The Principle of Least Action

Introduction

Recall that we defined the Lagrangian to be the kinetic energy less potential energy, $L=K-U$, at a point. The action is then defined to be the integral of the Lagrangian along the path,

$$
S=\int_{t_{0}}^{t_{1}} L d t=\int_{t_{0}}^{t_{1}} K-U d t
$$

It is (remarkably!) true that, in any physical system, the path an object actually takes minimizes the action. It can be shown that the extrema of action occur at

$$
\frac{\partial L}{\partial q}-\frac{d}{d t} \frac{\partial L}{\partial \dot{q}}=0
$$

This is called the Euler equation, or the Euler-Lagrange Equation.

- Derivation

Courtesy of Scott Hughes's Lecture notes for 8.033. (Most of this is copied almost verbatim from that.)
Suppose we have a function $f(x, \dot{x} ; t)$ of a variable x and its derivative $\dot{x}=d x / d t$. We want to find an extremum of

$$
J=\int_{t_{0}}^{t_{1}} f(x(t), \dot{x}(t) ; t) d t
$$

Our goal is to compute $x(t)$ such that J is at an extremum. We consider the limits of integration to be fixed. That is, $x\left(t_{1}\right)$ will be the same for any x we care about, as will $x\left(t_{2}\right)$.

Imagine we have some $x(t)$ for which J is at an extremum, and imagine that we have a function which parametrizes how far our current path is from our choice of x :

$$
x(t ; \alpha)=x(t)+\alpha A(t)
$$

The function A is totally arbitrary, except that we require it to vanish at the endpoints: $A\left(t_{0}\right)=A\left(t_{1}\right)=0$. The parameter α allows us to control how the variation $A(t)$ enters into our path $x(t ; \alpha)$.

The "correct" path $x(t)$ is unknown; our goal is to figure out how to construct it, or to figure out how f behaves when we are on it.
Our basic idea is to ask how does the integral J behave when we are in the vicinity of the extremum. We know that ordinary functions are flat --- have zero first derivative --- when we are at an extremum. So let us put

$$
J(\alpha)=\int_{t_{0}}^{t_{1}} f(x(t ; \alpha), \dot{x}(t ; \alpha) ; t) d t
$$

We know that $\alpha=0$ corresponds to the extremum by definition of α. However, this doesn't teach us anything useful, sine we don't know the path $x(t)$ that corresponds to the extremum.

But we also know We know that $\left.\frac{\partial J}{\partial \alpha}\right|_{\alpha=0}=0$ since it's an extremum. Using this fact,

$$
\begin{gathered}
\frac{\partial J}{\partial \alpha}=\int_{t_{0}}^{t_{1}}\left(\frac{\partial f}{\partial x} \frac{\partial x}{\partial \alpha}+\frac{\partial f}{\partial \dot{x}} \frac{\partial \dot{x}}{\partial \alpha}\right) d t \\
\frac{\partial x}{\partial \alpha}=\frac{\partial}{\partial \alpha}(x(t)+\alpha A(t))=A(t) \\
\frac{\partial \dot{x}}{\partial \alpha}=\frac{\partial}{\partial \alpha} \frac{d}{d t}(x(t)+\alpha A(t))=\frac{d A}{d t}
\end{gathered}
$$

So

$$
\frac{\partial J}{\partial \alpha}=\int_{t_{0}}^{t_{1}}\left(\frac{\partial f}{\partial x} A(t)+\frac{\partial f}{\partial \dot{x}} \frac{d A}{d t}\right) d t
$$

Integration by parts on the section term gives

$$
\int_{t_{0}}^{t_{1}} \frac{\partial f}{\partial \dot{x}} \frac{d A}{d t} d t=\left.A(t) \frac{\partial f}{\partial \dot{x}}\right|_{t_{0}} ^{t_{1}}-\int_{t_{0}}^{t_{1}} A(t) \frac{d}{d t} \frac{\partial f}{\partial \dot{x}} d t
$$

