

THE POTENTIAL OF MINERAL VARIETIES FOR FORENSIC SOIL ANALYSIS

Andrew M. Bowen Stoney Forensic, Inc.

Lack of Trace Labs Analyzing Soil Evidence and Possible Reasons

- Soil has been used as evidence in criminal investigations for over 100 years, and yet currently only ~25% of trace labs analyze soil (Parent and Koch 2009)
- Soil is complex
 - Numerous organic components
 - Pollen, spores, micro-organisms, plant waxes, etc.
 - Numerous inorganic components
 - Many minerals, often with variable properties
 - Numerous anthropogenic components
- Lack of consensus over methods, with published methods including comparison of:
 - Color, particle size, bulk chemistry, pH, isotopes, pollen, fungal content, enzymes, mineralogy (by PLM, SEM/EDS, XRD), FTIR spectroscopy, microbial DNA profiling, organic components by GC/MS, and more
- Lack of expertise or equipment

Why We Should Try to Change This

- Soil is a potentially valuable form of trace evidence
 - Very common in the environment
 - Highly individualistic
 - Highly likely to be transferred
- There are numerous compelling case examples providing evidence of its value (Murray, 2004; McPhee, 1997)

How We Can Change This

- Develop a method of soil comparison that meets the following criteria:
 - Utilizes existing personnel and their existing skill sets with minimal additional training
 - Utilizes existing equipment readily available in most trace laboratories
 - Is efficient and effective for typical forensic soil samples
- Once soil becomes an established form of trace evidence, labs can move towards a more comprehensive method like the one advocated by Skip Palenik (2007)

Proposed Method: Mineral Varieties

- Every mineral has a potential range with respect to a number of its properties
- Groups of a mineral that are similar with respect to these properties are mineral varieties
- They have been used by sedimentary geologists as early as 1928 and are still used today (Brammal 1928)
- Geologists originally focused on properties observable by PLM (grain size, degree of rounding, mineral color, inclusions, twinning, zoning, overgrowths, streaks and fractures); now chemical analysis, isotopic analysis and CL imaging are more common (Mange, 1992; Morton, 1985; Weltje, 2004)

Source of the Idea

 "As a clue to provenance the varietal features of a species in a detrital assemblage may be of greater significance than the mere presence of that species" Figures and quote from Brammal (1928)

Mineral Varieties in Forensic Science

- Mineral varieties in a questioned soil can be characterized and compared to those present in a known soil sample
- Forensic scientists have been doing this for a long time
 - In the Margarethe Filbert case in 1908, Georg Popp described quartz grains in various soil samples as being "splintery" or "milky" (Thorwald, 1967)
- Skip Palenik has long advocated the use of mineral varieties in soil comparisons
 - "We have come to place perhaps more than ordinary importance on the concept of mineral variety when comparing samples by means of their heavy minerals" Palenik (2007)

Proposed Research

- However, this has never been done systematically (the one exception being a study by Bull and Morgan, 2006 that focused on SEM of quartz)
- Proposed research would focus on several commonly occurring minerals
- Study a large number of soils covering a variety of soil types to determine
 - Which minerals show the most potential to discriminate between different soils
 - What properties are most variable for each mineral
- Obtain insights into intra-sample and intersample variability, and the scale of this variation

Uses Existing Personnel and Existing Skills

- Uses the same principles involved in fiber analysis, performed by >90% of trace labs (Parent and Koch, 2009)
- Identify a small number of minerals by polarized light microscopy
 - Color, pleochroism
 - Relief, Becke line test
 - Birefringence
 - Extinction characteristics
 - Sign of elongation
- Further describe the minerals on the basis of properties observable by PLM

Uses Existing Equipment

 Uses polarized light microscopes, available in approximately 90% of trace evidence laboratories (Parent and Koch, 2009)

Efficient and Effective in Forensic Contexts

- Efficient separation only a single fraction of fine sand-sized minerals needed
- Efficient analysis only a few minerals would be considered
- The method should be effective for very small samples
- Mineral varietal studies are performed by geologists because they eliminate hydraulic, diagenetic and mixing problems
- For the same reason, they would potentially be robust to differential transfer and persistence, as well as contamination

