The Prisoner’s Dilemma, Memory, and the Early Evolution of Intelligence

Mikaela Leas™*, Emily L. Dolson*?#, Riley Annis?>*, Joshua R. Nahum?3+,
Laura M. Grabowski'* and Charles Ofria®3*

College of Engineering and Computer Science, University of Texas Rio Grande Valley
2Department of Computer Science and Engineering, Michigan State University
3Ecology, Evolutionary Biology, and Behavior Program, Michigan State University
4BEACON Center for the Study of Evolution in Action
mikaela.leasO1 @utrgv.edu

Abstract

Memory is an essential component of intelligence as it en-
ables an individual to make informed decisions based on past
experiences. In the context of biological systems, however,
what selective conditions promote the evolution of memory?
Given that reliable memory is likely to be associated with
costs, how much is it actually worth in different contexts?
We use a genetic algorithm to measure the evolutionary im-
portance of memory in the context of the Iterated Prisoner’s
Dilemma, a game in which players receive a short-term gain
for defection, but may obtain greater long-term benefits with
cooperation. However, cooperation requires trust; cooperat-
ing when an opponent defects is the worst possible outcome.
Memory allows a player to recall an opponent’s previous ac-
tions to determine how trustworthy that opponent is. While
a player can earn a high payout by defecting, it will likely
lose the trust of an opponent with memory, yielding a lower
long-term payout. We determined the value of memory in the
Iterated Prisoner’s Dilemma under various conditions. When
memory is costly, players reduce their available memory and
use short-term greedy strategies, such as ”Always Defect”.
Alternatively, when memory is inexpensive, players use well-
known cooperative strategies, such as “Tit-for-Tat”. Our find-
ings indicate that organisms playing against a static opponent
evolve memory as expected. However, memory is much more
challenging to evolve in coevolutionary scenarios where its
value is uneven.

Introduction

Biological evolution has produced our only examples thus
far of general intelligence. As such, understanding the evo-
lutionary process—both how it occurred in nature and how
we can replicate it in a computer—-may prove important on
the path to developing artificial intelligence. One impor-
tant component of such research is understanding the role of
memory. Memory is the foundation of learning, allowing an
individual to alter its future behavior based on prior stimuli
(Sherry and Schacter, |1987). As such, memory is critical for
such behaviors as navigating, tracking, foraging, avoiding
predators, hunting prey and cooperating with others (Dunlap
and Stephens| |2009; |Grabowski et al.l [2010; [Liverence and
Franconeri, 2015 |Kraines and Kraines, [2000; |Soto et al.,
2014)). These behaviors are sufficiently beneficial to fitness

that memory is advantageous to many individuals despite
the associated biological costs (Barton, |2012; Dukas, [1999;
Mayley, [1996). Understanding the importance of memory
and the conditions under which memory evolves is crucial
as it is a fundamental component to both real and artificial
organisms.

To study the selective pressures that lead to the early evo-
Iution of memory, we need a way to measure their impact
on memory’s value. Here, we propose a technique for per-
forming a cost-benefit analysis of memory via a simple evo-
lutionary simulation. As an environment for this simulation,
we will use the the classic game theoretic problem, Iterated
Prisoner’s Dilemma (IPD). Game theory provides a tractable
framework for studying the value of memory in social con-
texts. IPD specifically is an ideal choice, because it is well-
understood, requires memory for optimal performance, and
is commonly used as a model system for studying coop-
eration (Axelrod, [1987; [Crowley et al.l (1996} [Kraines and
Kraines|, |2000; |Golbeckl [2002). In this game, two players
repeatedly interact; at each step, they may cooperate with or
defect from each other, and are rewarded according to the
Prisoner’s Dilemma payout matrix (see Table 1). The fact
that IPD is so well-studied allows us to thoroughly validate
this approach to studying memory. At the same time, we can
gain useful insights into a relatively intuitive system before
tackling more complex ones.

