© de Gruyter 2010
J. Math. Crypt. 4 (2010), 1-24 DOI 10.1515 / IMC.2010.xxx

The power of primes: security of authentication based on
a universal hash-function family

Basel Alomair, Andrew Clark and Radha Poovendran

Communicated by xxx

Abstract. Message authentication codes (MACs) based on universal hash-function families are be-
coming increasingly popular due to their fast implementation. In this paper, we investigate a family
of universal hash functions that has been appeared repeatedly in the literature and provide a detailed
algebraic analysis for the security of authentication codes based on this universal hash family. In
particular, the universal hash family under analysis, as appeared in the literature, uses operation in
the finite field Z,. No previous work has studied the extension of such universal hash family when
computations are performed modulo a non-prime integer n. In this work, we provide the first such
analysis. We investigate the security of authentication when computations are performed over arbi-
trary finite integer rings Z,, and derive an explicit relation between the prime factorization of n and
the bound on the probability of successful forgery. More specifically, we show that the probability
of successful forgery against authentication codes based on such a universal hash-function family is
bounded by the reciprocal of the smallest prime factor of the modulus n.
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1 Introduction and related work

Message authentication code (MAC) algorithms can be categorized, based on their se-
curity, into unconditionally and conditionally secure MACs. While the security of the
former category of MACs is unconditional, the latter is only secure against computa-
tionally bounded adversaries. The first unconditionally secure MAC was introduced
by Gilbert et al. in [18]. The first deployment of universal hash-function families
for the design of authentication codes was introduced by Wegman and Carter for the
purpose of designing unconditionally secure authentication [12, 49, 13, 50]. Since
then, the study of unconditionally secure message authentication based on universal
hash-function families has been attracting research attention, both from the design and
analysis viewpoints (see, e.g., [8, 3, 21, 37,9, 2]).

The use of universal hash-function families is not confined to the design of uncondi-
tionally secure MACs. Cryptographists have realized that universal hash functions can
be used to construct efficient, computationally secure, MACs. Traditional computa-
tionally secure MACs are usually block cipher based (see, e.g., [46, 4, 22, 16, 34, 28]).
Compared to block cipher based MACs, however, universal hash-function families
based MACs usually offer better performances (to date, the fastest MACs are based on
universal hash-function families [47]). The basic idea behind universal hash-function
families based MACs is to compress the message to be authenticated (using a univer-
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sal hash function) and then encrypt the compressed image (e.g., using one-time pad
ciphers, stream ciphers, or pseudorandom functions). Universal hash-function families
based MAC:s include, but are not limited to, [10, 6, 7, 31, 19, 17, 24].

An important branch of the area of message authentication codes is the study of
their security. In particular, substantial efforts have been devoted to bounding the prob-
abilities of deception (forgeability) of authentication codes. The significance of such
analysis is that it provides a metric for measuring and comparing the reliability of dif-
ferent MAC algorithms. Valuable contributions that investigate the security of different
authentication codes include, but are not limited to, [14, 39, 23, 27, 29, 30, 41, 33, 32,
5, 35].

The security of many universal hash-function families rely on the fact that compu-
tations are performed over finite fields (see, e.g., [18, 50, 38, 15, 21, 26, 19, 17, 2]). In
this work, we investigate a universal hash-function family that belongs to this class of
universal hash families. Unlike previous analysis, however, we will consider the effect
of performing operations over finite integer rings, as opposed to fields, on the security
of authentication codes based on this universal hash family.

To give an example of the universal hash family under study, let a message m be
divided into equal-length blocks m; € Z,, where p is a pre-specified prime integer.
Given the secret hashing keys k; € Z,, compute the hashed image of the message m as
h(m) =Y, k;m; (mod p). Then, the authentication tag of m is simply an encryption
of its hashed image. There have been multiple proposals in the literature of message
authentication that were based on variants of this approach (see, e.g., [38, 19, 17, 2]).
When the multiplication is performed modulo a prime integer, it has been proven that
such proposals provide message integrity. However, the effect of using non-prime mod-
uli on the security of such proposals has not been previously investigated.

CONTRIBUTIONS. In this paper, we investigate the use of a class of universal hash-
function families that has been used for message authentication. In particular, we will
analyze the security of authentication based on this class of universal hash-function
families when the operations are performed over arbitrary finite integer rings instead
of fields, where they have been shown to be secure. We derive tight bounds on the
probabilities of deception for all choices of finite integer rings Z,,. We show the direct
relation between the prime factorization of the modulus n and the security of authen-
tication. More precisely, we prove that the probability of deception is bounded by the
reciprocal of the smallest prime factor of the modulus 7.

Since the derivation of the main result is quite lengthy, we attempt to clarify it by
breaking the proof into a series of lemmas (Lemma 5.5 - Lemma 5.10) leading to the
final theorem. One particular result that is generally interesting (not only for this pa-
per) is the result of Lemma 3.1. In Lemma 3.1 we prove what can be viewed as an
extension to Bézout’s lemma for finite integer rings. It is a well-known fact in alge-
bra and number theory that, if gcd(a,n) = d then, there exists an integer x such that
x-a =d (mod n). What we show in Lemma 3.1 is that for an a € Z,\{0} such that
gcd(a,n) = d, not only there exists an element x € Z,, such that z - a = d (mod n)
but, further, there exists an invertible element x € Z, such that z-a = d (mod n). This
result is essential to generalize our bounds to any finite integer ring and, to the best of
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our knowledge, has not appeared in the literature of mathematics.

ORGANIZATION. The rest of the paper is organized as follows. Section 2 provides
a list of used notations and relevant definitions. In Section 3, we formally state and
prove our extension to Bézout’s lemma along with some basic properties of the fi-
nite integer ring Z,,. Section 4 gives two examples of the use of the studied universal
hash-function family for the construction of computationally secure MACs and the
construction of codes with secrecy. Section 5 is devoted to the security analysis. Sec-
tion 6 provides a summary of the choices of moduli and their security ramifications. In
Section 7 we conclude our paper.

