The Practice of Statistics 6 ${ }^{\text {th }}$ edition Pacing Guide (110 days)

## Chapter 1

| Day | Topics | Learning Targets Students will be able to ... | Suggested Assignment (MC bold) |
| :---: | :---: | :---: | :---: |
| 1 | Chapter 1 Introduction | - Identify the individuals and variables in a set of data. <br> - Classify variables as categorical or quantitative. | 1, 5, 7, 9, 10 |
| 2 | 1.1 Bar Graphs and Pie Charts, Graphs: Good and Bad, Analyzing Data on Two Categorical Variables | - Make and interpret bar graphs for categorical data. <br> - Identify what makes some graphs of categorical data misleading. <br> - Calculate marginal and joint relative frequencies from a two-way table. | $\begin{aligned} & 13,15,17 \\ & 19,21,23 \end{aligned}$ |
| 3 | 1.1 Relationships Between Two Categorical Variables | - Calculate conditional relative frequencies from a two-way table. <br> - Use bar graphs to compare distributions of categorical data. <br> - Describe the nature of the association between two categorical variables. | $\begin{aligned} & 27,29,33, \\ & 35,40-43 \end{aligned}$ |
| 4 | 1.2 Dotplots, Stemplots, Histograms, Describing Shape | - Make and interpret dotplots, stemplots, and histograms of quantitative data. <br> - Identify the shape of a distribution from a graph. | $\begin{gathered} 45,49,51 \\ 59,63 \end{gathered}$ |
| 5 | 1.2 Describing <br> Distributions, Comparing <br> Distributions, Using <br> Histograms Wisely | - Describe the overall pattern (shape, center, and variability) of a distribution and identify any major departures from the pattern (outliers). <br> - Compare distributions of quantitative data using dotplots, stemplots, and histograms. | $\begin{aligned} & 55,65,69 \\ & 77,80-85 \end{aligned}$ |
| 6 | 1.3 Measuring Center: Mean and Median, Comparing the Mean and Median, Measuring Variability: Range, Standard Deviation and IQR | - Calculate measures of center (mean, median) for a distribution of quantitative data. <br> - Calculate and interpret measures of variability (range, standard deviation, $I Q R$ ) for a distribution of quantitative data. <br> - Explain how outliers and skewness affect measures of center and variability. | $\begin{gathered} 87,89,91, \\ 95,97,101, \\ 103,105 \\ 121 \end{gathered}$ |
| 7 | 1.3 Identifying Outliers, Making and Interpreting Boxplots, Comparing Distributions with Boxplots | - Identify outliers using the $1.5 \times I Q R$ rule. <br> - Make and interpret boxplots of quantitative data. <br> - Use boxplots and numerical summaries to compare distributions of quantitative data. | $\begin{aligned} & 109,111, \\ & 113,115, \\ & \mathbf{1 2 3 - 1 2 6} \end{aligned}$ |
| 8 | Chapter 1 <br> Review/FRAPPY! |  | Chapter 1 Review Exercises |
| 9 | Chapter 1 Test |  |  |

## Chapter 2

| Day | Topics | Learning Targets Students will be able to... | Suggested Assignment (MC bold) |
| :---: | :---: | :---: | :---: |
| 1 | 2.1 Measuring Location: Percentiles, Cumulative Relative Frequency Graphs, Measuring Location: $z$-Scores | - Find and interpret the percentile of an individual value within a distribution of data. <br> - Estimate percentiles and individual values using a cumulative relative frequency graph. <br> - Find and interpret the standardized score ( $z$ score) of an individual value within a distribution of data. | $\begin{gathered} 1,3,7,9,11 \\ 13,15,19 \end{gathered}$ |
| 2 | 2.1 Transforming Data | - Describe the effect of adding, subtracting, multiplying by, or dividing by a constant on the shape, center, and variability of a distribution of data. | $\begin{aligned} & 21,25,29 \\ & 31,33-38 \end{aligned}$ |
| 3 | 2.2 Density Curves, Describing Density Curves, Normal Distributions, The 68-95-99.7 Rule | - Use a density curve to model distributions of quantitative data. <br> - Identify the relative locations of the mean and median of a distribution from a density curve. <br> - Use the 68-95-99.7 rule to estimate (i) the proportion of values in a specified interval, or (ii) the value that corresponds to a given percentile in a Normal distribution. | $\begin{gathered} 41,45,47 \\ 49,51 \end{gathered}$ |
| 4 | 2.2 Finding Areas in a Normal Distribution, Working Backward: Finding Values from Areas | - Find the proportion of values in a specified interval in a Normal distribution using Table A or technology. <br> - Find the value that corresponds to a given percentile in a Normal distribution using Table A or technology. | $\begin{gathered} 53,55,57 \\ 59,61,63 \end{gathered}$ |
| 5 | 2.2 Assessing Normality | - Determine whether a distribution of data is approximately Normal from graphical and numerical evidence. | $\begin{gathered} 73,75,77 \\ 79,81,85- \\ \mathbf{9 0} \end{gathered}$ |
| 6 | Chapter 2 <br> Review/FRAPPY! |  | Chapter 2 Review Exercises |
| 7 | Chapter 2 Test |  |  |

