1 transitions respectively. In each hole we can clearly see the other two transitions as
small side dips. A discussion regarding the possible origins of the side dips can be found in App. B.
The average linewidth of the hole is 0.9 MHz which is ∼ 200 kHz less than an ODMR width.

attributed to the removal of inhomogeneous broadening. The amount of width reduction can vary
between samples, as different diamonds have different environments, and even the same sample can
have different results between two setups as there could be changes in the external field gradient
or the impurities generating the inhomogeneity broadening may not be distributed isotropically. In
addition, there could be a difference in MW power between pump and probe that can affect the
linewidth through power broadening. Therefore, it is hard to tell what is the remaining dominant
source of the linewidth. Similar results were achieved in [30] for a similar HPHT diamond.

The next step in validating Eq. (4.4) is to show that we can shift the hole by −δf if we shift the
pump to f0

+ +δf . To this end, we made a series of tests where we changed the pump frequency with
a 100 kHz step size, starting at the central frequency of the mI = 0 transition, and scanned with
the probe to observe the hole. Each test yielded a hole that was later fitted to a Lorentzian and
the hole location was extracted. We plotted the hole location vs. the pump frequency and made
a linear fit to extract the slope. In the fast setup we find a slope of −0.59 and in the slow setup
we find −0.99 with the same magnet as in the fast setup. In the slow setup and with the different
magnet we find −0.83. In all experiments we expected a slope of −1 regardless of the different
magnet or setup. We believe that one possible reason for the inconsistency in the slope value, could
be thermal fluctuations: if we look again at Eq (4.4) we can see that not only can f+ generate a
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change in f− but so can Dgs. Dgs is not constant and can have thermal fluctuations as high as
−75 kHz/K at room temperature [33]. Thus, even a small temperature changes such as 0.5 K can
appear as a 75 kHz change in hole location.

At this point, although we did show a negative correlation between f+ and f−, it seems that we
did not prove strongly enough that the main inhomogeneous broadening mechanism is due to the
local magnetic field environment. Similar uncertainties were observed in the work done in [30] as
was communicated to us in private communications. To improve this situation, we came up with a
new method to validate Eq. (4.4), and this is the topic of the next chapter..

Figure 4.2: Migration of hole (f−) using the fast setup (36.6 kHz). Blue data, red linear fit. The
pump frequency was changed in small steps of 100 kHz. The fit returns a slope of −0.59± 0.21 and
4567±615 MHz for the constant (which according to Eq. (4.4) is expected to be 2Dgs = 5740 MHz).

Figure 4.3: Migration of the hole (f−) using the slow setup (426 Hz) with the same magnet as in the
fast setup. Blue data, red linear fit. The pump frequency was changed in small steps of 100 kHz.
The fit returns a slope of −0.99 ± 0.13 and 5809 ± 396 MHz for the constant (which according to
Eq. (4.4) is expected to be 2Dgs = 5740 MHz). The slight change in the pump frequencies relative
to Fig. 4.2, is probably due to a re-alignment of the setup together with a strong gradient of the
external magnetic field.
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Figure 4.4: Migration of the hole (f−) using the slow setup (426 Hz) . In this version of the slow
setup we used a different magnet, as can be seen in the different magnetic resonance frequency. Blue
data, red linear fit. The pump frequency was changed in small steps of 100 kHz. The fit returns a
slope of −0.83± 0.03 and 5259± 87 MHz for the constant (which according to Eq. (4.4) is expected
to be 2Dgs = 5740 MHz).
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Chapter 5

“Doppler-Free” Spectroscopy

In the previous chapter we tried to provide proof that Eq. (4.4) was at work, thus proving that
varying local magnetic environments are the cause of the observed inhomogeneous broadening.
Although our results were in qualitative agreement with Eq. (4.4), the quantitative agreement was
far from satisfactory. In order to test the model more accurately, with our existing equipment, we
devised a different method to validate the above equation using a novel type of NV spectroscopy.
In addition, the new spectroscopy exhibits a FWHM linewidth that is half of the saturation hole
width, and thus the new method may prove advantageous for sensing applications.