2 Notations and definitions

In this section we list the notations and definitions that are relevant to the presentation
of the paper.

2.1 Notations

The following notations will be used throughout the rest of the paper.

- For the ring Z,, := {0,1,...,n — 1} with the usual addition and multiplication
modulo n, the subset Z is defined to be the set of integers in Z,, that are relatively
prime to n.

- If S is a set, then |S] is defined to be the cardinality of the set. If r is an integer,
then |r| is defined to be the length of r in bits.

- The function (n) (the Euler totient function) is defined to be the number of
positive integers less than n that are relatively prime to n. Equivalently, p(n) =
|Z7-

- For any two strings a and b, (a || b) denotes the concatenation operation.

- For two integers a and b, we say a | b, read as a divides b, if there exists an integer
csuch thatb = ¢ x a.

- For two integers a and b, we say a )[ b, read as a does not divide b, if there is no
integer c such that b = ¢ x a.

- For the rest of the paper, (+) and (x) represent addition and multiplication over
Z,, even if the (mod n) part is dropped for simplicity.

- For any two integers a and b, gcd(a, b) is the greatest common divisor of a and b.

- For an element a in a ring R, the element a ! denotes the multiplicative inverse
of a in R, if it exists.

- Throughout the rest of the paper, random variables will be represented by bold
font symbols, whereas the corresponding non-bold font symbols represent specific
values that can be taken by these random variables.
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2.2 Definitions

One definition that will be used in the paper is the notion of perfect secrecy in Shan-
non’s information-theoretic sense. An encryption algorithm is said to be information-
theoretically secure if the ciphertext gives no information about the plaintext, i.e., the
ciphertext and the plaintext are statistically independent. Formally, perfect secrecy can
be defined as:

Definition 2.1. [44][Perfect secrecy] For a plaintext m and its corresponding ciphertext
1), the cipher is said to achieve perfect secrecy if

Pr(m = m|¢ =) = Pr(m =m)

for all plaintext m and all ciphertext ¢). That is, the a posteriori probability that the
plaintext is m, given that the ciphertext ¢ is observed, is identical to the a priori prob-
ability that the plaintext is m.

Another definition that is relevant to this work is the definition of universal hash-
function families. A family of hash functions H is specified by a finite set of keys K.
Each key £ € K defines a member of the family Hy € H. As opposed to thinking
of H as a set of functions from A to B, it can be viewed as a single function H :
K x A — B, whose first argument is usually written as a subscript. A random element
h € H is determined by selecting a £ € K uniformly at random and setting h = Hy.
Different notions of universal hash families have appeared in the literature (see, e.g.,
[49, 12, 43, 25, 26, 19]), we give below one such definition.

Definition 2.2. [43, 10] [Universal hash families] Let # = {h : A — B} be a family
of hash functions and let ¢ > 0 be a real number. We say that 7 is e-almost universal,
denoted e-AU, if for all distinct M, M’ € A, we have that Pry, . [h(M) = h(M')] <e.

3 Preliminaries

For any nonzero integers a and n with gcd(a,n) = d, by Bézout’s lemma [45], there
exist two integers x and y so that ax + ny = d. Otherwise stated, for any nonzero
integers a and n with ged(a,n) = d, by Bézout’s lemma, there exists an integer = so
that

ax =d (mod n). 3.1

It is further known that the x satisfying equation (3.1) is not necessarily unique. In
particular, for a nonzero a € Z,, there are d = gcd(a,n) distinct elements in Z,
satisfying equation (3.1), given by

n

o xo+2ﬁ, -~~,xo+(d—1)d

{I(), xo + d’ d

2 (3.2)
where xg is the smallest integer in Z,, satisfying equation (3.1) [45]. The significance
of the following lemma is the statement that at least one of the d elements of the set in
equation (3.2) must be invertible in Z,,.
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Lemma 3.1. In any finite integer ring Z,, for any § € Z,\{0}, if gcd(d,n) = d, then
there exists an invertible element o € 7%, such that « x § = d (mod n).

Proof. Let gcd(d,n) = d, then by Bézout’s lemma [45], there exists an integer ag such
that
agxd=d (mod n). (3.3)

Further, all integers in the infinite set
A:{ak|ak:ao+kzg, VkeZ) (3.4)

are valid solutions to equation (3.3) [45]. The lemma states that, not only there exists
an integer that satisfies equation (3.3), but there exists an invertible element in Z,, that
satisfies equation (3.3). We will prove the lemma by finding an integer & such that
ay, € Aisrelatively prime to n.

If ged(6,n) = 1 then oy = 6! € Z7 does exist and is the invertible solution to
equation (3.3). Assume, however, that gcd(d,n) = d > 1 and write n in its prime

factorization as
él 52 63
i €4 €¢;
n=][p [ 1™ (3.5)
i=1 i=1 i=1

Assume further that § can be written in its prime factorization form as

4 6o, 4
% €vi er;
o=[Ip [T IIr (3.6)
=1 i=l i=1
where e, > e;, Vi=1,---,/{;, and efyi < ey, Vi=1,---, 6, with the (;’s and r;’s

being distinct primes. Then, d = [['_, p¢* [[2, 7, " and, by Bézout’s lemma, there
exists an « such that
agxd=d (mod n). 3.7

Which is equivalent to
I n £ / 43
4,/- —€i LA R— € i —€ i i
aox [y ™[] =1 (mod T ™ [T¢*). (3.8)
=1 i=1 i=1 i=1

Equation (3.8) implies that «y is relatively prime to Hfil fyie "% Hfi LG, which
implies that none of the ;’s nor the (;’s divides ag. Furthermore, by equation (3.4),
none of the ;’s nor the (;’s will divide oy, for any k € Z. Therefore, to prove that an
oy, € Aisrelatively prime to n, since the prime factorization of n consists only of p;’s,
v;’s, and (;’s, it suffices to show that none of the p;’s divides ay.
b+l eq, b6 =€ 1l e

Define HE] ’ qie% =11y L C:C , where ¢; = v;,eq, = €yi — el for

i=1,---,6and g, ;i = i, eq, ., = €, fori =1,--- 3. Then, equation (3.8) can

be rewritten as
U445

1A , Ly
agx [[pi ™ [[ri =1 (mod [ &™), (3.9)
=1 i=1 =1
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where none of the ¢;’s divides any oy, for any k € Z.