Since $A\left(t_{0}\right)=A\left(t_{1}\right)=0$, the first term dies, and we get

$$
\frac{\partial J}{\partial \alpha}=\int_{t_{0}}^{t_{1}} A(t)\left(\frac{\partial f}{\partial x}+\frac{d}{d t} \frac{\partial f}{\partial \dot{x}}\right) d t
$$

This must be zero. Since $A(t)$ is arbitrary except at the endpoints, we must have that the integrand is zero at all points:

$$
\frac{\partial f}{\partial x}+\frac{d}{d t} \frac{\partial f}{\partial \dot{x}}=0
$$

This is what was to be derived.

Least action: $F=m$ a

Suppose we have the Newtonian kinetic energy, $K=\frac{1}{2} m v^{2}$, and a potential that depends only on position, $U=U(\vec{r})$. Then the Euler-Lagrange equations tell us the following:

```
Clear[U,m, r]
L = \frac{1}{2}mr'[ [t] ' - U [r[t]];
\partialr[t]
- U'[r[t]]-m r'[t] == 0
```

Rearrangement gives

$$
\begin{gathered}
-\frac{\partial U}{\partial r}=m \stackrel{\ddot{r}}{ } \\
F=m a
\end{gathered}
$$

Least action with no potential

Suppose we have no potential, $U=0$. Then $L=K$, so the Euler-Lagrange equations become

$$
\frac{\partial K}{\partial q}-\frac{d}{d t} \frac{\partial K}{\partial \dot{q}}=0
$$

For Newtonian kinetic energy, $K=\frac{1}{2} m \dot{x}^{2}$, this is just

$$
\begin{aligned}
& \frac{d}{d t} m \dot{x}=0 \\
& m \dot{x}=m v \\
& x=x_{0}+v t
\end{aligned}
$$

This is a straight line, as expected.

Least action with gravitational potential

Suppose we have gravitational potential close to the surface of the earth, $U=m g y$, and Newtonian kinetic energy, $K=\frac{1}{2} m \dot{y}^{2}$. Then the Euler-Lagrange equations become

$$
\begin{gathered}
-m g-\frac{d}{d t} m \dot{y}=-m g-m \dot{y}=0 \\
-g=\dot{y} \\
y=y_{0}+a_{y} t-\frac{1}{2} g t^{2}
\end{gathered}
$$

This is a parabola, as expected.

Constants of motion: Momenta

We may rearrange the Euler-Lagrange equations to obtain

$$
\frac{\partial L}{\partial q}=\frac{d}{d t} \frac{\partial L}{\partial \dot{q}}
$$

If it happens that $\frac{\partial L}{\partial q}=0$, then $\frac{d}{d t} \frac{\partial L}{\partial \dot{q}}$ is also zero. This means that $\frac{\partial L}{\partial \dot{q}}$ is a constant (with respect to time). We call $\frac{\partial L}{\partial \dot{q}}$ a (conserved) momentum of the system.

- Linear Momentum

By noting that Newtonian kinetic energy, $K=\frac{1}{2} m v^{2}$, is independent of the time derivatives of position, if potential energy depends only on position, we can infer that $\frac{\partial L}{\partial \dot{x}}$ (and, similarly, $\frac{\partial L}{\partial \dot{y}}$ and $\frac{\partial L}{\partial \dot{z}}$) are constant. Then $\frac{\partial L}{\partial \dot{x}}=\frac{\partial}{\partial \dot{x}}\left(\frac{1}{2} m \dot{x}^{2}\right)=m \dot{x}$. This is just standard linear momentum, $m v$.

