
1

The Power to Show: Ad Hoc Reporting, Custom Invoices, and Form Letters
Daniel O’Connor, SAS Institute Inc.

ABSTRACT
The ability to prepare complex reports and convey your message in a clear and concise manner is an absolute
imperative in today’s sophisticated business environment. Clearly designed reports can enhance your organization’s
credibility and reputation. DATA _NULL_ report writing has long been an integral part of the custom report writing
offered by SAS®, but with this newly updated ODS Report Writing technology in SAS® 9.2, you will have the ability to
produce reports that you have only dreamed about. These new features will allow you to build custom data-centric
reports in an easy-to-use object-oriented manner that is fully integrated with the ODS System. This technology is
perfectly suited for creating custom invoices, inserting narrative descriptions in a table or document, creating form
letters and non-rectangular reports, inserting custom subtotals, and it will address a variety of custom reporting
needs.

INTRODUCTION
The DATA step is an essential concept in SAS. The DATA step serves many purposes like creating SAS data sets,
custom report writing, file management, and information retrieval. The ODS Report Writing Interface will exclusively
focus on the custom report writing capabilities. The custom report writing capabilities are also more commonly
referred to as DATA _NULL_ report writing which has long been an integral part of the SAS reporting solution. The
ODS Report Writing Interface is intended to fully embrace ODS features such as proportional fonts, traffic lighting,
using colors, images, Unicode characters, while at the same time providing pixel perfect placement capabilities. This
interface is not only fully integrated with all the capabilities of the ODS System, but also takes advantage of the rich
programming features that the DATA step offers such as conditional logic, formatting capabilities, by-group
processing, arrays, and a wealth of other features. The ODS Report Writing Interface is an object-oriented language
that provides you with flexibility and control so that even the most rigid reporting requirements can be met with ease.

DATA STEP PROCESSING
Data step processing has two distinct phases: the compilation phase and the execution phase. The compilation phase
checks for syntax of the SAS statements and then compiles them creating the input buffer, program data vector, and
descriptor information.

2

The execution phase is executed once for each input observation that is being processed. The execution phase is
further broken down into three categories: the initialization, observation loop, and the termination processing. These
three phases are particularly important to the report writing interface as we will see in the following section.

Why is each phase important?

When writing a custom report you often have a heading section at the top, a summary section at the end, and
probably a data-centric section in the middle. We are going to organize our ODS report writing code into each of
these respective sections so that they are conditionally executed.

OBJECT-ORIENTED CONCEPTS
If you have never used an object-oriented programming language before, you will need to learn a few basic concepts
before you can begin writing code.

• What is an object?

It is a self-sufficient module whose purpose is to perform a set of related tasks. By encapsulating common
tasks around a common data structure, the architecture promotes code reusability. An object contains both
data structures, and application programming interface (API) that know how to perform actions utilizing the
common data structures.

• What is a method?

It is another name for the objects application programming interface (function definition). A method can
define its own required/optional arguments to perform an action (you can think of a method as a verb). A
method can be called only by its own object. This is one of the main distinctions between a traditional
functional paradigm and an object-oriented method paradigm.

• What is a class?

A class is a formal declaration of the characteristics (attributes or data structures) and actions (methods) that
an object may perform. For example, a class named Cars would consist of characteristics shared by all cars
such as make, model, year, color, and manufacturer, and may have the ability to perform actions such as
drive, break, honk, or turn (methods). So in our hypothetical class, the action “drive” would be considered a
method, and I may want to provide the “drive” method with additional instructions on how to drive. These
instructions would be our method arguments such as forward, backward, or speed.

• What does it mean to create an instance of a class?

This is the runtime initialization of the class object attributes and methods. Now you can call methods!!!

APPLYING OBJECT-ORIENTED CONCEPTS TO THE DATA STEP
The DATA step has created a new statement that will allow you to create an object of a given class.

declare < class name > < local variable name >;

3

Here is how you would declare an ODS Report Writing class (odsout) object and assign it to a local variable named
“ODS”.

declare odsout ODS;

We have not created a runtime instance (or initialized) of the local variable “ODS” yet. This can be done in two ways.
This is really more a personal preference.

ODS = _new_ (odsout);

Or by combining the declaration:

declare odsout ODS();

In the previous section, we established that the body of the DATA step is executed once for each input observation
during the execution phase. Unlike DATA step variables that can be re-initialized for each input observation, the local
object variable “ODS” needs to be initialized only once for the life of the DATA step. Let’s instantiate the variable
“ODS” on the first input observation as follows.

if _n_ = 1 then do;

 declare odsout ODS();

end;

USING THE EXECUTION PHASES TO ORGANIZE YOUR OUTPUT

• How can I tell if I am in the initialization execution phase?

When we are executing the observation loop for the first time, then we are in the initialization execution
phase. When publishing custom reports, there may be specific method calls that we want to execute only at
the beginning. For example, to add a special heading, start a table, or write an introductory paragraph such
as…

if _n_ = 1 then do;
 declare odsout ODS();
 ODS.format_text(data: “You are in the initialization execution phase!!!”);
end;

• How can I tell if I am in the termination execution phase?

When we execute the observation loop for the very last time, then we are in the termination execution phase.
Very often, this phase is used to add a special footer, end a table that may have been started during the
initialization phase, or summarize a closing argument. To detect the termination execution, phase use the
END= data step option.

data _null_;
set sashelp.orsales(end=eof);

if eof = 1 then do;
 ODS.format_text(data: “You are in the execution phase!!!”);
 ODS.delete();
end;

run;

USING DATA STEP BY-GROUP PROCESSING TO ORGANIZE YOUR OUTPUT

One of the purposes of using the ODS Report writing interface is to create custom reports that are dynamically
generated from real data such as an invoice. Consider that I have a database of customers that contain invoice
information. I want to create an automated DATA _NULL_ program that uses my customer database as an input data
set to create one invoice (PDF file) for each customer containing all of the appropriate billing information for that
specific customer. By taking advantage of the built in BY-group processing the DATA step provides, this task can
easily be accomplished, and the best part is that the data is dynamically driving the generation of the report. Next
month when the number of customers has changed, and the account information has changed, the program

4

continues to produce invoices indefinitely until you want to modify the structure of the report. As a matter of fact, we
can use WHERE processing to subset the data to include only those customers that may be 30, 60, or 90 days past
due. We will examine a complete invoice example after we complete our introduction of the ODS report writing
methods. For a detailed explanation of the DATA step BY-group processing, please see the “BY-Group Processing in
SAS Programs” chapter in the SAS Language Reference: Concepts.

• How does BY-group processing aid the ODS Report Writing Interface?

It allows the program to take advantage of additional data-driven built-in logic. The DATA step identifies the
beginning and ending of each BY group by creating additional temporary variables: FIRST.<BY-group
variable> and LAST.< BY-group variable>. During our observation loop processing if we are on the first
observation of a BY group, the value of FIRST.<by group variable> will be set to 1. Likewise during our
observation loop processing if we are on the last observation of a BY group, LAST.<BY-group variable> will
be set to 1. Here is a simple example using some pseudo code to illustrate what BY group processing would
look like.

data _null_;
set customers;
by account_number;

if first.account_number then do;
 < start a new invoice (PDF) file >
 < write out heading information >
end;

< all the ODS Report writing code to generate the body of the invoice >

if last.account_number do;
 < write out footer information >
end;
run;

METHOD CATEGORIES
There are various methods that comprise the ODS Report Writing Interface, but they can be broken down into five
unique categories of features such as producing text, tables, controlling the page, arranging output (Layout), as well
as some more general-purpose methods. We will explore the syntax of each unique category separately first by
reviewing the syntax, and then applying the features in an example. Before we get to looking at the specific syntax of
a particular method call, let’s explore the process of a method call.

Up until now, the PROC has been the one driving the ODS system to produce output in each active output
destination. The ODS Report Writing interface simply gives the programmer complete access to the ODS System and
allows the DATA step to communicate directly with the fundamental pieces of the ODS Architecture. The programmer
can use the DATA steps conditional logic to control how to instruct ODS to present the information.

5

NOT ALL OUTPUT DESTINATIONS ARE CREATED EQUAL
There are various features that the ODS Report Writing interface relies on in order to fully support all of the
documented methods; however, not all output destinations support all features. The report writing interface is
intended for those ODS destinations that produce high-quality two-dimensional reports. Traditional data _NULL_
report writing interface provides a low-quality fixed column/row (cell) wise reporting interface that is specifically
designed to work with the ODS listing destination. You will find that not all destinations support the same set of
features, and therefore some methods may have restricted support in some destinations.

TEXT METHODS
Methods in the text category are intended to provide you with the ability to produce high-quality formatted text.
Whether publishing a form letter, invoice, or just adding narrative text to the body of your document, you will find an
elaborate list of customization features to convey the importance of your message.

• Format_text Displays active text

• Note Displays text as a note

USING TEXT METHODS
The text methods can provide you with a rich set of text-formatting features whether your text is static or being
provided from a data source. In the following example, we are going to format text coming from a SAS data set called
Brand that has two variables “tagline” and “description,” and we are going to display this data set in a non-rectangular
manner using our new text formatting methods.

Figure 1.1. Using Text Methods

Let’s look at the DATA step-specific portion of the code. The entire program is contained in Appendix 1, Example 1.1.

data _null_;
set brand end=eof;

 Notice that while processing the first observation (_n_ = 1), I create an instance of the “odsout” class
and assign it to the local variable “obj”. I also create a note using some static text, and apply some
style attributes to customize the font and color. I add an image to my text as well.

6

if _n_ =1 then do;
 declare odsout obj();
 obj.note(data: "Our Brand...",
 overrides: "preimage='c:\Public\images\star.gif'
 font_style=italic
 font_size=12pt
 font_weight=bold
 color=cxbbb2e0",
 just: "L");
end;

obj.format_text(data: tagline,
 overrides: "background=cx494068
 color=cxbbb2e0
 font_size=12pt
 font_style=italic
 width=2.5in",
 just: "C");
obj.format_text(data: description,
 overrides: "background=cxbbb2e0
 font_style=italic
 font_size=8pt
 width=2.5in",
 just: "C");

if eof ne 1 then
 obj.format_text(data: " ",
 overrides: "height=1mm");

;RUN;

TABLE CATEGORY
Methods in this category are intended to create tabular output that consists of row/column headers, and data values
in a structured format. PROCs automatically produce tabular output to display the results of the analysis requested,
however you only have limited control of the content displayed. Please see “The TEMPLATE Procedure” section in
the ODS documentation to learn more about modifying your procedure output. The ODS Report Writing interface
provides the ability to create tabular output a single cell at a time while providing an endless number of formatting
capabilities. This interface is specifically intended to address the formatting limitations of the TEMPLATE procedure
as well as the limitations of the standard report-writing procedures. Before we get to looking at the specific syntax of
the table methods, let’s examine the anatomy of a table.

• What is a table?

It is a 2-D arrangement of information that is traditionally displayed in a manner in which similar categories or
classes of information are displayed in a structured manner (a collection of rows).

• What is a row?

The horizontal dimension of a 2-D arrangement (a collection of cells in the horizontal dimension).

These FORMAT_TEXT methods are not surrounded by any conditional logic, so they will be executed
for each observation in the input data set. We are simply displaying the value of the “tagline” and
“description” variables with some custom formatting characteristics. Notice that each FORMAT_TEXT
method will produce an entire line in the output. You are free to use DATA step string concatenation, or
provide additional formatting through the use of a SAS format.

I want to insert a blank line in between each tagline and description as long as it is not the last
observation because that would add a blank line to the end of my report. So here we are using the
END= DATA step option to display the blank line only when desired.

7

• What is a column?

The vertical dimension of a 2-D arrangement (a collection of cells in the vertical dimension).

• What is a cell?

A collection of data, text, or images that can span multiple rows or columns.

• What is cell padding?

The thickness on each of the four sides of the cell.

• What is cell spacing?

The thickness of the spacing between cells.

Figure 1.1. The Anatomy of a Table

Heading Section

Footer Section

Body Section

Cell Spacing (5mm)

Cell Padding (5mm)

8

TABLE SECTION METHODS
• HEAD_START Start the Table Heading Section.

• HEAD_END End the Table Heading Section.

• BODY_START Start the Table Body (Data) Section.

• BODY_END End the Table Body (Data) Section.

• FOOT_START Start the Table Footer Section.