Now, if none of the p;’s divides ag then ged(ag,n) = 1 and we are done. Assume,
however, that some of the p;’s, fori =1, - - -, ¢; divide «ay, and let p; be one such prime
dividing «y. Then «q can be written as ay = mjp;, where m; is relatively prime to all
q;’s (since, otherwise, some of the ¢;’s will divide ). Then, from equation (3.4), we
know that

lr+ls

n eq,
m=%+3=mm+ll%‘ (3.10)

also satisfies equatlon (3.3). Therefore, p; t «; since it does not divide Hfﬁg3 q;

(also none of the ¢;’s divides «; since none of them divides mp;).

Assume, however, that some of the other p;’s divide «, and let p, be such a prime.
Then «; can be written as o = myp, for some m, relatively prime to p; and all the
q;’s. Then, by equation (3.4),

K2

O+

b a
mem+H%“%mﬁ2H% (3.11)
i=1 i=1

also satisfies equation (3.3). Therefore, by equality (b), p2 1 a» since it does not divide
HKZH3 qf “ and, by equality (a), p; | ap iff p; = 2. Assume that p; = 2 and write
ap = map; for an mj that is relatively prime to p, and the g;’s, then

lr+-43 lr+-43

b o @ eq;
3 © m3p1 + H q; " —)m2p2+2 H q;" =mpr+3 H ql ) (.12)
i=1 i=1 i=1

Thus, since p, # 2, p1 1 a3 and p; 1 a3 by equalities (b) and (a) respectively, and
¢i 1 a3 Vi by construction.

Assume now that there exists an oy, such thatp; t aVi =1,--- ,¢;1—1and g; f a Vi,
but pg, | a. Then write oy, = mype, for some my, relatively prime to all ¢;’s and all
p;’s except possibly py,. Then oy can be expressed as

Lyl (b) La+L3 @ b+L3
appr =mepe,+ [[ @ =+ = mapater [ ¢ = mupi+a [ ¢ 3.13)

i=1 i=1 i=1

for some constants ¢; € N. Recall that all the m;’s are relatively prime to the ¢;’s by
construction. Therefore, to complete the proof, it suffices to show that there exists an
integer h > 1 such that oy, is not divisible by any p;. As a function of the p;’s and
the ¢;’s, we conclude the proof by showing how to iteratively find such an h.

ITERATION 1. Assume that p; divides the oy in equation (3.13). This implies, by
equality (a), that p; | ¢;. However, if p; | ¢; then p; 1 (¢; + 1), and ag15 can be written
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as
O+ (C) O+
€q.
Qo = Mppe + 2 H q;" = =maps+(c3+1 H q;"
i=1
(b) b+l @) b+l
€q.
= mops + H ;" _m1p1+(01+1) 1T &

=1
(3.14)

Therefore, by equality (a) in equation (3.14), we get p; { a2
ITERATION 2. Now, assume that p, | agi2. By equality (b) in equation (3.14), this

implies that p; | (¢ +1). However, if ps | (c2 4 1) then ps { (2 + 1 +p1), and a2,
can be written as

O+ © Ly+43
Ahiaip =mipe+ 2+p1) [[ ¢ = = maps + (s +1+p1) [ ¢
i=1 =1
b) @ Eus
= maypy+ (2 + 14 p1) H " =mipr+(a+1+p) H q"
i1 i1

(3.15)

Then, by equality (b) in equation (3.15), p> { ax+2+4p, and, by equality (a) in equation
(3.15), p1 { Qky24p, -

ITERATION 3. Similarly, if p3 divides ay424,, in equation (3.15), by equality (c),
p3 | (3 + 1+ p1). However, if p3 | (c3 + 1+ p;1) thenpz t (3 + 1 + p1 + pip2) and,
by writing atx424p,+p,p, aS

Okt 21prtpipy = MEPe + (2 +p1 +pip2) H q;"

©
= map3 + (3 + 1 +p1 + pip2) Hqi '
(E) €q;
= mopy + (2 + 1+ p1 +pip2) [ [ &

A
a eq;
D ripy + (e1 + 1+ p1+pip2) [T 6™ (3.16)

one can see that neither p3 nor p, nor p; divides a2y, +p,p, by equalities (c), (b), and
(a) in equation (3.16), respectively.
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ITERATION /;. After the ¢!" iteration, for an h given by:

/-1
h=1+B1+ Bapr + Bspipa + -+ + B, [ [ i, (3.17)
i=1

where 3; = 1 if in the i'" iteration p; | (m;p; + ¢; []; qf ) and zero otherwise, a4p,
will not be divisible by any p;. Hence, we have found, by construction, an «ay., with
gcd(ag+n,n) = 1 that satisfies equation (3.3). The residue of oy, modulo n is an
invertible element of Z,, that satisfies equations (3.3), and the lemma follows. |

For any finite integer ring Z,,, Z,\Z:, the complement of Z}, will be the set of
elements that are not relatively prime to n. The following result holds for the set of
integers that are not relatively prime to 7.

Lemma 3.2. In any finite integer ring Ly, for any o € Z,\Z} and any B € Zn,
ax B €L, \Z;.

The proof of this lemma can be found in [36].

*

Lemma 3.3. Given an integer k € Z, for an r uniformly distributed over Z.,, the value
0 given by:
=rxk (modn) (3.18)

is uniformly distributed over 7,
A more general result of Lemma 3.3 can be stated as follows.