## Chapter 3

| Day | Topics | Learning Targets Students will be able to ... | Suggested Assignment (MC bold) |
| :---: | :---: | :---: | :---: |
| 1 | 3.1 Explanatory and Response Variables, Displaying Relationships: Scatterplots, Describing a Scatterplot | - Distinguish between explanatory and response variables for quantitative data. <br> - Make a scatterplot to display the relationship between two quantitative variables. <br> - Describe the direction, form, and strength of a relationship displayed in a scatterplot and identify unusual features. | 1, 3, 5, 9, 11 |
| 2 | 3.1 Measuring Linear Association: Correlation, Cautions about Correlation, Calculating Correlation, Additional Facts about Correlation | - Interpret the correlation. <br> - Understand the basic properties of correlation, including how the correlation is influenced by outliers. <br> - Distinguish correlation from causation. | $\begin{gathered} \text { 13, 15, 17 } \\ 19,23 \\ \mathbf{2 9 - 3 4} \end{gathered}$ |
| 3 | 3.2 Prediction, Residuals, Interpreting a Regression Line | - Make predictions using regression lines, keeping in mind the dangers of extrapolation. <br> - Calculate and interpret a residual. <br> - Interpret the slope and $y$ intercept of a leastsquares regression line. | $\begin{gathered} 37,39,41 \\ 43,45 \end{gathered}$ |
| 4 | 3.2 The Least-Squares Regression Line, Determining if a Linear Model is Appropriate: Residual Plots | - Determine the equation of a least-squares regression line using technology or computer output. <br> - Construct and interpret residual plots to assess whether a regression model is appropriate. | $\begin{gathered} 47,49,51 \\ 53 \end{gathered}$ |
| 5 | 3.2 How Well the Line Fits the Data: The Role of $s$ and $r^{2}$ in Regression, Interpreting Computer Regression Output | - Interpret the standard deviation of the residuals and $r^{2}$ and use these values to assess how well the least-squares regression line models the relationship between two variables. <br> - Describe how the slope, $y$ intercept, standard deviation of the residuals, and $r^{2}$ are influenced by outliers. | $\begin{gathered} 55,57,59, \\ 67 \end{gathered}$ |
| 6 | 3.2 Regression to the Mean, Correlation and Regression Wisdom | - Find the slope and $y$ intercept of the leastsquares regression line from the means and standard deviations of $x$ and $y$ and their correlation. | $\begin{aligned} & 63,65, \\ & 71-78 \end{aligned}$ |
| 7 | Chapter 3 <br> Review/FRAPPY! |  | Chapter 3 Review Exercises |
| 8 | Chapter 3 Test |  |  |

