3-5
 The Polygon Angle-Sum Theorems

What You'll Learn

- To classify polygons
- To find the sums of the measures of the interior and exterior angles of polygons

... And Why

To find the measure of an angle of a triangle used in packaging, as in Example 5

Check Skills You'll Need

Find the measure of each angle of quadrilateral $A B C D$.

$m \angle D A B=m \angle D C B=120$
New Vocabulary • polygon • convex polygon • concave polygon - equilateral polygon - equiangular polygon

- regular polygon

3. $m \angle A=70 ; m \angle A B C=85$; $m \angle C=125 ; m \angle A D C=80$

$$
\text { 1. } m \angle D A B=77 ; m \angle B=65 \text {; }
$$

for Help Lessons 1-6 and 3-4
3. See below.

n

\qquad

$$
m \angle C=125 ; m \angle A D C=80
$$

$$
m \angle B C D=131 ; m \angle D=87
$$ n

Classifying Polygons

Real-World Connection

Polygons create striking designs on a soccer ball.

A polygon is a closed plane figure with at least three sides that are segments. The sides intersect only at their endpoints, and no adjacent sides are collinear.

Not a polygon; not a closed figure

Not a polygon; two sides intersect between endpoints.

To name a polygon, start at any vertex and list the vertices consecutively in a clockwise or counterclockwise direction.

(1) EXADPLE Naming Polygons

Name the polygon. Then identify its vertices, sides, and angles.
Two names for this polygon are $D H K M G B$ and $M K H D B G$. vertices: D, H, K, M, G, B
sides: $\overline{D H}, \overline{H K}, \overline{K M}, \overline{M G}, \overline{G B}, \overline{B D}$
angles: $\angle D, \angle H, \angle K, \angle M, \angle G, \angle B$

(1) Three polygons are pictured at the right. Name each polygon, its sides, and its angles. See margin, p.159.

Lesson 3-5 The Polygon Angle-Sum Theorems

Differentiated Instruction solutions for All Learners

Special Needs L1

Have students draw a polygon with an exterior angle at each vertex. Students cut out their exterior angles and tape the vertices together. Students should recognize the sum of the exterior angles is 360°.

Below Level L2

Have students draw a polygon on paper and cut out the exterior angles. By placing the angles so that they are adjacent, students can verify Theorem 3-15.

3-5

1. Plan

Objectives

1 To classify polygons
2 To find the sums of the measures of the interior and exterior angles of polygons

Examples

1 Naming Polygons
2 Real-World Connection
3 Finding a Polygon Angle Sum
4 Using the Polygon Angle-Sum Theorem
5 Real-World Connection

Math Background

Because each interior angle of a regular n-gon measures $\frac{180(n-2)}{n}$, one can readily find the set of all regular n-gons that tesselate a plane. Combinations of regular polygons that tesselate a plane can likewise be found with a bit more work and application of some straightforward number theory.

More Math Background: p. 124D

Lesson Planning and Resources

See p. 124E for a list of the resources that support this lesson.

Check Skills You'll Need
For intervention, direct students to:

Using the Angle Addition
 Postulate
 Lesson 1-6: Example 3

Extra Skills, Word Problems, Proof Practice, Ch. 1

Finding Angle Measures in Triangles

Lesson 3-4: Example 1
Extra Skills, Word Problems, Proof Practice, Ch. 3

2. Teach

Guided Instruction

EXAMPLE
 Math Tip

Remind students that there are also different ways to name sides and angles in this example. Ask: What is another name for $\overline{H K}$?

$\overline{K H}$ What is another name for

 $\angle \mathrm{M}$? $\angle K M G$ or $\angle G M K$
Connection to Science

The study of optics teaches that a convex lens causes rays of light to come together and that a concave lens causes rays of light to spread apart. Convex lenses are used in microscopes and telescopes. Eyeglasses may be either convex or concave.

Teaching Tip

Students may want to know that a seven-sided polygon is called a heptagon.

Visual Learners

To help students learn the names of polygons, have small groups make charts to be displayed in the classroom with the name of each polygon, its number of sides, and an appropriate figure.

Additional Examples

Name the polygon. Then identify its vertices, sides, and angles.