Lemma 3.4. Let G be a finite group and X a uniformly distributed random variable
defined on G, and let k € G. Let’Y = k x X, where * denotes the group operation.
Then'Y is uniformly distributed on G.

Therefore, Lemma 3.3 follows directly from this general result in probability theory.
The following is also a general result from number theory.

Lemma 3.5. For any positive integer n with a prime factor p, ¢(n) > p — 1, with
equality iff n = p.

This Lemma is a standard result for integers and its proof can be found in most
books in number theory (see, e.g., [20]).

4 Examples of constructions

In this section, we give two examples of authentication codes based on the universal
hash-function family under analysis. The first example is a construction of a com-
putationally secure message authentication code (MAC) algorithm, while the second
construction is an example of authentication codes with secrecy.
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4.1 Constructing computationally secure MACs

In computationally secure MACs, the message to be authenticated is first compressed
using a universal hash function and then the compressed image is processed with a
cryptographic function (such as one-time pad ciphers, stream ciphers, or pseudoran-
dom function).

Assume the message to be authenticated can be divided into b blocks, i.e., m =
(ma,---,my), where m; € Z fori = 1,---,b. Let the key of the universal hash
function be k = (ki,-- - , kp), where the k;’s are drawn uniformly at random from the
multiplicative group Z;. Then, the compressed image of m is computed as

b
h(m) =Y ki xm; (mod p). (4.1)
=1

Note that the key need not to be as long as the message, otherwise, such constructions
will be impractical. That is, there are standard techniques so that the same key can be
used to hash messages of arbitrary lengths (see, e.g., [50, 19, 10] for the description of
such techniques).

The security of universal hash-function families based MACs depends on the proba-
bility of message collision. That is, if two distinct messages m and m’ hash to the same
image (i.e., h(m) = h(m’)), then they will have the same authentication tag. Conse-
quently, for a message-tag pair, if an adversary can come up with a different message
that hashes to the same value, successful forgery can be accomplished with high prob-
abilities. Therefore, the most important security property of universal hash functions
is their probabilities of message collisions.

Carter and Wegman suggested the hash function of equation (4.1) with the primes
p = 2%+ 1orp = 2% —17[19]. Halevi and Krawczyk later suggested the same
equation with any prime 232 < p < 232 4 216, They designed their MMH family, one
of the fastest universal hash-function families, with p = 232 4 15, the smallest prime
between 232 and 232 + 2!° [19]. Etzel et al. proposed a variant of the MMH family of
[19] that can be faster in some applications [17].

When the hash function is computed modulo a prime integer, equation (4.1) is
known to be (p — 1)~!-AU. In fact, it is shown to be (p — 1)~'-AAU in [19] (the
notion of e-AAU is a stronger notion than e-AU; interested readers may refer to [19]
for the precise definition of e-AAU hash families).

The security proofs of all such constructions rely on the fact that computations are
performed over integer fields, i.e., the moduli must be prime integers. To the best of
our knowledge, no previous work has studied the security of such constructions when
the computations are performed over finite integer rings, i.e., not restricting the moduli
to prime integers. We aim to provide the first such analysis.

4.2 Constructing codes with secrecy

In this section, we describe a construction of codes with secrecy based on the same
principle of Section 4.1; that is, the security of the construction restricts the computa-
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tions to be performed over an integer field. What we will describe here is a generaliza-
tion of the construction appeared in [2], in which we allow operations to be performed
over a finite integer ring instead of a field. (Similar constructions have also appeared in
[38, 1]). As in the computationally secure constructions discussed in Section 4.1, the
codes in [38, 2, 1] demand that operations must be performed over the integer field Z,;
no previous work has studied the probability of deception of such codes when com-
putations are performed over arbitrary finite integer rings. Other codes with secrecy
include, but are not limited to, [40, 42, 48, 15].

Let the legitimate users agree on an ¢-bit long positive integer n, where £ is a se-
curity parameter. The users share a secret key k = k;||k,, where k; and k, are drawn
uniformly and independently from Z,, and Z} , respectively.

For any message m € ZZ, define ¢y, (m) : Z¥ — Z, and ¢y, (m) : Z} — Z as
follows:

Yr,(m) = ki +m (mod n), 4.2)
Yr,(m) = kyxm (mod n). 4.3)

Equivalently, the exclusive-or operation can be used instead of the addition operation
in equation (4.2) without affecting the cipher’s security properties [2]. We will refer
to ¥k, (m) and vk, (m) as the ciphertext and authentication tag, respectively. Then, as
a function of the key &, the output of the system, 1);(m), is the concatenation of the
ciphertext and the authentication tag. That is,

Yr(m) = Yy, (m) || Yr, (m). 4.4

A block diagram to implement the described authenticated encryption scheme is de-
picted in Figure 1 (a).
Upon receiving a ciphertext ¢} (m), the legitimate receiver extracts the plaintext m’
as follows:
m' =, (m) —k  (mod n). 4.5)

The integrity of the extracted m/’ is verified by the following check:

m' x ky = ¢}, (m) (mod n). (4.6)

The notations v, (m) and m’ are to reflect the possibility that the received ciphertext
and the extracted plaintext are different than the transmitted ones. The ciphertext is
considered valid if and only if the integrity check of equation (4.6) is passed.

A block diagram describing the decryption and integrity check of the scheme is
shown in Figure 1 (b).

S Security analysis

This section will be dedicated to analyzing the security of the authentication with se-
crecy detailed in Section 4.2, although the bounds on deception probabilities applies to
both constructions of Section 4.1 and Section 4.2.
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k’] - kl

@ Y, (M) P, (m) \J my
m— H — 1/)1.:(7TL) ’L/);.('rn) ;>—D(f(:'i,s‘1)()n
[X\ Vi, (m) P, () mo
kz kz— 1
(a) (b)

Figure 1. (a) A block diagram to implement the authenticated encryption scheme, and
(b) A block diagram implementing the decryption and the validity check of the studied
scheme. The addition and multiplication operations are performed over the ring Z,,.