## Chapter 4

| Day | Topics | Learning Targets Students will be able to... | Suggested Assignment (MC bold) |
| :---: | :---: | :---: | :---: |
| 1 | 4.1 The Idea of a Sample Survey, How to Sample Badly, How to Sample Well: Random Sampling | - Identify the population and sample in a statistical study. <br> - Identify voluntary response sampling and convenience sampling and explain how these sampling methods can lead to bias. <br> - Describe how to select a simple random sample with technology or a table of random digits. | $\begin{gathered} 1,3,5,7,11 \\ 13,15 \end{gathered}$ |
| 2 | 4.1 Other Random Sampling Methods | - Describe how to select a sample using stratified random sampling and cluster sampling, distinguish stratified random sampling from cluster sampling, and give an advantage of each method. | $\begin{gathered} 17,19,21 \\ 22,23 \end{gathered}$ |
| 3 | 4.1 Sample Surveys: What Else Can Go Wrong? | - Explain how undercoverage, nonresponse, question wording, and other aspects of a sample survey can lead to bias. | $\begin{gathered} \hline 25,27,29, \\ 31,33, \\ \mathbf{3 5 - 4 0} \\ \hline \end{gathered}$ |
| 4 | 4.2 Observational Studies Versus Experiments, The Language of Experiments | - Explain the concept of confounding and how it limits the ability to make cause-and-effect conclusions. <br> - Distinguish between an observational study and an experiment, and identify the explanatory and response variables in each type of study. <br> - Identify the experimental units and treatments in an experiment. | $\begin{aligned} & 43,45,47, \\ & 49,51,53 \end{aligned}$ |
| 5 | 4.2 Designing <br> Experiments: Blinding and the Placebo Effect, Designing Experiments: Random Assignment | - Describe the placebo effect and the purpose of blinding in an experiment. <br> - Describe how to randomly assign treatments in an experiment using slips of paper, technology, or a table of random digits. | $\begin{gathered} 57,59,61 \\ 63 \end{gathered}$ |
| 6 | 4.2 Designing Experiments: Comparison, Control, Replication, and Putting It All Together; Completely Randomized Designs | - Explain the purpose of comparison, random assignment, control, and replication in an experiment. <br> - Describe a completely randomized design for an experiment. | $\begin{gathered} 55,65,67, \\ 69 \end{gathered}$ |
| 7 | 4.2 Randomized Block Designs | - Describe a randomized block design and a matched pairs design for an experiment and explain the purpose of blocking in an experiment. | $\begin{gathered} \hline 71,75,77, \\ 79, \\ \mathbf{8 3 - 9 0} \\ \hline \end{gathered}$ |
| 8 | 4.3 Inference for Sampling, Inference for Experiments | - Explain the concept of sampling variability when making an inference about a population and how sample size affects sampling variability. <br> - Explain the meaning of statistically significant in the context of an experiment and use simulation to determine if the results of an experiment are statistically significant. | $\begin{gathered} 93,95,97 \\ 99 \end{gathered}$ |


| 9 | 4.3 The Scope of <br> Inference: Putting it All <br> Together, The <br> Challenges of <br> Establishing Causation, <br> Data Ethics (optional) | • Identify when it is appropriate to make an <br> inference about a population and when it is <br> appropriate to make an inference about cause and <br> effect. <br> Evaluate if a statistical study has been carried out in <br> an ethical manner. | 103,105, <br> $107,117-$ <br> $\mathbf{1 1 8}$ |
| :---: | :--- | :--- | :---: |
|  | Chapter 4 <br> Review/FRAPPY! <br> 113, <br> optional) |  |  |
|  | Chapter 4 Test |  | Chapter 4 <br> Review <br> Exercises |

## Chapter 5

| Day | Topics | Learning Targets Students will be able to... | Suggested Assignment (MC bold) |
| :---: | :---: | :---: | :---: |
| 1 | 5.1 The Idea of Probability | - Interpret probability as a long-run relative frequency. | 1, 3, 5, 7 |
| 2 | 5.1 Simulation | - Use simulation to model chance behavior. | $\begin{gathered} 9,11,15,21 \\ 23-28 \end{gathered}$ |
| 3 | 5.2 Probability Models, Basic Probability Rules | - Give a probability model for a chance process with equally likely outcomes and use it to find the probability of an event. <br> - Use basic probability rules, including the complement rule and the addition rule for mutually exclusive events. | $\begin{gathered} 31,33,35 \\ 37,39 \end{gathered}$ |
| 4 | 5.2 Two-Way Tables, Probability, and the General Addition Rule, Venn Diagrams and Probability | - Use a two-way table or Venn diagram to model a chance process and calculate probabilities involving two events. <br> - Apply the general addition rule to calculate probabilities. | $\begin{gathered} 41,47,49 \\ 51,53 \\ 55-58 \end{gathered}$ |
| 5 | 5.3 What Is Conditional <br> Probability?, Conditional <br> Probability and <br> Independence, The <br> General Multiplication <br> Rule | - Calculate and interpret conditional probabilities. <br> - Determine whether two events are independent. <br> - Use the general multiplication rule to calculate probabilities. | $\begin{gathered} 61,63,65, \\ 67,69,71, \\ 77,79 \end{gathered}$ |
| 6 | 5.3 Tree Diagrams and Conditional Probability, The Multiplication Rule for Independent Events | - Use a tree diagram to model a chance process involving a sequence of outcomes and to find probabilities. <br> - When appropriate, use the multiplication rule for independent events to calculate probabilities. | $\begin{gathered} 81,83,87, \\ 89,91,93, \\ 99,103-106 \end{gathered}$ |
| 7 | Chapter 5 <br> Review/FRAPPY! |  | Chapter 5 <br> Review <br> Exercises |
| 8 | Chapter 5 Test |  |  |