$A B C D E ;$ vertices: $A, B, C, D, E ;$ sides: $\overline{A B}, \overline{B C}, \overline{C D}, \overline{D E}, \overline{E A}$; angles: $\angle A, \angle B, \angle C, \angle D, \angle E$

。Classify the polygon below by its sides. Identify it as convex or concave. dodecagon; concave

You can classify a polygon by the number of sides it has. The table at the right shows the names of some common polygons.
Polygons are classified as convex or concave.

Sides	Name
3	triangle
4	quadrilateral
5	pentagon
6	hexagon
8	octagon
9	nonagon
10	decagon
12	dodecagon
n	n-gon

In this textbook, a polygon is convex unless stated otherwise.

(2) ExADPLE Real-World Connection

Tilework The tilework in the photo is a combination of different polygons that form a pleasing pattern. Classify the polygon outlined in red by using the table above. Then classify the polygon as convex or concave.

The polygon outlined in red has 6 sides. Therefore, it is a hexagon.
No diagonal of the hexagon contains points outside the hexagon. The hexagon is convex.
Quick Check

c. the 12 -pointed star at the center of the tilework pictured above 24-gon; concave

Chapter 3 Parallel and Perpendicular Lines

Dififerentiated Instruction solutions for All Learners

Advanced Learners
 L4

Have students do the Activity, discuss whether Theorem 3-14 applies to concave n-gons, and justify their reasoning.

English Language Learners ELL

Some students may not know the meaning of adjacent sides in the definition of a polygon. Show how adjacent sides share a vertex just as adjacent angles share a side

Vocabulary Tip

An n-gon is a polygon with n sides, where n can be $3,4,5,6, \ldots$

Activity: The Sum of Polygon Angle Measures

You can use triangles and the Triangle Angle-Sum Theorem to find the sum of the measures of the angles of a polygon. Record your data in a table like the one begun below.

Polygon	Number of Sides	Number of Triangles Formed	Sum of the Interior Angle Measures
--	4		$\bullet 180=\square$

- Sketch polygons with 4, 5, 6, 7, and 8 sides.
- Divide each polygon into triangles by drawing all diagonals that are possible from one vertex.
- Multiply the number of triangles by 180 to find the sum of the measures of the angles of each polygon.

See back of book.

1. Look for patterns in the table. Describe any that you find.
2. Inductive Reasoning Write a rule for the sum of the measures of the angles of an n-gon. The sum of the measures of the angles of an n-gon is $(n-2) \cdot 180$.

By dividing a polygon with n sides into $n-2$ triangles, you can show that the sum of the measures of the angles of any polygon is a multiple of 180 .

Theorem 3-14 Polygon Angle-Sum Theorem

The sum of the measures of the angles of an n-gon is $(n-2) 180$.

Video Tutor Help Visit: PHSchool.com Web Code: aue-0775

3 ExanPLE

Finding a Polygon Angle Sum
Find the sum of the measures of the angles of a 15 -gon.
For a 15 -gon, $n=15$.
$\begin{aligned} \text { Sum } & =(n-2) 180 & & \text { Polygon Angle-Sum Theorem } \\ & =(15-2) 180 & & \text { Substitute. } \\ & =13 \cdot 180 & & \text { Simplify. } \\ & =2340 & & \end{aligned}$
The sum of the measures of the angles of a 15 -gon is 2340 .
a. Find the sum of the measures of the angles of a 13-gon. 1980
b. Critical Thinking The sum of the measures of the angles of a given polygon is 720 . How can you use Sum $=(n-2) 180$ to find the number of sides in the polygon? You can solve the equation $(n-2) 180=720$.
You will sometimes use algebra with the Polygon Angle-Sum Theorem to find measures of polygon angles.

Quick Check

1. $A B E$; sides: $\overline{A B}, \overline{B E}, \overline{E A}$; angles: $\angle A, \angle A B E$, $\angle B E A$
$B C D E ;$ sides: $\overline{B C}, \overline{C D}$,
$\overline{D E}, \overline{E B} ; \angle: \angle E B C, \angle C$,
$\angle D, \angle D E B$
$A B C D E ;$ sides: $\overline{A B}, \overline{B C}$, $\overline{C D}, \overline{D E}, \overline{E A} ;$ $\stackrel{L}{ }: \angle A, \angle A B C, \angle C, \angle D$, $\angle A E D$

Guided Instruction

Activity

Have students work in pairs to draw polygons and display the sum of their angles using geometry software. Have students manipulate the polygons to see that the sum remains constant.