The scheme described in Section 4.2 is designed to achieve two security objectives,
confidentiality and integrity. More specifically, by restricting computations to be per-
formed over integer fields, the scheme in Section 4.2 achieves Shannon’s perfect se-
crecy in addition to message integrity [2]. Even though the main emphasis of this work
is to analyze the effect of working with arbitrary finite integer rings on the integrity of
the scheme, we will show in Section 5.1, for completeness of presentation, the effect
on the confidentiality of the scheme when computations are allowed to be performed
over arbitrary integer rings. In Section 5.2 we address the main focus of the paper,
namely, the bounds on the probabilities of successful message forgery.

5.1 Perfect secrecy

Corollary 5.1. If encrypted messages are restricted to belong to Z.,, the scheme of
Section 4.2 achieves perfect secrecy (in Shannon’s sense).

Corollary 5.1 is a direct consequence of Lemma 3.4. To see this, observe that the
results of equations (4.2) and (4.3) are defined on a group G = Z,, x Z},.

Remark 5.2. Restricting the message m to be relatively prime to n does not impose
a significant limitation on the system since, for example, any non-trivial message will
satisfy the condition when n is a prime integer. For an arbitrary positive integer n, the
message can be padded to be relatively prime to n. Moreover, the system will still work
without this restriction; however, perfect secrecy is not achieved.

To illustrate how perfect secrecy is violated when messages are not restricted to
the multiplicative group, consider an arbitrary message m € Z, to be encrypted. If
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m € Zn,\Z,, by Lemma 3.2, the resulting v, will be in Z,\Z}. On the other hand,
since ky € Z7, if m € Z},, by Lemma 3.3, the resulting v, will be in Z . Therefore, an
adversary observing the authentication tag 1%, can determine a subset of the message
space that the encrypted message belongs to (if ¢y, € Z,\Z, then m € Z,\Z; and
if ¥, € Z} then m € Z}); thus, revealing partial information about the encrypted

message. Otherwise put,

1 if me Z*
Pr(m = ezr) =14 %l " 5.1
(m =mlu, € Z,) { 0 ifmeZ\Z, ©-1)
and similarly for the case where )y, € Z,\Z,. Therefore,
Pr(m = m|vYr, = ¥i,) # Pr(m =m) (5.2)

for all plaintext m and all ciphertext ¢y, ; a clear violation of Definition 2.1 of perfect
secrecy.

5.2 Message integrity

In what follows, we address message integrity of authentication codes based on the
universal hash family under analysis. Even though the analysis applies to both schemes
described in Section 4, we will use the notations of Section 4.2.

As discussed in Section 4.2, the main purpose of 1/, is to serve as an authentication
tag (MAC) for the encrypted message m. Thus, there are two cases to be considered,
modifying ), alone, and modifying both v, and v,,. Modifying 1), alone, since it
serves as a MAC, does not lead to extracting a false plaintext.

* CASE I. MODIFYING THE CIPHERTEXT ONLY

Assume that 1, has been modified, by a man in the middle, to 1/1;]. Since k;
is known to the receiver, this modification will lead to the extraction of an m’
different than the encrypted m; that is, m’ = 1/);61 —k; (mod n). Letm/ =m+§
(mod n), for some § € Z,\{0}. To be accepted by the receiver, m' must satisfy
the following integrity check:

m' xky, = (m+6)xk, (modn) (5.3)
= (mxky)+(dxk) (modn) (5.4)
= ¢y, (modn) (5.5)
= mxk, (modn). (5.6)

Equivalently, the integrity check in equation (5.5) is satisfied if and only if the
following condition holds:

§xk =0 (modn). (5.7)
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That is, modification of i, alone will go undetected if and only if it is modified
by a ¢ that satisfies equation (5.7). Section 5.2.1 provides detailed probabilistic
analysis of equation (5.7).

* CASE II. MODIFYING BOTH THE CIPHERTEXT AND THE MAC

In a different scenario, the adversary may attempt to modify both v, and 1y, so
that a false message will be validated. Assume that v, has been modified so that
the extracted message becomes m’ = m + ¢ (mod n), for some § € Z,\{0}.
Also, assume that ¢, has been modified to ¥;, = 3, + € (mod n), for some
€ € Z,\{0}. The integrity of m’ is verified using the received 1y, as follows:

Vg, +e = 1%2 (mod n) (5.8)
Z w/'xk (modn) (5.9)
= (m+6)xk (mod n) (5.10)
= (mxky)+ (6 xky) (modn) (5.11)
— Y, + (6 x k) (mod n). (5.12)

Equivalently, the false m’ will be accepted if and only if the following condition
is satisfied:

e=dxky (modn). (5.13)

That is, modification of ¢, by a value ¢ and ¢, by a value e will go undetected
if and only if § and e satisfy equation (5.13). Section 5.2.2 provides detailed
probabilistic analysis of equation (5.13).

5.2.1 Analysis of modifying ciphertext only

As derived above, an adversary modifying the ciphertext i, in order to make the
legitimate receiver authenticate a false message is successful if and only if she can
solve the congruence

§xk =0 (modn) (5.14)

for an unknown k; uniformly distributed over Z;. To analyze the adversary’s ability
to solve this congruence for an arbitrary finite integer n, we start with the following
lemma.

Lemma 5.3. Let n be any fixed finite integer. For any nonzero elements o and 3 in Z,,
if n divides « x B, then both o and B must belong to Z,\Z},. Formally, the following
one-way implication must hold:

axf=0 (modn) = {a,feZ,\Z}. (5.15)
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Lemma 5.3 is a corollary of more general results shown by Schwarz in [36]. Given
Lemma 5.3, the adversary’s chances of tampering with the ciphertext v, in a way
undetected by the legitimate receiver is stated in the following theorem.