• FOOT_END End the Table Footer Section.

TABLE METHODS
Data is not always presented in a strict Excel-like fashion (1 observation => 1 row). Often, you may want to show one
observation in multiple rows/columns format, or multiple observations in a single row/column format. Once you start a
table, you will want to continue using the table methods exclusively until you close the table. The only exception is that
FORMAT_TEXT can be used in conjunction with the CELL_START and CELL_END methods as we will see in our
following example.

• TABLE_START Start a table.

• TABLE_END End a table.

• ROW_START Start a row.

• ROW_END End a row.

• CELL_START Start a cell.

• CELL_END End a cell

• FORMAT_CELL A more convenient way to create a cell.

USING TABLE METHODS
The table methods allow you to build a table one cell at a time. This approach is invaluable when a custom table
format is desired. In this example, I have hard-coded all of the data values just for convenience, but the data could
have been supplied via an input data set. Notice that there is no conditional logic at all and no input data set;
therefore, the code is executed just one time.

9

Figure 1.2. Using Table Methods

Let’s look at the DATA step-specific portion of the code. The entire program is contained in the Appendix 1, Example
1.2.

data _null_;
dcl odsout obj();

obj.table_start(name: "Stock",
 label: "Stock Quote",
 overrides: "width=4in");

 obj.row_start();
 obj.format_cell(data: "STAR (Common Stock)",
 column_span: 2,
 overrides: "backgroundcolor=cx494068 color=white");
 obj.row_end();

Start a table by giving it a name=”Stock” and a label=”Stock Quote” which will be the corresponding leaf
node name and label that will be used in the DMS Results window as well as in the table of contents.
We also specify that the overall table maximum width is 4 inches. If the width was not specified, the
table would measure each cell and determine the maximum width for you as long as it does not exceed
the physical page restrictions.

Remember, “tables” can contain only “rows,” and “rows” can contain only “cells.” Once the first row is
closed, the maximum number of cells has been determined. In this next section, I start a row and
create a single cell. However, notice that I told the cell to span two columns. So, in effect it really is two
cells. However, I have allowed the data to be displayed as if it were a single cell.

In rows 2–4, I create two separate cells individually using the FORMAT_CELL method providing
various style attribute overrides to control color, font characteristics, and justification. In a more
elaborate example, it would be common to use the DATA steps conditional logic to apply different
characteristics based on your data values. For example, I may want to conditionally color the change
value based on whether it is negative (red), or positive (green).

10

 obj.row_start();
 obj.format_cell(data: "Exchange",
 overrides: "just=left font_weight=bold");
 obj.format_cell(data: "NYSE (US Dollar)",
 overrides: "just=left");
 obj.row_end();

 obj.row_start();
 obj.format_cell(data: "Price",
 overrides: "just=left font_weight=bold");
 obj.format_cell(data: "$23.54",
 overrides: "just=left");
 obj.row_end();

 obj.row_start();
 obj.format_cell(data: "Change (%)",
 overrides: "just=left font_weight=bold");
 obj.format_cell(data: "0.12 (.51%)",
 overrides: "just=left color=green");
 obj.row_end();

 obj.row_start();
 obj.cell_start();
 obj.format_text(data: "Volume",
 overrides: "just=left font_weight=bold");
 obj.cell_end();
 obj.format_cell(data: "11,390",
 overrides: "just=left");
 obj.row_end();

 obj.row_start();
 obj.format_cell(data: "Data as of 1/7/2009 9:43 am ET *Minimum 20 minute delay",
 column_span: 2,
 split: '*',
 overrides: "font_size=10pt just=left");
 obj.row_end();
obj.table_end();
;run;

PAGE METHODS
Page-related methods control characteristics of the entire page. For example, you can arbitrarily start a new page or
modify an existing title or footnote. The TITLE and FOOTNOTE methods will allow you to incorporate a particular data
value into your title or footnote. These methods are intended to work similarly to the global TITLE and FOOTNOTE
statements available outside the DATA step.

• PAGE Start a new page.

• TITLE Add, delete, or update a title in the system.

• FOOTNOTE Add, delete, or update a footnote in the system.

In row 5, instead of using the FORMAT_CELL method I use the equivalent CELL_START,
FORMAT_TEXT, and CELL_END approach. This is normally unnecessary, but there may be special
cases where this approach can be beneficial.

In row 6, I once again instruct the FORMAT_CELL method to span multiple columns, but notice that
the text is drawn on two separate lines. The split character argument instructs ODS to perform a new
line whenever the provided character is encountered. Notice that the “*” character is not displayed. This
is treated as an instruction instead of a literal character. Finally, we close the table by using the
TABLE END method.

11

LAYOUT CATEGORY
When the placement of output on a page necessitates a detailed level of control, you will find that the layout methods
may be a more suitable solution. Despite being preproduction in SAS 9.2, you will find many enhanced features that
are designed to provide you with unlimited control of your page. Layout has two distinct forms: Absolute and Gridded;
both have unique strengths and weaknesses. The most important decision when using ODS Layout is in selecting the
type that best suits your report design. ODS Layout is designed to allow nested layouts (containers) to provide
endless customization. You are not limited to a single Layout type; a gridded layout can contain absolute layouts, and
vice versa. This is where adequate design work will greatly benefit your coding efforts.

NOT ALL OUTPUT DESTINATION ARE CREATED EQUAL
There are a variety of limitations imposed on ODS Layout by the destination itself. For example, the PDF (or
PRINTER) destinations are all limited to the physical page size of the piece of paper that we are writing to. In the case
of HTML, there really is no concept of a physical page size or an X or Y position because the browser is managing the
placement of the output in relation to the size and placement of the browser window. Due to some of these external
restrictions that are being imposed on our report design, we may get varying results when using differing output
destinations. However, you will find that we will always make an effort to provide the most intuitive defaults when
dealing with these limitations and will make every effort to produce reasonably similar-looking output.

 ODS LAYOUT TERMINOLOGY, CONCEPTS, AND THINGS TO CONSIDER
Layout Container Is an area that contains a collection of regions. Layouts can contain only regions. Layout

can have a fixed size (like width=3in and height=4in) or can be dynamically sized to
accommodate the child regions.

Region Container Is an area that contains output (like text, tables, graphs),
 or nested layout containers. Regions can also have a
 fixed size, or may be dynamically sized to
 accommodate the collection of child output.

Dimension Unit Is a nonnegative number, optionally followed by one
 of the following units of measure. A number without a
 unit of measure will be interpreted as pixels. It is not
 recommended that you size things in pixels because of
 adverse dependencies on resolution that can differ
 between destinations.

 cm centimeters
 em standard typesetting measurements unit for
 width
 ex standard typesetting measurements unit for
 height
 in inches
 mm millimeters
 pt a printer’s point

Titles & Footnotes Global titles and footnote are placed outside of the outermost layout container.
Title and footnote processing is always done before any output is produced on the physical
page. This is often referred to as page initialization time.

PROCTITLEs PROCTITLEs are placed inside the region adjacent to the PROC output.

GRIDDED LAYOUT
Gridded layout allows you to arrange output in a two-dimensional relative grid structure (like a spreadsheet or piece of
graph paper), and is the preferred approach to managing output on the page. Gridded layout is a much simpler
mechanism for arranging output. Yet at the same time, it also is a much more powerful alternative than absolute
layout. Gridded layout address all of the limitations that absolute layout has to offer such as enforcing automatic
alignment of respective grid cells, the ability to have a layout continue onto the next page if necessary, the ability to
dynamically compute the size of a grid cell, and the ease in which you can maintain the integrity of the report(or
program).

Valid Destinations: HTML and PRINTER destinations.

 Titles

 Footnotes

Layout

Container

Region

Container

Region

Container

12

GRIDDED LAYOUT METHODS
• LAYOUT_GRIDDED Create a gridded layout container.

• REGION Create a region container.

• LAYOUT_END End a gridded layout container

USING GRIDDED LAYOUT METHODS
When a more detailed level of placement is necessary, the layout methods will be your best solution. In the following
example, we will experiment with arranging images and text in a grid-like fashion. Our data is provided from a SAS
data set that has three variables: PHOTO (employee photo), NAME (employee name), and BIO (employee
biography). Almost any organization has a company employee database. An employee database has unique data
characteristics that are less traditional than reporting data sources like inventory levels or sales data. Because of the
unique nature of an employee database, traditional reporting approaches are probably not going to be well-suited for
presenting this information. The ODS Report Writing interface provides you with the flexibility to address these
custom report-writing requirements. Let’s take a look at how we generated the following report.

Figure 1.3. Using Gridded Layout Methods

Let’s look at the DATA step-specific portion of the code. The entire program is contained in the Appendix 1, Example
1.3.

data _null_;
set execs end=eof;

Notice that while processing the first observation (_n_ = 1) I create an instance of the “odsout” class
and assign it to the local variable OBJ, and create a gridded layout that has two columns. I also have
instructed the gridded layout to center itself horizontally on the page.

13

if _n_=1 then do;
 dcl odsout obj();
 obj.layout_gridded(columns: 2,
 overrides: "just=center");
end;

obj.region(width: "1.25in");
 obj.image(file: photo,
 overrides: "just=left width=100pct");
 obj.format_text(data: strip(name),
 overrides: "just=left width=100pct");

obj.region(width: "3.25in");
 obj.format_text(data: strip(bio));

if eof ne 1 then
 obj.format_text(data: "");
else
 obj.layout_end();
;run;

ABSOLUTE LAYOUT
Absolute layout allows you to specify the exact location on the page to place a layout and region container. This
approach is very precise, but often somewhat error-prone. The sole responsibility for correctly placing each container
falls on the programmer. Often, this creates an overly complicated program because each container needs to be
explicitly placed to ensure no overlap, and programmatic alignment is retained. This creates a code management
nightmare because, if one containers position is altered, you may need to manually alter all containers to maintain
your report’s integrity. Absolute layout is also restricted to a single page. If the output is too large to fit in the fixed size
container, the output will be discarded, and you will receive a blank region and a warning in your log. With all that
doom and gloom out of the way, absolute layout does have its merits. Absolute layout is perfectly suitable for very

Remember, a “layout” can contain only “regions”, and only “regions” can contain output (tables, text,
images, or graphs). I create my first region which will correspond to column 1 in my gridded output,
and place the current observations of employee photo and name in our first region (column). Notice
that I provide a width for the first region which will provide a maximum width for all output that will
be rendered. If I had not provided a width for the region it would have measured the employee photo
and name and would dynamically size the region to be the maximum width of the two items.

Remember: When in a gridded layout, regions are populated similar to the way a table is produced
from left → right and top → bottom. Therefore, when I create the second region, it is arranged to the
right of the first region because my gridded layout is made up of a two-column grid. Notice that I also
provide a width for the second region which will provide a maximum width for all of the output
rendered. We have established that our gridded layout is structured in two-column grid with the first
region having a width of 1.25 inches and a second region having a width of 3.25 inches which means
that our entire layout size can now be calculated to be 4.5 inches. In this example, I have set the paper
size to be 4 inches tall by 6 inches wide. Therefore to center the layout as specified in our
“layout_gridded” method, we will have 0.75 inches to the left of the table as well as 0.75 inches to the
right. The really cool thing is that it is all done for you!!

After displaying the bio in region 2, I once again take advantage of the END= DATA step option to
allow me to insert a blank line between each employee’s information unless I am processing the last
employee in which case I need to close my gridded layout. You can start to see how the arrangement
of your method call really dictates the structure of your output, and how using the DATA step’s
conditional logic provides you with an almost endless list of possibilities.

14

static types of output, placing output in a specific location on a pre-printed form, creating cover pages, or precisely
placing output in a nested region container.

Valid Destinations: PRINTER destinations only (like PDF, PS, PCL).

ABSOLUTE LAYOUT METHODS
• LAYOUT_ABSOLUTE Create an absolute layout container.

• REGION Create a region container.

• LAYOUT_END End an absolute layout container.

USING ABSOLUTE LAYOUT METHODS T0 CREATE A PROMOTIONAL MAILER
Whether it is a promotional mailer, customer targeted letter, or part of a promotional email campaign, the combination
of static content and data-specific content is pervasive in any business today. The ODS Report Writing interface is
perfectly suited for producing this type of content. Consider that Orion Star wants to execute a customer loyalty
program for all of its current Club Members by sending a “25% off” flyer. Each flyer needs to be individually addressed
to each customer, and could be tailored specifically to each customers preferred shopping preference by using the
DATA steps conditional logic. However for the purposes of this example I am going to create a generic flyer that
creates a separate PDF file for each customer who could be either snail-mailed or e-mailed. Our data is provided from
a SAS data set of Orion Star’s Club Members and contains “name”, “address”, “email”, and “preferredcategory”
variables.