- Angular Momentum

Let us change to polar coordinates.

$$
\begin{aligned}
& \mathbf{x}\left[\mathrm{t} _\right]:=\mathrm{r}[\mathrm{t}] \operatorname{Cos}[\theta[\mathrm{t}]] \\
& \mathrm{y}[\mathrm{t}-]:=\mathrm{r}[\mathrm{t}] \operatorname{Sin}[\theta[\mathrm{t}]] \\
& \mathrm{K}=\text { Expand }\left[\text { FullSimplify }\left[\frac{1}{2} \mathrm{~m}\left(\mathbf{x}^{\prime}[\mathrm{t}]^{2}+\mathbf{y}^{\prime}[\mathrm{t}]^{2}\right)\right]\right] / / \text { TraditionalForm } \\
& \frac{1}{2} m r^{\prime}(t)^{2}+\frac{1}{2} m r(t)^{2} \theta^{\prime}(t)^{2}
\end{aligned}
$$

Using dot notation, this is

$\frac{1}{2} \dot{\theta}^{2} m r^{2}+\frac{m \dot{r}^{2}}{2}$
Note that θ does not appear in this expression. If potential energy is not a function of θ (is only a function of r), then $\frac{\partial L}{\partial \dot{\theta}}=m r^{2} \dot{\theta}$ is constant. This is standard angular momentum, $m r^{2} \omega=r m r \omega=r \times m v$.

Classic Problem: Brachistochrone ("shortest time")

- Problem

A bead starts at $x=0, y=0$, and slides down a wire without friction, reaching a lower point $\left(x_{f}, y_{f}\right)$. What shape should the wire be in order to have the bead reach $\left(x_{f}, y_{f}\right)$ in as little time as possible.

- Solution

- Idea

Use the Euler equation to minimize the time it takes to get from $\left(x_{i}, y_{i}\right)$ to $\left(x_{f}, y_{f}\right)$.

- Implementation

Letting $d s$ be the infinitesimal distance element and v be the travel speed,

$$
\begin{gathered}
T=\int_{t_{i}}^{t_{f}} \frac{d s}{v} d t \\
d s=\sqrt{(d x)^{2}+(d y)^{2}}=d y \sqrt{1+\left(x^{\prime}\right)^{2}} \quad x^{\prime}=\frac{d x}{d y} \\
v=\sqrt{2 g y} \quad \text { (Assumption: bead starts at rest) }
\end{gathered}
$$

$$
T=\int_{0}^{y_{f}} \sqrt{\frac{1+\left(x^{\prime}\right)^{2}}{2 g y}} d y
$$

Now we apply the Euler equation to $f=\sqrt{\frac{1+\left(x^{\prime}\right)^{2}}{2 g y}}$ and change $t \rightarrow y, \dot{x} \rightarrow x^{\prime}$.

$$
\begin{gathered}
\frac{\partial f}{\partial x}-\frac{d}{d y} \frac{\partial f}{\partial \dot{x}}=0 \\
\frac{\partial f}{\partial x}=0 \\
\frac{\partial f}{\partial \dot{x}}=\frac{1}{\sqrt{2 g y}} \frac{x^{\prime}}{\sqrt{1+\left(x^{\prime}\right)^{2}}} \\
\frac{d}{d y} \frac{\partial f}{\partial \dot{x}}=0 \rightarrow \frac{1}{\sqrt{2 g y}} \frac{x^{\prime}}{\sqrt{1+\left(x^{\prime}\right)^{2}}}=\text { Constant }
\end{gathered}
$$

Squaring both sides and making a special choice for the constant gives

$$
\begin{gathered}
\frac{\left(x^{\prime}\right)^{2}}{2 g y\left(1+\left(x^{\prime}\right)^{2}\right)}=\frac{1}{4 g A} \\
\rightarrow\left(\frac{d x}{d y}\right)^{2}=\frac{y /(2 A)}{1-y /(2 A)}=\frac{y^{2}}{2 A y-y^{2}} \\
\rightarrow \quad x=\int_{0}^{y_{f}} \frac{d x}{d y} d y=\int_{0}^{y_{f}} \frac{y}{\sqrt{2 A y-y^{2}}} d y
\end{gathered}
$$