Theorem 5.4. Any modification of the ciphertext 1y, alone will be detected by the
legitimate receiver with probability one.

Proof. Recall that the modification of v, will be verified only if
dx k=0 (modn). (5.16)

Lemma 5.3, however, states that equation (5.16) can be satisfied only if both § and k;
belong to Z,,\Z;,. Since, by design, k; is chosen from Z, equation (5.16) can never
be satisfied. Therefore, any modification of the ciphertext ¢x, will be detected by its
MAC with probability one. O

Next, we analyze the possibility of modifying both the ciphertext and MAC, v, and
¥r,, in order to make the legitimate receiver authenticate a false message.

5.2.2 Analysis of modifying both the ciphertext and the MAC

This section constitutes the main contribution of this paper. All previous results stated
in this paper were either already known or follow directly from known results. The
result of this section, on the other hand, has not appeared in the literature; it will show
the direct relation between the prime factorization of the modulus n and the security
of any authentication code based on the use of the universal hash family discussed in
Section 4.

Recall that the adversary has to find a solution to the congruence

e=dxky (modn), (5.17)

where n is an arbitrary fixed modulus and %, is chosen uniformly at random from Z,
in order to make the legitimate receiver authenticate a modified message. To be able to
analyze the adversary’s ability to solve the congruence in equation (5.17), we start by
stating a sequence of lemmas.

The first lemma specifies a necessary and sufficient condition for the existence of a
k, that satisfies equation (5.17).

Lemma 5.5. Let n be any finite positive integer. Then, for any nonzero €,6 € Z,, there
exists k € 7}, satisfying
e=kxd (modn) (5.18)
if and only if
ged (e,n) = ged (6, n). (5.19)
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Proof. Let ged (e,n) = ged (6,n) = r. By lemma 3.1, there exist two invertible ele-
ments «, 3 € Z, so that,e =r x a~! (mod n) and § = x 3! (mod n). Then,

e = rxa”! (modn) (5.20)
= rxa'xB7'xpB (modn) (5.21)
= a!'xBxd (modn). (5.22)

Hence, k = a~! x 3 (mod n) satisfies equation (5.18). Further, k € Z7 by Lemma
3.3. Therefore, equation (5.19) implies equation (5.18).

Now, suppose that ¢ = k x § (mod n) for some k € Z*. Let r = ged(e,n) and
s = ged (6, n) and suppose, without loss of generality, that » > s. Again, by Lemma
3.1, there exist o, 3 € Z? satisfying e =7 x a~! (mod n) and § = s x 3~! (mod n).
Then,

rxa ! = ¢ (modn) (5.23)
= kx¢ (modn) (5.24)
= kxsx B (modn), (5.25)

and multiplying both sides by « yields,
r=sx(ax 7' xk) (modn). (5.26)

Also, since r | n, there exists an ¢ € Z,, such that £ - r = n. Multiplying both sides of
equation (5.26) by ¢ yields,

0= xs)x(axp ' xk) (modn). (5.27)

Since s < r by hypothesis, the first factor on the right hand side is strictly less than
n = £ -r; hence, (£ X s) is a nonzero element in Z,,. By Lemma 3.3, the second factor
belongs to Z;; a contradiction to Lemma 5.3, which states that for the product of two
nonzero integers to be congruent to zero modulo n, both integers must be in Z,\Z .
Therefore, r = s, and the lemma follows. |

Lemma 5.5 specifies a necessary condition for the successful forgery by modifying
the ciphertext by a 6 € Z,\{0} and the MAC by an ¢ € Z,\{0}. Namely, gcd(d, n)
must be equal to ged(e, n); otherwise, there does not exist a shared key k, € Z7 that
could possibly satisfy equation (5.17) for the chosen § and e.

Assume now that an adversary has chosen nonzero ¢ and e that satisfy the necessary
condition of Lemma 5.5. Given the value of §, what is the probability that the chosen
e will satisfy equation (5.17). To be able to answer this question, we introduce the
following set.

Definition 5.6 (The set of common gcd’s).
For any fixed integer 4, define 7'(§) to be the set of €’s that satisfy equation (5.17) for
at least one k € Z}. That is,

T(6)={e€Z,:3FkeZ)suchthate =06 x k (mod n)}. (5.28)
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By Lemma 5.5, this set is equal to the set of €’s in Z,, such that gcd(e,n) = ged(4,n).
Therefore, it can be written as,

T(6) ={e € Zy,: ged(e,n) = ged(6,n)}. (5.29)

For the rest of the paper, the representations in equations (5.28) and (5.29) of the set
of common ged’s will be used interchangeably to define the set 7'(4).

To be able to quantify the adversary’s probability of successful forgery, we need
to answer the following question: For an ¢ € T'(§), how many possible secret keys
ky’s can satisfy equation (5.17) for the given (J,€) pair? More importantly, for two
distinct €’s in 7'(d), say € and €', what is the relation between the number of k»’s in
Z, that satisfy equation (5.17) for each of them? This question is important since, for
a given 4, an intelligent adversary will choose the ¢ that maximizes her probability of
successful forgery. The following lemma addresses this question.

Lemma 5.7. Fix any § € 7, and let ¢,¢' € T(3). Define the set K. to be the set of
all k’s in Z}, that satisfy equation (5.17) for the given § and e. Similarly, define the
set K to be the set of all k’s in Z;, that satisfy equation (5.17) for 6 and €'. That is,
K.:={keZ :dxk=¢(modn)land Ko :={k € Z: : 6 x k = ¢ (mod n)}.
Then |K | = | K|, i.e., the sets K. and K. have the same cardinality.