To assess the value of memory in this environment, we
use a genetic algorithm to evolve strategies for playing IPD.
Strategies in this algorithm are allowed to use memory, but
at a cost. They must sacrifice part of their payout to have
and use memory. By imposing a series of different mem-
ory costs and observing under which memory-using strate-
gies evolve, we can measure the value of memory in this
evolutionary context. Allowing evolution to generate novel
strategies, rather than hard-coding in well-known strategies
and allowing them to compete, ensures that we are not in-
advertently introducing our own biases to the study system.
To further ensure the validity of our system, we initially test
it in a static environment where all players compete against
a fixed set of three strategies. Overall, this system should

DOI: http://dx.doi.org/10.7551/ 978-0-262-33936-0-ch068

allow the evolution of individuals that use successful strate-
gies in IPD, allowing us to determine the value of memory.

Iterated Prisoner’s Dilemma

Three commonly-employed strategies for IPD are Always
Defect, Always Cooperate, and Tit-for-Tat (Brunauer et al.}
2007). The first two are the repetition of one action (defect
or cooperate, respectively), while Tit-for-Tat is a strategy
that repeats whatever action a player’s opponent performed
last. Always Defect and Always Cooperate do not require
memory, as they do not rely on the history of a player’s ac-
tions or those of its opponent. Tit-for-Tat, however, does re-
quire memory. In a single iteration of Prisoner’s Dilemma,
the best possible strategy is Always Defect; regardless of
the opponent’s decision, defecting will always yield a higher
payout on a given iteration than cooperating would have (see
Table 1). This consistent benefit makes Always Defect a
selfish/greedy strategy (Axelrod, |1987).

[NKe!
w)

C | R
D|T

0
1

318
5|P

Table 1: Payouts To Row-Player for Prisoner’s Dilemma
Fitness is determined based on this matrix. Four payouts
are possible: Reward (R), Sucker (S), Temptation (T), and
Punishment (P). These payouts are a result of whether the
player and the opponent each cooperate (C) or defect (D).
In a single iteration, T is the highest payout for a single
player. However, when playing repeated iterations of Pris-
oner’s Dilemma, players can retaliate against each other,
yielding lower payouts for both than if they had cooperated
consistently.

When playing multiple iterations, cooperative strategies,
such as Tit-for-Tat, outcompete the Always Defect strategy
by allowing for the higher rewards associated with long-term
cooperation (Axelrod, [1987; |Crowley et al., [1996; |Golbeckl,
2002). To be successful, cooperative strategies must, among
other things, be forgiving and retaliating; both of these at-
tributes require memory (Axelrod, |1987). Forgiving strate-
gies (eventually) cooperate in response to their opponents
cooperating, even if the opponent defected in the past. Con-
versely, retaliating strategies (eventually) defect in response
to their opponents defecting. Both of these strategies are
only possible if the player is able to remember the oppo-
nent’s actions. Thus, we can reasonably expect memory to
be worth sacrificing some percentage of a player’s payout,
an assumption which is born out by prior research (Crowley
et al.,|1996).

Methods

Our system is a genetic algorithm, where fitness is based
on the cumulative payout of IPD. A genetic algorithm is a

| Strategy | AD [TFT | R | Average
AD (0) 1.00 | 1.06 | 3.00 | 1.69
TFT (1) 0.98 | 3.00 | 2.24 | 2.07
TTFT (2) | 0.98 | 3.00 | 2.60 | 2.19

Table 2: Payouts for Optimal Strategies for the Static En-
vironment A player’s payout is determined from the Pris-
oner’s Dilemma matrix (Table 1). In our static environment,
the player competes against three static strategies: Always
Defect (AD), Tit-for-Tat (TFT), and Random (R) over 64 it-
erations. The player’s optimal strategy is dependent on the
size of its memory. The AD strategy uses zero bits of mem-
ory, while the TFT strategy uses one bit of memory. When
the player has one bit of memory, the best strategy is Tit-for-
Tat. In this environment, the optimal strategy when a player
has two bits of memory is to first cooperate and then defect
any time the opponent has defected in the player’s memory.
This strategy is called Two-Tits-for-Tat (TTFT).

