
The Procedure Abstraction
Part I: Basics

Procedure Abstraction
•  Begins Chapter 6 in EAC
•  The compiler must deal with interface between compile time and

run time
→  Most of the tricky issues arise in implementing “procedures”

•  Issues
→  Compile-time versus run-time behavior
→  Finding storage for EVERYTHING and mapping names to addresses
→  Generating code to compute addresses
→  Interfaces with other programs, other languages, and the OS
→  Efficiency of implementation

Where are we?

•  This is “compilation,” as opposed to “parsing” or “translation”
•  Implementing promised behavior

→  What defines the meaning of the program
•  Managing target machine resources

→  Registers, memory, issue slots, locality, power, …
→  These issues determine the quality of the compiler

Errors

Source
Code

Middle
End

Front
End

Machine
code

Back
End

IR IR

Well understood Engineering

Contains more open problems and more challenges

The Procedure & Its Three Abstractions

The Procedure as a Name Space

There is a strict constraints that each procedure must adhere to!

The Procedure & Its Three Abstractions

The Procedure & Its Three Abstractions

The Procedure & Its Three Abstractions

The Procedure: Three Abstractions
•  Control Abstraction

→  Well defined entries & exits
→  Mechanism to return control to caller

•  Clean Name Space
→  Clean slate for writing locally visible names
→  Local names may obscure identical, non-local names
→  Local names cannot be seen outside

•  External Interface
→  Access is by procedure name & parameters
→  Clear protection for both caller & callee
→  Invoked procedure can ignore calling context

•  Procedures permit a critical separation of concerns

The Procedure (Realist’s View)
Procedures are the key to building large systems
•  Requires system-wide contract

→  Conventions on memory layout, protection, resource allocation
calling sequences, & error handling

→  Must involve architecture (ISA), OS, & compiler
•  Provides shared access to system-wide facilities

→  Storage management, flow of control, interrupts
→  Interface to input/output devices, protection facilities, timers,

synchronization flags, counters, …
•  Establishes a private context

→  Create private storage for each procedure invocation
→  Encapsulate information about control flow & data abstractions

The Procedure (Realist’s View)
Procedures allow us to use separate compilation
•  Separate compilation allows us to build non-trivial programs
•  Keeps compile times reasonable
•  Lets multiple programmers collaborate
•  Requires independent procedures
Without separate compilation, we would not build large systems

The procedure linkage convention
•  Ensures that each procedure inherits a valid run-time

environment and that the callers environment is restored on
return
→  The compiler must generate code to ensure this happens

according to conventions established by the system

The Procedure (More Abstract View)
A procedure is an abstract structure constructed via software

Underlying hardware directly supports little of the abstraction—
it understands bits, bytes, integers, reals, and addresses, but
not:

•  Entries and exits
•  Interfaces
•  Call and return mechanisms

→  may be a special instruction to save context at point of call
•  Name space
•  Nested scopes
All these are established by a carefully-crafted system of

mechanisms provided by compiler, run-time system, linker and
loader, and OS

Run Time versus Compile Time
These concepts are often confusing to the newcomer
•  Linkages execute at run time
•  Code for the linkage is emitted at compile time
•  The linkage is designed long before either of these

Compile time versus run time can be confusing to CISC672
students. We will emphasize the distinction between them.

The Procedure as a Control Abstraction
Procedures have well-defined control-flow

The Algol-60 procedure call
•  Invoked at a call site, with some set of actual parameters
•  Control returns to call site, immediately after invocation

The Procedure as a Control Abstraction
Procedures have well-defined control-flow

The Algol-60 procedure call
•  Invoked at a call site, with some set of actual parameters
•  Control returns to call site, immediately after invocation

int p(a,b,c)
 int a, b, c;
{
 int d;
 d = q(c,b);
 ...
}

…
s = p(10,t,u);
…

The Procedure as a Control Abstraction
Procedures have well-defined control-flow

The Algol-60 procedure call
•  Invoked at a call site, with some set of actual parameters
•  Control returns to call site, immediately after invocation

int p(a,b,c)
 int a, b, c;
{
 int d;
 d = q(c,b);
 ...
}

int q(x,y)
 int x,y;
{
 return x + y;
}

…
s = p(10,t,u);
…

The Procedure as a Control Abstraction
Procedures have well-defined control-flow

The Algol-60 procedure call
•  Invoked at a call site, with some set of actual parameters
•  Control returns to call site, immediately after invocation