5.1 Theory

Our new spectroscopic method is analogous to Doppler-free spectroscopy in vapor: in Doppler-free
spectroscopy we use two counter-propagating laser beams with the same frequency and observe the
interaction of the laser light with atoms having different velocities. The atoms can be classified
according to their velocities, where P (v) is their velocity probability distribution. Due to the
Doppler effect, one laser beam will interact with atoms of class P (v) while the other interacts with
P (−v). Therefore, the two fields will always interact with different populations (due to the Doppler
shift) except for the population with zero velocity (with respect to the optical axis). In such a case,
the Doppler shift is zero and if the radiation field is resonant with the atomic transition, both fields
will address the same population. If the pump field has higher amplitude than the probe, then it
will “burn a hole” in the ground level of the P (v = 0) population, which can be detected by the
probe as the pumped atoms will barely interact with the probe and we expect to observe a reduction
in probe absorption (or increased probe intensity). Since the width of this hole is only limited by
the atomic natural linewidth and the laser linewidth, the observed linewidth is much narrower than
the Doppler broadened linewidth.

Our method is analogous to Doppler-free spectroscopy in vapor in the sense that in both cases
we use two radiation fields that always address different populations except when both fields are at
resonance with the center of the broadened distribution. While in the vapor experiment the different
populations have different velocities, here the broadening mechanism (as we suspect) is due to the
fact that each of the NVs in our ensemble can have a slightly different magnetic environment, δB,
and consequently a different transition frequency causing inhomogeneous broadening. We replace
the counter propagating beams in the vapor experiment with f+ (pump) and f− (probe) and instead
of fixing the frequencies of the radiation fields to be the same and scan for different frequencies-
as in Doppler-free spectroscopy, we rather fix the frequency gap between the two fields and then
scan at different pump-probe frequencies while keeping the frequency gap constant. Focusing on
the mI = 0 transition, we fix the frequency gap to be ∆f = fms=+1;mI=0 − fms=−1;mI=0, where
the latter are the resonance frequencies, and we scan with a CW probe while the lock-in modulated
pump follows.
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When the probe is on the mI = ±1 transition the pump is on the mI = ∓1 transition and
the probe has no impact as it always addresses mI states that are different than those addressed
by the modulated pump, and we expect to see a regular ODMR signal generated by the pump.
When we scan within the mI = 0 linewidth, both radiation fields address the same mI . However,
when they are not directly on resonance, the negative sign in Eq. (4.4) dictates that they are still
addressing different populations; when the probe and pump fields are “red-detuned” with respect
to the transition frequency, the hole is “blue-detuned” and the probe is not at the hole frequency
and has no impact on the lock-in signal. Only when both fields are at resonance (f0

− and f0
+) will

they address the same population and we should observe a narrow “Doppler-free” type hole at the
center of the ODMR peak.

We modeled our expected experimental line shape as the sum of four Lorentzians. We started
by assuming that the HF transitions have the same amplitude and derived the general form:

S(f+) =
+1∑
i=−1

a1
γ1

2

1

(f+ − f0
+i

)2 + (γ12 )2
, (5.1)

where f+ is the pump frequency (+ represents transition to ms = +1), f0
+i is the transition frequency

to ms = +1 with mI = i and a1 and γ1 are the amplitude and FWHM respectively. Thus, Eq. (5.1)
simply describes a regular ODMR signal of the HF transitions using lock-in (i.e., three Lorentzians
with equal positive amplitude and width). As explained above, the CW probe affects the pump
lock-in signal only when both fields are near mI = 0. Thus, the hole in the pump signal should be
described by a single Lorentzian. The problem is that the hole location is not constant but rather
governed by the pump location (remember Eq. (4.4)). Therefore, the general form of the hole can
be described using the following Lorentzian:

h(f−, t) = a2
γ2

2

1

(f− − t)2 + (γ22 )2
, (5.2)

where f− is the probe frequency (− represents transition to ms = −1. Remember that f− is at a
fixed distance of ∆f from the pump), f0

−i is the transition frequency to ms = −1 with mI = i and
a2 and γ2 are the amplitude (with a negative sign as this is the hole) and FWHM respectively. The
location of the center of the Lorentzian, t changes with f+ as Eq. (4.4) states. Due to the fixed
frequency gap, ∆f , between the pump and the probe, we have a situation in which for example if
f+ (pump) is 1 MHz below f0