To solve this, change variables:

$$
y=A(1-\cos (\theta)), \quad d y=A \sin (\theta) d \theta
$$

FullSimplify[2Ay-y $\left.\mathbf{y}^{2} / \cdot \mathbf{y} \rightarrow \mathrm{A}(1-\operatorname{Cos}[\theta])\right]$
$A^{2} \operatorname{Sin}[\theta]^{2}$

$$
\begin{gathered}
\frac{y}{\sqrt{2 A y-y^{2}}} d y=\frac{A(1-\cos (\theta))}{\sqrt{A^{2} \sin ^{2}(\theta)}} A \sin (\theta) d \theta=A(1-\cos (\theta)) \\
x=\int_{0}^{\theta} A(1-\cos (\theta)) d \theta=A(\theta-\sin (\theta))
\end{gathered}
$$

Full solution: The brachistochrone is described by

$$
\begin{aligned}
& x=A(\theta-\sin (\theta)) \\
& y=A(1-\cos (\theta)) \\
& \hline
\end{aligned}
$$

There's no analytic solution, but we can compute them.

```
Clear[x, y, A, 的, soln, yf, xf, xmax, Өmax, Asol, f]; Manipulate[
```



```
        Module[{soln = FindRoot[{x[A, 访 == xf, y[A, 位 == yf}, {A, -1}, {0, \pi}]}, Module[
            {Asol = A/. soln, 白ax = 0 /. soln}, ParametricPlot[{x[Asol, 0], y[Asol, 0]},
            {0, 0, Өmax}, PlotRange }->{{0, xmax}, {ymax, 0}}, PlotStyle -> Black]]]]
    {{xmax, 2\pi, (xmax }, 0, 4\pi}, {{ymax, -2.5, Y (max }, 0, - 20},
    {{xf,4, (xf}, 0, 10}, {{yf, -2, Yf }, 0, - 5}]
```


Classic Problem：Catenary

－Problem

Suppose we have a rope of length l and linear mass density λ ．Suppose we fix its ends at points $\left(x_{0}, y_{0}\right)$ and $\left(x_{f}, y_{f}\right)$ ．What shape does the rope make，hanging under the influence of gravity？

－Solution

－Idea

Calculate the potential energy of the rope as a function of the curve，$y(x)$ ，and minimize this quantity using the Euler－Lagrange equations．

－Implementation

Suppose we have curve parameterized by $t,(x(t), y(t))$ ．The potential energy associated with this curve is

$$
\begin{gathered}
U=\int_{0}^{l} \lambda g y d s \\
d s=\sqrt{(d x)^{2}+(d y)^{2}}=d y \sqrt{1+\left(x^{\prime}\right)^{2}} \quad x^{\prime}=\frac{d x}{d y} \\
U=\int_{y_{0}}^{y_{f}} \lambda g y \sqrt{1+\left(x^{\prime}\right)^{2}} d y
\end{gathered}
$$

Note that if we choose to factor $d s$ the other way (for y^{\prime}), we get a mess.
Now we apply the Euler-Lagrange equation to $f=\lambda g y \sqrt{1+\left(x^{\prime}\right)^{2}}$ and change $t \rightarrow y, \dot{x} \rightarrow x^{\prime}$.

$$
\begin{gathered}
\frac{\partial f}{\partial x}-\frac{d}{d y} \frac{\partial f}{\partial x^{\prime}}=0 \\
\frac{\partial f}{\partial x}=0 \\
\frac{\partial f}{\partial x^{\prime}}=\frac{\lambda g y x^{\prime}}{\sqrt{1+\left(x^{\prime}\right)^{2}}}
\end{gathered}
$$