## Chapter 6

| Day | Topics | Learning Targets Students will be able to... | Suggested Assignment (MC bold) |
| :---: | :---: | :---: | :---: |
| 1 | 6.1 Discrete Random Variables, Analyzing Discrete Random Variables: Describing Shape, Measuring Center: The Mean (Expected Value) of a Discrete Random Variable | - Use the probability distribution of a discrete random variable to calculate the probability of an event. <br> - Make a histogram to display the probability distribution of a discrete random variable and describe its shape. <br> - Calculate and interpret the mean (expected value) of a discrete random variable. | 1, 3, 5, 7, 9, 11 |
| 2 | 6.1 Measuring Variability: The Standard Deviation (and Variance) of a Discrete Random Variable, Continuous Random Variables | - Calculate and interpret the standard deviation of a discrete random variable. <br> - Use the probability distribution of a continuous random variable (uniform or Normal) to calculate the probability of an event. | $\begin{gathered} 13,19,21, \\ 23,27,29, \\ \mathbf{3 1 - 3 4} \end{gathered}$ |
| 3 | 6.2 Transforming a Random Variable | - Describe the effect of adding or subtracting a constant or multiplying or dividing by a constant on the probability distribution of a random variable. | $\begin{gathered} 37,39,41,43 \\ 47 \end{gathered}$ |
| 4 | 6.2 Combining Random Variables, Standard Deviation of the Sum or Difference of Two Random Variables, Combining Normal Random Variables | - Calculate the mean and standard deviation of the sum or difference of random variables. <br> - Find probabilities involving the sum or difference of independent Normal random variables. | $\begin{gathered} 49,51,55, \\ 57,59,65,67, \\ \mathbf{7 3 - 7 4} \end{gathered}$ |
| 5 | 6.3 Binomial Settings and Binomial Random Variables, Calculating Binomial Probabilities | - Determine whether the conditions for a binomial setting are met. <br> - Calculate and interpret probabilities involving binomial distributions. | $\begin{gathered} 77,79,81,83, \\ 85,89 \end{gathered}$ |
| 6 | 6.3 Describing a Binomial Distribution: Shape, Center, and Variability; Binomial Distributions in Statistical Sampling, The Normal Approximation to Binomial Distributions (optional) | - Calculate the mean and standard deviation of a binomial random variable. Interpret these values in context. <br> - When appropriate, use the Normal approximation to the binomial distribution to calculate probabilities. | $\begin{gathered} 91,93,95,99 \\ 101,105 \\ (103,106, \\ 117 \text { optional }) \end{gathered}$ |
| 7 | 6.3 Geometric Random Variables | - Find probabilities involving geometric random variables. | $\begin{gathered} 107,109,111 \\ \mathbf{1 1 3 - 1 1 6} \\ \hline \end{gathered}$ |
| 8 | Chapter 6 <br> Review/FRAPPY! |  | Chapter 6 Review Exercises |
| 9 | Chapter 6 Test |  |  |