Figure 1.4. Using Absolute Layout Methods

Let’s look at the DATA step-specific portion of the code. The entire program is contained in the Appendix 1, Example
1.4. Absolute layout methods are probably the least stable of all of the ODS Report Writing interface.

 To create a separate PDF file for each customer in our input database, we need to use a couple of

features, the first being the newfile= option on the ODS PDF statement. This tells ODS to create a
new pdf file for each By-group (or each customer). To do BY-group processing in the DATA step,
you use the “by name;” statement.

15

ods pdf file="Promotion.pdf" notoc newfile=Bygroup;

data _null_;
set customers end=eof;
by name;
if _n_ =1 then do;
 declare odsout obj();
end;

obj.open_dir(name: name,
 label: email,
 by: 1);

obj.layout_absolute(overrides: "borderwidth=1");

obj.region(width: "2.4in",
 height: "4in",
 overrides: "background=cx494068");
 obj.image(file: "c:\Public\Images\orionstarHeader.jpg");
 obj.format_text(data: "Private Sale",
 overrides: "color=cxbbb2e0 font_size=32pt",
 just: 'c');
 obj.layout_gridded(columns: 3,
 row_gutter: "1mm",
 column_gutter: "1mm");
 obj.region();
 obj.format_text(data: "25",
 overrides: "color=cxbbb2e0 font_size=72pt");

 obj.region();
 obj.format_text(data: "%*off",
 split: "*",
 overrides: "color=cxbbb2e0 font_size=32pt");

 obj.region();
 obj.format_text(data: "Now *through *March 25",
 split: "*",
 overrides: "color=cxbbb2e0 font_size=10pt");
 obj.layout_end();
 obj.format_text(data: "your entire purchase *when you bring this card",
 split: "*",
 overrides: "color=cxbbb2e0 font_size=12pt width=85pct",
 just: 'C');
 < more... >

There is one final step in creating a new PDF file for each customer in our input data set, and that is to
notify ODS that we are starting a new By-group which can be done by using the OPEN_DIR method
with the special BY: 1 argument. I am also creating a directory in my DMS Results window using the
NAME and EMAIL data variables.

Creating an absolute layout it easy. Notice that I have not specified a fixed size for my absolute layout
so the dimension will be dynamically calculated based on the encapsulated regions; however, I do
specify that I want a pixel border around the layout.

My first absolute region has specified a HEIGHT and WIDTH with additional instructions to change
the background color to be “cx494068”. We then proceed to insert an image, some static text, and a
nested gridded layout.

I Create a second region which contains multiple tables of information. This region contains local
store information, store hours, and a special free wrapping service offered to club members only. If
this were a real-world example, you almost certainly would use the DATA step’s conditional logic to
include only those stores that are close to our customer’s home address. Unlike our gridded regions
that are positioned relative to each other, the programmer is required to specifically place each region
at a given location on the page so as to not obscure any other output.

16

obj.region(x: "2.4in",
 width: "1.25in",
 height: "4in",
 overrides: "background=cx494068 borderwidth=1");
 obj.table_start(overrides: "rules=none frame=void cellpadding=0 cellspacing=0");
 obj.row_start();
 obj.format_cell(data: "Pleasant Valley Promenade",
 overrides: "color=cxbbb2e0 font_size=6pt font_weight=bold");
 obj.row_end();
 obj.row_start();
 obj.format_cell(data: "6204-121 Glennwood ave.",
 overrides: "color=white font_size=6pt just=left");
 obj.row_end();
 obj.row_start();
 obj.format_cell(data: "Raleigh, NC",
 overrides: "color=white font_size=6pt just=left");
 obj.row_end();
 obj.row_start();
 obj.format_cell(data: "919.432.0987",
 overrides: "color=white font_size=6pt just=left");
 obj.row_end();
 obj.row_start();
 obj.format_cell(data: "", overrides:"font_size=6pt");
 obj.row_end();
 < more... >

 obj.table_start(overrides: "frame=box");
 obj.row_start();
 obj.format_cell(data: "Free Gift Wrapping",
 overrides: "color=cxbbb2e0 font_size=10pt just=center
 vjust=middle width=1in height=.5in font_weight=bold");
 obj.row_end();
 obj.table_end();

obj.region(x: "1.9in",
 width: "2.75in",
 height: "4in");
 obj.format_text(data: "Exclusive *Invitation *for our *Club *Members",
 split: "*",
 overrides: "color=cx494068 font_size=36pt");
 obj.format_text(data: " ");

 obj.format_text(data: name);
 obj.format_text(data: street);
 obj.format_text(data: strip(city) || ", " || state || " " || zip);

obj.layout_end();
obj.close_dir();
;run;
ods pdf close;

The third and final region of this example presents the data specific portion of our promotional flyer.
Notice here instead of passing quoted strings of static text I am passing the actual input data variable
values. The DATA step also has built in string concatenation logic which also allows us to
concatenate the city, state, and zip.

We are creating an entire page for each observation processed. I will want to close the absolute layout
and directory that was created for this observation so that the next loop through we can start our new
flyer for the next club member.

17

MISCELLANEOUS CATEGORY
• OPEN_DIR Insert a custom folder in the table of contents and DMS Results window.

• CLOSE_DIR Close a custom folder in the table of contents and DMS Results window.

• LINE Draw a horizontal line across the page.

• IMAGE Insert an image.

• HREF Create a URL link that will be taken when the item is clicked.

• DELETE Delete the object.

CREATING A FORM LETTER
The content of a form letter can vary greatly from completely static text to largely data-dependent information. In the
following example, I have a good mix of both. Once again, I am using my fictitious Orion Star Sports & Outdoor
retailer to create a form letter for a customer loyalty program called the “Orion Star Club” rewards program. The
customer will receive one point for every dollar spent, and an additional one point for every dollar spent using his or
her “Orion Star Club Visa” card.

This example uses three different data sources that will contribute to the form letter using a single DATA _NULL_
program.

1. customer data set that contains name, address, and account number information

2. product data set that contains product descriptions, photos, pricing, and product ID information

3. transaction data set that contains invoice and purchasing information

I used a variety of ODS Report Writing methods in each of these regions to show the flexibility of this
programming interface. The absolute layout methods only provided region containers to organize the
output that we wanted to display irrespective of whether it was a table, image, text, or another nested
layout.

18

Figure 1.5. Creating a Form Letter

Let’s look at the DATA step-specific portion of the code. The entire program is contained in Appendix 1, Example 1.5.
In this example, I am going to use another object-oriented class called the “data step hash object.” For more
information on how to use the hash object, please see http://support.sas.com.

data _null_;
retain invsum bonus sum clubpoints;

if _n_ =1 then do;
 declare odsout obj();

 length name $20 street $22 city $12 state $3;
 zip=.;
 declare hash customer(dataset: "customers");
 customer.defineKey("accountid");
 customer.defineData("name", "street", "city", "state", "zip", "clubpoints");
 customer.defineDone();

Use the DATA Step retain statement to retain summarization information across multiple purchase
transactions (observations) to show the monthly accumulated club points for each customer.

On the first input observation, create two hash objects, one with a key index value using the
customer’s “accountid” to look up customer information and a second one with a key index using the
“productid” to look up pricing inventory information for each transaction. This step simply creates the
lookup hash object.

19

 length item $64;
 itemno=.; instock=.; productstatus=.; regprice=.; saleprice=.; additionalshipping=.;
 declare hash product(dataset: "inventory");
 product.defineKey("itemno");
 product.defineData("item", "instock", "productstatus", "regprice", "saleprice",
"additionalshipping");
 product.defineDone();
end;

set transactions end=eof;
by accountid invoice;
if first.accountid then do;
 sum=0;
 obj.open_dir(name: "Invoice",
 label: "Invoice for Customer " || accountid,
 by: 1);

 if customer.find() eq 0 then do;
 obj.layout_gridded(columns: 2);
 obj.region(width: "3.25in");
 obj.format_text(data: strip(street),
 overrides: "font_size=14pt width=100pct just=left");
 obj.format_text(data: strip(city) || ", " || state || " " || zip,
 overrides: "font_size= 14pt width=100pct just=left");
 obj.format_text(data: " ");
 obj.format_text(data: put(today(), worddate18.),
 overrides: "font_size=14pt width=100pct just=left");
 obj.format_text(data: " ");
 obj.format_text(data: "Dear " || strip(name) || ",",
 overrides: "font_size=14pt width=100pct just=left");
 obj.region();
 obj.image(file: "c:\public\Images\Scenic2.jpg");
 obj.layout_end();

 < more . . .>

 obj.table_start(overrides: "width=100pct");
 obj.row_start();
 obj.format_cell(data: "Current Club Point Balance",
 column_span: 2,
 overrides: "font_weight=bold font_size=16pt");
 obj.format_cell(data: clubpoints,
 format: "comma8",
 overrides: "font_weight=bold font_size=16pt");
 obj.row_end();
 obj.row_start();
 obj.format_cell(data: "Recent Purchases",
 column_span: 3);
 obj.row_end();

Seeing that my input transaction data set shares common variables “accountid” and “productid” with
the keys in my lookup hash objects, if I call the find method, it automatically uses the current
“account id” value as a lookup. If the “accounted” value is found in the hash object any variables
defined using the “defineData” method will be accessible. Use the gridded layout and
FORMAT_TEXT methods to display the customer address information, static text information
describing the program, and offering a special Visa Application.

Here, we are creating a table that shows the customer’s previously accumulated club points, as well as
any points that have been accumulated during this month’s billing cycle with purchase date, invoice
number, credited points for each invoice. I also conditionally add a “Bonus Visa Club Point” row to
the table if the customer has paid for these items with their Orion Star Cub Visa card. Notice that this
is completely conditional based on my input data.

20

 obj.row_start();
 obj.format_cell(data: "Date");
 obj.format_cell(data: "Invoice Number");
 obj.format_cell(data: "Additional Club Points");
 obj.row_end();
 end;
end;

if first.invoice then do;
 invsum=0;
 bonus=0;
end;

if product.find() eq 0 then do;
 if saleprice ne 0 then
 cost = quantity*saleprice;
 else
 cost = quantity*regprice;
 invsum = invsum + cost;
 sum = sum + cost;
end;

if clubvisa eq 1 then do;
 bonus = bonus + clubvisa*cost;
 sum = sum + clubvisa*cost;
end;

if last.invoice then do;
 obj.row_start();
 obj.format_cell(data: date,
 format: "mmddyy10.");
 obj.format_cell(data: invoice);
 obj.format_cell(data: invsum,
 format: "comma8.");
 obj.row_end();

 if clubvisa eq 1 then do;
 obj.row_start();
 obj.format_cell(data: "Bonus Visa Club Points",
 column_span: 2);
 obj.format_cell(data: bonus,
 format: "comma8.");
 obj.row_end();
 end;
end;

On the first BY observation of an invoice, I want to clear my retained variable so that I can sum the
club points for each invoice.

My transaction dataset only contains the “productid” of the items that was purchased so I have to use
my product hash object to look up the product description, and price information so that I can
correctly calculate the correct number of club points to credit to the customer. Isn’t this cool?!

If the customer used their Orion Star Club Visa card, calculate the bonus club points.

When we have reached the last observation for this particular form letter display rows showing the
summarized club and bonus points.

When we exhausted all the invoices for the current customer, display the “New Club Point Balance”,
and provide instruction on how to redeem the points.