Alternative Method

Students can use inductive reasoning to write the sum of the measures of the angles of an n-gon as $180 n-360$. Have them draw a hexagon and segments from an interior point to each vertex. Ask: How many triangles are there? 6 What is the sum of the angle measures of all the triangles? $180 \cdot 6$, or 1080 What is the sum of the angle measures of the triangles drawn from an interior point to the vertices of a polygon with n sides? 180n Point out that the sum of the angle measures around the interior point is 360 . Discuss why 360 must then be subtracted from $180 n$.

3) ЕхАМРРЕ Error Prevention

Some students may think the answer should be 15 - 180 . Review the activity to correct them.
(3) Find the sum of the measures of the angles of a decagon. 1440

Point out that the angles of a polygon can be called interior angles. Also point out that the exterior angles of a regular polygon are congruent.

(4) Find $m \angle X$ in quadrilateral

 $X Y Z W$.

85

-

Explain how you know that all the angles labeled $\angle 1$ in Example 5 have equal measures. Sample: Because the hexagon is regular all its angles are congruent. An exterior angle is the supplement of a polygon's angles, and supplements of congruent angles all have the same measure.

Resources

- Daily Notetaking Guide 3-5 L3
- Daily Notetaking Guide 3-5Adapted Instruction L1

Closure

If the sum of the interior angles of a polygon equals the sum of the exterior angles, what is the name of the polygon? quadrilateral If each exterior angle of a regular polygon measures 30, how many sides does the polygon have? 12

Exabdple Using the Polygon Angle-Sum Theorem

Algebra Find $m \angle Y$ in pentagon $T V Y M R$ at the right. Use the Polygon Angle-Sum Theorem for $n=5$.
$m \angle T+m \angle V+m \angle Y+m \angle M+m \angle R=(5-2) 180$

$$
\begin{array}{rlrl}
90+90+m \angle Y+90+135 & =540 & & \text { Substitute. } \\
m \angle Y+405 & =540 & \text { Simplify. } \\
m \angle Y & =135 & & \text { Subtract } 405 \text { from each side. }
\end{array}
$$

Pentagon $A B C D E$ has 5 congruent angles. Find the measure of each angle. 108

You can draw exterior angles at any vertex of a polygon. The figures below show that the sum of the measures of the exterior angles, one at each vertex, is 360 . This can be proved as a theorem in a way suggested in Exercise 46.

$80+150+130=360$

$115+75+99+71=360$

$86+59+98+41+76=360$

Key Concepts

For: Regular Polygon Activity Use: Interactive Textbook, 3-5

Theorem 3-15 Polygon Exterior Angle-Sum Theorem
The sum of the measures of the exterior angles of a polygon, one at each vertex, is 360 .

> For the pentagon,
> $m \angle 1+m \angle 2+m \angle 3+m \angle 4+m \angle 5=360$.

An equilateral polygon has all sides congruent. An equiangular polygon has all angles congruent. A regular polygon is both equilateral and equiangular.

5 EXADUPLE Real-World (3, Connection

Packaging The game board at the right has the shape of a regular hexagon. It is packaged in a rectangular box outlined beneath it. The box uses four right triangles made of foam in its four corners. Find $m \angle 1$ in each foam triangle.

Find the measure of an angle of the hexagon first.

- A regular hexagon has 6 sides and 6 congruent angles. The sum of the measures of the interior angles $=(6-2) 180$, or 720 .
- The measure of one interior angle is $\frac{720}{6}$, or 120 .
- The measure of its adjacent exterior angle, $\angle 1$, is $180-120$, or 60

Quick Check
a. Find $m \angle 1$ by using the Polygon Exterior Angle-Sum Theorem. 60
b. Find $m \angle 2$. Is $\angle 2$ an exterior angle? Explain. 30; no, it is not formed by extending one side of the polygon.