Potential Mineral Candidates - Quartz

- Grain Morphology
 - Euhedral, subhedral, anhedral
 - Equant, elongated
 - Rounded, sub-rounded, angular
- Polycrystallinity
 - Single crystal
 - Polycrystalline
 - Number of crystals per grain
 - Equidimensional or different sizes
- Undulosity
- Inclusions
 - Number, type, organization (randomly oriented or aligned)
- Surface Features

Quartz Grain Morphology

Quartz Crystallinity, Undulosity

2011

Quartz Inclusions

Quartz Surface Coatings

Potential Mineral Candidates – Alkali Feldspar

- Grain Morphology
 - Euhedral, subhedral, anhedral
 - Equant, elongated
 - Rounded, sub-rounded, angular
- Twinning
 - Un-twinned, simple twins, tartan twinning
- Exsolution
 - Homogeneous, coarse exsolution lamellae, fine lamellae
- Inclusions
 - Number, type, organization (randomly oriented or aligned)
- Alterations
 - Fresh unaltered to highly altered
- Surface Features

Alkali Feldspar Grain Morphology

Alkali Feldspar Twinning and Exsolution

Alkali Feldspar Inclusions

Alkali Feldspar Alteration and Surface Coatings

Potential Mineral Candidates – Calcite

- Grain Morphology
 - Euhedral (cleavage fragments), subhedral, anhedral
 - Biogenic (tremendous variety of types)
- Twinning
 - Twinned, un-twinned
- Crystallinity
 - Single crystals, polycrystalline
- Alterations
 - Fresh unaltered to highly altered
- Inclusions
 - Number, type, organization (randomly oriented or aligned)
- Surface Coatings

Calcite Grain Morphology, Crystallinity

Biogenic Calcite, Ooids

Potential Mineral Candidates – Tourmaline

- Grain morphology
 - Euhedral, subhedral, anhedral
 - Equant, elongated
 - Rounded, sub-rounded, angular
- Pleochroic scheme
 - Variable colors and intensities
- Inclusions
 - Number, type, organization (randomly oriented or aligned)
- Surface coatings, alterations

Tourmaline Grain Morphology

Interpretation Caveats

- Varieties for different minerals not necessarily independent
 - Volcanic quartz commonly has certain properties, as does volcanic feldspar
- Different varieties of the same mineral can generally be considered independent
- Ratios of mineral varieties for same mineral, or minerals with similar density and shape can likely be considered independent as well
 - Note: Bull and Morgan (2006) cautioned that comparing ratios of mineral varieties requires certain assumptions that may not always be valid
- These last two points should be confirmed by research

Conclusions

- A new method for forensic soil comparison based on mineral varietal types is proposed here
- Research is needed to determine proof of concept
- If it works, it has some attractive features: It could use existing personnel, skills and equipment, and could be robust to many of the problems faced in forensic soil analysis
 - Small sample size, differential transfer and persistence, contamination

References

- Parent, S. and Koch, S. Results from the Assessment of Trace Evidence Questionnaire. Presented at the 2009 Trace Evidence Symposium, Clearwater, FL, August 2-7, 2009.
- Murray, R.C. Evidence from the Earth. Mountain Press: Missoula, Montana, 2004.
- McPhee, J. The Gravel Page, in Irons in the Fire. Farrar, Straus and Giroux: New York, 1997.
- Palenik, S. In Heavy Minerals in Use; Mange, M.A.; Wright, D.T., Eds.; Developments in Sedimentology, Vol. 58; Elsevier: New York, 2007; pp 937-961.
- Bull, P.A. and Morgan, R.M. Sediment fingerprints: a forensic technique using quartz sand grains. Science & Justice, 46(2): 107-124, 2006.
- Brammall, A. Dartmoor detritals: a study in provenance. Proceedings of the Geological Association of London, 39: 27-48, 1928.
- Mange, M.M. and Maurer, H.F.W. Heavy Minerals in Colour. Chapman & Hall: London, 1992.
- Morton, A.C. A New Approach to Provenance Studies Electron-Microprobe Analysis of Detrital Garnets from Middle Jurassic Sandstones of the Northern North-Sea. Sedimentology, 32(4), 553-566, 1985.
- Weltje, G.J. and von Eynatten, H. Quantitative provenance analysis of sediments: review and outlook. Sedimentary Geology, 171(1-4), 1-11, 2004.
- Thorwald, J. Crime and Science: The New Frontier in Criminology. New York: Harcourt, Brace & World, Inc., 1967.