Proof. Without loss of generality, assume |K | < |K| = ¢, andlet Ko = {ki,..., ke},
for distinct k;’s. Since € € T'(d), there exists an r satisfying 7 X 6 = ¢ (mod n). Also,
since kj € K., 6 = kfl x ¢ (mod n). Now, fori = 1,...,/, define r; as,

ri=1r-ki' k. (5.30)

Then, every r; satisfies,

rix6 = rxk ' xk x§ (modn) (5.31)
= rxk ' x¢ (modn) (5.32)
= x4 (modn) (5.33)
= ¢ (modn). (5.34)

Furthermore, the r;’s are distinct: if 7; = r;, then
rx ki xki=rxk' xk; (modn). (5.35)

Since kfl and r are invertible, by cancellation we have k; = k;, implying that i =
j. Therefore, the set K. contains at least ¢ distinct elements, a contradiction to the
hypothesis that | K| < |K.|. Therefore, |K.| = |K|. o

Lemma 5.7 implies that any € which has the same greatest common divisor with n
as § will have the same number of keys as possible candidates for successful forgery.
That is, from the adversary’s standpoint, there is no advantage of picking one particular
e € T(8) over the others. The following lemma formalizes this argument.
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Lemma 5.8. Suppose that k is an unknown integer, randomly drawn from Z,. Then for
any fixed § € Z,\{0}, the probability of selecting ¢ satisfying ¢ = k x § (mod n) is at
most 1/|T(8)].

Proof. By the definition of 7'(§) and Lemma 5.5, all valid €’s are in T'(5), and any ¢
in 7'(6) is a valid choice. Also, by Lemma 5.7, the number of possible values of &
that map ¢ to any e is the same, so there is no advantage in picking one e over another,
i.e., the €’s are uniformly distributed in T'(¢). Hence, for a given § € Z,\{0}, the
probability of selecting an e € T'() that satisfies equation (5.17) is 1/|T(8)]. O

Lemma 5.8 implies that the adversary’s best strategy for successful forgery is to
choose the § that minimizes |7'(§)|. (Observe that the cardinality of 7'(5) is at least
one since § € T(d) for any 6 € Z,.) The next two lemmas address the problem of
minimizing |7'()].

We start with a lemma that relates the cardinality of the set 7" with the Euler totient
function ¢.

Lemma 5.9. For any integer o that divides n,
set T(n/a) can be expressed as,

T(n/a)| = o(a). More explicitly, the

T(n/a) = g (B€Zy:ged(B,a) = 1}. (5.36)

Proof. The fact that «|n implies that gcd(n/a, n) = n/a. Therefore, by the definition
of T in equation (5.29),

T(n/a) ={e € Z, : ged(e,n) = ged(n/a,n) = n/a}. (5.37)

Now, for any 8 € Z, such that gcd(3,a) = 1, using the fact that ged(ka, kb) =
k ged(a,b) [11], we get:

n n n
ged(B,a) =1 — gcd(aﬁ, Ea) = (5.38)
= gcd(gﬂ,n) = g (5.39)
¢ " eT(n/a). (5.40)

Furthermore, for distinct 31, 5> € Z., —f1 and — 3, are distinct elements of Z,,. This
« (6%

is because n > max{—/f;, — (3} (since « > max{p, 5,}). Therefore, there is a one-
a

to-one correspondence between the set {3 € Z, : ged(8,«) = 1} and the set {y €
Ly v €T(n/a)}. O

We can now state the relation between the cardinality of 7'(6), for any 4, and the
choice of the underlying integer ring. More specifically, the following lemma empha-
sizes the effect of the prime factorization of n on the cardinality of the smallest 7°(4).
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Lemma 5.10. If p is the smallest prime factor of n, then |T(8)| > |T(n/p)| for any
0 € L.

Proof. Let § € Z, and let p be the smallest prime factor of n. By Lemma 5.9,
IT(n/p)| = ¢(p) = p — 1. Now, recall that:

T(6) ={e€Z,:ged(e,n) = ged(d,n)}. (5.41)
Then, if ged(d,n) = 1, by equation (5.41),
T(0)| = |Z7,| = ¢(n); (542)
and we know, by Lemma 3.5, that
p(n) >p—1; (5.43)
and, by Lemma 5.9, that
p—1=|T(n/p)l (5.44)

Thus, |T'(6)| > |T(n/p)]| for all 4’s that are relatively prime to n.
It remains to show that the same is true for ¢’s that are not relatively prime to n. Let
gcd(d,n) = d > 1, then, by equation (5.41),

T(5) = T(ged (6,n)) = T(d). (5.45)

Therefore, we can assume, without loss of generality, that d|n (since for any § such
that ged(d,n) = d, T(6) = T'(d) and d|n). Now, write § = n/« and let « be written
in its prime factorization form as a = [, p;’, where the p;’s are distinct primes. Then,
o(a) = TL;(pi — 1)p&~". Since a|n, and p is the smallest prime factor of n, p <
p; for any i. Hence, by Lemma 5.9,

T(0)] = T(n/a)l = p(a) = p— 1 = [T (n/p)|. (5.46)
Therefore, for any 6 € Z,, |T(§)| > |T(n/p)|. o

We can now state the main theorem analyzing the adversary’s probability of suc-
cessful forgery by modifying both ciphertext v, and the MAC ), .

Theorem 5.11. Let p be the smallest prime factor of n. Then, an adversary modifying
both the ciphertext vy, and the MAC vy, will be successful with probability at most

1/(p—1).

Proof. Recall that an adversary modifying 1, and ¢, will be successful only if she
can choose 4, € such that:
e=dxky (modn). (5.47)

By Lemma 5.8, the probability of choosing 4, € that satisfy equation (5.47) is given by
1/]T(5)|. To maximize the probability of successful forgery, the adversary can choose
4 that minimizes the size of 7'(9). By Lemma 5.10, the best choice of ¢ that minimizes
T(5) is § = n/p, where p is the smallest prime factor of n. Finally, by Lemma 5.9,
|T(n/p)| = p — 1, and the theorem follows. ]
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6 Choice of integer rings

The described authenticated encryption schemes is designed to achieve two main ob-
jectives, message confidentiality and integrity. In this section we summarize the effect
of the underlying integer ring on the security properties of the scheme.