MIDTERM EXAM REVIEW: 3 DAYS
MIDTERM EXAM: 1 DAY

## Chapter 7

| Day | Topics | Learning Targets Students will be able to... | Suggested Assignment (MC bold) |
| :---: | :---: | :---: | :---: |
| 1 | 7.1 Parameters and Statistics, The Idea of a Sampling Distribution | - Distinguish between a parameter and a statistic. <br> - Create a sampling distribution using all possible samples from a small population. | 1, 3, 5, 7, 9 |
| 2 | 7.1 The Idea of a Sampling Distribution, Describing Sampling Distributions | - Use the sampling distribution of a statistic to evaluate a claim about a parameter. <br> - Distinguish among the distribution of a population, the distribution of a sample, and the sampling distribution of a statistic. <br> - Determine if a statistic is an unbiased estimator of a population parameter. <br> - Describe the relationship between sample size and the variability of a statistic. | $\begin{gathered} 11,13,15, \\ 19,21,25, \\ \mathbf{2 6 - 3 0} \end{gathered}$ |
| 3 | 7.2 The Sampling <br> Distribution of $\hat{p}$, Using <br> the Normal <br> Approximation for $\hat{p}$. | - Calculate the mean and standard deviation of the sampling distribution of a sample proportion $\hat{p}$ and interpret the standard deviation. <br> - Determine if the sampling distribution of $\hat{p}$ is approximately Normal. <br> - If appropriate, use a Normal distribution to calculate probabilities involving $\hat{p}$. | $\begin{gathered} 35,37,41,43, \\ 47-50 \end{gathered}$ |
| 4 | 7.3 The Sampling Distribution of $\bar{x}$, Sampling from a Normal Population | - Calculate the mean and standard deviation of the sampling distribution of a sample mean $\bar{x}$ and interpret the standard deviation. <br> - Explain how the shape of the sampling distribution of $\bar{x}$ is affected by the shape of the population distribution and the sample size. <br> - If appropriate, use a Normal distribution to calculate probabilities involving $\bar{x}$. | 53, 55, 57, 61 |
| 5 | 7.3 The Central Limit Theorem | - Explain how the shape of the sampling distribution of $\bar{x}$ is affected by the shape of the population distribution and the sample size. <br> - If appropriate, use a Normal distribution to calculate probabilities involving $\bar{x}$. | $\begin{gathered} \text { 63, 65, } 67, \\ 69,71, \\ \mathbf{7 3 - 7 6} \end{gathered}$ |
| 6 | Chapter 7 <br> Review/FRAPPY! |  | Chapter 7 Review Exercises |
| 7 | Chapter 7 Test |  | Cumulative AP ${ }^{\circledR}$ Practice Exam 2 |

## Chapter 8

| Day | Topics | Learning Targets Students will be able to ... | Suggested <br> Assignment <br> (MC bold) |
| :--- | :--- | :--- | :---: |
| 1 | Chapter 8 Introduction, <br> 8.1 The Idea of a <br> Confidence Interval, <br> Interpreting Confidence <br> Intervals | - Identify an appropriate point estimator and <br> calculate the value of a point estimate. <br> - Interpret a confidence interval in context. <br> - Determine the point estimate and margin of <br> error from a confidence interval. <br> - Use a confidence interval to make a decision <br> about the value of a parameter. | 1,3,5,7,9 |