21

if last.accountid then do;
 obj.row_start();
 obj.format_cell(data: "New Club Point Balance",
 column_span: 2,
 overrides: "font_weight=bold font_size=16pt");
 obj.format_cell(data: clubpoints+sum,
 overrides: "font_weight=bold font_size=16pt",
 format: "comma8.");
 obj.row_end();

 obj.table_end();

 obj.format_text(data: " ",
 overrides: "font_size=16pt");
 obj.format_text(data: "How to Redeem Points?",
 overrides: "background=cxbbb2e0 font_size=20pt");
 obj.format_text(data: "Step-by-step instruction on how to use your Club REWARD Point
to purchase free items.",
 overrides: "font_size=16pt");
 obj.format_text(data: " ");
 obj.format_text(data: "~{style [font_size=20pt
url='http:\\www.orionstar\redeempoints']Learn How!}");

 obj.close_dir();
end;

if end eq 1 then do;
 obj.delete();
 customer.delete();
 product.delete();
end;
;run;

CREATING A CUSTOMER INVOICE
Generating invoices can be similar to creating form letters; however, invoices traditionally are much more data-
centric, and may take advantage of more elaborate conditional logic. Using the DATA step, you can create a more
tailored invoice for each customer. This could also create an opportunity to do some suggestive selling based on the
customer’s recent purchasing behavior. This is where the DATA step functionality will allow you to be more creative
than those traditional canned template approaches and hopefully yield a better ROI on your promotional activities.

22

Figure 1.6. Creating an Invoice

Let’s look at the DATA step-specific portion of the code. The entire program is contained in Appendix 1, Example 1.6.
In this example, I am also going to use the DATA step hash object as I did in Example 1.5. If you would like to see
detailed information on how to use the hash object, please see http://support.sas.com. Seeing that I detailed the use
of the hash object in Example 1.5, I am also going to eliminate that code from this discussion.

Data _null_;
retain foundcustomer sum shipping;

< more ... >

set transactions end=eof;
by invoice;

Use the DATA Step retain statement to retain summarization information across multiple purchase
transactions (observations) so that we can display all the items purchased, price, shipping, and total
for each invoice.

We are using the same input data set as in example 1.5 that contains product sales information for this
month’s billing cycle for each invoice.

On the first observation of a new invoice transaction, I want to clear my retained variables so that I
can accurately compute product sales information for each product purchased on this particular

23

if first.invoice then do;
 sum=0;
 shipping=0;
 foundcustomer = customer.find();
 if foundcustomer eq 0 then do;
 obj.open_dir(name: "Invoice",
 label: "Invoice (Number=" || strip(invoice) ||
 ") for customer " || strip(name),
 by: 1);

 obj.layout_gridded(columns: 2);
 obj.region(width: "4.5in");
 obj.format_text(data: strip(name),
 overrides: "font_size=14pt width=100pct just=left");
 obj.format_text(data: strip(street),
 overrides: "font_size=14pt width=100pct just=left");
 obj.format_text(data: strip(city) || ", " || state || " " || zip,
 overrides: "font_size= 14pt width=100pct just=left");
 obj.format_text(data: " ");
 obj.format_text(data: put(date, worddate18.),
 overrides: "font_size=14pt width=100pct just=left");

 obj.region();
 obj.table_start();
 obj.row_start();
 obj.format_cell(data: "Invoice Number:",
 overrides: "font_size=16pt font_weight=bold");
 obj.format_cell(data: invoice,
 overrides: "width=1.5in font_size=16pt");
 obj.row_end();
 obj.table_end();
 obj.layout_end();

 obj.table_start(overrides: "width=100pct");
 obj.head_start();
 obj.row_start();
 obj.format_cell(data: "Items(s)",
 column_span: 2);
 obj.format_cell(data: "Quantity");
 obj.format_cell(data: "Regular Price");
 obj.format_cell(data: "Sales Price");
 obj.format_cell(data: "Total");
 obj.row_end();
 obj.head_end();
 end;
end;

if (foundcustomer eq 0) and (product.find() eq 0) then do;
 if saleprice ne 0 then
 cost = quantity*saleprice;
 else
 cost = quantity*regprice;
 sum = sum + cost;
 shipping = shipping + additionalshipping;

 obj.row_start();
 obj.format_cell(data: item,

Display customer address information, an invoice number table, and heading information for the
products purchased.

For every product purchased, add a row to the table describing the item, showing the catalog photo,
quantity purchased, price information, and total cost.

24

 column_span:2,
 inhibit: "B",
 overrides: "just=left");
 obj.format_cell(data: quantity,
 inhibit: "B");
 obj.format_cell(data: regprice,
 inhibit: "B");
 obj.format_cell(data: saleprice,
 inhibit: "B");
 obj.format_cell(data: put(cost, dollar10.2),
 inhibit: "B");
 obj.row_end();
 obj.row_start();
 obj.format_cell(data: " ",
 column_span: 2,
 overrides: "preimage='c:\public\Images\" || photo || "' just=left");
 obj.format_cell(data: " ");
 obj.format_cell(data: " ");
 obj.format_cell(data: " ");
 obj.format_cell(data: " ");
 obj.row_end();
end;

if last.invoice then do;
 obj.row_start();
 obj.format_cell(data: " ",
 column_span: 3,
 row_span: 4);
 obj.format_cell(data: "Subtotal",
 column_span: 2,
 overrides: "just=right color=darkgray");
 obj.format_cell(data: put(sum, dollar10.2));
 obj.row_end();
 obj.row_start();
 obj.format_cell(data: "US Shipping",
 column_span: 2,
 overrides: "just=right color=darkgray",
 inhibit: "TB");
 obj.format_cell(data: put(shipping, dollar10.2));
 obj.row_end();
 obj.row_start();
 obj.format_cell(data: "Tax",
 column_span: 2,
 overrides: "just=right color=darkgray",
 inhibit: "TB");
 tax = sum*.08;
 obj.format_cell(data: put(tax, dollar10.2));
 obj.row_end();

 obj.row_start();
 obj.format_cell(data: "Total",
 column_span: 2,
 overrides: "just=right font_weight=bold");
 obj.format_cell(data: put(sum+tax+shipping, dollar10.2));
 obj.row_end();
 obj.table_end();
 obj.close_dir();
end;

< more ... >

;run;

When we have reached the final observation for this invoice, display the Subtotal information,
additional shipping expense, tax, and grand total.

25

CONCLUSION
The ODS Report Writing Interface extends SAS report writing capabilities to address custom report writing
capabilities. It is fully integrated with ODS features such as proportional fonts, traffic lighting, using colors, images,
and unicode characters. The interface provides pixel-perfect placement capabilities while at the same time taking
advantage of the rich programming features that the DATA step offers. With the flexibility of the DATA step and
enhance ODS reporting features available, even the most rigid reporting requirements can be met with ease.

ACKNOWLEDGMENTS
The author would like to thank Allison Crutchfield for her contributions to this paper.

REFERENCES
“Getting Started with the DATA Step Hash Object” by Jason Secosky and Janice Bloom; 2007; SAS Institute Inc.

Http://support.sas.com/rnd/base/datastep/hash-getting-started.pdf

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:

Daniel O’Connor
SAS Institute Inc.
Building R, SAS Campus Drive
Cary, NC 27513
919-531-6171
Dan.OConnor@sas.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

26

APPENDIX 1 EXAMPLES
Example 1.1 Using TEXT Methods

ods listing close;
options nodate nonumber;
ods escapechar="~";
options papersize=(6in 4in);

data brand;
length tagline $24 description $128;
input tagline $24. / description $128.;
datalines;
Our Mission
To deliver the best quality sporting equipment, accessories, and outdoor equipment for
all seasons at the most affordable prices.
Our Vision
To transform the way the world purchases sporting and outdoor equipment.
Our Values
Customer focused, Swift and Agile, Innovative, Trustworthy
Our Goal
To grow sales by 15% annually while also improving profit margin through innovative
thinking and operational efficiencies.
;

title "~{style [preimage='c:\images\orionstarHeader.jpg' width=100pct
background=cx494068 color=cxbbb2e0 font_size=24pt just=left] Our Company}";
footnote "~{style [font_size=10pt just=right color=cxbbb2e0]Provided to you
compliments of SAS 9.2 using ODS Report Writing Interface using Text methods.}";
ods pdf file="text.pdf" notoc;

data _null_;
set brand end=eof;
if _n_ =1 then do;
 declare odsout obj();
 obj.note(data: "Our Brand...",
 overrides: "preimage='c:\images\star.gif'
 font_style=italic
 font_size=12pt
 font_weight=bold
 color=cxbbb2e0",
 just: "L");
end;
obj.format_text(data: tagline,
 overrides: "background=cx494068
 color=cxbbb2e0
 font_size=12pt
 font_style=italic
 width=2.5in",
 just: "C");
obj.format_text(data: description,
 overrides: "background=cxbbb2e0
 font_style=italic
 font_size=8pt
 width=2.5in",
 just: "C");
if eof ne 1 then
 obj.format_text(data: " ",
 overrides: "height=1mm");
;run;
ods _all_ close;

Example 1.2 Using Table Methods

ods listing close;
options nodate nonumber;

27

ods escapechar="~";
options papersize=(6in 4in);
title "~{style [preimage='c:\images\orionstarHeader.jpg' width=100pct
background=cx494068 color=cxbbb2e0 font_size=32pt just=left]}";
footnote "~{style [font_size=10pt just=right color=cxbbb2e0]Provided to you
compliments of SAS 9.2 using ODS Report Writing Interface using Table methods.}";
ods pdf file="stockquote.pdf";

data _null_;
dcl odsout obj();
obj.table_start(name: "Stock",
 label: "Stock Quote",
 overrides: "width=4in");
obj.row_start();
obj.format_cell(data: "STAR (Common Stock)",
 column_span: 2,
 overrides: "backgroundcolor=cx494068 color=white");
obj.row_end();
obj.row_start();
obj.format_cell(data: "Exchange",
 overrides: "just=left font_weight=bold");
obj.format_cell(data: "NYSE (US Dollar)",
 overrides: "just=left");
obj.row_end();
obj.row_start();
obj.format_cell(data: "Price",
 overrides: "just=left font_weight=bold");
obj.format_cell(data: "$23.54",
 overrides: "just=left");
obj.row_end();
obj.row_start();
obj.format_cell(data: "Change (%)",
 overrides: "just=left font_weight=bold");
obj.format_cell(data: "0.12 (.51%)",
 overrides: "just=left color=green");
obj.row_end();
obj.row_start();
obj.cell_start();
obj.format_text(data: "Volume",
 overrides: "just=left font_weight=bold");
obj.cell_end();
obj.format_cell(data: "11,390",
 overrides: "just=left");
obj.row_end();
obj.row_start();
obj.format_cell(data: "Data as of 1/7/2009 9:43 a.m. ET *Minimum 20 minute delay",
 column_span: 2,
 split: '*',
 overrides: "font_size=10pt just=left");
obj.row_end();
obj.table_end();
run;

ods _all_ close;

Example 1.3 Using Gridded Layout Methods

ods listing close;
options nodate nonumber;
ods escapechar="~";
options papersize=(6in 4in);
data execs;
length photo $64 name $32 bio $256;
input photo $64. / name $32. bio $256.;
datalines;
c:\images\scott.jpg
Scott Huntley

28

Scott Huntley is the CEO and President of Orion Star, which he co-founded in 1976.
Orion leads the industry in innovation with its award-winning recreational and
outdoor equipment.
c:\images\dan.jpg
Dan OConnor
Dan OConnor is the CIO of Orion Star, which he also helped co-found in 1976. Orion
continues to revolutionize the sporting goods and outdoors accessory industry though
the adoption of technology to offer the best products at the most affordable price.
;

title "~{style [preimage='c:\images\orionstarHeader.jpg' width=100pct
background=cx494068 color=cxbbb2e0 font_size=32pt just=left] Our Founders}";
footnote "~{style [font_size=10pt just=right color=cxbbb2e0]Provided to you
compliments of SAS 9.2 using ODS Report Writing Interface Gridded Layout features.}";

ods pdf file="founders.pdf" notoc;
data _null_;
set execs end=eof;
if _n_=1 then do;
 dcl odsout obj();
 obj.layout_gridded(columns: 2,
 overrides: "just=center");
end;
obj.region(width: "1.25in");
obj.image(file: photo,
 overrides: "just=left width=100pct");
obj.format_text(data: strip(name),
 overrides: "just=left width=100pct");
obj.region(width: "3.25in");
obj.format_text(data: strip(bio));

if eof ne 1 then
 obj.format_text(data: "");
else
 obj.layout_end();
;run;

ods _all_ close;