(A)
Practice by Example
Example 1
(page 157)

for Help
5. MWBFX; sides: $\overline{M W}$, $\overline{W B}, \overline{B F}, \overline{F X}, \overline{X M} ; \angle s: \angle M$,
$\angle W, \angle B, \angle F, \angle X$
7. HEPTAGN; sides: $\overline{H E}$, $\overline{E P}, \overline{P T}, \overline{T A}, \overline{A G}, \overline{G N}, \overline{N H} ;$ $\angle \mathrm{s}: \angle H, \angle E, \angle P, \angle T, \angle A$, $\angle G, \angle N$

Is the figure a polygon? If not, tell why.

2.

No; it has no sides.
No; it is not a plane figure.
Name each polygon by its vertices. Then identify its sides and angles.
5.

6.

KCLP; sides: $\overline{K C}, \overline{C L}, \overline{L P}, \overline{P K}$;
$\angle \mathrm{s}: \angle K, \angle C, \angle L, \angle P$
7.

Find a polygon in each photograph. Classify the polygon by its number of sides. Tell whether the polygon is convex or concave.

Example 3 (page 159)
(page 160)

Example 5
(page 160)
4. No; two sides intersect between endpoints.

Example 2
(page 158)
8.

11.

9.

9
10.

pentagon; concave
Find the sum of the measures of the angles of each polygon.
12. dodecagon 1800
13. decagon 1440
14. 20-gon 3240
15. 1002-gon 180,000

Example 4 政 Algebra Find the missing angle measures.
16.

17.

19. $\frac{37}{a^{\circ}}$
20.

60, 60, 120, 120

Find the measures of an interior angle and an exterior angle of each regular polygon.
22. pentagon
23. dodecagon 150; 30
24. 18-gon
25. 100-gon 108; 72

3. Practice

Assignment Guide

1 A B	$1-10,50-53$
2 A B	
11-49, 54-56	
C Challenge	$57-63$
Test Prep	
Mixed Review	$71-86$

Homework Quick Check

To check students' understanding of key skills and concepts, go over
Exercises 8, 22, 32, 37, 55.
Exercises 8-10 Point out that it is usually easier to count vertices than sides of a polygon. Because the number of vertices and sides are equal, either method is acceptable.

Connection to Language Arts
Exercises 12, 13 Point out that the two polygons differ only in the prefix do-, which means "two." By adding it and the prefix deca-, which means "ten," you get $2+10=12$.

Error Prevention!

Exercise 36 Ask: How many sides does this polygon have? 5 What is the sum of the interior angles for this figure? 540°

Exercise 37 Have students investigate the shapes of sports stadiums and report how polygons are used in designing them.

Exercise 38 If necessary, review how to solve equations with a variable in the denominator. Remind students that this is a regular polygon.

Technology Tip

Exercise 57 This would be a nice classroom exercise using the table feature of a graphing calculator with overhead display.

Connection to Algebra

Exercise 58 Part b introduces the idea of the asymptote of a function, which students will encounter in their next algebra course.

28.

29.

nline Homework Help
Visit: PHSchool.com Web Code: aue-0305
B Apply Your Skills

Real-World Connection
At a theater-in-the-round, seats are arranged so the audience surrounds the stage.

90

Packaging The nut container at the right has the shape of a regular octagon. It fits in a square box. A cheese wedge fills each corner of the box.
26. Find the measure of each angle of a cheese wedge. 45, 45, 90

31.

27. Critical Thinking Show how to rearrange the four pieces of cheese to make a regular polygon. What is the measure of each angle of the polygon? See left.

Use a protractor. Sketch each type of regular polygon.

Sample: dodecagon

Use the protractor to equally space 12 points around a circle. $\left(360^{\circ} \div 12=30^{\circ}\right.$, so mark a point every 30°.) Connect these points to form a regular dodecagon. 28-31. See margin.
28. triangle
29. quadrilateral
30. hexagon
31. octagon

The sum of the measures of the angles of a polygon with \boldsymbol{n} sides is given. Find \boldsymbol{n}.
32. 1803
33. 10808
34. 198013
35. 288018
36. Multiple Choice In the figure at right, $\angle B \cong \angle D$ and
$m \angle C=$
(A) 25
(C) 115
(B) 50
(D) 160

37. Stage Design The diagram at the right shows platforms constructed for a theater-in-the-round stage. Describe the largest platform by the type of regular polygon it suggests. Find the measure of each numbered angle. octagon; $m \angle 1=135 ; m \angle 2=45$
38. Error Analysis Miles said that he measured an angle of a regular polygon to be 130°. Explain why this result is impossible. If you solve $\frac{(n-2) 180}{n}=130$, you get $n=7.2$.