+i , then f− (probe) is 1 MHz below f0
−i , but t (hole) will be 1 MHz

above f0
−i according to Eq. (4.4), and if f+ is 2 MHz below f0

+i , then f− is 2 MHz below f0
−i but t

will be 2 MHz above f0
−i and so on. Thus, taking δf to be the frequency difference (i.e., detuning)

between the hole location and resonance, the combination of Eq. (4.4) and ∆f yields:

f0
−i =

t+ f−
2

, (5.3)

which allows us to express t as a function of f−. We can now present h(f−, t) as h(f−), but since
S is dependent on the pump frequency, f+, it will be more natural to write h as h(f+) rather than
h(f−). We therefore use f+ = f− + ∆f and find (taking mI = 0 as Eq. (5.3) is valid for all mI):

f− − t = 2f− − 2f0
−0

= 2(f+ −∆f)− 2(f0
+0
−∆f) = 2f+ − 2f0

+0
. (5.4)

We now plug it into Eq. (5.2) to get

h(f+) = a2
γ2

2

1

(2f+ − 2f0
+0

)2 + (γ22 )2
, (5.5)

and we can rearrange it to get a final result:

h(f+) = a3
γ3

2

1

(f+ − f0
+0

)2 + (γ32 )2
, (5.6)

35



where a3 = 0.5a2 and γ3 = 0.5γ2. h(f+) is a Lorentzian that depends only on f+ just as the ODMR
Lorentzians, S(f+), and has half the amplitude and half the width of the hole. The total outcome
signal of this experiment is the sum of h(f+) and S(f+). We plugged experimental values into the
above model and made a phenomenological simulation of the four Lorentzians (Fig. 5.1a) in order
to describe the behavior of the new spectroscopic signal. The simulation predicts that in the current
settings we should observe a small hole at the center of the mI = 0 transition with half the width
of the hole, and that the other two mI transitions (mI = ±1) will not be affected.

(a) Phenomenological simulation of “Doppler-free” type spectroscopy. We plotted the three Lorentzains of
the ODMR (Eq. (5.1)) together with Eq. (5.6). The parametrs were taken from the results of ODMR and hole
experiments with fast setup (36.6 kHz lock-in modulation. See Ch. 2). The x axis represents the detuning of
the f+ (pump) from f0+0

(i.e., δf). The small hole at center is due to the fact that only when both fields are
addressing the same population the probe can “steal” population from the pump. The two Lorentzians at
the sides are the ODMR line shape generated by the probe-pump interplay.

(b) Experimental results for “Doppler-free” type spectroscopy using the fast setup (36.6 kHz lock-in modula-
tion). The data is shown in blue and the red is a fit to four Lorentzians. The x axis represents detuning of the
f+ (pump) from f0+0

(i.e., δf) as measured in an ODMR experiment. The width of the hole is 338± 53 kHz,
compared to a 850 ± 52 MHz hole width as seen in Fig. 4.1. The center of the two Lorentzians of interest
coincides with a small 6±8 kHz difference and the data has an excellent fit to the model with 0.999 R square
value. This implies that the hole indeed follows the pump with a −1 ratio, or else they would not coincide
or the line shape would be deformed thus reducing the goodness of the fit.

Figure 5.1
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5.2 Experimental Results

In order to confirm the simulation and as a consequence to establish that the main contribution to
the inhomogeniuos broadening is local magnetic fields, we conducted the following experiment: using
the results of an ODMR experiment we calculated the frequency gap, ∆f , between the transition
from |ms = 0;mI = 0〉 to |ms = +1;mI = 0〉 and from |ms = 0;mI = 0〉 to |ms = −1;mI = 0〉.
We fixed the frequency gap between the CW probe and the modulated pump to be ∆f and made a
scan around the transition to the ms = +1 level with the pump (while the probe follows). We used
the fast setup (36.6 kHz lock-in modulation) and all the experimental parameters are the same as
in the ODMR and hole experiments, except that a lower step size was chosen. The experimental
results (Fig. 5.1b) show two positive Lorentzians at the location of the transition frequencies to
mI = ±1 and at the transition to mI = 0 we observed a positive Lorentzian with a Lorentzian-hole
at its center. The results are in good agreement with the phenomenological simulation (Fig. 5.1a).
The measured Doppler-hole at the center of the mI = 0 transition has a width 0.397± 0.067 times
lower than the width of the saturation spectroscopy hole, as measured in Fig. 4.1 (theoretically, as
noted above, we would expected the factor to be 0.5). The location of the hole, as extracted from
the fit is 0.019 ± 0.005 MHz away from the location of the mI = 0 transition as measured in an
ODMR experiment, while the location of the mI = 0 transition is 0.013 ± 0.003 MHz away from
the location of the mI = 0 transition as measured in an ODMR experiment. The centers of the
two Lorentzians are therefore shifted one from the other by only 6± 8 kHz, in good agreement with
the theoretical model. The goodness of the fit to our model of four Lorentzians, represented by the
R-square value, is 0.999.