int p(a,b,c)
 int a, b, c;
{
 int d;
 d = q(c,b);
 ...
}

int q(x,y)
 int x,y;
{
 return x + y;
}

…
s = p(10,t,u);
…

The Procedure as a Control Abstraction
Procedures have well-defined control-flow

The Algol-60 procedure call
•  Invoked at a call site, with some set of actual parameters
•  Control returns to call site, immediately after invocation

int p(a,b,c)
 int a, b, c;
{
 int d;
 d = q(c,b);
 ...
}

int q(x,y)
 int x,y;
{
 return x + y;
}

…
s = p(10,t,u);
…

The Procedure as a Control Abstraction
Procedures have well-defined control-flow

The Algol-60 procedure call
•  Invoked at a call site, with some set of actual parameters
•  Control returns to call site, immediately after invocation

int p(a,b,c)
 int a, b, c;
{
 int d;
 d = q(c,b);
 ...
}

int q(x,y)
 int x,y;
{
 return x + y;
}

…
s = p(10,t,u);
…

Most languages allow recursion

The Procedure as a Control Abstraction
Implementing procedures with this behavior
•  Requires code to save and restore a “return address”
•  Must map actual parameters to formal parameters (c→x, b→y)
•  Must create storage for local variables (&, maybe, parameters)

→  p needs space for d (&, maybe, a, b, & c)
→  where does this space go in recursive invocations?

Compiler emits code that causes all this to happen at run time

int p(a,b,c)
 int a, b, c;
{
 int d;
 d = q(c,b);
 ...
}

int q(x,y)
 int x,y;
{
 return x + y;
}

…
s = p(10,t,u);
…

The Procedure as a Control Abstraction
Implementing procedures with this behavior
•  Must preserve p’s state while q executes
•  Strategy: Create unique location for each procedure activation

→  Can use a “stack” of memory blocks to hold local storage and
return addresses

Compiler emits code that causes all this to happen at run time

int p(a,b,c)
 int a, b, c;
{
 int d;
 d = q(c,b);
 ...
}

int q(x,y)
 int x,y;
{
 return x + y;
}

…
s = p(10,t,u);
…

The Procedure as a Name Space
Why introduce lexical scoping?
•  Provides a compile-time mechanism for binding variables
•  Simplifies rules for naming & resolves conflicts
•  Lets the programmer introduce “local” names
How can the compiler keep track of all those names?

The Problem
•  At point p, which declaration of x is current?
•  At run-time, where is x found?
•  As parser goes in & out of scopes, how does it delete x?

The Answer
•  The compiler must model the name space
•  Lexically scoped symbol tables (see § 5.7.3)

Do People Use This Stuff ?
C macro from the MSCP compiler

#define fix_inequality(oper, new_opcode) \
 if (value0 < value1) \
 { \
 Unsigned_Int temp = value0; \
 value0 = value1; \
 value1 = temp; \
 opcode_name = new_opcode; \
 temp = oper->arguments[0]; \
 oper->arguments[0] = oper->arguments[1]; \
 oper->arguments[1] = temp; \
 oper->opcode = new_opcode; \
 }

Declares a new name

Lexically-scoped Symbol Tables
The problem
•  The compiler needs a distinct record for each declaration
•  Nested lexical scopes admit duplicate declarations

The interface
•  insert(name, level) – creates record for name at level
•  lookup(name, level) – returns pointer or index
•  delete(level) – removes all names declared at level

Many implementation schemes have been proposed (see § B.4)
•  We’ll stay at the conceptual level
•  Hash table implementation is tricky and detailed

Symbol tables are compile-time structures the compiler use to resolve references to names.
We’ll see the corresponding run-time structures that are used to establish addressability later.

§ 5.7 in EaC

Example
procedure p {

 int a, b, c
 procedure q {
 int v, b, x, w
 procedure r {
 int x, y, z
 ….
 }
 procedure s {
 int x, a, v
 …
 }
 … r … s
 }
 … q …

}

B0: {
 int a, b, c

B1: {
 int v, b, x, w

B2: {
 int x, y, z
 ….
 }

B3: {
 int x, a, v
 …
 }
 …
 }
 …

}

Lexically-scoped Symbol Tables
High-level idea
•  Create a new table for each scope
•  Chain them together for lookup

“Sheaf of tables” implementation
•  insert() may need to create table
•  it always inserts at current level
•  lookup() walks chain of tables &
 returns first occurrence of name
•  delete() throws away table for level
 p, if it is top table in the chain
If the compiler must preserve the
table (for, say, the debugger), this
idea is actually practical.
Individual tables can be hash tables.