method for computationally solving problems that maintains
and generates a population of potential solutions by select-
ing the most successful ones and allowing them to repro-
duce (Goldberg and Holland, [1988). There are four impor-
tant components within a genetic algorithm: representation
of a genotype, the initialization of the population, mecha-
nism for selecting the next generation, and mutation oper-
ators (Mitchell, [1996). To facilitate validation of our ap-
proach via comparison to the results of previous research,
we based our system off of systems that have successfully
been used to study IPD in the past (Axelrod, |1987} |Crowley
et all [1996; Kraines and Kraines| |2000). Crowley et al.’s
set-up was a particularly strong influence, as their system
allowed for flexible evolution of memory-using strategies.
Our implementation is open source and available on GitHub:
https://github.com/mikaelaleas/ChangingEnvironmentGA.

Representation of Genotype

Genotypes in our system are closely based off of those used
by|Crowley et al.|(1996). An individual’s genotype has three
components: (1) the amount of memory it uses, (2) the ini-
tial state of its memory, and (3) its decision list. (1) The size
of an individual’s memory is the number of previous itera-
tions for which it can remember its opponent’s actions (as a
simplification, organisms are unable to remember their own
actions). Each bit of memory can hold information about
one iteration. Since the decision list grows exponentially
with the amount of memory used, we limit individuals to
have no more than four bits of memory; that is, individuals
can remember up to four iterations of their opponent’s ac-
tions. (2) Next, since the memory is supposed to be a list of
the opponent’s actions, its initial state (before the opponent
has actually played any iterations) biases the early decisions

DOI: http://dx.doi.org/10.7551/ 978-0-262-33936-0-ch068

https://github.com/mikaelaleas/ChangingEnvironmentGA

made by an individual. The initial state of this memory is
allowed to evolve. The individual’s memory is subsequently
updated every iteration of IPD, with the oldest past action
being removed and the most recent action being added (see
Figure [T). (3) Finally, the decision list is used to specify
which action an individual will take, given a particular mem-
ory state (see Figure). The length of the decision list is 2",
where n is the number of bits of memory, with an entry cor-
responding to every possible state of memory. The initial
population, of size 500, was composed of individuals with
each of these components randomly selected. Populations
were allowed to evolve for 500 generations.

Size (Bits) Initial Memory Decision List
2 CD CDCD
2
%4
‘ZI’C% C
<
0
I/C’
«9/0/‘0
Size (Bits) Initial Memory Decision List
2 D CDCD

Figure 1: Single Iteration of Prisoner’s Dilemma The
player has three components: size (in bits), initial memory,
and decision list. In a single round, a player will use the ini-
tial memory and decision list to decide whether to cooperate
(C) or defect (D). A player’s initial memory is updated ev-
ery round to store the opponent’s last action. The decision
list does not change during an individual’s lifetime. Here,
player 1 cooperates with player 2 and player 2 cooperates
with player 1. Player 1’s initial memory is updated to reflect
player 2’s cooperation.

Selection of Next Generation

To select which individuals contribute offspring to the next
generation: (1) a fitness score is generated for each indi-
vidual, and (2) the population participates in a tournament.
To determine a fitness score, individuals play 64 iterations
of Prisoner’s Dilemma (1 game) against competitors. In
the static environment that we use to validate this approach,
these competitors have three predetermined strategies: Al-
ways Defect, Tit-for-Tat, and Random. These three strate-
gies were chosen to keep simplicity of the model, allowing
for a focus on the evolution of memory-using strategies. In
the coevolutionary environment, these competitors are ran-
domly chosen from the population. Based on the IPD payout
matrix, each individual is awarded a payout. This payout is

Initial Memory Decision List
CD
[OI01T12]1[3]
10
cC D C D
[2]