Combined with the results obtained using narrow saturation spectroscopy, the “Doppler-free”
spectroscopy clearly shows that the local magnetic fields are the main cause of the inhomogeneous
broadening. Furthermore, we have shown that our new spectroscopic method can reduce the hole
width compared to saturation spectroscopy by half and may thus provide increased sensitivity in
magnetic sensing.
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Chapter 6

Summary and Conclusion

In Ch. 3 we described the importance of the linewidth and that a deeper understanding of the origins
of the inhomogeneous broadening in an ensemble could prove useful in a variety of fundamental
studies and applications.

A simple derivation of the Hamiltonian showed that hole burning saturation spectroscopy can
shed more light on the origins of the inhomogeneous broadening, by monitoring the response of
the spectroscopic hole to a change in the pump frequency. To this end, we used a pump MW
field to excite NVs into the ms = +1 state thus burning a spectroscopic hole in the ground state
in the process. A second CW MW field enabled us to probe that hole by scanning around the
ms = −1 transition frequency. Once both fields address the same population (same nuclear spin
projection and same local magnetic environment) in the ground state, a reduced-width spectroscopic
hole (compared to an ODMR scan) should appear. Using our experimental setup we were able to
observe a reduced-width hole with similar results to those obtained in [30].

Under the assumption that the origins of the inhomogeneous broadening are local magnetic fields,
we can shift the pump frequency in the hole burning spectroscopy and expect a corresponding shift
in the hole location with a negative sign. When we tried to validate this hypothesis, i.e. observe a
corresponding change in the hole location due to a change in the pump location, we had an error
as large as 40% compared to theory. This led us to come up with a new method that could show
that the hole moves with the pump in a pump-hole ratio of −1. To this end, we introduced a novel
spectroscopy that combines elements from the Doppler-free spectroscopy done in vapor.

In the “Doppler-free” type spectroscopy we fixed the frequency gap between the pump and
probe to be ∆f = fms=+1;mI=0 − fms=−1;mI=0 where f is the resonance transition. We then
scanned around the mI = 0 transition frequency (and ms = −1 for probe and ms = +1 for pump).
We observed a Doppler hole inside the transition line shape with half the width of the hole in the
saturation spectroscopy, that coincided with the ODMR line shape of the mI = 0 transition, in
good agreement to theory. Thus, we confirmed with high likelihood that the main contribution to
the inhomogeneous broadening comes from local magnetic fields.
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Appendix A

Optical switch

Acousto-optics modulators(AOMs) are devices used in many optical systems to control laser in-
tensity, frequency and direction of propagation. An RF driver (80 MHz for our AOM) generates
vibrations using a piezoelectric transducer that generates moving acoustic waves in a crystal to
which it is attached. Once the laser hits the crystal, it sees repetitive moving wave fronts (although
some AOMs work with standing waves), or in other words, a grid. The acoustic waves changes the
local pressure inside the crystal and as a consequence change the refractive index. Using subscripts i
and d to denote the initial and deflected light waves respectively, and the subscript s to denote the
sound wave, vector analysis (i.e., conservation of momentum) of the wavenumbers ki = ks + kd
yields

2λs sin(θ) =
λi
n
, (A.1)

where θ is the deflection angle, n is an integer diffraction order, and λ = ~k. Here we have assumed
that ks � ki, so ki ' kd. This condition is identical to the first Bragg condition employed in X-ray
crystallography, where the periodic wavefronts are analogous to the atomic planes separated by a
constant gap in Bragg diffraction. Here however [34], the wavefronts are moving, causing shifts of
ωs in the light frequency, which can be interpreted as a Doppler effect in the Bragg scenario. In
addition, this derivation does not include high orders of diffraction unlike the Bragg diffraction,
although in reality we do get higher orders in an AOM, due to the sinusoidal modulation and finite
thickness if the acoustic waves [34].