It has been shown, in Section 5.1, that reducing message space to the multiplicative
group of integers modulo 7 is a necessary condition for the scheme to achieve perfect
secrecy. Consequently, the choice of the underlying integer ring will be a factor for the
number of possible messages that can be encrypted with perfect secrecy.

In Section 5.2.1, it was shown that an adversary modifying 1;, only will be success-
ful only if v, is perturbed by an integer ¢ that satisfies

§xk =0 (modn). (6.1)

Moreover, it was shown that choosing k, from the multiplicative group Z;, is a suffi-
cient condition to guarantee that no nonzero 6 € Z,, will satisfy equation (6.1). There-
fore, the choice of the underlying integer ring does not play an important role in the
protection against modifying 1y, only, other than restricting &, to be chosen from the
multiplicative group Z.

The choice of the underlying integer ring has its most impact when an adversary
modifies both 1, and v,. As discussed in Section 5.2.2, the adversary is successful
in tampering with the message, in a way undetected by the legitimate receiver, only if
she can select ¢, § satisfying:

e=dxky (modn). (6.2)

The proof of Theorem 5.11 describes the following attack on the scheme. Suppose
that the scheme designer chooses a modulus with prime factorization given by n =
pi'---py", where the p;’s are ordered increasingly. Assuming the adversary is able
to factor n, then she can choose 6 = n/p; to maximize her probability of successful
forgery. The resulting & x k, (mod n) will be, from the adversary’s perspective, a
random element in the set of multiples of n/p; (excluding 0 because k; is known to
be relatively prime to n). Consequently, by randomly choosing an integer € from the

set {mE (mod n), form = 1,...,p; — 1}, the adversary can tamper with the mes-
b1

sage without detection with probability 1/(p; — 1). The following numerical example
illustrates the attack.

Example 6.1. Let n = 45 = 3% x 5. According to Theorem 5.11, the adversary can
maximize her probability of successful forgery by choosing 6 = n/3 = 15. Moreover,
the secret key k; is restricted to belong to the multiplicative group Zjs, that is, k» €
{1,2,4,7,8,11,13,14,16,17,19,22,23,26,28,29,31,32,34,37,38,41,43,44}. Th-
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erefore, the resulting § x k, (mod 45) := € is equal to

I5x1=15 (mod 45), (6.3)

15%2=30 (mod 45), (6.4)

15x4=15 (mod 45), (6.5)

15x7=15 (mod 45), (6.6)

15%8=30 (mod 45), 6.7)
15%11=30 (mod 45), 6.8)
15x13=15 (mod 45), (6.9)
15x 14 =30 (mod 45), (6.10)
15% 16=15 (mod 45), (6.11)
15% 17=30 (mod 45), (6.12)
15%19=15 (mod 45), (6.13)
15%x22=15 (mod 45), (6.14)
15%23=30 (mod 45), (6.15)
15%26=30 (mod 45), (6.16)
15x28 =15 (mod 45), (6.17)
15%29 =30 (mod 45), (6.18)
15x31=15 (mod 45), (6.19)
15x32=30 (mod 45), (6.20)
15%34=15 (mod 45), (6.21)
15x37=15 (mod 45), (6.22)
15%38=30 (mod 45), (6.23)
15x 41 =30 (mod 45), (6.24)
15%x43=15 (mod 45), (6.25)
15 x 44 =30 (mod 45) (6.26)

That is, the resulting ¢ will be 15 or 30 with equal probability. (Similarly, one can
show that, by choosing § = n/5 = 9, the resulting € is uniformly distributed over
{9,18,27,36}). In any case, the resulting e¢ will be uniformly distributed over the
multiples of n/p, where p is a prime factor of n, and the p that minimizes the cardinality
of the set of possible €’s is the smallest prime factor of n.

As an illustration of the importance of the underlying integer ring, in what follows,
we show the best and the worst choices of integer rings in terms of security against
man in the middle attacks.
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6.1 Prime moduli

When the used modulus is a prime integer p, the underlying integer ring Z,, becomes a
field. Not surprisingly, the use of a prime modulus gives the best security performances
against message corruption attacks. Since the smallest prime factor of p is p itself, by
Theorem 5.11, the adversary’s probability of successful forgery is 1/(p — 1). That is,
there is no advantage of choosing a § over another. In other words, no matter what the
value of ¢ an adversary chooses, the resulting ¢ will be uniformly distributed over the
entire set of nonzero element {1,2,--- ,p — 1}.

6.2 Even moduli

Even moduli give the worst security against message modification. An active adversary
can take advantage of the even modulus to make the intended receiver authenticate a
false message with probability one. This is due to the fact that the smallest prime factor
of n is 2. Therefore, by Theorem 5.11, the adversary’s probability of successful forgery
is 1/(2 — 1). To illustrate the attack, let the adversary choose § = n/2. Since k, € Z,
and n is an even integer, k; must be an odd integer, which can be written in the form

21 + 1 for some positive integer r. Then,

e = dxky (modn) (6.27)
= (g) x (2r+1) (mod n) (6.28)
= % (mod n). (6.29)

Therefore, choosing § = ¢ = n/2 guarantees that the modification will go undetected
with probability one. Consequently, even moduli cannot be used to implement the
described scheme since an active adversary can always perturb both 5, and vy, in a
way undetected by the legitimate receiver.

7 Conclusion

In this paper, we investigated authentication based on a class of universal hash-function
families that have been appeared in the literature. Although the studied universal hash-
function family has appeared in many places, computations have always been per-
formed modulo prime integers. In this work, we analyzed the security of message
authentication when computations are performed over arbitrary finite integer rings.
We derived a direct relation between the security of authentication and the underly-
ing integer ring Z,. Specifically, we showed that the bound on successful forgery is
proportional to the reciprocal of the smallest prime factor of the used modulus 7.
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