C

Figure 2: Initial Memory and the Decision List During a
single iteration of Prisoner’s Dilemma, a player chooses to
cooperate (C) or defect (D) based on its decision list. Defect
is represented with a 0 and cooperate with a 1. In this ex-
ample, the initial memory is CD, which is represented as the
binary number 10 (i.e. 2, in decimal). This points to index
2 in the decision list, which contains a C, so this player will
cooperate in this iteration.

multiplied by the difference between 1 and the total cost of
memory (accounting for all of the bits). The result is the
fitness score.

fitness = payout(1 — cost * size) (1)

The fitness score calculation determines how the cost of
memory affects the fitness of an individual. The cost of
memory is fixed prior to the experiment. Finally, an average
fitness for each individual is calculated. The next generation
is produced through a tournament-style selection. The pop-
ulation is divided into subgroups of 10 individuals. The best
half of the group—those with the highest fitness scores—are
selected for the next generation. Note that this is a slightly
gentler selection scheme than the one used by [Crowley et al.
(1996)); we chose it because we felt that the reduced elitism
was a better analog for the biological systems we are ulti-
mately interested in understanding.

Mutations

Mutations occur probabilistically after the next generation
is selected. There are three classes of mutations that can oc-
cur, corresponding to each of the portions of the genome:
(1) size mutations, (2) initial memory mutations, and (3) de-
cision mutations. All three types of mutations have a fixed
probability of 0.01 of occurring when offspring are created.
(1) A size mutation will increase or decrease the size of an
individual’s memory by 1 bit. This change affects the length
of the decision list and the initial memory state of the in-
dividual. If the size of the memory is increased, the deci-
sion list will be duplicated meaning that increasing memory
has no immediate effect on behavior unless one of the other
types of mutations also occurs. However, if the size of the

DOI: http://dx.doi.org/10.7551/ 978-0-262-33936-0-ch068

n

—_
L

e

Average Bits of Memory

o

0 100 200 300 400 500
Generation

Memory Cost
—0—0.01—0.05—0.075=0.2

Figure 3: Average Number of Bits of Memory Used By
Cost of Memory Shaded area represents standard deviation
for each line. The cost of memory had a strong impact on
the average number of bits of memory used by the popula-
tion (Kruskal-wallis test, chi-squared = 168.44, df =8, p <
.0001). When the cost of memory increases, the average
number of bits of memory decreases (Post-hoc Wilcoxon
Rank-sum test with Bonferonni correction). The average
number of bits used at each memory cost are consistent with
the predicted values from Table 3.

memory is decreased, the decision list is halved by remov-
ing the least significant bits (most distant in the past memory
position). (2) The memory mutation affects the initial state
of memory. This mutation will randomly choose an index
of the initial memory and toggle the action (cooperate or de-
fect) at that position. (3) The decision mutation targets the
decision list. This mutation will randomly choose an index
of the decision list and toggle the action (cooperate or de-
fect) at that position.

Results and Discussion
Static Environment

To verify this system’s efficacy, we started out by allowing
strategies to evolve in a static environment in which each
player competed against three static strategies: Always De-
fect, Tit-for-Tat, and Random. In this scenario, we can de-
terministically calculate how much a bit of memory should
be worth in each context. The expected fitness and the high-
est memory cost for which players evolve to use memory
is calculated from the Prisoner’s Dilemma payout matrix,
the individual’s size, and the memory cost. The individual
plays 64 iterations of IPD against each of the three strate-
gies and receives payouts accordingly. The payouts are then
adjusted according to the individual’s size and the cost of
memory, to determine the individual’s fitness (Equation 1).
Using more bits of memory allows the player to recall more
previous actions of the opponent and thus determine which

| Strategy | Cost [AD | TFT [R | Average |

AD (0) 0.01 1.00 | 1.06 | 3.00 | 1.69
TFT (1) 0.01 097 | 297 | 2.22 | 2.05
TTFT (2) | 0.01 096 | 294 | 255 | 2.15

AD (0) 0.075 | 1.00 | 1.06 | 3.00 | 1.69
TFT (1) 0.075 | 091 | 2.78 | 2.07 | 1.92
TTFT (2) | 0.075 | 0.83 | 2.55 | 2.21 | 1.86