## Chapter 9

| Day | Topics | Learning Targets Students will be able to... | Suggested Assignment (MC bold) |
| :---: | :---: | :---: | :---: |
| 1 | Chapter 9 Introduction; 9.1 Stating Hypotheses, Interpreting $P$-values, Making Conclusions | - State appropriate hypotheses for a significance test about a population parameter. <br> - Interpret a $P$-value in context. <br> - Make an appropriate conclusion for a significance test. | $\begin{gathered} 1,3,5,7,9,13 \\ 14,15,19 \end{gathered}$ |
| 2 | 9.1 Type I and Type II Errors | - Interpret a Type I and a Type II error in context. Give a consequence of each error in a given setting. | $\begin{gathered} 21,23,25,27 \\ 29-32 \end{gathered}$ |
| 3 | 9.2 Performing a <br> Significance Test About $p$ | - State and check the Random, 10\%, and Large Counts conditions for performing a significance test about a population proportion. <br> - Calculate the standardized test statistic and $P$-value for a test about a population proportion. | $35,37,39,41$ |
| 4 | 9.2 Putting It All <br> Together: One-Sample $z$ <br> Test for $p$, Two-Side Tests | - Perform a significance test about a population proportion. | $\begin{aligned} & 43,45,47,51, \\ & 53,55,59-62 \end{aligned}$ |
| 5 | 9.3 Carrying Out a Significance Test for $\mu$, <br> Putting It All Together: <br> One-Sample $t$ Test for $\mu$ | - State and check the Random, $10 \%$, and Normal/Large Sample conditions for performing a significance test about a population mean. <br> - Calculate the standardized test statistic and $P$-value for a test about a population mean. <br> - Perform a significance test about a population mean. | $\begin{gathered} 65,67,69,73 \\ 77,79 \end{gathered}$ |
| 6 | 9.3 Two-Sided Tests and Confidence Intervals, The Power of a Test, Using Tests Wisely | - Use a confidence interval to make a conclusion for a two-sided test about a population parameter. <br> - Interpret the power of a significance test and describe what factors affect the power of a test. | $\begin{gathered} 81,85,87,93 \\ 95,97, \mathbf{1 0 2 -} \\ \mathbf{1 0 8} \end{gathered}$ |
| 7 | Chapter 9 <br> Review/FRAPPY! |  | Chapter 9 <br> Review <br> Exercises |
| 8 | Chapter 9 Test |  |  |

## Chapter 10

| Day | Topics | Learning Targets Students will be able to... | Suggested Assignment (MC bold) |
| :---: | :---: | :---: | :---: |
| 1 | "Who Likes Tattoos?" <br> Activity, 10.1 The <br> Sampling Distribution of <br> a Difference between <br> Two Proportions | - Describe the shape, center, and variability of the sampling distribution of $\hat{p}_{1}-\hat{p}_{2}$. | 1, 3 |
| 2 | 10.1 Confidence Intervals for $p_{1}-p_{2}$ | - Determine whether the conditions are met for doing about a difference between two proportions. <br> - Construct and interpret a confidence interval for a difference between two proportions. | $5,7,9,11,13$ |
| 3 | 10.1 Significance Tests for $p_{1}-p_{2}$, Putting It All Together: Two-sample $z$ Test for $p_{1}-p_{2}$. | - Calculate the standardized test statistic and $P$-value for a test about a difference between two proportions. <br> - Perform a significance test about a difference between two proportions. | $\begin{gathered} 15,19,21,29 \\ \mathbf{3 1 - 3 3} \end{gathered}$ |
| 4 | 10.2 The Sampling <br> Distribution of a Difference between Two Means, Confidence Intervals for $\mu_{1}-\mu_{2}$ | - Describe the shape, center, and variability of the sampling distribution of $\bar{x}_{1}-\bar{x}_{2}$. <br> - Determine whether the conditions are met for doing inference about a difference between two means. <br> - Construct and interpret a confidence interval for a difference between two means. | $\begin{gathered} 37,39,41,45, \\ 49 \end{gathered}$ |
| 5 | 10.2 Significance Tests for $\mu_{1}-\mu_{2}$, Putting It All Together: Two-sample $t$ Test for $\mu_{1}-\mu_{2}$. | - Calculate the standardized test statistic and $P$-value for a test about a difference between two means. <br> - Perform a significance test for the difference between two means. | $\begin{gathered} 51,53,55,57 \\ 67,69-72 \end{gathered}$ |
| 6 | 10.3 Analyzing Paired Data, Confidence <br> Intervals for <br> Significance tests for <br> diff . Paired Data or Two <br> Samples? | - Analyze the distribution of differences in a paired data set using graphs and summary statistics. <br> - Construct and interpret a confidence interval for a mean difference. <br> - Perform a significance test about a mean difference. | 75, 79, 85 |
| 7 | 10.3 "Get Your Heart Beating! Activity, Paired Data or Two Samples? | - Determine when it is appropriate to use paired $t$ procedures versus two-sample $t$ procedures. | 91, 93, 95-97 |
| 8 | Chapter 10 Review/ FRAPPY! |  | Chapter 10 Review Exercises |
| 9 | Chapter 10 Test |  | Cumulative AP ${ }^{\circledR}$ Practice Exam 3 |