This number is not an integer.
39. Critical Thinking A triangle has two congruent angles and an exterior angle with measure 100. Find two possible sets of measures for the angles of the triangle. 20-80-80; 50-50-80
The measure of an exterior angle of a regular polygon is given. Find the measure of an interior angle, and find the number of sides.
 40. 72 108; 5
41. 36 144; 10
42. 18 162; 20
43. 30 150; 12
$180-x ; \frac{360}{x}$
45. Probability Find the probability that the measure of an angle of a regular n-gon is a positive integer if n is an integer and $3 \leq n \leq 12 . \frac{4}{5}$
46. Algebra A polygon has n sides. An interior angle of the polygon and an adjacent exterior angle form a straight angle.
a. What is the sum of the measures of the n straight angles? $n \cdot 180$
b. What is the sum of the measures of the n interior angles? $(n-2) 180$
c. Using your answers above, what is the sum of the measures of the n exterior angles? $180 n-180(n-2)=360$
d. What theorem do the steps above lead to? Polygon Ext. \angle-Sum Thm.
57. a. $(20,162),(40,171)$,
(60, 174), (80, 175.5),
$(100,176.4),(120,177)$,
(140, 177.4),
(160, 177.8),
$(180,178),(200,178.2)$
c. It is very close to 180.
d. No, two sides cannot be collinear.
58. b. As \boldsymbol{n} gets larger, the size of the angles get closer to 180. The more sides it has, the closer the polygon is to a circle.
48. $w=72, x=59$, $y=49, z=121 ; \Delta$

Problem Solving Hint

In Exercises 51-53, sketch a figure to meet the first condition. Then adjust it to meet the second condition.
54. Yes; the sum of the measures of $\angle s$ at the int. point is 360 . The sum of the measures of all the \triangleq is $180 n$. $180 n-360=(n-2) 180$

Challenge

To graph the ordered pairs,
use STAT and STAT PLOT on your graphing calculator.

Go nline

For: Graphing calculator procedures
Web Code: aue-2120
47.

$y=103 ; z=70 ;$ quad
48.

$x=36,2 x=72,3 x=108$, $4 x=144 ;$ quad.

Open-Ended Sketch each figure described in Exercises 50-53

50. a quadrilateral that is not equiangular 50-53. See back of book.
51. an equiangular quadrilateral that is not regular
52. an equilateral polygon that is not equiangular
53. an equiangular polygon that is not equilateral
54. Critical Thinking Ellen says she has another way to find the sum of the measures of the angles of a polygon. She picks a point inside the polygon, draws a segment to each vertex, counts the number of triangles, multiplies by 180 , and then subtracts 360 . Does her method work? Explain. See left.
55. Writing Tell what you know about the figure at the right. See above right.
56. Answers may vary.

Sample: The figure is a convex equilateral quadrilateral. The sum of its angles is $\mathbf{2 \cdot 1 8 0}$ or 360 .

56. The measure of an interior angle of a regular polygon is three times the measure of an exterior angle of the same polygon. What is the name of the polygon?
57. a. Graphing Calculator Find the measure of an angle of a regular n-gon for $n=20,40,60,80, \ldots, 200$. Record your results to the nearest tenth as ordered pairs in the form (n, measure of each angle). See margin p. 162.
b. Plot the ordered pairs using a window like the one shown at the right. See back of
c. Data Analysis Based on the graph book. from part (b), make a statement about the measure of an angle of a regular 1000-gon. c-d. See margin p. 162.
d. Is there a regular n-gon with an angle of 180° ? Explain.
58. a. Explain why the measure of an angle of a regular n-gon is given by the formulas $\frac{180(n-2)}{n}$ and $180-\frac{360}{n} \cdot[180(n-2)] \div n=\frac{180 n-360}{n}=180-\frac{360}{n}$.
b. Use the second formula to explain what happens to the measures in the angles of regular n-gons as n becomes a large number. Explain also what happens to the polygons. See margin p. 162.
59. Two rays bisect two consecutive angles of a regular decagon and intersect in the decagon's interior. Find the measure of the acute angles formed by the intersecting rays. 36

Draw, if possible, the concave quadrilateral described. If not possible, explain.