AD (0) 0.2 1.00 | 1.06 | 3.00 | 1.69

TFT (1) 0.2 0.78 | 240 | 1.79 | 1.65
TTFT (2) | 0.2 0.59 | 1.80 | 1.56 | 1.32

Table 3: Expected Average Fitness by Cost of Memory
in the Static Environment This table shows the expected
average payout per iteration for the optimal strategies for 0,
1, and 2 bits of memory, adjusted by various costs of mem-
ory. The parenthetical next to each strategy name denotes
the number of bits of memory that it uses. Here, we show
three costs, each of which favors a different strategy: Al-
ways Defect, Tit-for-Tat, or Two-Tits-for-Tat.

strategy the opponent is using. Once an individual is able
to determine its opponent’s strategy, it may alter its future
actions to increase its payout. This enables the evolution of
better strategies that are able to retaliate against opponents
if exploited. For example, an individual using the Always
Defect strategy receives an average payout per iteration of
1.69 (see Table 2). If the cost of memory were 0.01 and
the individual had one bit of memory, that payout would be
reduced to 1.67. Using two bits of memory would further
decrease the payout to 1.65. When there is no fitness cost,
the optimal strategy is to start out cooperating, use the max-
imum allowed amount of memory, and defect any time an
opponent has defected within memory. This will result in an
individual always defecting after the first iteration against
Always Defect, cooperating with Tit-for-Tat, and recogniz-
ing Random as frequently as possible. However, there are
diminishing returns to adding additional bits of memory (see
Table 2); in this simple setup, the greatest fitness improve-
ment comes from adding the first bit, making Tit-for-Tat a
possible strategy.

When a cost is applied to memory, the optimal strategy
may change (see Table 3). If our system is accurately mea-
suring the value of memory, we would expect to see Always
Defect be the dominant strategy when the cost per bit of
memory is 0.18 or greater, Tit-for-Tat be dominant when
the cost is between 0.18 and .065, and so on. This result
is almost exactly what we see in practice (see Figure[3). As
predicted, this shift seems to be driven by an increase in Tit-
for-Tat-style strategies as the cost of memory decreases (see
Figure [4).

The one slightly unexpected result is that, even when

DOI: http://dx.doi.org/10.7551/ 978-0-262-33936-0-ch068

Frequency
o ()] B

[6)]

o, Il

3TFT oTFT TFT AD
Strategy
Memory Cost

Holo.01Mo0.05M0.0751M0.2

Figure 4: Most Common Strategies By Cost of Memory
We calculated the most commonly used (dominant) strat-
egy in each of the 20 replicates within each of the 5 mem-
ory cost conditions. The four dominant strategies we ob-
served were 3TFT (Three-Tits-for-Tat, the optimal strategy
with three bits of memory), 2TFT (Two-Tits-for-Tat, the op-
timal strategy with two bits of memory), TFT (the optimal
strategy with one bit of memory), and AD (the optimal strat-
egy with no memory). As expected, the dominant strategy
depended on the cost of memory. Increasing the cost of
memory increases the frequency with which less memory-
intensive strategies are dominant.

memory has no cost, strategies don’t tend to use much more
than three bits of memory. We hypothesize that this is due to
the following mechanism: Every additional bit of memory
doubles the size of an individual’s decision list. An exces-
sively large decision list is at increased risk of experiencing
genetic drift away from the optimal values. Thus, the poten-
tial fitness gain from adding a fourth bit of memory may not
be worth the increased risk of the lineage making incorrect
moves later on. Such a scenario would be consistent with
the decreased recognition accuracy found by |Crowley et al.
(1996).