Example 1.4 Using Absolute Layout Methods

title;
ods listing close;
options nodate nonumber;
ods escapechar="~";
options papersize=(6in 4in);
options topmargin=0in bottommargin=0in leftmargin=0in rightmargin=0in;

proc format;
value categoryfmt
 1 = "Hunting"
 2 = "Dog"
 3 = "Sports"
 4 = "Children"
 5 = "Fresh Water Fishing"
 6 = "Salt Water Fishing"
 7 = "Camping"
 other =" ";

data customers;
format preferredcategory categoryfmt.;
input name $20. email $24. street $22. city $12. state $3. zip preferredcategory;
cards;
Dan O'Connnor Dan.OConnor@sas.com SAS Campus Drive Cary NC
27513 0

29

Scott Huntley Scott.Huntley@.sas.com 105 Windward Way Raleigh NC
27615 3
David Kelley David.Kelley@sas.com 507 Down Patrick Lane Garner NC
27644 5
Wayne Hester Wayne.Hester@sas.com 201 Gucci Boulevard Cary NC
27513 7
Tim Hunter Tim.Hunter@sas.com 95 Wild Ranch Road Taos NM
89875 6
Eric Gebhart Eric.Gebhart@sas.com 99 Sea Scape Island Charleston SC
83478 2
Darylene Hecht Darylene.Hecht@sas.com 300 Vintage Drive Sonoma CA
67676 4
Kevin Smith Kevin.Smith@sas.com 28901 Pop Circle Miami FL
30497 1
;
run;

proc sort data=customers; by name;run;

*title;
*footnote "~{style [font_size=9pt just=right color=cxbbb2e0]Provided to you
compliments of SAS 9.2 using ODS Report Writing Interface and Absolute Layout
methods.}";
ods pdf file="Promotion.pdf" notoc newfile=Bygroup;

data _null_;
set customers end=eof;
by name;
if _n_ =1 then do;
 declare odsout obj();
end;

obj.open_dir(name: name,
 label: email,
 by: 1);

obj.layout_absolute(overrides: "borderwidth=1");
obj.region(width: "2.4in",
 height: "4in",
 overrides: "background=cx494068");
 obj.image(file: "c:\Public\SGF 2009\Orion Star
Info\or_internal\orionstarHeader.jpg");
 obj.format_text(data: "Private Sale",
 overrides: "color=cxbbb2e0 font_size=32pt",
 just: 'c');
 obj.layout_gridded(columns: 3,
 row_gutter: "1mm",
 column_gutter: "1mm");
 obj.region();
 obj.format_text(data: "25",
 overrides: "color=cxbbb2e0 font_size=72pt");

 obj.region();
 obj.format_text(data: "%*off",
 split: "*",
 overrides: "color=cxbbb2e0 font_size=32pt");

 obj.region();
 obj.format_text(data: "Now *through *March 25",
 split: "*",
 overrides: "color=cxbbb2e0 font_size=10pt");
 obj.layout_end();
 obj.format_text(data: "your entire purchase *when you bring this card",
 split: "*",
 overrides: "color=cxbbb2e0 font_size=12pt width=85pct",
 just: 'C');
 obj.format_text(data: "Excludes previously discounted items, layaways and prior
sales. Cannot be combined with any other offer.",

30

 overrides: "color=cxbbb2e0 font_size=4pt width=85pct",
 just: 'c');
 obj.format_text(data: " ");
 obj.format_text(data: "No payments for 12 months*",
 overrides: "width=100pct font_size=10pt background=white
color=cx494068 just=center");
 obj.format_text(data: "*on purchases over $500 with your Orion Start preferred
Account. The Orion Star Preferred Account is subject to credit approval as determined
by the lender Outdoors Bank, Burlington, Vermont, is available to qualified US
residents, and is governed by Vermont and Federal Law. The promotion End Date for
this offer is the last day of the calendar month which is twelve months from the date
of purchase. If balance is not paid in full by the Promotion End Date show on your
billing statement, Finance Charges will accrue from the transaction date at an ANNUAL
PERCENTAGE RATE of 21.99%. A minimum Finance Charge of $2.00 will apply. Offer valid
in Orion Star stores only and expires 3/31/2009.",
 overrides: "color=cxbbb2e0 font_size=4pt width=85pct",
 just: 'c');

obj.region(x: "2.4in",
 width: "1.25in",
 height: "4in",
 overrides: "background=cx494068 borderwidth=1");
obj.table_start(overrides: "rules=none frame=void cellpadding=0 cellspacing=0");
obj.row_start();
obj.format_cell(data: "Pleasant Valley Promenade",
 overrides: "color=cxbbb2e0 font_size=6pt font_weight=bold");
obj.row_end();
obj.row_start();
obj.format_cell(data: "6204-121 Glennwood ave.",
 overrides: "color=white font_size=6pt just=left");
obj.row_end();
obj.row_start();
obj.format_cell(data: "Raleigh, NC",
 overrides: "color=white font_size=6pt just=left");
obj.row_end();
obj.row_start();
obj.format_cell(data: "919.432.0987",
 overrides: "color=white font_size=6pt just=left");
obj.row_end();
obj.row_start();
obj.format_cell(data: "", overrides:"font_size=6pt");
obj.row_end();

obj.row_start();
obj.format_cell(data: "The streets at Southpoint",
 overrides: "color=cxbbb2e0 font_size=6pt font_weight=bold");
obj.row_end();
obj.row_start();
obj.format_cell(data: "3454 Executor Way",
 overrides: "color=white font_size=6pt just=left");
obj.row_end();
obj.row_start();
obj.format_cell(data: "Durham, NC",
 overrides: "color=white font_size=6pt just=left");
obj.row_end();
obj.row_start();
obj.format_cell(data: "919.320.6238",
 overrides: "color=white font_size=6pt just=left");
obj.row_end();
obj.row_start();
obj.format_cell(data: "");
obj.row_end();
obj.row_start();
obj.format_cell(data: "Crabtree Valley Mall",
 overrides: "color=cxbbb2e0 just=left font_size=6pt font_weight=bold");
obj.row_end();
obj.row_start();
obj.format_cell(data: "Raleigh, NC",

31

 overrides: "color=white font_size=6pt just=left");
obj.row_end();
obj.row_start();
obj.format_cell(data: "919.432.0987",
 overrides: "color=white font_size=6pt just=left");
obj.row_end();

obj.row_start();
obj.format_cell(data: "");
obj.row_end();
obj.row_start();
obj.format_cell(data: "Store Hours",
 overrides: "color=cxbbb2e0 font_size=6pt just=left font_weight=bold");
obj.row_end();
obj.row_start();
obj.format_cell(data: "Monday - Saturday",
 overrides: "color=white font_size=6pt just=left");
obj.row_end();
obj.row_start();
obj.format_cell(data: "10am - 8pm",
 overrides: "color=white font_size=6pt just=left");
obj.row_end();
obj.row_start();
obj.format_cell(data: "Sunday",
 overrides: "color=white font_size=6pt just=left");
obj.row_end();
obj.row_start();
obj.format_cell(data: "Noon - 5pm",
 overrides: "color=white font_size=6pt just=left");
obj.row_end();
obj.row_start();
obj.format_cell(data: "");
obj.row_end();
obj.table_end();

obj.table_start(overrides: "frame=box");
obj.row_start();
obj.format_cell(data: "Free Gift Wrapping",
 overrides: "color=cxbbb2e0 font_size=10pt just=center vjust=middle
width=1in height=.5in font_weight=bold");
obj.row_end();
obj.table_end();

obj.region(x: "1.9in",
 width: "2.75in",
 height: "4in");
 obj.format_text(data: "Exclusive *Invitation *for our *Club *Members",
 split: "*",
 overrides: "color=cx494068 font_size=36pt");
 obj.format_text(data: " ");

 obj.format_text(data: name);
 obj.format_text(data: street);
 obj.format_text(data: strip(city) || ", " || state || " " || zip);

obj.layout_end();

obj.close_dir();

;run;

ods pdf close;

title;
footnote;

32

Example 1.5 Creating Form Letters

ods listing close;
options nodate nonumber stimer fullstimer;
ods escapechar="~";
options papersize=letter;
options topmargin=0in bottommargin=0in leftmargin=0in rightmargin=0in;

proc format;
value prodstate
 1 = "Back Order"
 2 = "Special Order"
 other ="Regular Inventory";
value categoryfmt
 1 = "Hunting"
 2 = "Dog"
 3 = "Sports"
 4 = "Children"
 5 = "Fresh Water Fishing"
 6 = "Salt Water Fishing"
 7 = "Camping"
 other =" ";
run;

data customers;
format preferredcategory categoryfmt.;
input name $20. email $24. street $22. city $12. state $3. zip preferredcategory
accountid clubpoints;
cards;
Dan O’Connor Dan.OConnor@sas.com SAS Campus Drive Cary NC 27513
0 1234567 256
Scott Huntley Scott.Huntley@.sas.com 105 Windward Way Raleigh NC
27615 3 9857954 0
David Kelley David.Kelley@sas.com 507 Down Patrick Lane Garner NC
27644 5 4382743 1256
Wayne Hester Wayne.Hester@sas.com 201 Gucci Boulevard Cary NC
27513 7 3485944 653
Tim Hunter Tim.Hunter@sas.com 95 Wild Ranch Road Taos NM
89875 6 3294746 77
Eric Gebhart Eric.Gebhart@sas.com 99 Sea Scape Island Charleston SC
83478 2 9087450 943
Darylene Hecht Darylene.Hecht@sas.com 300 Vintage Drive Sonoma CA
67676 4 4987654 10503
Kevin Smith Kevin.Smith@sas.com 28901 Pop Circle Miami FL
30497 1 8734902 444
;
run;

data inventory;
format productstatus prodstate.;
input item $64. photo $24. itemno instock productstatus regprice saleprice
additionalshipping;
datalines;
Gorilla King Kong Hang-On Tree stand treestand.jpg
89783483 34 0 89.99 79.99 12.00
Orion Star XT Mega-Sized Binoculars binoculars.jpg
87634893 134 0 279.99 0.00 0.00
Night Owl Night Scope nightowl.jpg
37274307 0 1 199.99 0.00 0.00
Super Doggy Yapper Stopper trainingcollar.jpg
87393444 222 2 79.99 0.00 0.00
Neoprene Flotation Vest vest.jpg
77439843 66 0 34.99 0.00 0.00
Dead Duck Retriever Trainers mallard.jpg
33348484 256 0 44.55 0.00 0.00

33

Spilding Wood Baseball Bat baseball_bat.jpg
98457897 934 0 34.99 29.99 0.00
Foam Football football.jpg
59498478 342 0 12.99 0.00 0.00
Super Start First Base Glove baseballglove.jpg
98754598 232 0 42.50 0.00 0.00
Little Princess Water proof Radio radios.jpg
54987430 5 0 25.99 0.00 0.00
Big Bubba Sonar sonar.jpg
98745878 55 2 549.99 0.00 9.00
;

data transactions;
format date mmddyy10.;
input invoice accountid itemno quantity date:mmddyy10. clubvisa;
datalines;
 1 1234567 89783483 1 01/02/2009 1
 1 1234567 87634893 1 01/02/2009 1
 2 1234567 37274307 1 01/05/2009 0
 3 3294746 98745878 1 01/25/2009 0
 4 9857954 59498478 3 01/23/2009 0
 5 9857954 98457897 1 01/30/2009 0
 5 9857954 98754598 6 01/30/2009 0
 6 4987654 54987430 4 01/04/2009 1
 7 9087450 87393444 1 01/14/2009 1
 8 3485944 33348484 2 01/14/2009 0
 9 3485944 77439843 1 01/26/2009 0
;run;

proc sort data=transactions; by accountid invoice;run;

title "~{style [preimage='c:\Public\SGF 2009\Orion Star
Info\or_internal\orionstarHeader.jpg' width=100pct background=cx494068 color=cxbbb2e0
font_size=24pt just=left] Preferred Club Member}";
footnote "~{style [font_size=9pt just=right color=cxbbb2e0]Provided to you compliments
of SAS 9.2 using ODS Report Writing Interface methods.}";
ods pdf file="Example1.5.pdf" notoc newfile=Bygroup;

data _null_;
retain invsum bonus sum clubpoints;
if _n_ =1 then do;
 declare odsout obj();
 length name $20 street $22 city $12 state $3;
 zip=.;
 declare hash customer(dataset: "customers");
 customer.defineKey("accountid");
 customer.defineData("name", "street", "city", "state", "zip", "clubpoints");
 customer.defineDone();

 length item $64;
 itemno=.; instock=.; productstatus=.; regprice=.; saleprice=.; additionalshipping=.;
 declare hash product(dataset: "inventory");
 product.defineKey("itemno");
 product.defineData("item", "instock", "productstatus", "regprice", "saleprice",
"additionalshipping");
 product.defineDone();
end;

set transactions end=eof;
by accountid invoice;
if first.accountid then do;
 sum=0;
 obj.open_dir(name: "Invoice",
 label: "Invoice for Customer " || accountid,
 by: 1);

 if customer.find() eq 0 then do;