If we position an iris in the path of the 1st-order order diffraction pattern, the light can pass
through only if the AOM is turned on, but when the AOM is off, the laser will be blocked by the iris
and will not continue to the optical setup. using such an iris and modulating of the AOM (on-off),
we can effectively modulate the laser on-off at a nano-second rate. This experimental ability is
necessary in many experiments, such as: measuring Rabi oscillations, Ramsey fringes, etc.

Let us assume that we polarize the laser parallel to the optical table before it enters the AOM,
and add a quarter-wave plate (QWP) between the AOM and the mirror. In such a setup the laser
beam will go through the QWP twice, which effectively serves now as a half-wave plate, so that
the laser will emerge from the double pass AOM with its polarization perpendicular to the table.
inserting a polarizing bean splitter (PBS) before of the AOM enables us to separate the incident
and reflected laser beams (which overlap spatially) and we can continue to build our optical setup
in the path of the outgoing beam.
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Appendix B

Side Dips

In Fig 4.1 we saw that along with the main hole in the saturation spectroscopy, there are additional
two side dips that are associated with the other two nuclear resonances. Since the theory did not
anticipate this result, and it was hardly noticeable in the results of [30], we started to search for a
technical explanation, under the assumption that this is an experimental artifact.

When the probe frequency is on resonance with a nuclear spin transition that has a different mI

number than the one the pump is addressing, it excites the population to ms = −1 which causes
a reduction in the total amount of fluorescence although the amount of population that the pump
is modulating is left unaffected. Therefore, the total result is a DC shift in the fluorescence. Since
the fast lock-in has a 20 kHz high pass filter a DC change should not affect the lock-in signal. We
can look more deeply into this process and realize that the probe is not just simply moving the
population into the excited state, but actually causes Rabi oscillations. We estimate the oscillations
(upon previous tests that are not presented in this thesis) to have a time period of no more than
a few micro-seconds, which could be potentially very close to the 36.6 kHz frequency that we are
using. But if indeed this is the case, then the total signal should increase when the probe hits
resonance, whereas we are getting a reduction in contrast. Furthermore, the side dips phenomenon
was observed also in the slow lock-in as can be seen in Fig. B.1, where frequencies of dozens of kHz
such as Rabi cycles are filtered. To conclude, it is not an artifact related to the lock-in amplifier.

Figure B.1: Saturation spectroscopy in the slow setup. The color code is the same as in Fig. 4.1.
There are clear side dips for each mI population which were also seen in the fast setup. Thus, the
side dips are not related to a DC shift that the probe could have made (as a DC signal is filtered by
the fast lock-on) nor it is related to possible oscillations of the fluorescence due to Rabi oscillations
(as fast signals are filtered by the slow lock-in).

Another possible solution that we thought could explain the side dips is the fact that both pump
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and probe are combined using a beam combiner, and the total signal is then connected to a 16 W
amplifier. It could be that when both MWs are on, each frequency is amplified by 8 W and when the
pump is off the probe is getting all the 16W and the probe is also being modulated de facto at the
reference frequency. This can also explain the fact that we see the dips in the slow setup as well. In
order to confirm this hypothesis, we used two separate MW amplifiers and antennas, and connected
the pump and probe to each one. We calibrated the post-amplifier pump and probe signals to have
roughly the same amplitudes and again made saturation spectroscopy where a modulated pump
at 36.6 kHz was set at a fixed frequency and scanned with a CW probe. The results, presented
in Fig. B.2 still show side dips and eliminate the possible new explanation of side dips due to a
combined electronic circuit.

Figure B.2: Saturation spectroscopy using 2 electronic circuits and fast lock-in amplifier. Even
though we use two separate amplifiers and two separate antennas, we still observe side dips, which
implies that the cause for this effect cannot be attributed to the use of a single antenna and a single
amplifier for both MW fields.