Coevolutionary environment

Having demonstrated that our methodology accurately mea-
sures the value of memory in a system, we can now move
on to a more interesting case. Instead of placing solutions in
a static environment, we can allow them to compete against
each other. This scenario introduces complex coevolution-
ary dynamics that would normally confound attempts to
measure the value of memory. In this setup, the population
is initially populated with Tit-for-Tat (one bit of memory)
and each individual plays IPD with each other individual in
its tournament to determine its fitness. Like before, the top-
half of each tournament is allowed to reproduce. We ran this
treatment at two different mutation rates: low (.01 for each

-
()]

—_
o

o
3

bt
o

Average Bits of Memory

0 100 200 300 400 500
Generation

Memory Cost
—0—=0.01—0.05—0.2

Figure 5: Memory Usage in Coevolutionary Environment
(Low Mutation Rate) Shaded area represents standard de-
viation for each line. Memory use consistently evolved only
when memory had no cost; the average amount of memory
used in this condition was significantly different from the
amount used in all of the other conditions (Kruskal-wallis
test and post-hoc Wilcoxon rank-sum test with Bonferonni
correction, chi-squared = 55.93, df =5, p < .0001). In all
of the other conditions, the average amount of memory used
gradually declines over time.

mutation type) and high (.1 for each mutation type).

At a low mutation rate, memory proves far less useful in
this more complex environment, as evidenced by the fact
that it is not consistently used if it has any cost associated
with it (see Figure [5). As in the previous experiment, in-
creasing the memory cost increases the percentage of repli-
cates in which Always Defect, rather than Tit-for-Tat, be-
comes the dominant strategy. When examining individual
runs, a common pattern takes place. The initial population
of Tit-for-Tat is frequently invaded by Always Cooperate.
Always Cooperate can displace Tit-for-Tat (in the absence
of other competitors) because it receives the same payout,
but does not have to pay any cost for memory. Once Tit-
for-Tat is extinct (or nearly so), Always Defect arises and
quickly displaces Always Cooperate. In the low mutation
rate replicates, Tit-for-Tat rarely is generated via mutation
from Always Defect, leading to a stable population that is
trapped at a sub-optimal strategy. Although Crowley et al.
did not analyze the strategies that evolved in their system,
these results are consistent with theirs in that they too ob-
served that applying a cost to memory resulted in decreased
cooperation (Crowley et al.l [1996)).

Interestingly, memory use in a coevolutionary context in-
creases at the higher mutation rate (see Figure [6). When
memory is free in this treatment, strategies quickly evolve
to use the maximum allowed amount of memory, suggesting
that the implicit costs of making use of a large memory are

DOI: http://dx.doi.org/10.7551/ 978-0-262-33936-0-ch068

ts of Memory
o &

—_
s

Average Bi

o

0 100 200 300 400 500
Generation

Memory Cost
—0—0.01—0.05—0.075=0.2

Figure 6: Memory Usage in Coevolutionary Environment
(High Mutation Rate) Shaded area represents standard de-
viation for each line. Populations evolved to use more mem-
ory at lower costs. At memory costs of .075 and higher, the
average amount of memory used by the population after 500
generations was not significantly different from 0 (Kruskal-
wallis test and post-hoc Wilcoxon rank-sum test with Bon-
feronni correction, chi-squared = 95.24, df =5, p < .0001).

overwhelmed by coevolutionary selective pressures. Alter-
natively, the large decision lists that individuals with a lot of
memory have may serve to increase mutational robustness.
This effect would be in contrast to the results observed in the
static environment and in previous research (Crowley et al.
1996). Understanding the relationship between these factors
would be an interesting direction to explore in the future.

In the condition with no memory cost, Tit-for-Tat is the
most common strategy in approximately half of the repli-
cates, a finding which is consistent with Tit-for-Tat’s domi-
nance in the Axelrod tournament (Axelrod, [1987). Among
the other half of the replicates there is an incredible diver-
sity of most common strategies - only two of the other repli-
cates have the same most common strategy. Applying any
cost to memory causes the population to converge to well-
known strategies (see Figure [7). These results align with
Mayley’s finding that applying a cost to learning (analogous
to memory, in our case) substantially inhibits the exploration
of strategies that would require it (Mayley, |1996).