34

 obj.layout_gridded(columns: 2);
 obj.region(width: "3.25in");
 obj.format_text(data: strip(street), overrides: "font_size=14pt width=100pct
just=left");
 obj.format_text(data: strip(city) || ", " || state || " " || zip, overrides:
"font_size= 14pt width=100pct just=left");
 obj.format_text(data: " ");
 obj.format_text(data: put(today(), worddate18.), overrides: "font_size=14pt
width=100pct just=left");
 obj.format_text(data: " ");
 obj.format_text(data: "Dear " || strip(name) || ",", overrides:
"font_size=14pt width=100pct just=left");
 obj.region();
 obj.image(file: "c:\public\Images\Scenic2.jpg");
 obj.layout_end();

 obj.layout_gridded(columns: 2);
 obj.region(width: "5.25in");
 obj.format_text(data: "~{style [font_size=14pt width=100pct]As a preferred
Club Member you receive special membership benefits such as special promotions, member
discounts, free 1 year warranty on all purchases, as bonus points that can be redeemed
for free items.}", just: "L");
 obj.format_text(data: " ");
 obj.layout_gridded(overrides: "background=cxbbb2e0");
 obj.region(overrides: "background=_undef_");
 obj.format_text(data: "See what being a preferred Club Member is all
about.",
 overrides: "font_size=20pt font_weight=bold
width=100pct");
 obj.format_text(data: "You are pre-approved for our new ~{style
[font_weight=bold]Orion Star Club Visa} card.",
 overrides: "just=left font_size=14pt width=100pct");
 obj.format_text(data: " ");
 obj.format_text(data: "1. A low 8.9%APR",
 overrides: "just=left font_size=12pt width=100pct");
 obj.format_text(data: "2. Get double membership points when using your
Orion Star Club Visa card.",
 overrides: "just=left font_size=12pt width=100pct");
 obj.format_text(data: "3. Get Exclusive access to offers not available to
general public",
 overrides: "just=left font_size=12pt width=100pct");
 obj.format_text(data: " ");
 obj.href(data: "~{style [font_size=20pt]Apply Today}",
 href: "http:\\www.orionstar.com\visaapplication");

 obj.layout_end();
 obj.region(width: "2.5in");
 obj.format_text(data: "Enjoy your Preferred membership",
 overrides: "color=cx494068 font_size=16pt font_weight=bold
width=100pct",
 just: "L");
 obj.format_text(data: " ");
 obj.format_text(data: "Special Promotions",
 overrides: "color=cx494068 font_size=14pt width=100pct",
 just: "L");
 obj.format_text(data: " ");
 obj.format_text(data: "Membership Discounts",
 overrides: "color=cx494068 font_size=14pt width=100pct",
 just: "L");
 obj.format_text(data: " ");
 obj.format_text(data: "FREE 1 year warranty",
 overrides: "color=cx494068 font_size=14pt width=100pct",
 just: "L");
 obj.format_text(data: " ");
 obj.format_text(data: "FREE Items",
 overrides: "color=cx494068 font_size=14pt width=100pct",
 just: "L");
 obj.format_text(data: " ");

35

 obj.layout_end();

 obj.format_text(data: " ");

 obj.table_start(overrides: "width=100pct");
 obj.row_start();
 obj.format_cell(data: "Current Club Point Balance",
 column_span: 2,
 overrides: "font_weight=bold font_size=16pt");
 obj.format_cell(data: clubpoints,
 format: "comma8",
 overrides: "font_weight=bold font_size=16pt");
 obj.row_end();
 obj.row_start();
 obj.format_cell(data: "Recent Purchases",
 column_span: 3);
 obj.row_end();
 obj.row_start();
 obj.format_cell(data: "Date");
 obj.format_cell(data: "Invoice Number");
 obj.format_cell(data: "Additional Club Points");
 obj.row_end();
 end;
end;

if first.invoice then do;
 invsum=0;
 bonus=0;
end;

if product.find() eq 0 then do;
 if saleprice ne 0 then
 cost = quantity*saleprice;
 else
 cost = quantity*regprice;
 invsum = invsum + cost;
 sum = sum + cost;
end;

if clubvisa eq 1 then do;
 bonus = bonus + clubvisa*cost;
 sum = sum + clubvisa*cost;
end;

if last.invoice then do;
 obj.row_start();
 obj.format_cell(data: date,
 format: "mmddyy10.");
 obj.format_cell(data: invoice);
 obj.format_cell(data: invsum,
 format: "comma8.");
 obj.row_end();

 if clubvisa eq 1 then do;
 obj.row_start();
 obj.format_cell(data: "Bonus Visa Club Points",
 column_span: 2);
 obj.format_cell(data: bonus,
 format: "comma8.");
 obj.row_end();
 end;
end;

if last.accountid then do;
 obj.row_start();
 obj.format_cell(data: "New Club Point Balance",
 column_span: 2,
 overrides: "font_weight=bold font_size=16pt");

36

 obj.format_cell(data: clubpoints+sum,
 overrides: "font_weight=bold font_size=16pt",
 format: "comma8.");
 obj.row_end();

 obj.table_end();

 obj.format_text(data: " ",
 overrides: "font_size=16pt");
 obj.format_text(data: "How to Redeem Points?",
 overrides: "background=cxbbb2e0 font_size=20pt");
 obj.format_text(data: "Step-by-step instruction on how to use your Club REWARD Point
to purchase free items.",
 overrides: "font_size=16pt");
 obj.format_text(data: " ");
 obj.format_text(data: "~{style [font_size=20pt
url='http:\\www.orionstar\redeempoints']Learn How!}");

 obj.close_dir();
end;

if end eq 1 then do;
 obj.delete();
 customer.delete();
 product.delete();
end;
;run;

ods pdf close;
title;
footnote;

37

Example 1.6 Creating an Invoice

title;
ods listing close;
options nodate nonumber stimer fullstimer;
ods escapechar="~";
options papersize=letter;
options topmargin=0in bottommargin=0in leftmargin=0in rightmargin=0in;

proc format;
value prodstate
 1 = "Back Order"
 2 = "Special Order"
 other ="Regualr Inveentory";
value categoryfmt
 1 = "Hunting"
 2 = "Dog"
 3 = "Sports"
 4 = "Children"
 5 = "Fresh Water Fishing"
 6 = "Salt Water Fishing"
 7 = "Camping"
 other =" ";
run;

data customers;
format preferredcategory categoryfmt.;
input name $20. email $24. street $22. city $12. state $3. zip preferredcategory
accountid clubpoints;
cards;
Dan O’Connor Dan.OConnor@sas.com SAS Campus Drive Cary NC 27513
0 1234567 256
Scott Huntley Scott.Huntley@.sas.com 105 Windward Way Raleigh NC
27615 3 9857954 0
David Kelley David.Kelley@sas.com 507 Down Patrick Lane Garner NC
27644 5 4382743 1256
Wayne Hester Wayne.Hester@sas.com 201 Gucci Boulevard Cary NC
27513 7 3485944 653
Tim Hunter Tim.Hunter@sas.com 95 Wild Ranch Road Taos NM
89875 6 3294746 77
Eric Gebhart Eric.Gebhart@sas.com 99 Sea Scape Island Charleston SC
83478 2 9087450 943
Darylene Hecht Darylene.Hecht@sas.com 300 Vintage Drive Sonoma CA
67676 4 4987654 10503
Kevin Smith Kevin.Smith@sas.com 28901 Pop Circle Miami FL
30497 1 8734902 444
;
run;

data inventory;
format productstatus prodstate.;
input item $64. photo $24. itemno instock productstatus regprice saleprice
additionalshipping;
datalines;
Gorilla King Kong Hang-On Tree stand treestand.jpg
89783483 34 0 89.99 79.99 12.00
Orion Star XT Mega-Sized Binoculars binoculars.jpg
87634893 134 0 279.99 0.00 0.00
Night Owl Night Scope nightowl.jpg
37274307 0 1 199.99 0.00 0.00
Super Doggy Yapper Stopper trainingcollar.jpg
87393444 222 2 79.99 0.00 0.00
Neoprene Flotation Vest vest.jpg
77439843 66 0 34.99 0.00 0.00

38

Dead Duck Retriever Trainers mallard.jpg
33348484 256 0 44.55 0.00 0.00
Spilding Wood Baseball Bat baseball_bat.jpg
98457897 934 0 34.99 29.99 0.00
Foam Football football.jpg
59498478 342 0 12.99 0.00 0.00
Super Start First Base Glove baseballglove.jpg
98754598 232 0 42.50 0.00 0.00
Little Pricess Water proof Radio radios.jpg
54987430 5 0 25.99 0.00 0.00
Big Bubba Sonar sonar.jpg
98745878 55 2 549.99 0.00 9.00
;

data transactions;
format date mmddyy10.;
input invoice accountid itemno quantity date:mmddyy10. clubvisa;
datalines;
 1 1234567 89783483 1 01/02/2009 1
 1 1234567 87634893 1 01/02/2009 1
 2 1234567 37274307 1 01/05/2009 0
 3 3294746 98745878 1 01/25/2009 0
 4 9857954 59498478 3 01/23/2009 0
 5 9857954 98457897 1 01/30/2009 0
 5 9857954 98754598 6 01/30/2009 0
 6 4987654 54987430 4 01/04/2009 1
 7 9087450 87393444 1 01/14/2009 1
 8 3485944 33348484 2 01/14/2009 0
 9 3485944 77439843 1 01/26/2009 0
;run;

proc sort data=transactions; by invoice;run;

title "~{style [preimage='c:\Public\SGF 2009\Orion Star
Info\or_internal\orionstarHeader.jpg' width=100pct background=cx494068 color=cxbbb2e0
font_size=24pt just=left] Invoice}";
footnote "~{style [font_size=9pt just=right color=cxbbb2e0]Provided to you compliments
of SAS 9.2 using ODS Report Writing Interface methods.}";
ods pdf file="Example1.6.pdf" notoc newfile=Bygroup;

data _null_;
retain foundcustomer sum shipping;
if _n_ =1 then do;
 declare odsout obj();
 length name $20 street $22 city $12 state $3;
 zip=.;
 declare hash customer(dataset: "customers");
 customer.defineKey("accountid");
 customer.defineData("name", "street", "city", "state", "zip");
 customer.defineDone();

 length item $64 photo$24;
 itemno=.; instock=.; productstatus=.; regprice=.; saleprice=.; additionalshipping=.;
 declare hash product(dataset: "inventory");
 product.defineKey("itemno");
 product.defineData("item", "instock", "productstatus", "regprice", "saleprice",
"additionalshipping", "photo");
 product.defineDone();
end;

set transactions end=eof;
by invoice;
if first.invoice then do;
 sum=0;
 shipping=0;
 foundcustomer = customer.find();
 if foundcustomer eq 0 then do;

39

 obj.open_dir(name: "Invoice",
 label: "Invoice (Number=" || strip(invoice) || ") for customer " ||
strip(name),
 by: 1);
 obj.layout_gridded(columns: 2);
 obj.region(width: "4.5in", overrides: "just=left");
 obj.format_text(data: strip(name), overrides: "font_size=14pt width=100pct
just=left");
 obj.format_text(data: strip(street), overrides: "font_size=14pt width=100pct
just=left");
 obj.format_text(data: strip(city) || ", " || state || " " || zip, overrides:
"font_size= 14pt width=100pct just=left");
 obj.format_text(data: " ");
 obj.format_text(data: put(date, worddate18.), overrides: "font_size=14pt
width=100pct just=left");

 obj.region();
 obj.table_start();
 obj.row_start();
 obj.format_cell(data: "Invoice Number:",
 overrides: "font_size=16pt font_weight=bold");
 obj.format_cell(data: invoice,
 overrides: "width=1.5in font_size=16pt");
 obj.row_end();
 obj.table_end();
 obj.layout_end();

 obj.format_text(data: " ");
 obj.format_text(data: " ");

 obj.table_start(overrides: "width=100pct");
 obj.head_start();
 obj.row_start();
 obj.format_cell(data: "Items(s)",
 column_span: 2);
 obj.format_cell(data: "Quantity");
 obj.format_cell(data: "Regular Price");
 obj.format_cell(data: "Sales Price");
 obj.format_cell(data: "Total");
 obj.row_end();
 obj.head_end();
 end;
end;

if (foundcustomer eq 0) and (product.find() eq 0) then do;
 if saleprice ne 0 then
 cost = quantity*saleprice;
 else
 cost = quantity*regprice;
 sum = sum + cost;
 shipping = shipping + additionalshipping;

 obj.row_start();
 obj.format_cell(data: item,
 column_span:2,
 inhibit: "B",
 overrides: "just=left");
 obj.format_cell(data: quantity,
 inhibit: "B");
 obj.format_cell(data: regprice,
 inhibit: "B");
 obj.format_cell(data: saleprice,
 inhibit: "B");
 obj.format_cell(data: put(cost, dollar10.2),
 inhibit: "B");
 obj.row_end();
 obj.row_start();