## Chapter 11

| Day | Topics | Learning Targets Students will be able to... | Suggested Assignment (MC bold) |
| :---: | :---: | :---: | :---: |
| 1 | Activity: The Candy Man Can; 11.1 Stating Hypotheses; Comparing Observed and Expected Counts: The Chi-Square Statistic; The Chi-Square Distributions and $P$ values | - State appropriate hypotheses and compute the expected counts and chi-square statistic for a chi-square test for goodness of fit. <br> - Calculate the chi-square statistic, degrees of freedom, and $P$-value for a chi-square test for goodness of fit. | $1,3,5,7$ |
| 2 | 11.1 Carrying Out a Test; Follow-Up Analysis | - State and check the Random, 10\%, and Large Counts conditions for performing a chi-square test for goodness of fit. <br> - Perform a chi-square test for goodness of fit. <br> - Conduct a follow-up analysis when the results of a chi-square test are statistically significant. | 9,13, 19-21 |
| 3 | 11.2 Tests for <br> Homogeneity: Stating Hypotheses, Expected Counts and the ChiSquare Test Statistic, Conditions and $P$-values; The Chi-Square Test for Homogeneity | - State appropriate hypotheses and compute the expected counts and chi-square test statistic for a chi-square test based on data in a twoway table. <br> - State and check the Random, 10\%, and Large Counts conditions for a chi-square test based on data in a two-way table. <br> - Calculate the degrees of freedom and $P$-value for a chi-square test based on data in a twoway table. <br> - Perform a chi-square test for homogeneity. | $\begin{gathered} 27,29,31 \\ 33,35 \end{gathered}$ |
| 4 | 11.2 Relationships <br> Between Two Categorical Variables; The Chi-Square Test for Independence; Using Chi-Square Tests Wisely | - Perform a chi-square test for independence. <br> - Choose the appropriate chi-square test in a given setting. | $\begin{gathered} 41,43,47 \\ 49,51,55- \\ \mathbf{6 0} \end{gathered}$ |
| 5 | Chapter 11 Review/ FRAPPY! |  | Chapter 11 Review Exercises |
| 6 | Chapter 11 Test |  |  |

## Chapter 12

| Day | Topics | Learning Targets Students will be able to ... | Suggested Assignment (MC bold) |
| :---: | :---: | :---: | :---: |
| 1 | Activity: Sampling from Old Faithful; 12.1 <br> Sampling Distribution of $b_{1}$; Conditions for Regression Inference | - Check the conditions for performing inference about the slope ${ }_{1}$ of the population (true) regression line. | 1,3,5 |
| 2 | 12.1 Estimating the Parameters; Constructing a Confidence Interval for the Slope | - Interpret the values of $b_{0}, b_{1}, s$, and $\mathrm{SE}_{b_{1}}$ in context, and determine these values from computer output. <br> - Construct and interpret a confidence interval for the slope ${ }_{1}$ of the population (true) regression line. | 7, 9, 11 |
| 3 | 12.1 Performing a Significance Test for the Slope | - Perform a significance test about the slope ${ }_{1}$ of the population (true) regression line. | 15, 23-28 |
| 4 | 12.2 Transforming with Powers and Roots; Transforming with Logarithms: Power Models | - Use transformations involving powers and roots to find a power model that describes the relationship between two variables, and use the model to make predictions. <br> - Use transformations involving logarithms to find a power model that describes the relationship between two quantitative variables, and use the model to make predictions. | 33, 35, 37, 39 |
| 5 | 12.2 Transforming with Logarithms: Exponential Models; Putting it all Together: Which Transformation Should We Choose? | - Use transformations involving logarithms to find an exponential model that describes the relationship between two quantitative variables, and use the model to make predictions. <br> - Determine which of several transformations does a better job of producing a linear relationship. | $\begin{gathered} 43,45,47, \\ 51-54 \end{gathered}$ |
| 6 | Chapter 12 Review/ FRAPPY! |  | Chapter 12 Review Exercises |
| 7 | Chapter 12 Test |  | Cumulative AP ${ }^{\circledR}$ Practice Test 4 |

AP EXAM REVIEW (9 DAYS)

- Practice AP Free Response Questions
- Choosing the Correct Inference Procedure
- Flash cards
- Mock Grading Sessions
- Rubric development by student teams
- Practice Multiple Choice Questions