Conclusion

We demonstrated the evolutionary value of memory by us-
ing a genetic algorithm that awards fitness based on the re-
sults of many iterations of the Iterated Prisoner’s Dilemma.
Under static environmental conditions, the population often
evolved to use memory, despite it being costly, as long as it
provided a substantial gain in payout. In fact, the extent to
which memory was used aligned nearly perfectly with the-
oretical predictions about the costs and benefits of memory

Frequency
o ()] B

o

o]

0011~11 TFT AD
Strategy
Memory Cost
N0.011M0.05MM0.075/M0.11H0.2

Figure 7: Most Common Strategies in Coevolutionary
Environment (High Mutation Rate) Again, Tit-for-Tat is
more frequently the dominant strategy at lower memory
costs. Note that this figure does not include the strategies
used when there was no cost to memory, because there were
too many of them. Approximately half of the replicates in
the O cost condition of this treatment used Tit-for-Tat, and
the other half each had a different dominant strategy (al-
though most of the dominant strategies were not dramati-
cally more prevalent than other strategies in the population).
Also note that the strategy on the far left, 0011~11 is de-
noted only by its genotype (decision list~initial memory),
as it does not correspond to a well-known named strategy.
It cooperates initially, and any time its opponent cooperated
two iterations ago.

in this system. This result demonstrates that the technique
proposed here is an effective way to quantify the value of
memory in evolutionary contexts. By simply giving mem-
ory a fitness cost and observing whether memory evolves
we can assess its importance in complex scenarios.

In more dynamic environments, we observed that mem-
ory was valuable when there were no costs because it en-
abled cooperation. However, it was easily evolved away un-
der high memory costs (where Always Defect could rapidly
overtake Tit-for-Tat) or low mutation rates (where Always
Cooperate could outcompete Tit-for-Tat and subsequently
be outcompeted by Always Defect). While this phenomenon
illustrates the difficulty of measuring the value of memory in
an environment where that value keeps changing, our results
were consistent with the findings of prior research and we
were able to more fully investigate the mechanisms behind
them.

While we were able to show the value of a single bit of
memory, the evolutionary dynamics explored here generally
did not provide a substantial benefit to having larger amounts
of memory. In light of these early findings, we plan to ex-
tend this research, both in static environments (to test our

DOI: http://dx.doi.org/10.7551/ 978-0-262-33936-0-ch068

analytical predictions of the value of memory) and in dy-
namic coevolutionary environments (to study the practical
evolution of memory in realistic scenarios).

For static environments, we plan to explore the evolu-
tionary response of players to imperfect opponents, such as
those that attempt to engage in Tit-for-Tat, but make occa-
sional errors. A single mistake can spiral into a high level
of defection and much lower overall payouts, but if a player
uses larger amounts of memory, it will be able to recognize
and forgive mistakes for a longer-term benefit. We will also
explore introducing longer-term memory that the player can
set as it chooses. We will provide these players with com-
binations of opponents that require long-term memory to re-
ceive optimal payouts, such as Always Cooperate and Tit-
for-Tat. In such cases, a player with long-term memory will
be able to initially probe to determine whether its opponent
responds negatively to a defection. If so, it can play Tit-for-
Tat from then on (starting with a cooperation). On the other
hand, if the opponent does not retaliate, the player knows
that it can play Always Defect from then on out for a larger
payout.

Dynamic environments have an even wider potential for
helping us learn more about the evolution of memory. As
of now, it is challenging to evolve cooperative strategies de
novo. They require memory to increase—immediately incur-
ring a cost-but no gain is realized until a cooperative strategy
is in place and multiple players are using it and interacting.
We plan to explore structured populations with smaller, local
groups where kin selection effects can dominate and selec-
tion is weaker, allowing these strategies to more easily come
into play. We plan to also explore more stabilizing forces
once players are engaging in cooperation so that it doesn’t
evolve away as easily as we saw here.