40

 obj.format_cell(data: " ",
 column_span: 2,
 overrides: "preimage='c:\public\Images\" || photo || "'
just=left");
 obj.format_cell(data: " ");
 obj.format_cell(data: " ");
 obj.format_cell(data: " ");
 obj.format_cell(data: " ");
 obj.row_end();
end;

if last.invoice then do;
 obj.row_start();
 obj.format_cell(data: " ",
 column_span: 3,
 row_span: 4);
 obj.format_cell(data: "Subtotal",
 column_span: 2,
 overrides: "just=right color=darkgray");
 obj.format_cell(data: put(sum, dollar10.2));
 obj.row_end();
 obj.row_start();
 obj.format_cell(data: "US Shipping",
 column_span: 2,
 overrides: "just=right color=darkgray",
 inhibit: "TB");
 obj.format_cell(data: put(shipping, dollar10.2));
 obj.row_end();
 obj.row_start();
 tax = sum*.08;
 obj.format_cell(data: "Tax",
 column_span: 2,
 overrides: "just=right color=darkgray",
 inhibit: "TB");
 obj.format_cell(data: put(tax, dollar10.2));
 obj.row_end();
 obj.row_start();
 obj.format_cell(data: "Total",
 column_span: 2,
 overrides: "just=right font_weight=bold");
 obj.format_cell(data: put(sum+tax+shipping, dollar10.2));
 obj.row_end();
 obj.table_end();
 obj.close_dir();
end;

if end eq 1 then do;
 obj.delete();
 customer.delete();
 product.delete();
end;
;run;

ods pdf close;
title;
footnote;

41

APPENDIX 2 METHOD DOCUMENTATION

TEXT METHODS

FORMAT_TEXT Syntax

 Object.format_text(< optional argument >, … , < optional argument >);

 Description

 Displays text in the active output destination(s).

 Optional Arguments

data < string | number | character variable | numeric variable >

The data value to display. If the data is numeric and no format has been
specified, the data value will be formatted using the BEST. format.

format < string | character variable >

The SAS format to be applied to the data argument.

style < string | character variable >

The style element that contains the collection of style attributes to be
applied to the data value. The default style element is USERTEXT.

overrides < string | character variable >

The style attributes to override those defined in the selected style
element.

split < string | character variable >

Split character to be applied to the data value. A new line will be started
when it reaches the specified split character, and will continue on the
next line. The split character itself is not considered part of the data
value.

no_clean < number | numeric variable >

just < single character | single character variable >

Horizontal justification for the data value.

Valid values

L Left justification
C Center justification
R Right justification
D Decimal point justification

vjust < single character | single character variable >

Vertical justification for the data value.

Valid values

T Top justification
M Middle justification
B Bottom justification

42

 Example

obj.format_text(data: “Display this text in the active output
destination.”);

obj.format_text(data: “Make this text look like The SAS System
title.”,
 style: “TitlesandFooters”);

 obj.format_text(data: “Make this text red”,
 overrides: “color=red”,
 data: “and this bold”,
 overrides: “font_weight=bold”,
 data: “ and use a 16pt font”,
 overrides: “font_size=16pt”);

NOTE Syntax

 Object.note(< optional argument >, … , < optional argument >);

 Description

 Writes a note to the active output destination(s).

 Optional Arguments

data < string | number | character variable | numeric variable >

The data value to display. If the data is numeric and no format has been
specified the data value will be formatted using the BEST. format.

format < string | character variable >

The SAS format to be applied to the data argument.

style < string | character variable >

The style element that contains the collection of style attributes to be
applied to the data value. The default style element is “note”.

overrides < string | character variable >

The style attributes to override those defined in the selected style
element.

split < string | character variable >

Split character to be applied to the data value. A new line will be started
when it reaches the specified split character, and will continue on the
next line. The split character itself is not considered part of the data
value.

no_clean < number | numeric variable >

just < single character | single character variable >

Horizontal justification for the data value.

Valid values

‘L’ Left justification
‘C’ Center justification
‘R’ Right justification
‘D’ Decimal point justification

vjust < single character | single character variable >

43

Vertical justification for the data value.

Valid values

‘T’ Top justification
‘M’ Middle justification
‘B’ Bottom justification

 Example

obj.note(data: “This is the text to display in a note.”);

TABLE SECTION METHODS

HEAD_START Syntax

 Object.head_start(< optional argument >, … , < optional argument >);

 Description

Marks the start of the Table Header Section. The HEAD_START is always used in
conjunction with the HEAD_END method. You can also use the TYPE argument
with the ROW_START method as an alternate approach.

 Optional Arguments

style < string | character variable >

The style element that contains the collection of style attributes to be
applied to the data value. The default style element is “Header”.

overrides < string | character variable >

The style attributes to override those defined in the selected style
element.

 Example
 obj.table_start();
 obj.head_start();
 obj.row_start();
 obj.format_cell(data: “A single cell table”);
 obj.row_end();
 obj.head_end();
 obj.table_end();

 HEAD_END Syntax

 Object.head_end();

 Description

Marks the end of the Table Header section. The HEAD_END is always used in conjunction
with the HEAD_START method.

 No Arguments

BODY_START Syntax

 Object.body_start(< optional argument >, … , < optional argument >);

44

 Description

Marks the start of the Table Body(Data) Section. The BODY_START is always used in
conjunction with the BODY_END method. You can also use the “TYPE” argument
with the ROW_START method as an alternate approach. This is the default section if you
just use the ROW_START method.

 Optional Arguments

style < string | character variable >

The style element that contains the collection of style attributes to be
applied to the data value. The default style element is “Body”.

overrides < string | character variable >

The style attributes to override those defined in the selected style
element.

 Example
 obj.table_start();
 obj.body_start();
 obj.row_start();
 obj.format_cell(data: “A single cell table”);
 obj.row_end();
 obj.body_end();
 obj.table_end();

 BODY_END Syntax

 Object.body_end();

 Description

Marks the end of the Table Body(Data) section. The BODY_END is always used in
conjunction with the BODY_START method.

 No Arguments

FOOT_START Syntax

 Object.foot_start(< optional argument >, … , < optional argument >);

 Description

Marks the start of the Table Footer Section. The FOOT_START is always used in
conjunction with the FOOT_END method. You can also use the TYPE argument
with the ROW_START method as an alternate approach.

 Optional Arguments

style < string | character variable >

The style element that contains the collection of style attributes to be
applied to the data value. The default style element is “Footer”.

overrides < string | character variable >

The style attributes to override those defined in the selected style
element.

Example
obj.table_start();
 obj.foot_start();
 obj.row_start();

45

 obj.format_cell(data: “A single cell table”);
 obj.row_end();
 obj.foot_end();
obj.table_end();

 FOOT_END Syntax

 Object.foot_end();

 Description

Marks the end of the Table Footer section. The FOOT_END is always used in conjunction
with the FOOT_START method.

 No Arguments

46

TABLE METHODS

TABLE_START Syntax

 Object.table_start(< optional argument >, … , < optional argument >);

 Description

The TABLE_START is always used in conjunction with the TABLE _END method.

 Optional Arguments

name The name of the table that will be used in the table of contents (TOC)
 and DMS Results window.

label The label of the table that will be used in the table of contents (TOC)
and DMS Results window.

style < string | character variable >

The style element that contains the collection of style attributes to be
applied to the data value. The default style element is TABLE.

overrides < string | character variable >

The style attributes to override those defined in the selected style
element.

just < single character | single character variable >

Horizontal justification for the data value.

Valid values

L Left justification
C Center justification
R Right justification
D Decimal point justification

vjust < single character | single character variable >

Vertical justification for the data value.

Valid values

T Top justification
M Middle justification
B Bottom justification

top_space < number | numeric variable >

The number of blank lines to insert before the table starts.

 Example
obj.table_start();
 obj.row_start();
 obj.format_cell(data: “A single cell table”);
 obj.row_end();
obj.table_end();

 TABLE_END Syntax

 Object.table_end();

 Description

47

The TABLE_END is always used in conjunction with the TABLE_START method.

 No Arguments

Example
obj.table_start();
 obj.row_start();
 obj.format_cell(data: “A single cell table”);
 obj.row_end();
obj.table_end();

ROW_START Syntax

 Object.row_start(< optional argument >, … , < optional argument >);

 Description

The ROW_END is always used in conjunction with the ROW_START method.

 Optional Arguments

type Correspond to the table sections. This is just an alternative to having to
use the HEAD_START and HEAD_END method calls. The default type
is BODY.

Valid values

H Header Section
D Body(data) Section
B Body(data) Section
F Footer Section

style < string | character variable >

The style element that contains the collection of style attributes to be
applied to the data value. The default style element depends on the
row type.

overrides < string | character variable >

The style attributes to override those defined in the selected style
element.

Row The row index. The table keeps track of its current row index so this
allows you to skip blank rows. Once you have skipped a row, you cannot
index back to a previous row.

 Examples
obj.table_start();
 obj.row_start();
 obj.format_cell(data: “A single cell table”);
 obj.row_end();
obj.table_end();

 ROW_END Syntax

 Object.row_end();

 Description

The ROW_END is always used in conjunction with the ROW_START method.

 No Arguments

48

Example
obj.table_start();
 obj.row_start();
 obj.format_cell(data: “A single cell table”);
 obj.row_end();
obj.table_end();

CELL_START Syntax

 Object.cell_start(< optional argument >, … , < optional argument >);

 Description

The CELL_END is always used in conjunction with the CELL_START method.

 Optional Arguments

data < string | number | character variable | numeric variable >

The data value to display. If the data is numeric and no format has been
specified, the data value will be formatted using the BEST. format.

format < string | character variable >

The SAS format to be applied to the data argument.

style < string | character variable >

The style element that contains the collection of style attributes to be
applied to the data value. The default style element is TEXT.

overrides < string | character variable >

The style attributes to override those defined in the selected style
element.

split < string | character variable >

Split character to be applied to the data value. A new line will be started
when it reaches the specified split character, and will continue on the
next line. The split character itself is not considered part of the data
value.

no_clean < number | numeric variable >

Column < number | numeric variable >

Column_span < number | numeric variable >

Row_span < number | numeric variable >

Inhibit Tells aspects of the cells that may be inhibited. This option can be
honored only for certain destinations; in particular, HTML does not
currently support it.

 Valid values

T Do not draw the top border. Note that some destinations will
have already drawn a rule at the bottom of the previous row, so
this one may not be effective.

B Do not draw the bottom border of this cell.

L Do not draw the left border. Ineffective if the destination
already drew that rule on the right of the previous cell.

R Do not draw the right border of this cell.

49

X Do not draw the contents of the cell, just the background.
Usually desirable on one of the two cells which are using the
“B” or ”R”.

 Example
obj.table_start();
 obj.row_start();
 obj.cell_start()
 obj.format_text(data: “A single cell table”);
 obj.cell_end();
 obj.row_end();
obj.table_end();

 CELL_END Syntax

 Object.cell_end();

 Description

The CELL_END is always used in conjunction with the CELL_START method.