Since $\frac{\partial f}{\partial x}=0, \frac{\partial f}{\partial x^{\prime}}$ is constant, say $a=\frac{1}{\lambda g} \frac{\partial f}{\partial x^{\prime}}=\frac{y x^{\prime}}{\sqrt{1+\left(x^{\prime}\right)^{2}}}$. Then

$$
x^{\prime}=\frac{d x}{d y}= \pm \frac{a}{\sqrt{y^{2}-a^{2}}}
$$

Using the fact that

$$
\int \frac{d y}{\sqrt{y^{2}-a^{2}}}=\cosh ^{-1}\left(\frac{y}{a}\right)+b
$$

integration of x^{\prime} gives

$$
x(y)= \pm a \cosh ^{-1}\left(\frac{y}{a}\right)+b
$$

where b is a constant of integration.
Plotting this for $a=1, b=0$ gives:
$\ln [14]:=\operatorname{Clear}[y]$; Manipulate $\left[\right.$ ParametricPlot $\left[\left\{\left\{-a \operatorname{ArcCosh}\left[\frac{t}{a}\right]+b, t\right\},\left\{a \operatorname{ArcCosh}\left[\frac{t}{a}\right]+b, t\right\}\right\}\right.$,
$\{t, y m i n, y \max \}, \operatorname{PlotStyle} \rightarrow \operatorname{Black}],\{\{a, 1\},-5,5\}$,
$\left.\{\{b, 0\},-5,5\},\left\{\left\{y_{\min }, 0, y_{\min }\right\},-5,5\right\},\left\{\left\{y_{\max }, 2, Y_{\max }\right\},-5,5\right\}\right]$

Problem: Bead on a Ring

From 8.033 Quiz \#2

- Problem

A bead of mass m slides without friction on a circular hoop of radius R. The angle θ is defined so that when the bead is at the bottom of the hoop, $\theta=0$. The hoop is spun about its vertical axis with angular velocity ω. Gravity acts downward with acceleration g.
Find an equation describing how θ evolves with time.
Find the minimum value of ω for the bead to be in equilibrium at some value of θ other than zero.
("equilibrium" means that $\dot{\theta}$ and θ are both zero.) How large must ω be in order to make $\theta=\pi / 2$?

- Solution

The general Lagrangian for the object in Cartesian coordinates is

$$
\begin{aligned}
& \text { Clear }[\mathbf{x}, \mathbf{y}, \mathbf{z}, \mathrm{t}] ;\left(\mathbf{L}=\frac{1}{2} \mathrm{~m}\left(\mathbf{x}^{\prime}[\mathrm{t}]^{2}+\mathbf{y}^{\prime}[\mathrm{t}]^{2}+\mathbf{z}^{\prime}[\mathrm{t}]^{2}\right)-\mathrm{mg} \mathbf{z}[\mathrm{t}]\right) / / \text { TraditionalForm } \\
& \frac{1}{2} m\left(x^{\prime}(t)^{2}+y^{\prime}(t)^{2}+z^{\prime}(t)^{2}\right)-g m z(t)
\end{aligned}
$$

Converting to polar coordinates, and using the constraints that $\phi=\omega t$ and $r=R$, using the conversion

$$
\begin{gathered}
x=R \sin (\theta) \cos (\omega t) \\
y=R \sin (\theta) \sin (\omega t) \\
z=R-R \cos (\theta)
\end{gathered}
$$