Overall, this work is an important step in studying the
early evolution of memory utilization, and insights from it
are likely to be valuable in informing other real and artificial
life studies involving the evolution of intelligence.

Acknowledgments

We extend our thanks to Michael Wiser, Alexander Lale-
jini, and Anya Vostinar for their comments on early drafts
of this manuscript. This research has been supported by the
National Science Foundation (NSF) BEACON Center under
Cooperative Agreement DBI-0939454, by the National Sci-
ence Foundation Graduate Research Fellowship under Grant
No. DGE-1424871 awarded to ELD, and by Michigan State
University through computational resources provided by the
Institute for Cyber-Enabled Research. Any opinions, find-
ings, and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily re-
flect the views of the NSF.

References

Axelrod, R. (1987). The evolution of strategies in the iter-

ated prisoners dilemma. The dynamics of norms, pages
1-16.

Barton, R. A. (2012). Embodied cognitive evolution and the
cerebellum. Philosophical Transactions of the Royal
Society B: Biological Sciences, 367(1599):2097-2107.

Brunauer, R., Lcker, A., Mayer, H. A., Mitterlechner, G.,
and Payer, H. (2007). Evolution of Iterated Prisoner’s
Dilemma Strategies with Different History Lengths in
Static and Cultural Environments. In Proceedings of
the 2007 ACM Symposium on Applied Computing, SAC
"07, pages 720-727, New York, NY, USA. ACM.

Crowley, P. H., Provencher, L., Sloane, S., Dugatkin, L. A.,
Spohn, B., Rogers, L., and Alfieri, M. (1996). Evolv-
ing cooperation: the role of individual recognition.
37(1):49-66.

Dukas, R. (1999). Costs of memory: ideas and predictions.
Journal of Theoretical Biology, 197(1):41-50.

Dunlap, A. S. and Stephens, D. W. (2009). Components of
change in the evolution of learning and unlearned pref-
erence. Proceedings of the Royal Society B: Biological
Sciences, 276(1670):3201-3208.

Golbeck, J. (2002). Evolving strategies for the prisoners
dilemma. Advances in Intelligent Systems, Fuzzy Sys-
tems, and Evolutionary Computation, 2002:299.

Goldberg, D. E. and Holland, J. H. (1988). Genetic al-
gorithms and machine learning. Machine learning,
3(2):95-99.

Grabowski, L. M., Bryson, D. M., Dyer, F. C., Ofria, C., and
Pennock, R. T. (2010). Early Evolution of Memory
Usage in Digital Organisms. In Artifical Life XII, pages
224-231.

Kraines, D. P. and Kraines, V. Y. (2000). Natural Selection
of Memory-one Strategies for the Iterated Prisoner’s
Dilemma. Journal of Theoretical Biology, 203(4):335-
355.

Liverence, B. and Franconeri, S. (2015). Human cache
memory enables ultrafast serial access to spatial rep-
resentations. Journal of Vision, 15(12):1292.

Mayley, G. (1996). Landscapes, learning costs, and genetic
assimilation. 4(3):213.

Mitchell, M. (1996). An Introduction to Genetic Algorithms.
MIT Press, Cambridge, MA, USA.

DOI: http://dx.doi.org/10.7551/ 978-0-262-33936-0-ch068

Sherry, D. F. and Schacter, D. L. (1987). The evolution
of multiple memory systems. Psychological Review,
94(4):439-454.

Soto, D., Rotshtein, P., and Kanai, R. (2014). Parietal struc-
ture and function explain human variation in work-
ing memory biases of visual attention. Neurolmage,
89:289-296.

DOI: http://dx.doi.org/10.7551/ 978-0-262-33936-0-ch068

	Introduction
	Iterated Prisoner's Dilemma

	Methods
	Representation of Genotype
	Selection of Next Generation
	Mutations

	Results and Discussion
	Static Environment
	Coevolutionary environment

	Conclusion
	Acknowledgments