 No Arguments

 Example
obj.table_start();
 obj.row_start();
 obj.cell_start()
 obj.format_text(data: “A single cell table”);
 obj.cell_end();
 obj.row_end();
obj.table_end();

FORMAT_CELL Syntax

 Object.format_cell(< optional argument >, … , < optional argument >);

 Description

 Optional Arguments

data < string | number | character variable | numeric variable >

The data value to display. If the data is numeric and no format has been
specified the data value will be formatted using the BEST. format.

format < string | character variable >

The SAS format to be applied to the data argument.

style < string | character variable >

The style element that contains the collection of style attributes to be
applied to the data value. The default style element is TEXT.

overrides < string | character variable >

The style attributes to override those defined in the selected style
element.

split < string | character variable >

Split character to be applied to the data value. A new line will be started
when it reaches the specified split character, and will continue on the
next line. The split character itself is not considered part of the data
value.

50

no_clean < number | numeric variable >

Column < number | numeric variable >

Column_span < number | numeric variable >

Row_span < number | numeric variable >

Inhibit Tells aspects of the cells that may be inhibited. This option can be
honored only for certain destinations; in particular, HTML does not
currently support it.

 Valid values

T Do not draw the top border. Note that some destinations will
have already drawn a rule at the bottom of the previous row, so
this one may not be effective.

B Do not draw the bottom border of this cell.

L Do not draw the left border. Ineffective if the destination
already drew that rule on the right of the previous cell.

R Do not draw the right border of this cell.

X Do not draw the contents of the cell, just the background.
Usually desirable on one of the two cells which are using the ”B
or ”R”.

 Example
obj.table_start();

 /* Row 1 */
 obj.row_start();
 obj.format_cell(data: “Cell 1”);
 obj.format_cell(data: “Cell 2”);
 obj.row_end();

 /* Row 2 */
 obj.row_start();
 obj.format_cell(data: “Cell 1”);
 obj.format_cell(data: “Cell 2”);
 obj.row_end();

obj.table_end();

obj.table_start();

 /* Row 1 will span multiple cells */
 obj.row_start();
 obj.format_cell(data: “This is a spanning cell”,
 column_span: 2,
 style: “Header”);
 obj.row_end();

 /* Row 2 has separate cells */
 obj.row_start();
 obj.format_cell(data: “Cell 1”);
 obj.format_cell(data: “Cell 2”);
 obj.row_end();
obj.table_end();

51

PAGE METHODS

 PAGE Syntax

 Object.page();

 Description

 Forces a page eject or configures the page.

 No Arguments

Example
obj.page();

TITLE Syntax

 Object.title(< optional argument >, … , < optional argument >);

 Description

 Adds a new page title to the system.

 Optional Arguments

text < string | character variable >

The text value to insert into the title system processing.

style < string | character variable >

The style element that contains the collection of style attributes to be
applied to the data value. The default style element is TITLE.

 Start The title index to begin at. Valid numeric range 1–10.

Clear Clear the cashed title.

Example

obj.title(text: “Here is a new title”);

/* Clear “The SAS System” default title */
obj.title(start: 1,
 clear: 1);

FOOTNOTE Syntax

 Object.footnote(< optional argument >, … , < optional argument >);

 Description

 Adds a new page footnote to the system.

 Optional Arguments

text < string | character variable >

The text value to insert into the footnote system processing.

style < string | character variable >

52

The style element that contains the collection of style attributes to be
applied to the data value. The default style element is FOOTNOTE.

 Start The footnote index to begin at. Valid numeric range 1–10.

Clear Clear the cashed footnote.

Example

obj.footnote(text: “Here is a new footnote”);

/* Clears the previous footnote */
obj.footnote(start: 1,
 clear: 1);

GRIDDED LAYOUT METHODS

LAYOUT_GRIDDED Syntax

 Object.layout_gridded(< optional argument >, … , < optional argument >);

 Description

 Creates a new gridded layout.

 Optional Arguments

x < dimension unit >

Horizontal position of the LAYOUT, which will extend to the right of this
position for WIDTH. If omitted, it defaults to 0.

y < dimension unit >

Vertical position of the LAYOUT, which will extend down from this
position for HEIGHT. If omitted, it defaults to the current vertical position
on the page.

width < dimension unit >

Horizontal width of the LAYOUT. If omitted, it defaults to the maximum
horizontal space needed to display all regions.

height < dimension unit >

Vertical height of the LAYOUT. If omitted, it defaults to the maximum
vertical space needed to display all regions.

columns < number | numeric variable >

Fixed number of columns in the gridded LAYOUT. If omitted, it defaults
to 1 column.

column_widths < dimension unit >

Width of each column specified. This is a space-delimited list of
horizontal sizes that correspond to each column. The number of
horizontal sizes must match the number of columns specified, or else a
warning will be produced, and the option will be ignored.

column_gutter < dimension unit >

Horizontal space between each column. If omitted, it defaults to the
CELL_SPACING style attribute.

53

rows < number | numeric variable >

Fixed number of rows in the gridded LAYOUT. If omitted, it defaults to
the maximum number of regions created in the vertical direction. This
option should be used very sparingly.

row_heights < dimension unit >

Height of each row specified. This is a space-delimited list of vertical
sizes that correspond to each row. The number of vertical sizes must
match the number of rows specified or else a warning will be produced,
and the option will be ignored.

row_gutter < dimension unit >

 Vertical space between each row. If omitted, it defaults to the
 CELL_SPACING style attribute.

style < string | character variable >

 The style element that contains the collection of style attributes to be
 applied to the data value. The default style element is TEXT.

overrides < string | character variable >

 The style attributes to override those defined in the selected style
 element.

Example:

obj.layout_gridded(colums: 1);
 obj.region();
 obj.format_text(data: “Here is a some text for a region.”);
obj.layout_end();

REGION Syntax

 Object.region(< optional argument >, … , < optional argument >);

 Description

 Create a region that will contain some output.

 Optional Arguments

 width Horizontal width of the REGION, and is restricted by the LAYOUT
 dimensions. If omitted, it defaults to the maximum horizontal space
 needed to display the output contained in the REGION. The sum of all
 region widths cannot exceed the LAYOUT horizontal dimension.

height Vertical height of the REGION, and is restricted by the LAYOUT
 dimensions. If omitted, it defaults to the maximum vertical spaced
 needed to display the output contained in the REGION. The sum of all
 region heights cannot exceed the LAYOUT vertical dimension. This
 option should be used very sparingly.

column Allows you to specify the current grid column position in the gridded
layout. This is generally useful only when you want to skip regions in the
gridded layout and should be used very sparingly. The gridded layout
automatically tracks the current grid column position and will be
incremented for every region statement. Once you have skipped a grid
column, you cannot go back to them. Random access of grid rows and
columns is not supported.

column_span Allows you to specify the number of grid columns that the region will
occupy. It simply allows you to combine adjacent grid columns in

54

gridded layout. Default is 1.

row Allows you to specify the current grid row position in the gridded layout.
This is generally only useful when you want to skip regions in the
gridded layout, and should be used very sparingly. The gridded layout
automatically tracks the current row position, and will be incremented for
every region statement. Once you have skipped rows, you cannot go
back to them. Random access to row and columns is not supported.

row_span Allows you to specify the number of grid rows that the region will occupy.
It simply allows you to combine adjacent grid rows in gridded layout.
Default is 1.

style The style element that contains the collection of style attributes to be
 applied to the data value. The default style element is TEXT.

overrides The style attributes to override those defined in the selected style
 element.

Example:

obj.layout_gridded(colums: 1);
 obj.region();
 obj.format_text(data: “Here is a some text for a region.”);
obj.layout_end();

LAYOUT_END Syntax

 Object.layout_end();

 Description

 Close the active layout.

 No Arguments

Example
obj.layout_end();

ABSOLUTE LAYOUT METHODS

LAYOUT_ABSOLUTE Syntax

 Object.layout_absolute(< optional argument >, … , < optional argument >);

 Description

 Create an absolute layout container.

 Optional Arguments

x < dimension unit >

Horizontal position of the LAYOUT, which will extend to the right of this
position for WIDTH. If omitted, it defaults to 0.

y < dimension unit >

Vertical position of the LAYOUT, which will extend down from this

55

position for HEIGHT. If omitted, it defaults to the current vertical position
on the page.

width < dimension unit >

Horizontal width of the LAYOUT. If omitted, it defaults to the maximum
horizontal spaced needed to display all regions.

height < dimension unit >

Vertical height of the LAYOUT. If omitted, it defaults to the maximum
vertical spaced needed to display all regions.

style < string | character variable >

 The style element that contains the collection of style attributes to be
 applied to the data value. The default style element is TEXT.

overrides < string | character variable >

 The style attributes to override those defined in the selected style
 element.

Example

obj.layout_absolute(x: “4in”,
 y: “3in”,
 width: “3in”,
 height: “1in”);
 obj.region();
 obj.format_text(data: “Some text for a region.”);
obj.layout_end();

REGION Syntax

 Object.region(< optional argument >, … , < optional argument >);

 Description

 Optional Arguments

 width Horizontal width of the REGION, and is restricted by the LAYOUT
 dimensions. If omitted, it defaults to the maximum horizontal spaced
 needed to display the output contained in the REGION. The sum of all
 region widths cannot exceed the LAYOUT horizontal dimension.

height Vertical height of the REGION, and is restricted by the LAYOUT
 dimensions. If omitted, it defaults to the maximum vertical spaced
 needed to display the output contained in the REGION. The sum of all
 region heights cannot exceed the LAYOUT vertical dimension. This
 option should be used very sparingly.

style The style element that contains the collection of style attributes to be
 applied to the data value. The default style element is TEXT.

overrides The style attributes to override those defined in the selected style
 element.

Example

obj.layout_absolute(x: “4in”,
 y: “3in”,
 width: “3in”,

56

 height: “1in”);
 obj.region();
 obj.format_text(data: “Some text for a region.”);
obj.layout_end();

LAYOUT_END Syntax

 Object.layout_end();

 Description

 No Arguments

Example
obj.layout_end();

MISCELLANEOUS METHODS

OPEN_DIR Syntax

 Object.open_dir(< optional argument >, … , < optional argument >);

 Description

Open a table of contents directory. The OPEN_DIR is always used in conjunction with the
CLOSE_DIR method.

 Optional Arguments

name < string | character variable >

The name of the director that will be used in the table of contents (TOC)
 and DMS Results window.

label The label of the directory that will be used in the table of contents (TOC)
and DMS Results window.

by < 1 (True) | 0 (False) >

This is a directory that is related to the unique by value. Special BY-
group processing occurs when this option is set.

Example

obj.open_dir(name: “Sub Directory”);
 obj.format_text(data: “here is some data.”);
obj.close_dir();

CLOSE_DIR Syntax

 Object.close_dir();

Description

 Close the open directory. The CLOSE_DIR is always used in conjunction with the
OPEN_DIR method.

57

 No Arguments

Example

obj.open_dir(name: “Sub Directory”);
 obj.format_text(data: “here is some data.”);
obj.close_dir();

LINE Syntax

 Object.line(< optional argument >, … , < optional argument >);

 Description

 Draws a horizontal rule (line) across the page.

 Optional Arguments

size < dimension unit >

The thickness of the line.

style The style element that contains the collection of style attributes to be
 applied to the data value. The default style element is TEXT.

Example
obj.line();

obj.line(size: “1mm”);

IMAGE Syntax

 Object.image(< optional argument >, … , < optional argument >);

 Description

 Insert the image into all open output destinations.

 Optional Arguments

file < string | character variable >
The FILEREF or physical file name of the external image to include.

style The style element that contains the collection of style attributes to be
 applied to the data value. The default style element is “text”.

overrides < string | character variable >

 The style attributes to override those defined in the selected style
 element.

Example

obj.image(file: “c:\someimage.jpg”);

HREF Syntax

 Object.href(< optional argument >, … , < optional argument >);

 Description

 Create a link to another document.

 Optional Arguments

58

data < string | number | character variable | numeric variable >

The data value to display. If the data is numeric and no format has been
specified the data value will be formatted using the BEST format.

format < string | character variable >

The SAS format to be applied to the data argument.

href < string | character variable >

The URL that our data string.

style < string | character variable >

The style element that contains the collection of style attributes to be
applied to the data value. The default style element is TEXT.

split < string | character variable >

Split character to be applied to the data value. A new line will be started
when it reaches the specified split character, and will continue on the
next line. The split character itself is not considered part of the data
value.

no_base < numeric | numeric variable >

Example

obj.href(data: “SAS Home page”,
 file: “http://www.sas.com/index.html”);

DELETE Syntax

 Object.delete();

 Description

 Delete an instance of the ODSOUT class.

 No Arguments