A third possible artifact that we checked was the existence of side bands on the frequency of
the pump field. Since we multiply the pump MW signal (a sine wave) with a square wave (the
modulation), then according to Fourier theory we should get more frequencies in addition to the
carrier (the pump). In order to verify this possibility, we positioned a loop antenna next to the MW
antenna, and connected the loop antenna to a spectrum analyzer (Rohde Schwarz FSP13) in order
to detect the EM waves that the MW antenna sends. In addition we also connected the spectrum
analyzer to the MW generator clock. When we turned the modulation off, we observed a very
sharp, single MW frequency as can be seen in Fig. B.3. But when we turned the modulation on at
36.6 kHz the spectrum analyzer showed many side bands (Fig. B.4). Each side band has the same
AM modulation as the carrier (Fig. B.5). Therefore, a side band that is at ∼ 2.16 MHz away from
the carrier (2.16 MHz is the frequency separation between two nuclear energy levels) could cause a
modulated fluorescence that will be detected by the lock-in amplifier. Therefore, when we set the
carrier to be at the transition frequency of, say, mI = +1 and multiply it with a square wave, then
also the mI = 0 population will feel a modulated MW field at resonance, thus increasing the lock-in
signal, and once the probe CW MW will be on resonance with mI = 0 then it will reduce the amount
of modulated fluorescence and consequently the lock-in signal even though the probe is not at the
same mI population transition frequency as the pump. To fully confirm this, we shifted the carrier
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Figure B.3: MW signal without modulation. We set the pump frequency to be 2831.3 MHz at CW
operation mode and turn the MW switch off (modulation off). The spectrum analyzer shows that
the MW signal has a very sharp width (only a few Hz width).

frequency by 2.16 MHz from 2831.3 MHz which is the resonance of mI = +1 to 2829.14 MHz which
is off resonance (i.e., we did not shift it towards mI = 0). So if we are completely off resonance and
still observe spectroscopic dips, we could assign it to the side bands. The results, as depicted in
Fig. B.6 clearly support the explanation that the side bands are responsible for the side dips effect.

However, more work needs to be done to fully close this issue. For example, as can be seen
in Fig. B.4, the side bands 2.16 MHz away from the carrier are some 30 − 40 dB weaker than the
carrier. The question then arises as to why the side dips in Figs. B.1 and B.2 are as strong as
they are, up to a factor of 1/5 of the main lock-in dip. Furthermore, As can again be estimated
from Fig. B.4, the difference in power of the side band 2.16 MHz away from the carrier and the one
4.32 MHz away, is also considerable, while in Figs. B.1 and B.2 they are quite similar in amplitude.
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Figure B.4: MW signal with 36.6 kHz modulation. We set the pump frequency to be 2831.3 MHz
at CW operation mode and turned the MW switch on-off at 36.6 kHz.

Figure B.5: Side band amplitude modulation. We set the pump frequency to be 2831.3 MHz at CW
operation mode and turned the MW switch on-off at 36.6 kHz. We used the spectrum analyzer as
a scope (“zero span”) and observed the amplitude of 2829.14 MHz. This is about 2.16 MHz away
from the pump frequency and corresponds to the frequency hyperfine splitting between the different
resonances.
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Figure B.6: Spectroscopic holes with pump off resonance. We shifted the pump frequency by
2.16 MHz away from the transition frequency of mI = +1 so we are completely off resonance (i.e.,
it was not shifted towards mI = 0, but rather in the opposite direction). Despite that the pump
was off resonance there are still very noticeable side dips. This clearly confirms our suspicion that
the side bands that are few MHz away from the carrier still have enough amplitude to generate
oscillations that can be detected by the lock-in.
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Appendix C

Outlook

In addition to the “Doppler-free” type spectroscopy experiment, we worked in parallel on another
experiment which we call “the adiabaticity experiment”. Here we apply a Bz magnetic field and
prepare our system using green light and a MW π pulse for some Zeeman state, say ms = +1. Once
the system is prepared in state ms = +1, we examine at the following question: what will happen
to the eigenstate population if we generate a rotation of π radians of the magnetic field along the
z axis from +Bz to −Bz. If the process is adiabatic, we will move from ms = +1 to ms = −1 in
the lab frame; in the frame of the magnetic field the system will remain at ms = +1. We would
stay in our eigenstate only if our rotation is slow and the amplitude is weak enough (we could also
consider a rotation in the y − z plane, but this case is more complicated and will not be discussed
here). In order to know what exactly is “slow” and “weak”, and to know the validity range of
our adiabaticity, we solved the Schrödinger equation for different frequencies and amplitudes of the
rotating magnetic field, and made a 3D plot (Fig. C.1) of the adiabaticity as a function of these two
parameters.