60-63. See margin.
60. with two pairs of congruent adjacent sides
62. with three congruent sides
61. with two pairs of congruent opposite sides
63. with four congruent sides

60-63. Answers may vary. Samples are given.

60.

61. Not possible; opp. sides would overlap.

62.
63. Not possible; opp. and adj. sides would overlap.

4. Assess \& Reteach

Lesson Quiz

For Exercises 1 and 2, if the figure is a polygon, name it by its vertices and identify its sides. If the figure is not a polygon, explain why not.
1.

quadrilateral $A B C D$; $\overline{A B}, \overline{B C}, \overline{C D}, \overline{D A}$
2.

not a polygon because two sides intersect at a point other than endpoints
3. Find the sum of the measures of the angles in an octagon. 1080
4. A pentagon has two right angles, a 100° angle and a 120° angle. What is the measure of its fifth angle? 140

$A B C D E F G H I J$ is a regular decagon.

5. Find $m \angle A B C$. 144
6. $\angle X B C$ is an exterior angle at vertex B. Find $m \angle X B C$. 36

Alternative Assessment

Have students draw a polygon with 5 sides and a polygon with 8 sides. For each polygon, students should show the exterior angles and find the sum of the interior angles and the sum of the exterior angles.
Then have them write a paragraph explaining how the sums illustrate the Polygon Angle-Sum Theorem and the Exterior Angle-Sum Theorem.

A sheet of blank grids is available in the Test-Taking Strategies with Transparencies booklet. Give this sheet to students for practice with filling in the grids.

Resources

For additional practice with a variety of test item formats:

- Standardized Test Prep, p. 198
- Test-Taking Strategies, p. 188
- Test-Taking Strategies with Transparencies

Gridded Response
For Exercises 64-70, you may need the formula ($n-2$) 180 for the sum of the angle measures in a polygon with n sides.
64. What is the sum of the measures of the angles of a 25-gon? 4140
65. A company is manufacturing a gear that has the shape of a regular polygon. The measure of each angle of the gear is 162 . How many sides does the gear have? 20
66. The car at each vertex of a Ferris wheel holds a maximum of 5 people. The sum of the measures of the angles of the Ferris wheel is 7740 . What is the maximum number of people that the Ferris wheel can hold? 225
67. What is the sum of the measures of the exterior angles, one at each vertex, of an octagon? 360
68. Exactly three angles of a pentagon are congruent. The other two angles are complementary. What is the measure of one of the three congruent angles?
69. The sum of the measures of the angles of a regular polygon is 4500 . How many sides does the polygon have? 27
70. What is the measure of an exterior angle of a regular polygon with 36 sides?

Mixed Review

Lesson 3-4 x^{2} Find each missing angle measure.
for
Help

Lesson 2-4 Name the property that justifies each statement.
Subst. Prop.

Distr. Prop.
74. $4(2 a-3) \stackrel{\text { Distr. Prop. }}{=} 8 a-12$
76. $\overline{R S} \cong \overline{R S}$

Reflexive Prop. of \cong
78. If $2 r=18$, then $r=9$. Div. Prop.

Lessons 1-4, 1-6 Identify the following in the diagram.
80. a pair of opposite rays $\overrightarrow{R T}, \overrightarrow{R K}$
81. two right angles $\angle B R T, \angle B R K$
82. two segments
83. an acute angle
84. an obtuse angle $\angle T R M$
85. a straight angle $\angle T R K$
86. a midpoint R

page 165 Algebra 1 Review

10. The line is not as steep as line ℓ, but has the same tilt.
11. The line is steeper than line r, but has the same tilt.

2^{2}		
0	2	
-2		