gives

```
Clear[r, 0, \phi];
Defer[L] == (Lpolar = Expand[FullSimplify[L /. {x m Function[t, R Cos[\omegat] Sin[0[t]]],
            y Function[t, R Sin[\omegat] Sin[0[t]]], z 隹 Function[t,
            R-R Cos[0[t]]]}]]) / . 且[t] }->\dot{0}/.0[t]->0// TraditionalForm
0== Defer[ [\partial0 L - Dt["", t] 拄L] == (EL = Expand[FullSimplify[
                        \partial0[t] Lpolar - 就焐'[t] Lpolar]]) /. 0[t] }->0// TraditionalForm
```



```
L=gmR\operatorname{cos}(0)-gmR-\frac{1}{4}m\mp@subsup{R}{}{2}\mp@subsup{\omega}{}{2}\operatorname{cos}(20)+\frac{1}{2}\mp@subsup{\dot{0}}{}{2}m\mp@subsup{R}{}{2}+\frac{1}{4}m\mp@subsup{R}{}{2}\mp@subsup{\omega}{}{2}
0=\frac{\partialL}{\partial0}-\frac{d}{dt}\frac{\partialL}{\partial\dot{0}}=-gmR\operatorname{sin}(0)+m\mp@subsup{R}{}{2}\mp@subsup{\omega}{}{2}\operatorname{sin}(0)\operatorname{cos}(0)-m\mp@subsup{R}{}{2}\mp@subsup{0}{}{\prime\prime}(t)
\mp@subsup{0}{}{\prime\prime}(t)=\frac{R\mp@subsup{\omega}{}{2}\operatorname{sin}(0(t))\operatorname{cos}(0(t))-g\operatorname{sin}(0(t))}{R}
```

Finding the minimum value of ω for the bead to be in equilibrium gives

$$
\begin{aligned}
& \left(\theta^{\prime} '[t] / . \text { Solve }\left[E L=0, \theta^{\prime} '[t]\right][1]\right)=0 / / \text { TraditionalForm } \\
& \operatorname{Refine}\left[\operatorname { R e d u c e } \left[\left(\theta \theta^{\prime}[t] / . \text { Solve }\left[E L=0, \theta^{\prime}[[t]][1]\right)=0, \operatorname{Cos}[\theta[t]]\right],\right.\right. \\
& \quad \operatorname{Sin}[\theta[t]] \neq 0 \& \& \operatorname{Ros}[\theta[t]] \neq 0 \& \& g>0 \& \& R \omega \neq 0] / . \theta[t] \rightarrow \theta / / \text { TraditionalForm } \\
& \frac{R \omega^{2} \sin (\theta(t)) \cos (\theta(t))-g \sin (\theta(t))}{R}=0 \\
& \cos (\theta)=\frac{g}{R \omega^{2}}
\end{aligned}
$$

In order for this to have a solution，we must have

$$
\omega \geq \sqrt{\frac{g}{R}}
$$

If $\theta=\pi / 2$ ，then $\cos (\theta)=0$ ，so $\omega=\infty$ ．

Problem 11．8：K \＆K 8.12

－Problem

A pendulum is rigidly fixed to an axle held by two supports so that it can only swing in a plane perpendicular to the axle．The pendulum consists of a mass m attached to a massless rod of length l ．The supports are mounted on a platform which rotates with constant angular velocity Ω ．Find the pendulum＇s frequency assuming the amplitude is small．

- Solution by torque

(From the problem set solutions)

The torque about the pivot point is

$$
\begin{gather*}
\vec{\tau}_{p}=\vec{\alpha} I_{p} \\
\hat{k}: \quad-g \ell m \sin (\theta)+\ell F_{\text {cent }} \cos (\theta)=\stackrel{\theta}{\theta} I_{p} \tag{1}
\end{gather*}
$$

The centrifugal effective force is

$$
F_{\mathrm{cent}}=m(\ell \sin (\theta)) \Omega^{2}
$$

For small angles, $\sin (\theta) \simeq \theta, \cos (\theta) \simeq 1$. Then equation (1) becomes

$$
\begin{aligned}
-g \ell m \theta+m \ell^{2} \theta \Omega^{2} & \simeq m \ell^{2} \theta \\
- & \theta+\left(\frac{g}{\ell}-\Omega^{2}\right) \theta
\end{aligned}
$$

$$
\omega=\sqrt{\frac{g}{\ell}-\Omega^{2}}
$$

If $\Omega^{2}>\frac{g}{\ell}$, the motion is no longer harmonic.