In order to generate and control the magnetic fields we fabricated a chip with two crossing wires
in the same plane (Figs. C.2 and C.3). By placing a [1 1 0] diamond above crossed-wire junction,
the y − z plane of two NV orientations will be parallel to the plane of the wires and therefore to
the plane that the magnetic fields span (above the crossing junction). This enable us to rotate the
effective field along the plane of the diamond by simply changing the current.

We define adiabaticity as the probability of remaining in the initial eigenstate after a π rotation,
and we ignore the dynamics of the process (although our simulation shows, not presented here,
very interesting dynamic during the process that we can investigate using our setup in order to
shed light on the fundamental physics of two levels inter-system crossing). In addition to the
fundamental physics aspect of these adiabaticity studies, this setup could also have very useful
applications: for each rotation there could be a small probability for inter-system crossing (ISC)
to the other eigenstate. If we repeat the rotations many times, the ISC phase can accumulate due
to the Landau-Zener-Stückelberg (LZS) process and resolved as Rabi oscillations that have much
longer coherence time [35] but instead of generating LZS using changing MW fields as in [35], we use
oscillating magnetic fields and the Rabi oscillations are between the ms = ±1 levels, not between
ms = 0 and one of the ms = ±1 levels. An increase in the coherence time can improve the magnetic
sensitivity as was shown in Ch. 3. In addition, the amplitude if the Rabi oscillations in this process
is highly sensitive to the parameters of LZS tunneling (e.g., the frequency of the oscillating magnetic
field) and might also prove useful in precision measurements.

Another potentially interesting experiment is to utilize the adiabaticity process to generate a
superposition of the ms = ±1 Zeeman states without the need for a MW two-photon process. We
can do so by preparing the system in a Zeeman state, say, ms = +1, and reducing the amplitude
of the magnetic field to zero. When we do so, the system will stay in its eigenstate, but at zero
magnetic field the eigenstates are not the Zeeman states but, using |S,ms〉 notation, the eigenstates
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Figure C.1: Simulation of probability to stay in the initial eigenstate (ms = +1) under a time
dependent magnetic field of the form: Bz(A, f) = A cos(2πft)ẑ at t = 1

2f as a function of the
magnetic field amplitude (A) and frequency (f). Red is probability to stay in the initial eigenstate.
It is clear that low amplitude and low frequency generate an adiabatic process. Our nano-fabricated
chip can generate magnetic fields of a couple hundred Gauss and the current source can go as high
as a couple of hundred kHz frequency, which enables us to see how the adiabaticity breaks. Notice
that when we say “adiabaticity” we refer only to the state of the system at t = 1

2f compared to the
initial state, and discard the dynamics of the process.

are: |0〉 = |1, 0〉, |+〉 = ei
φε
2 |1, 1〉+ e−i

φε
2 |1,−1〉 and |−〉 = ei

φε
2 |1, 1〉 − e−i

φε
2 |1,−1〉 where φε comes

from the strain field [20]. We can utilize this fact to gain a deeper understanding of the strain field
(using an ensemble) or even the local strain field (using a single NV setup).

To conclude, this new setup will enable us to explore fundamentals physics, increase coherence
time, extend current knowledge regarding strain fields in the diamond lattice, measure external
fields with high sensitivity, and generally make very exciting physics.
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Figure C.2: Adiabaticity chip. The gold pads are connected to a current supply. The gold crossing
wires that connect the pads are just 10µm wide and therefore hardly noticeable in this figure. The
transparent material above the pads is not the diamond but rather a simple cover glass to protect
the thin gold wires. A [110] surface diamond would be placed above the wires for these anticipated
experiments. By controlling the currents in the wires we can manipulate the effective magnetic field
in the plane above the wires to generate rotation along the z axis or the x − y plane with respect
to a specific NV orientation. Image taken by the Ph.D student Yechezkel Schlussel.

Figure C.3: The adiabaticity chip with a laser illuminating the wires junction. The sharp corners
that can be seen just below the laser are SU-8 surfaces roughly 5µm above the surface to support
the diamond so that it will not scratch the thin gold wires. We chose a gap of 5µm, where the
magnetic field reaches its maximum amplitude. Since the laser beam is larger than the junction
area we will install either a single-mode fiber before the objective for better focusing, or we will use
a pinhole in order to collect red fluorescence from just the center of the junction. Image taken by
the Ph.D student Yechezkel Schlussel.
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