- Solution by least action

The general Lagrangian for the object in Cartesian coordinates is

$$
\begin{aligned}
& \text { Clear }[\mathbf{x}, \mathbf{y}, \mathbf{z}, \mathrm{t}] ;\left(\mathbf{L}=\frac{1}{2} \mathrm{~m}\left(\mathbf{x}^{\prime}[\mathrm{t}]^{2}+\mathbf{y}^{\prime}[\mathrm{t}]^{2}+\mathbf{z}^{\prime}[\mathrm{t}]^{2}\right)-\mathrm{mg} \mathbf{z}[\mathrm{t}]\right) / / \text { TraditionalForm } \\
& \frac{1}{2} m\left(x^{\prime}(t)^{2}+y^{\prime}(t)^{2}+z^{\prime}(t)^{2}\right)-g m z(t)
\end{aligned}
$$

Converting to polar coordinates, and using the constraints that $\phi=\Omega t$ and $r=\ell$, using the conversion

$$
\begin{gathered}
x=\ell \sin (\theta) \cos (\Omega t) \\
y=\ell \sin (\theta) \sin (\Omega t) \\
z=\ell-\ell \cos (\theta)
\end{gathered}
$$

gives

$$
\begin{aligned}
& \text { Clear }[\rho, \theta, \phi] \text {; } \\
& \text { Defer [L] == (Lpolar = Expand[FullSimplify[L/. }\{x \rightarrow \text { Function[t, } \rho \operatorname{Cos}[\Omega t] \operatorname{Sin}[\theta[t]] \text {, } \\
& y \rightarrow \text { Function [t, } \rho \operatorname{Sin}[\Omega t] \operatorname{Sin}[\theta[t]]], z \rightarrow \text { Function[t, } \rho-\rho \operatorname{Cos}[\theta[t]]]\}]]) / . \\
& \theta^{\prime}[t] \rightarrow \dot{\theta} / \cdot \theta[t] \rightarrow \theta / / \text { TraditionalForm } \\
& 0=\operatorname{Defer}\left[\partial_{\theta} \mathrm{L}-\operatorname{Dt}[" ", \mathrm{t}] \partial_{\dot{\theta}} \mathrm{L}\right]= \\
& \text { (EL = Expand[FullSimplify[} \partial_{\theta[t]} \text { Lpolar }-\partial_{t} \partial_{\theta^{\prime}[t]} \text { Lpolar]]) /. } \\
& \theta[t] \rightarrow \theta / / \text { TraditionalForm } \\
& \theta^{\prime \prime}[t]=\left(\theta^{\prime} '[t] / . \text { Solve[EL == 0, } \theta^{\prime \prime}[t]\right][1 \mathbb{1}) / / \text { TraditionalForm } \\
& L=g m \ell \cos (\theta)-g m \ell-\frac{1}{4} m \Omega^{2} \ell^{2} \cos (2 \theta)+\frac{1}{2} \dot{\theta}^{2} m \ell^{2}+\frac{1}{4} m \Omega^{2} \ell^{2} \\
& 0=\frac{\partial L}{\partial \theta}-\frac{d}{d t} \frac{\partial L}{\partial \dot{\theta}}=-g m \ell \sin (\theta)-m \ell^{2} \theta^{\prime \prime}(t)+m \Omega^{2} \ell^{2} \sin (\theta) \cos (\theta) \\
& \theta^{\prime \prime}(t)=\frac{\Omega^{2} \ell \sin (\theta(t)) \cos (\theta(t))-g \sin (\theta(t))}{\ell}
\end{aligned}
$$

Note that this is, after minor changes of variable, the exact same equation that we found in the previous problem. We should('ve) expect(ed) this.
Making the first order approximation that $\theta \approx 0$ (Taylor expanding around $\theta=0$ to the first order), we get

$$
\theta^{\prime \prime}(t)=-\left(\frac{g}{\ell}-\Omega^{2}\right) \theta(t)
$$

This is the differential equation for a harmonic oscillator, with

$$
\omega=\sqrt{\frac{g}{\ell}-\Omega^{2}}
$$

If $\Omega^{2}>\frac{g}{\ell}$, the motion is no longer harmonic.

